
Towards Faster Planning with Continuous Resources in Stochastic Domains

Janusz Marecki and Milind Tambe
Computer Science Department

University of Southern California
941 W 37th Place, Los Angeles, CA 90089

{marecki, tambe}@usc.edu

Abstract

Agents often have to construct plans that obey resource lim-
its for continuous resources whose consumption can only be
characterized by probability distributions. While Markov De-
cision Processes (MDPs) with a state space of continuous and
discrete variables are popular for modeling these domains,
current algorithms for such MDPs can exhibit poor perfor-
mance with a scale-up in their state space. To remedy that
we propose an algorithm called DPFP. DPFP’s key contribu-
tion is its exploitation of the dual space cumulative distribu-
tion functions. This dual formulation is key to DPFP’s novel
combination of three features. First, it enables DPFP’s mem-
bership in a class of algorithms that perform forward search
in a large (possibly infinite) policy space. Second, it provides
a new and efficient approach for varying the policy genera-
tion effort based on the likelihood of reaching different re-
gions of the MDP state space. Third, it yields a bound on
the error produced by such approximations. These three fea-
tures conspire to allow DPFP’s superior performance and sys-
tematic trade-off of optimality for speed. Our experimental
evaluation shows that, when run stand-alone, DPFP outper-
forms other algorithms in terms of its any-time performance,
whereas when run as a hybrid, it allows for a significant
speedup of a leading continuous resource MDP solver.

Introduction

Recent years have seen a rise of interest in the deployment of
unmanned vehicles in dynamic and uncertain environments.
Whereas some of these vehicles can be tele-operated, vehi-
cles such as the Mars rovers may have to act autonomously
due to inherent communication restrictions (Bresina et al.
2002; Meuleau, Dearden, and Washington 2004). Further-
more, autonomous vehicles must deal with energy require-
ments, or more generally, resource requirements whose con-
sumption is often non-deterministic. As a result, agents that
control these vehicles must be able to plan for dynamic, un-
certain and non-discrete environments.

Continuous resource MDPs have emerged as a powerful
planning technique to address such domains with uncertain
resource consumption and resource limits. Several promis-
ing policy iteration algorithms (Lagoudakis and Parr 2003;

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nikovski and Brand 2003; Guestrin, Hauskrecht, and Kve-
ton 2004; Hauskrecht and Kveton 2004) and value itera-
tion algorithms (Feng et al. 2004; Li and Littman 2005;
Marecki, Koenig, and Tambe 2007) have been identified
for policy generation in such MDPs. Furthermore, pro-
posed improvements to policy and value iteration algo-
rithms (Boutilier, Dearden, and Goldszmidt 2000; Mausam
et al. 2005) have dramatically increased the applicability of
continuous state MDPs to many real-world planning prob-
lems. Unfortunately, these techniques can still be inefficient
(Meuleau, Dearden, and Washington 2004), especially when
the discrete part of the states leads to the combinatorial ex-
plosion of the state-space — the problem commonly referred
to as the curse of dimensionality.

The key contribution of this paper is the Dynamic
Probability Function Propagation (DPFP) algorithm that en-
ables scale-up of continuous resource MDP solvers. What
makes it possible is DPFP’s exploitation of the the duality
of the planning problem; rather than using the value iter-
ation principle to search for policies in the value function
space (Marecki, Koenig, and Tambe 2007), DPFP’s search
for policies is carried out in a probability function space,
referred to as the dual space of cumulative distribution func-
tions. In essence, DPFP is trying to find the best allocation
of probability mass that traverses MDP states.

This dual formulation in context of continuous resource
MDP is key to DPFP’s novel combination of three fea-
tures. First, similarly to the HAO∗ algorithm (Mausam et al.
2005), DPFP performs a forward search in a large (possibly
infinite) policy space. Second, the cumulative distribution
functions enable DPFP’s novel approach to discriminate in
its policy generation effort spending less time on regions of
the MDP state space reachable with low-likelihood. Third,
DPFP expresses its error in terms of an arbitrary small pa-
rameter κ which allows it to trade-off optimality for speed.
As our experimental evaluation shows, the dual formulation
translates into DPFP’s superior performance: DPFP outper-
forms leading algorithms by up to two orders of magnitude
in terms of its any-time performance and can be run in a hy-
brid mode with other solvers to significantly speed up the
search for high quality solutions.

Background

We use time as an example of a continuous resource and
deadlines as an example of resource limits and solve plan-
ning problems that are similar to the ones studied in (Feng
et al. 2004; Li and Littman 2005; Marecki, Koenig, and
Tambe 2007). They are modeled as MDPs with two sources
of uncertainty: action durations and action outcomes. S de-
notes the finite set of states of the MDP, A is the finite set
of actions and A(s) ⊂ A is a set of actions that can be ex-
ecuted in state s ∈ S. Actions can be executed in a time
interval [0,∆] where ∆ is a deadline and as such, time-to-
deadline is a monotonically decreasing continuous resource.
Assume that an agent is in state s ∈ S at time t < ∆. It
executes an action a ∈ A(s) of its choice. The execution
of the action cannot be interrupted, and the action duration
t′ is distributed according to a given probability distribution
ps,a(t′) that can depend on both the state s and the action a.
If t′ ≥ ∆− t, then the time t+ t′ after the action execution
is greater or equal than ∆, which means that the deadline
is reached and execution stops. Otherwise, with probability
P (s′|s, a), the agent obtains reward R(s′) ≥ 0 and transi-
tions to state s′ ∈ S with time t+ t′ and repeats the process.
The agent starts in state s0 at time 0 with the objective to
maximize its expected reward until execution stops.

We use a Mars rover domain that is similar to one used in
(Meuleau, Dearden, and Washington 2004; Feng et al. 2004;
Li and Littman 2005; Marecki, Koenig, and Tambe 2007). A
planetary rover located at the base station is presented each
day with a set of M sites of interest, and it receives a one-
time reward rm upon visiting site m. Because the rover re-
lies on solar power, it can only operate during a planetary
day whose duration is ∆. As a result, the rover may not
have enough time to visit all sites during one day. Moreover,
since traversal times between sites are uncertain (only their
probability distributions are known), rover decision which
site to go next must depend on the current time.

We can solve such planning problems by encoding time in
the states, resulting in a continuous state MDP that can be
solved with a version of value iteration (Marecki, Koenig,
and Tambe 2007) as follows: Let V ∗(s)(t) denote the largest
expected total reward that the agent can obtain until execu-
tion stops if it starts in state s ∈ S with time t ∈ [0,∆]. The
agent can maximize its expected total reward by executing
the action

π∗(s)(t) = arg max
a∈A(s)

{
X
s′∈S

P (s′|s, a) (1)

Z ∆−t

0

ps,a(t′)(R(s′) + V ∗(s′)(t+ t′)) dt′}

in state s ∈ S at time 0 ≤ t ≤ ∆, which can be explained
as follows: When it executes action a ∈ A(s) in state s ∈
S, it incurs action duration t′ with probability ps,a(t′). If
0 ≤ t′ ≤ ∆ − t, then it transitions to state s′ ∈ S with
probability P (s′|s, a) and obtains an expected total future
reward of R(s′) + V ∗(s′)(t+ t′).

Value iteration techniques (Feng et al. 2004; Li and
Littman 2005; Marecki, Koenig, and Tambe 2007) calcu-

late V ∗(s)(t) needed to determine π∗(s)(t) by first cal-
culating the values V n(s)(t) for all states s ∈ S, times
0 ≤ t ≤ ∆, and iterations n ≥ 0 using the following Bell-
man updates:

V 0(s)(t) := 0

V n+1(s)(t) :=

8<:
0 if t ≥ ∆
maxa∈A(s){

P
s′∈S P (s′|s, a) otherwiseR ∆−t

0
ps,a(t′)(R(s′) + V n(s′)(t+ t′)) dt′}.

It then holds that limn→∞ V n(s)(t) = V ∗(s)(t) for all
states s ∈ S and 0 ≤ t ≤ ∆ and π∗ can be derived from
Equation (1). Note, that since t is a real-valued variable, the
integral above cannot be computed exactly and hence, value
iteration algorithms are only near-optimal.

DPFP Approach

Value iteration’s ability to find π∗ comes at a high price. In-
deed, value iteration propagates values backwards, and thus,
in order to find π∗(s0)(0), it must first find π∗(s)(t) for all
states s ∈ S reachable from s0 and all t ∈ [0,∆] — no mat-
ter how likely it is that state s is visited at time t (in our Mars
rover domain with 10 sites of interest, value iteration must
plan for all 210 states and for all t ∈ [0,∆]). In fact, value it-
eration does not even know the probabilities of transitioning
to a state s at time t prior to finding π∗.

DPFP on the other hand, as a forward search algorithm, can
determine the probabilities of transitioning to a state s at
time t prior to finding π∗. Hence, DPFP can discriminate in
its policy generation effort providing only approximate poli-
cies for pairs (s, t) encountered with low probability. Unfor-
tunately if an MDP contains cycles or action duration distri-
butions are continuous, standard forward search cannot be
carried out in a standard way as it would have to consider an
infinite number of candidate policies.

To remedy that, DPFP exploits two insights. First, since
each action consumes a certain minimum amount of time,
only a finite number of actions can be performed before the
deadline (Mausam et al. 2005) and thus, the action horizon
of DPFP’s forward search can be finite. Second, to avoid
having to consider an infinite number of policies when ac-
tion duration distributions are continuous, DPFP operates on
a different search space referred to as the dual space of cu-
mulative distribution functions. In that dual space, DPFP
only finds approximate solutions, yet it can express the error
of its approximations in terms of an arbitrary small parame-
ter κ. We now explain this process.

Dual Problem

There exists an alternative technique for finding a determin-
istic policy π∗ that does not use Equation 1, and thus, does
not calculate the values V ∗(s)(t) for all s ∈ S and t ∈
[0,∆]. Let φ = (s0, ..., s) be an execution path that starts in
state s0 at time t0 and finishes in state s. Φ(s0) is a set of
all paths reachable from state s0. Also, let F ∗(φ)(t) be the
probability of completing the traversal of path φ before time
t when following the optimal policy π∗, and F ∗(φ, a)(t)

be the probability of completing the traversal of path φ and
starting the execution of action a ∈ A(s) before time t when
following policy π∗ — both F ∗(φ) and F ∗(φ, a) are cumu-
lative distribution functions over t ∈ [0,∆]. In this context,
the optimal deterministic policy π∗(s) for state s can be cal-
culated as follows:

π∗(s)(t) = arg max
a∈A(s)

{lim
ε→0

F ∗(φ, a)(t+ ε)− F ∗(φ)(t)} (2)

Since the derivative of F ∗(φ, a) over time is positive at time
t for only one action a ∈ A(s). The solution F ∗ to the
dual problem is then a set F ∗ := {F ∗(φ); F ∗(φ, a) for all
φ = (s0, ..., s) ∈ Φ(s0) and a ∈ A(s)}.
We now show how to find F ∗. For notational convenience,
assume t0 = 0. Since rewards R(s) are earned upon en-
tering states s ∈ S before time ∆, the expected utility
V π(s0)(0) of a policy π is given by:

V π(s0)(0) =
X

φ=(s0,...,s)∈Φ(s0)

Fπ(φ)(∆) ·R(s)

Where Fπ differs from F ∗ in that Fπ is associated with
policy π rather than π∗. Since solution F ∗ must yield
V ∗(s0)(0), it has to satisfy:

V ∗(s0)(0) = max
π

V π(s0)(0) = max
π

X
φ=(s0,...,s)∈Φ(s0)

Fπ(φ)(∆) ·R(s)

=
X

φ=(s0,...,s)∈Φ(s0)

F ∗(φ)(∆) ·R(s)

In addition, F ∗ ∈ X = {F : (3), (4), (5)} where:
F ((s0))(t) = 1 (3)

F ((s0, ..., s))(t) =
X

a∈A(s)

F ((s0, ..., s), a)(t) (4)

F ((s0, ..., s, s
′))(t) =

X
a∈A(s)

P (s, a, s′) (5)

·
Z t

0

F ((s0, ..., s), a)(t′) · ps,a(t− t′)dt′

Constraint (3) ensures that the process starts in state s0 at
time 0. Constraint (4) can be interpreted as the conserva-
tion of probability mass flow through path (s0, ..., s); ap-
plicable only if |A(s)| > 0, it ensures that the cumula-
tive distribution function F ((s0, ..., s)) is split into cumu-
lative distribution functions F ((s0, ..., s), a) for a ∈ A(s).
Finally, constraint (5) ensures the correct propagation of
probability mass F (s0, ..., s, s

′) from path (s0, ..., s) to path
(s0, ..., s, s

′). It ensures that path (s0, ..., s, s
′) is traversed

at time t if path (s0, ..., s) is traversed at time t′ ∈ [0, t]
and then, action a ∈ A(s) takes time t − t′ to tran-
sition to state s′. The dual problem is then stated as:
max

∑
φ=(s0,...,s)∈Φ(s0) F (φ)(∆) ·R(s) | F ∈ X .

Solving the Dual Problem

In general, the dual problem is extremely difficult to solve
optimally because when action duration distributions are
continuous or the MDP has cycles, the set X where F ∗ is
to be found is infinite. Yet, we now show that even if ac-
tion duration distributions are continuous and the MDP has

cycles, the dual problem can be solved near-optimally with
guarantees on solution quality. The idea of the algorithm
that we propose is to restrict the search for F ∗ to finite num-
ber of elements inX by pruning fromX the elements F that
correspond to reaching regions of the state-space with very
low probability. In essence, when the probability of reaching
certain regions of the state-space is below a given threshold,
the expected quality loss for executing suboptimal actions
in these regions can be bounded, and we can tradeoff this
quality loss for efficiency.

More specifically, our algorithm searches for F ∗ in set X̂ ⊂
X where X̂ differs from X in that values of functions F
in X̂ are restricted to integer multiples of a given κ ∈ <+.
Informally, κ creates a step function approximation of F .
Formally, X̂ = {F : (3), (4), (6), (7), (8)} where

F ′((s0, ..., s, s
′))(t) =

X
a∈A(s)

P (s, a, s′) (6)

·
Z t

0

F ((s0, ..., s), a)(t′) · ps,a(t− t′)dt′

F ((s0, ..., s, s
′))(t) = bF ′((s0, ..., s, s

′))(t)/κc · κ (7)
F ((s0, ..., s), a)(t) = κ · n where n ∈ N (8)

The restricted dual problem is then stated as:
max

∑
φ=(s0,...,s)∈Φ(s0) F (φ)(∆) ·R(s) | F ∈ X̂

Note, that since X̂ is finite, we can solve the restricted dual
problem optimally by iterating over all elements of X̂ . We
will show an algorithm that carries out this iteration and re-
turns a policy π̂∗ that is guaranteed to be at most ε away
from π∗ where ε can be expressed in terms of κ. We first
show our algorithm on an example, then outline the algo-
rithm pseudo-code and finally bound its error.

Figure 1 shows our algorithm in action. Assume, A(s0) =
{a1};A(s1) = A(s2) = {a1, a2}; A(s3), A(s4), A(s5)
is arbitrary. Also, P (s0, a1, s1) = P (s1, a1, s2) =
P (s1, a2, s3) = P (s2, a1, s4) = P (s2, a2, s5) = 1 and
κ = 0.2. The algorithm iterates over all elements in X̂ .
It starts with F ((s0)) which is given by constraint (3), then
uses constraints (4), (6) to derive F ′((s0, s1)) (solid gray
line for state s1) and finally uses constraint (7) to approx-
imate F ′((s0, s1)) with a step function F ((s0, s1)) (solid
black line for state s1).

At this point the algorithm knows the probability
F ((s0, s1))(t) that s1 will be visited before time t
but does not know the probabilities F ((s0, s1), a1)(t)
F ((s0, s1), a2)(t) that actions a1 or a2 will be started
from s1 before time t (dotted black lines for state s1).
Thus, to iterate over all elements in X̂ , it must iterate
over all |A(s1)|F ((s0,s1))(∆)/κ = 16 different sets of func-
tions {F ((s0, s1), a1);F ((s0, s1), a2)} (called splittings of
F ((s0, s1))). A splitting determines the policy (see Equa-
tion 2): For the specific splitting shown, action a1 is started
at times t1, t2, t4 whereas action a2 is started at time t3 (we
later show how to extrapolate this policy on [0,∆]).

At this point, the algorithm calls itself recursively.

t

1

t

κ

κ

κ

∆

F'((s0,s1))

F((s0,s1))

0

State s1

F((s0,s1),a1)

F((s0,s1),a2)

∆

∆0

0

a1

a2

F'((s0,s1,s2))
F((s0,s1,s2))

F((s0,s1,s2),a1)
F((s0,s1,s2),a2)

State s2

State s3

κ

∆0

F'((s0,s1,s2,s4))State s4
a1

a2
F((s0,s1,s2,s4))=0

κ

∆0

State s5

State s0
Time t0

a1

F'((s0,s1,s3))
F((s0,s1,s3))

F'((s0,s1,s2,s5))

F((s0,s1,s2,s5))=0t1 t2 t3 t4

Figure 1: Search for an optimal probabilistic policy in an approximate space of cumulative distribution functions

It now knows F ((s0, s1, s2)) and F ((s0, s1, s3)) (de-
rived from {F ((s0, s1), a1);F ((s0, s1), a2)} using con-
straints (6), (7)) but does not know the probabilities
F ((s0, s1, s2), a1)(t); F ((s0, s1, s2), a2)(t) that actions a1

or a2 will be started from s2 before time t. Thus,
to iterate over all elements in X̂ , it iterates over all
sets {F ((s0, s1, s2), a1);F ((s0, s1, s2), a2)} (splittings of
F ((s0, s1, s2))) . In this case, for the specific split-
ting shown, F ((s0, s1, s2, s4))(∆) < κ and thus, no
splittings of F ((s0, s1, s2, s4)) are possible (similarly for
F ((s0, s1, s2, s5))). In such case, the algorithm stops iter-
ating over policies for states following s4, because the max-
imum reward loss for not planning for these states, bounded
by κ ·R where R =

∑
φ=(s0,s1,s2,s4,...,s)

R(s), can be made
arbitrary small by choosing a sufficiently small κ (to be
shown later). Thus, the algorithm evaluates the current split-
ting of F ((s0, s1, s2)) and continues iterating over remain-
ing splittings of F ((s0, s1, s2)) after which it backtracks and
picks another splitting of F ((s0, s1)) etc.

Algorithm 1 DPFP(φ = (s0, ..., s), F ′(φ))
1: F (φ)(t)← bF ′(φ)(t)/κc · κ
2: u∗ ← 0
3: for all sets {F (φ, a) : a ∈ A(s)} such that F (φ)(t) =P

a∈A(s) F (φ, a)(t) and F (φ, a)(t) = κ · n;n ∈ N do
4: u← 0
5: for all s′ ∈ S do
6: F ′ ←

P
a∈A(s) P (s, a, s′)

R t
0
F (φ, a)(t′)ps,a(t−t′)dt′

7: u← u+ DPFP((s0, ..., s, s
′), F ′)

8: if u > u∗ then
9: BESTSPLITTING← {F (φ, a) : a ∈ A(s)}

10: u∗ ← u
11: for all F (φ, a) ∈ BESTSPLITTING and all t ∈ [0,∆] do
12: if limε→0 F (φ, a)(t+ ε)− F (φ, a)(t) > 0 then
13: bπ∗(s)(t)← a
14: return u∗ + F (φ)(∆) ·R(s)

In general, we start the algorithm by calling DPFP((s0), 1)
for a globally defined and arbitrary small κ. When called
for some φ = (s0, ..., s) and F ′(φ), the DPFP function first
derives F (φ) from F ′(φ) using constraint (7). It then it-
erates over all sets of functions {F (φ, a) : a ∈ A(s)} in
order to find the best splitting of F (φ) (lines 3—10). For a
particular splitting, the DPFP function first makes sure that
this splitting satisfies constraints (4) and (8) (line 3) upon
which it calculates the total expected utility u of this splitting

(lines 4—7). To this end, for all paths (s0, ..., s, s
′), it uses

constraint (6) to create functions F ′ = F ′((s0, ..., s, s
′))

(line 6) and then, calls itself recursively for each pair
((s0, ..., s, s

′), F ′) (line 10). Finally, if u is greater than the
total expected utility u∗ of the best splitting analyzed so far,
DPFP updates the BESTSPLITTING (lines 8—10).

Upon finding the BESTSPLITTING, the DPFP function uses
Equation (2) to extract the best deterministic policy π̂∗ from
it (lines 11—13) and terminates returning u∗ plus the ex-
pected reward for entering s before time ∆ (computed in
line 14 by multiplying the immediate reward R(s) by the
probability F (s0, ..., s)(∆) of entering s before time ∆).
As soon as DPFP((s0), 1) terminates, the algorithm extrap-
olates its already known point-based policies onto time in-
terval [0,∆] using the following method: If π̂∗(s)(t1) = a1,
π̂∗(s)(t2) = a2, and π̂∗(s)(t) is not defined for t ∈ (t1, t2),
the algorithm puts π̂∗(s)(t) = a1 for all t ∈ (t1, t2). For ex-
ample, if splitting in Figure 1 is optimal, π̂∗(s1)(t) = a1 for
t ∈ [0, t1) ∪ [t1, t2) ∪ [t2, t3) ∪ [t4,∆) and π̂∗(s1)(t) = a2

for t ∈ [t3, t4).

Taming the Algorithm Complexity

As stated, the DPFP algorithm can appear to be inefficient
since it operates on large number of paths (exponential in
the length of the longest path) and large number of splittings
per path (exponential in b1/κc). However, this exponential
complexity is alleviated thanks to the following features of
DPFP:

• Varying policy expressivity for different states: The
smaller the probability of traversing a path φ = (s0, ..., s)
before the deadline, the less expressive the policy for state
s has to be (fewer ways in which F (φ) can be split into
{F (φ, a) : a ∈ A(s)}). For example, state s2 in Figure
1 is less likely to be visited than state s1 and therefore,
DPFP allows for higher policy expressivity for state s1

(24 policies) than for state s2 (22 policies). Sparing the
policy generation effort in less likely to be visited states
enables faster policy generation.

• Varying policy expressivity for different time intervals:
The smaller the probability of traversing to a state inside
a time interval, the less expressive the policy for this state
and interval has to be. In Figure 1 we are more likely to
transition to state s1 at time t ∈ [t1, t3] (with probabil-
ity 2κ) than at time t ∈ [t3, t4] (with probability 1κ) and

thus, DPFP considers 22 policies for time interval [t1, t3]
and only 21 policies for time interval [t3, t4].

• Path independence: When function F (φ) for a sequence
φ = (s0, ...s) is split into functions {F (φ, a) : a ∈
A(s)}, functions {F (φ, a) : a ∈ A(s);P (s, a, s′) = 0}
have no impact on F ((s0, ..., s, s

′)). Thus, we have to
consider fewer splittings of F (φ) to determine all possi-
ble functions F ((s0, ..., s, s

′)). For example, in Figure 1,
F ((s0, s1, s2)) is only affected by F ((s0, s1), a1). Con-
sequently, as long as F ((s0, s1), a1) remains unaltered
when iterating over different splittings of F ((s0, s1)),
we do not have to recompute the best splittings of
F ((s0, s1, s2)).

• Path equivalence. For different paths φ = (s0, ..., s) and
φ′ = (s0, ..., s) that coalesce in state s, the best split-
ting of F (φ) can be reused to split F (φ′) provided that
maxt∈[0,∆] |F ′(φ)(t)− F ′(φ′)(t)| ≤ κ.

Error Control

Recall that F̂ ∗ is the optimal solution to the restricted dual
problem returned by DPFP. We now prove that the reward
error ε of a policy identified by F̂ ∗ can be expressed in terms
of κ. To this end, we first prove that for all paths φ ∈ Φ(s0):

max
t∈[0,∆]

|F ∗(φ)(t)− bF ∗(φ)(t)| ≤ κ|φ| (9)

By induction on the length of φ: if |φ| = 1,
maxt∈[0,∆] |F ∗((s0))(t)− F̂ ∗((s0))(t)| = maxt∈[0,∆] |1−
1| = 0 < κ. Assume now that statement (9) holds for a
sequence φ = (s0, ..., sn−1) of length n. Statement (9) then
also holds for all sequences φ′ = (s0, ..., sn−1, sn) of length
n+ 1 because:
|F ∗(φ′)(t)− bF ∗(φ′)(t)| ≤ |F ∗(φ′)(t)−cF ′∗(φ′)(t)|+ κ

Where bF ∗(φ′) is derived from cF ′∗(φ′) using constraint (7)

=
X

a∈A(s)

P (s, a, s′)|
Z t

0

F ∗(φ, a)(t′) · ps,a(t− t′)dt′

−
Z t

0

bF ∗(φ, a)(t′) · ps,a(t− t′)dt′|+ κ

≤ max
a∈A(s)

Z t

0

|F ∗(φ, a)(t′)− bF ∗(φ, a)(t′)| · ps,a(t− t′)dt′ + κ

≤ max
a∈A(s)

Z t

0

|F ∗(φ)(t′)− bF ∗(φ)(t′)| · ps,a(t− t′)dt′ + κ

And from the induction assumption

≤
Z t

0

κn · ps,a(t− t′)dt′ + κ ≤ κn+ κ ≤ κ|φ′|

holds for t ∈ [0,∆] which proves the induction. We now
use this result to bound the error ε of DPFP:

ε = Rmax
X

φ∈Φ(s0)

max
t∈[0,∆]

|F ∗(φ)(t)− bF ∗(φ)(t)|

≤ κRmax
X

φ∈Φ(s0)

|φ| ≤ κRmaxH|A|H

Where Rmax = maxs∈S R(s) and H is the action horizon (if the
minimal action duration δ is known than H ≤ b∆/δc). Hence, by
decreasing κ, DPFP can trade off speed for optimality.

Experimental Evaluation

We compared DPFP with leading near-optimal algorithms
for solving continuous resource MDPs: Lazy Approxima-
tion (Li and Littman 2005) and CPH (Marecki, Koenig,
and Tambe 2007). All algorithms were run on three dif-
ferent domains: Fully ordered domain, unordered domain
and partially ordered domain (Figures 2a, 2b, 2c). In the
fully ordered domain the agent executes an action a′ ∈
A(s0) = {a1, a2, a3}, transitions to state sa′ , executes
a′′ ∈ A(sa′) = {a1, a2, a3}, transitions to state sa′,a′′ —
it repeats this scheme up to H = 8 times for a total number
of 38 = 6561 states. In the unordered domain (Mars rover
domain introduced earlier) the agent visits up to 8 sites in an
arbitrary order and hence, the number of states is 28 = 256.
In the partially ordered domain the agent can visit up to 10
sites in a partial order (site m + 1 can be visited only after
site m has already been visited; m = 1, 3, 5, 7, 9). For all
domains, we set ∆ = 10, draw action rewards uniformly
from set {1, 2, ..., 10} and sample action durations from one
of the following probability distribution functions (chosen
at random): Normal(µ = 2,σ = 1), Weibull(α = 2,β = 1),
Exponential(λ = 2) and Uniform (a = 0,b = 4).

s0

...........

(a)

m1
m2 m3

m4

s0 m5

m6 m7 m8H=8

(b)
m1 m2 m3

m4
s0 m5

m6

m7

m8

(c)

m9m10

Figure 2: Experimental domains: mi denote sites of interest

In our first set of experiments we determined how the three
algorithms trade off between runtime and error. To this end
we varied κ for DPFP, corresponding accuracy parameter for
Lazy Approximation and the number of phases (for Phase-
type approximation) for CPH. We show our results in Fig-
ures 3a, 3b, 3c where runtime (in seconds) is on the x-axis
(notice the log scale) and the solution quality (% of the opti-
mal solution) is on the y-axis. The results across all the do-
mains show that DPFP opens up an entirely new area of the
solution-quality vs time tradeoff space that was inaccessible
to previous algorithms. In particular DPFP dominates Lazy
approximiation in this tradeoff, providing higher quality in
lower time. DPFP also provides very high quality an order
of magnitude faster than CPH, e.g. in Figure 3a for solutions
with quality higher than 70%, DPFP will provide an answer
in 0.46 seconds, while CPH will take 28.1s for the same task.
Finally, DPFP exhibits superior anytime performance, e.g.
in Figure 3c, run with κ = 0.3, 0, 25, 0.2 it attains solution
qualities 42%, 61%, 72% in just 0.5s, 1.1s, 3.9s.
Encouraged by DPFP’s any-time performance and CPH’s
superior quality results we then developed a DPFP-CPH hy-
brid and compared it with a stand-alone CPH. The DPFP-
CPH hybrid first uses DPFP to quickly find initial actions to
be executed from s0 and then uses these actions to narrow
down CPH’s search for a high quality policy. For example,
the hybrid we tested uses DPFP (with κ = .2) to suggest to
CPH which action should be executed in s0 at time 0, and
then runs CPH in the narrowed state-space.

Figure 4: DPFP+CPH hybrid: Fully ordered domain

Figure 5: DPFP+CPH hybrid: Unordered domain

Our results are shown in Figures 4, 5 and 6 where on the
x-axes we vary the accuracy of CPH (more phases = higher
accuracy) and on the y-axes we plot the algorithms’ runtime
(Figures 4a, 5a, 6a) and solution quality (Figures 4b, 5b,
6b). The results across all the domains show that the DPFP-
CPH hybrid attains the same quality as stand-alone CPH, yet
requires significantly less runtime (over 3x). For example,
when CPH accuracy is fixed at 5 phases, DPFP-CPH hybrid
needs only 51s to find a solution whereas stand-alone CPH
needs 169.5s for the same task (Figure 5a).

Related Work

Planning with continuous resources and resource limits has
received a lot of attention. (Altman 1999; Dolgov and Dur-
fee 2005) cast such planning problems as constrained MDPs
and use linear programming to solve them efficiently. Un-
fortunately this formulation does not allow the policies to
be conditioned on resource levels. This limitation does not
apply to policy iteration algorithms (Lagoudakis and Parr
2003; Nikovski and Brand 2003; Guestrin, Hauskrecht, and
Kveton 2004; Hauskrecht and Kveton 2004) or value iter-

Figure 6: DPFP+CPH hybrid: Partially ordered domain

ation algorithms (Feng et al. 2004; Li and Littman 2005;
Marecki, Koenig, and Tambe 2007) which have been suc-
cessfully applied to many challenging planning problems
(Bresina et al. 2002; Meuleau, Dearden, and Washington
2004). Unfortunately, these techniques can still be ineffi-
cient when the discrete component of states is large, causing
a combinatorial explosion of the state-space.

Several promising techniques have been proposed to allevi-
ate this combinatorial explosion. In particular, (Boutilier,
Dearden, and Goldszmidt 2000) suggests using dynamic
Bayesian Networks to factor the discrete component of the
states when discrete state variables depend on each other.
Standard versions of dynamic programming that operate di-
rectly on the factored representation can then be used to
solve the underlying planning problems. DPFP’s contribu-
tions are complementary to this work and possible integra-
tion of DPFP and factored representations is a worthy topic
for future investigation.

More recently, (Mausam et al. 2005) have developed a Hy-
brid AO∗ (HAO∗) algorithm that significantly improves the
efficiency of continuous resource MDP solvers. The idea
in HAO∗ is to prioritize node expansion order based on the
heuristic estimate of the node value. Furthermore, HAO∗ is
particularly useful when the starting state, minimal resource
consumption and resource constraints are given — HAO∗
can then prune infeasible trajectories and reduce the number
of states to be considered to find an optimal policy.

Thus, at a high level there are some apparent similarities
between DPFP and HAO∗. However, DPFP differs from
HAO∗ in significant ways. The most important difference
is that DPFP’s forward search is conducted in a dual space
of cumulative distribution functions — in particular, DPFP’s
key novelty is its search of the different splittings of the
cumulative distribution functions entering a particular state
(e.g. see the splitting of F ((s0, s1)) in Figure 1). This dif-
ference leads to a novel approach in DPFP’s allocation of
effort in determining a policy — less effort is spent on re-
gions of the state space reachable with lower likelihood (e.g.
in Figure 1 more effort is spent on time interval [t1, t3] than
on time interval [t3, t4]). While this effort allocation idea in
DPFP differs from HAO∗’s reachability analysis, compar-
ing the runtime efficiency of DPFP and HAO∗ remains an
exciting issue for future work. Such a comparison may po-
tentially lead to creation of a hybrid algorithm combining
these two approaches.

Finally, algorithms for efficient propagation of probabilities
in continuous state-spaces have been investigated in the past,
but not in the specific context of continuous resource MDPs.
In particular, (Ng, Parr, and Koller 2000) exploits approx-
imate probability density propagation in context of gradi-
ent descent algorithms for searching a space of MDP and
POMDP stochastic controllers. For Distributed POMDPs,
(Varakantham et al. 2006) use Lagrangian methods to effi-
ciently calculate the admissible probability ranges, to speed
up the search for policies. In contrast, DPFP’s tailoring to
continuous resource MDPs allows it to exploit the underly-
ing dual space of cumulative distribution functions.

Figure 3: Comparison of runtimes and solution qualities for DPFP, CPH and Lazy Approximation

Summary

In many real-world domains agents have to construct plans
that obey resources limits for continuous resources such as
time or energy whose consumption is non-deterministic. For
modeling such domains, MDPs with a state space of contin-
uous and discrete variables have emerged as a popular plan-
ning framework. However, solving such MDP is a challenge
and as has been shown (Meuleau, Dearden, and Washington
2004), existing policy and value iteration algorithms may ex-
hibit poor performance with a scale-up in their state space.
In this paper we proposed an algorithm called DPFP which
begins to alleviate this challenge: (i) DPFP has been demon-
strated to outperform leading algorithms by up to two orders
of magnitude in terms of its any-time performance and (ii)
it significantly speeds up the search for high quality solu-
tions when run in a hybrid mode with a leading continuous
resource MDP solver. These results are a consequence of
DPFP’s main contribution of exploiting the dual space of cu-
mulative distribution functions. In essence, dual formulation
allows for novel combination of (i) forward search in a large
(possibly infinite) policy space, (ii) varying policy genera-
tion effort based on the likelihood of reaching different re-
gions of the MDP state space and (iii) error bound expressed
in terms of an arbitrary small parameter κ which allows for
a systematic trade-off of DPFP optimality for speed.

Acknowledgments

This research is supported by the United States Department
of Homeland Security through Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE). The au-
thors also want to thank the anonymous reviewers for their
valuable comments.

References

Altman, E. 1999. Constrained Markov Decision Processes.
Chapman and Hall.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 121(1-2):49–107.

Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and
Washington, R. 2002. Planning under continuous time and
resource uncertainty: A challenge for AI. In Proceedings
of UAI-02, 77–84.

Dolgov, D. A., and Durfee, E. H. 2005. Stationary de-
terministic policies for constrained MDPs with multiple
rewards, costs, and discount factors. In Proceedings of
IJCAI-05, 1326–1332.

Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R.
2004. Dynamic programming for structured continuous
MDPs. In Proceedings of UAI-04, 154–161.

Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solv-
ing factored MDPs with continuous and discrete variables.
In Proceedings of UAI-04, 235–242.

Hauskrecht, M., and Kveton, B. 2004. Linear program ap-
proximations for factored continuous-state MDPs. In NIPS
16. MIT Press.

Lagoudakis, M., and Parr, R. 2003. Least-squares policy
iteration. In JMLR, volume 4(Dec). 1107–1149.

Li, L., and Littman, M. 2005. Lazy approximation for
solving continuous finite-horizon MDPs. In Proceedings
of AAAI-05, 1175–1180.

Marecki, J.; Koenig, S.; and Tambe, M. 2007. A fast an-
alytical algorithm for solving MDPs with real-valued re-
sources. In Proceedings of IJCAI-07.

Mausam; Benazera, E.; Brafman, R. I.; Meuleau, N.; and
Hansen, E. A. 2005. Planning with continuous resources
in stochastic domains. In Proceedings of IJCAI-05, 1244–
1251.

Meuleau, N.; Dearden, R.; and Washington, R. 2004. Scal-
ing up decision theoretic planning to planetary rover prob-
lems. In Proceedings of AAAI-04: WS-04-08, 66–71.

Ng, A. Y.; Parr, R.; and Koller, D. 2000. Policy search
via density estimation. In Advances in Neural Information
Processing Systems, 1022–1028.

Nikovski, D., and Brand, M. 2003. Non-Linear stochastic
control in continuous state spaces by exact integration in
Bellman’s equations. In Proceedings of ICAPS-03: WS2,
91–95.

Varakantham, P.; Nair, R.; Tambe, M.; and Yokoo, M.
2006. Winning back the cup for distributed POMDPs:
Planning over continuous belief spaces. In Proceedings of
AAMAS-06, 289–296.

