
Introducing Communication in Dis-POMDPs with Locality of Interaction

Makoto Tasaki, Yuichi Yabu,
Yuki Iwanari, Makoto Yokoo

Kyushu University
Fukuoka, 819-0395 Japan

{tasaki@agent., yabu@agent.,
iwanari@agent., yokoo@}

is.kyushu-u.ac.jp

Milind Tambe, Janusz Marecki
University of Southern

California
Los Angeles, CA 90089

{marecki, tambe}@usc.edu

Pradeep Varakantham
Carnegie Mellon University

Pittsburgh, PA 15213
pradeepv@cs.cmu.edu

Abstract

While Distributed POMDPs have become popular for
modeling multiagent systems in uncertain domains, it is the
Networked Distributed POMDPs (ND-POMDPs) model —
a model tailored to real agent networks — that has begun
to scale-up the number of agents. However, prior work
in ND-POMDPs has failed to address communication, a
shortcoming that has the side-effect of limiting the planning
horizon. In particular, without communication, the size of
a local policy at each agent within the ND-POMDPs grows
exponentially in the time horizon. To overcome this prob-
lem, we extend existing algorithms (LID-JESP and SPI-
DER) so that agents periodically communicate their ob-
servation and action histories with each other. After com-
munication, agents can start from new synchronized belief
states. While by introducing communication, we can avoid
the exponential growth in the size of local policies at agents,
the key idea is to avoid an exponential number of synchro-
nized belief states after communication. To this end, we
introduce an idea that is similar the Point-based Value It-
eration (PBVI) algorithm and approximate the value func-
tion with a fixed number of representative points and their
α vectors. Our experimental results show that we can ob-
tain much longer policies than existing algorithms as long
as the interval between communications is small.

1. Introduction

Distributed Partially Observable Markov Decision Prob-
lems (Dis-POMDPs) are emerging as a popular approach
for modeling sequential decision making in teams operat-
ing under uncertainty [1, 8, 3]. The uncertainty is due to the
nondeterminism in the outcomes of actions and the limited
observability of the world state. Unfortunately, as shown by

Bernstein et al. [1], the problem of finding an optimal joint
policy for a distributed POMDP is NEXP-Complete if no
assumptions are made about the domain conditions.

To address this significant computational complexity,
Networked Distributed POMDPs (ND-POMDPs) [4], a
model motivated by domains such as distributed sensor nets,
distributed UAV teams, and distributed satellites, was intro-
duced. These domains are characterized by teams of agents
coordinating with strong locality in their interactions. For
example, within a large distributed sensor net, only a small
subset of sensor agents must coordinate to track targets.
By exploiting the locality, LID-JESP [4] (locally optimal)
and SPIDER [9] (globally optimal), which are leading al-
gorithms in this area, can scale-up in the number of agents.
However, these approaches cannot handle run-time commu-
nication among agents. A consequence of this shortcoming
is the exponential growth in the size of local policies.

To overcome this problem, we provide extensions to
these algorithms called LID-JESP-Comm and SPIDER-
Comm by introducing the run-time communication scheme
presented in [3]. More specifically, agents periodically ex-
change observation and action histories with each other.
Compared to other approaches such as [2, 6, 7], the advan-
tage of using this scheme is that it allows the agents to build
a new joint policy from a new synchronized belief state, i.e.,
instead of having one huge policy tree, an agent has multi-
ple smaller policy trees.

Though this approach reduces the size of policies, it cre-
ates an exponential number of synchronized belief states
after communication. To overcome this problem, we intro-
duce an idea that resembles the Point-based Value Iteration
(PBVI) algorithm [5] for single agent POMDPs. Instead
of computing optimal policies for all the synchronized be-
lief states, we compute optimal policies (and correspond-
ing value vectors) only for a set of of representative belief
points. Thus, we approximate the value function over the
entire belief set by these value vectors, i.e., for any given

1

belief point, we use the policy corresponding to the value
vector that yields the highest value.

We develop two new algorithms based on this idea, i.e.,
LID-JESP-Comm and SPIDER-Comm (extensions to LID-
JESP and SPIDER respectively). Since communication
introduces inter-dependencies among agent policies, these
algorithms lose some of the merits of the original algo-
rithms. In LID-JESP-Comm, to update the policy of an
agent, we need to consider the policies of all the other
agents. SPIDER-Comm cannot provide global optimality,
because it requires the enumeration of all joint policies.
Despite these disadvantages, our experimental results show
that these algorithms can obtain much longer policies than
existing algorithms within a reasonable amount of time.

2 Model: Networked Distributed POMDP

We follow the networked distributed POMDP (ND-
POMDP) model [4] as a concrete description of a Dis-
POMDP. It is defined for a group of n agents as tuple
〈S, A, P, Ω, O, R, b〉, where S = ×1≤i≤nSi × Su is the set
of world states. Si refers to the set of local states of agent
i and Su is the set of unaffectable states. Unaffectable state
refers to that part of the world state that cannot be affected
by agent actions. A = ×1≤i≤nAi is the set of joint actions,
where Ai is the set of actions for agent i.

ND-POMDP assumes transition independence, i.e., the
transition function is defined as P (s, a, s′) = Pu(su, s′u) ·∏

1≤i≤n Pi(si, su, ai, s
′
i), where a = 〈a1, . . . , an〉 is the

joint action performed in state s = 〈s1, . . . , sn, su〉 and
s′ = 〈s′1, . . . , s′n, s′u〉 is the resulting state. Ω = ×1≤i≤nΩi

is the set of joint observations where Ωi is the set of ob-
servations for agent i. Observational independence is as-
sumed in ND-POMDPs i.e., the joint observation func-
tion is defined as O(s′, a, ω) =

∏
1≤i≤n Oi(s′i, s

′
u, ai, ωi).

where s′ is the world state that results from the agents
performing a in the previous state, and ω is the observa-
tion received in state s′. Reward function R is defined
as R(s, a) =

∑
l Rl(sl1, . . . , slr, su, 〈al1, . . . , alr〉), where

each l could refer to any subgroup of agents and r = |l|.
Based on the reward function, an interaction hypergraph is
constructed. Hyper-link l exists between a subset of agents
for all Rl that comprise R. The interaction hypergraph is
defined as G = (Ag, E), where agents Ag are the vertices
and E = {l|l ⊆ Ag ∧ Rl is a component of R} are the
edges. The distribution over the initial state b is defined as
b(s) = bu(su) · ∏

1≤i≤n bi(si), where bu and bi refer to
distribution over the initial unaffectable and agent i’s belief
states, respectively. Each agent i chooses its actions based
on its local policy πi that maps its observation history to an
action. The goal in ND-POMDP is to compute joint pol-
icy π = 〈π1, . . . , πn〉 that maximizes the team’s expected
reward over finite horizon T starting from belief state b.

2 31

Loc 1 Loc 2

Figure 1. A 3-chain sensor configuration

Distributed sensor networks are a large, important class
of domains that motivate our work. This paper focuses on a
set of target tracking problems that arise in certain types of
sensor networks [4]. Figure 1 shows a specific problem in-
stance within this type that consists of three sensors. Here,
each sensor node can scan in one of four directions: North,
South, East or West (see Figure 1). To track a target and ob-
tain associated reward, two sensors with overlapping scan-
ning areas must be coordinated by simultaneously scanning
the same area. In Figure 1, to track a target in Loc 1, sensor
1 needs to scan ‘East’ and sensor 2 needs to scan ‘West’ si-
multaneously. We assume two independent targets and that
each target’s movement is uncertain and unaffected by the
sensor agents. Based on the area it is scanning, each sensor
receives observations that can have false positives and false
negatives. Sensors’ observations and transitions are inde-
pendent of each other’s actions. Each agent incurs a scan-
ning cost whether the target is present or not, but no cost
if it is turned off. There is a high reward for successfully
tracking a target.

3 Existing Algorithms

3.1 LID-JESP

The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint search for
policies) is based on DBA [10] and JESP [3]. In this al-
gorithm, each agent tries to improve its policy with respect
to its neighbors’ policies in a distributed manner similar to
DBA.

Initially each agent i starts with a random policy and ex-
changes its policies with its neighbors. It then computes its
local neighborhood utility with respect to its current policy
and its neighbors’ policies. The local neighborhood utility
of agent i is defined as the expected reward for executing
joint policy π accruing due to the hyper-links that contain
agent i. Agent i then tries to improve upon its current pol-
icy by computing the local neighborhood utility of agent
i’s best response to its neighbors’ policies. Agent i then
computes the gain that it can make to its local neighbor-
hood utility, and exchanges its gain with its neighbors. If
i’s gain is greater than any of its neighbors’ gain, i changes
its policy and sends its new policy to all its neighbors. This
process of trying to improve the local neighborhood utility
is continued until the joint policies reach an equilibrium.

2

3.2 SPIDER

The key idea in SPIDER [9] is avoiding the computation
of expected values for the entire space of joint policies by
utilizing the upper bounds on the expected values of poli-
cies and the interaction structure of agents. SPIDER has a
pre-processing step that constructs a Depth First Search tree
(DFS tree) that allow links between ancestors and children.
SPIDER places agents with more constraints at the top of
the tree. This tree governs how the search for the optimal
joint policy proceeds in SPIDER.

In Figure 2, we show a snapshot of search trees in the
SPIDER algorithm. A rectangle indicates an agent, and a
tree within a rectangle indicates an agent’s policy. In this
example, each agent has a policy with T = 2. Each rounded
rectangle (search tree node) indicates a partial/complete
joint policy. The heuristic or actual expected value for
a joint policy is indicated in the top right corner of the
rounded rectangle. If the number is underlined, the actual
expected value of the joint policy is provided. SPIDER be-
gins with no policy assigned to any of the agents (shown in
level 1 of the search tree). Level 2 of the search tree indi-
cates that the joint policies are sorted based on upper bounds
computed for the root agent’s policies. Level 3 shows one
SPIDER search node with a complete joint policy (a pol-
icy assigned to each agent). The expected value for this
joint policy is used to prune the nodes in level 2 (those with
upper bounds < 240). When creating policies for each non-
leaf agent i, SPIDER potentially performs two steps:

STEP 1 Obtaining upper bounds and sorting In this
step, agent i computes the upper bounds on the
expected values of the joint policies corresponding to
each of its policies and the fixed ancestor policies. An
MDP-based heuristic (more details will be explained
later) computes these upper bounds on the expected
values. All the policies of agent i are then sorted based
on these upper bounds in descending order.

STEP 2 Exploring and pruning Exploring implies com-
puting the best response joint policy that corresponds
to the fixed ancestor policies of agent i. This is per-
formed by iterating through all policies of agent i and
summing two quantities for each policy: (i) the best
response for all of i’s children; (ii) the expected value
obtained by i for fixed policies of ancestors. Prun-
ing refers to avoiding the exploration of all policies at
agent i using the current best expected value as thresh-
old. A policy need not be explored if its upper bound
is less than the threshold. For example, if the best re-
sponse policies from the leaf agents yield an actual ex-
pected value of 240, a policy with upper-bound 232 is
pruned (see Figure 2).

LEVEL 3

LEVEL 1

LEVEL 2
250w

n s
232w

w e

Prunedw
n s 240

s
nn

ee w

n:north
s:south
e:east
w:west

Figure 2. Execution of SPIDER

4 Communication in ND-POMDP

We introduce the run-time communication scheme pre-
sented in [3] to ND-POMDPs as follows.

• In the initial state, agents have a synchronized belief
state. Each agent has a local plan for subsequent k
steps1.

• Each agent executes its local plan for k steps. Then,
agents go through the communication phase.

• During the communication phase, agents communicate
their observation/action histories with each other. By
exchanging the observation and action histories with
each other, they have common knowledge on the ob-
servation/action histories of all agents. Thus, they can
update their beliefs and reach a a new synchronized
belief state.

• Each agent chooses a new plan prepared for that new
synchronized belief state.

Thus, we use multiple small policy trees with a constant
depth k instead of one huge policy tree whose size is expo-
nential to the length of the time horizon.

However, the number of joint (small) policies grows ex-
ponentially to the length of the time horizon. To overcome
this problem, we introduce an idea that resembles the Point-
based Value Iteration (PBVI) algorithm [5] for single agent
POMDPs. More specifically, we use a fixed number of rep-
resentative belief points and compute the k-step optimal
joint policy for each representative belief point. By using
a fixed number of representative belief points, the obtained
policy can be suboptimal. However, as shown in [5], we
can bound the the difference between the obtained approxi-
mated policy and the optimal policy.

1For simplicity, we assume one communication phase occurs exactly
once after k non-communication steps. Extending the algorithms to the
cases where one communication phase occurs at least once within k steps
is rather straightforward.

3

Figure 3. Value function and α vectors

Let us assume we fix one particular k-step joint policy
π. The expected reward of π starting from one particular
belief state b is represented as a weighted linear combina-
tion of the expected reward for each state (Figure 3). More
specifically, assume that possible states are {s1, s2, . . .} and
a belief state b = 〈b(s1), b(s2), . . .〉. The expected reward
for joint policy π starting from b, denoted as ER(b, π), can
be represented as:

b(s1)∗ER(〈1, 0, . . .〉, π)+b(s2)∗ER(〈0, 1, 0, . . .〉, π)+. . .

Here, we call the vector 〈ER(〈1, 0, . . .〉, π), ER(〈0, 1, . . .〉,
π), . . .〉 as α vector. The expected reward starting from be-
lief state b is obtained by calculating the inner product of
the belief state and the α vector. Since the optimal reward
of the entire belief space is obtained by taking the maximal
value for all possible joint polices, it is clear that the optimal
reward satisfies piece-wise linear, convex (PWLC) property.

We approximate this optimal reward for the entire belief
space (value function) using these α vectors of representa-
tive belief points (Figure 3).

4.1 ND-POMDP-Comm Algorithm (the
mechanism)

Next, we describe the details of algorithm in ND-
POMDP with communication. We employ the following
notation to denote the policies and the expected values:

π∗ ⇒ optimal joint policy of all agents.

πi,∗ ⇒ joint policy computed before searching for the pol-
icy of agent i.

πj+ ⇒ joint policy of agents searched for after j.

πi ⇒ local policy of agent i.

v[�α, b] ⇒ the expected value for �α given belief state b.

v̂[πi,∗||πi] ⇒ upper bound on the expected value given π i,∗

and πi.

We need to find a joint policy for each representative point
after each communication phase. If there are |B| represen-
tative points and c communication phases, we need to find

π20 π21 π22

π11π10 π13π12

ω0 ω1 1
2
3

4
5
6

7
8

step

πmx the policy used
after m-th communication

π20

Figure 4. Policy obtained by LID-JESP-Comm
or SPIDER-Comm

c|B| joint policies for belief points after communication and
one joint policy for the initial belief state.

Figure 4 shows the local policy given k = 2. First, our
algorithm computes the joint policy for each of the repre-
sentative points after the last communication phase, i.e., the
joint policy for time steps 7-8 (Figure 4). This results in
three policies: π20, π21, and π22. Our algorithm computes
the α-vectors for these joint policies.

Next, it computes a joint policy for time steps 4-6. A
rectangle (represented by dashed lines) indicates the com-
munication phase and lines from filled circles indicate the
transitions to synchronized belief states after communica-
tion. The policies generated are π10, π11, π12, and π13. The
algorithm computes the α-vectors for these joint policies.
Finally, it determines the joint policy for the initial belief
state.

Algorithm 1 provides the pseudo code for ND-POMDP
with communication. This algorithm outputs a joint policy
π∗. CommPhase represents the number of communica-
tion phases. In line 2, a set of representative belief points
is generated using the method described in the next subsec-
tion. Then, a joint policy is calculated for each represen-
tative belief point b ∈ B, and the obtained joint policy is
stored in π∗[b, CommPhase] (lines 5-7). In each action
phase, FINDPOLICY function finds a joint policy and its
α-vector, and utilizes two new algorithms based on LID-
JESP-Comm or SPIDER-Comm.

4

Algorithm 1 ND-POMDP-Comm(k, CommPhase)
1: initialize �α∗, π∗ ← null
2: B ←BeliefExpansion(binit)
3: while CommPhase ≥ 0 do
4: for all b ∈ B do
5: 〈π∗[b, CommPhase], �α〉 ←

FINDPOLICY(b, root, null,−∞, k, �α∗)
6: �α∗[CommPhase]← �α∗[CommPhase]||�α
7: CommPhase = CommPhase− 1
8: return π∗

4.2 Belief Point Selection

The way to choose representative belief points can af-
fect the solution quality. We consider the following two
methods. We assume that initial belief state binit is always
included in representative belief points B.

Random Belief Selection (RA) In this method, we sample
belief points from uniform distribution over the entire
belief space.

Stochastic Simulation with Exploratory Action (SSEA)
This method is based on the algorithm presented in [5].
We gradually expand B by adding new reachable
belief points after k actions and communication. More
specifically, we stochastically run k actions in the
forward trajectory from the belief points already in B
and obtain several candidates. From these candidates,
we select belief points that improve the worst-case
density, i.e., we choose the point farthest from any
point already in B.

4.3 LID-JESP with Communication

LID-JESP with Communication (LID-JESP-Comm)
performs the following procedure:

(i) For each representative point, we find the joint equilib-
rium policy (where each policy of an agent is the best
response for other agents’ policies) for k steps after the
last communication using LID-JESP [4].

(ii) Then, for each representative point, we find the joint
equilibrium policy for k steps after the second to the
last communication. For the current k steps, we need
only the policies of neighbors to evaluate the expected
reward. On the other hand, to evaluate the expected re-
ward after communication, we consider the policies of
non-neighbors and obtain the probability distribution
of the new synchronized belief states. For each new
synchronized belief state, we use the best expected re-
ward for the joint policies obtained in (i).

(iii) Then, we find the joint equilibrium policy for k steps
after the third to the last communication, and so on.

4.4 SPIDER with Communication

Next, we describe the details of SPIDER with Commu-
nication (SPIDER-Comm). SPIDER can obtain global opti-
mal joint policies by exploiting the locality of agent interac-
tion. However, communication phase invalidates the local-
ity in interaction that original SPIDER was relying on. In
essence, previously independent agents (on different hyper-
links) are not interdependent. More specifically, a new syn-
chronized belief state (and the expected reward after com-
munication) depends on all agents’ policies. In SPIDER-
Comm, we utilize a greedy method i.e., when finding a
best response policy for agent i in the DFS tree, we don’t
enumerate the combinations of the joint policies of differ-
ent subtrees, while we enumerate the combinations within a
subtree. Thus, although the SPIDER-Comm cannot guaran-
tee to find the global optimal joint policy, it can utilize the
locality of interaction and obtain a reasonable policy within
a reasonable amount of time.

Algorithm 2 provides a pseudo code for procedure
FINDPOLICY for SPIDER-Comm, which finds a joint
policy and its α-vector. First, we store all possible lo-
cal policies in Πi (line 2). If i is a leaf agent, the local
policies of all agents in its subtree are already assigned.
SPIDER-Comm obtains an exact value for the subtree (and
ancestors) and new synchronized belief states after commu-
nication (assuming default policies are used by the agents
whose policies are not assigned yet), and chooses the best
one (lines 3-9). On the other hand, if i is not a leaf agent,
SPIDER-Comm performs the following procedure: (a) sorts
policies in descending order based on heuristic values (line
12), (b) recursively calls FINDPOLICY for the next agent
and calculates the best response policies for each local pol-
icy of agent i as long as the heuristic evaluation of the policy
is better than the solution found so far (line 17), (c) main-
tains the threshold, the best solution found so far (lines 18-
21).

4.4.1 Heuristic Function

In SPIDER-Comm, we need to construct a heuristic func-
tion that estimates the expected reward for the current k
steps and after communication.

In [9], the MDP heuristic function is introduced. More
specifically, the subtree of agents is a Dis-POMDP in itself.
Thus, we can construct a centralized MDP corresponding to
the (subtree) Dis-POMDP and obtain the expected value of
the optimal policy for this centralized MDP. The advantage
of the MDP heuristic is that it is admissible, i.e., it never
under-estimates the optimal value. Thus, the SPIDER is
guaranteed to find an optimal joint policy.

However, if we assume the subtree is solved by a cen-
tralized MDP (in which the current state is fully observ-

5

Algorithm 2 FINDPOLICY(b, i, πi,∗, threshold, k, �α∗)

1: �̂α← null, π̂∗ ← null
2: Πi ← GET-ALL-POLICIES(k, Ai, Ωi)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: �αi ← GETVECTOR(i, πi, π

i,∗, �α∗)
6: if v

[
�αi, b

]
> threshold then

7: π̂∗ ← πi

8: threshold← v[�αi, b]

9: �̂α← �αi

10: else
11: children← CHILDREN(i)
12: Π̂i ← UPPER-BOUND-SORT(b, i, Πi, π

i,∗, �α∗)
13: for all πi ∈ Π̂i do
14: if v̂[πi,∗||πi] < threshold then
15: Go to line 22
16: for all j ∈ children do
17: 〈πj+, �αi〉 ←

FINDPOLICY(b, j, πi,∗||πi, threshold, k, �α∗)
18: if v[�αi, b] > threshold then
19: π̂∗ ← πi||πj+

20: threshold← v[�αi, b]

21: �̂α← �αi

22: return 〈π̂∗, �̂α〉

(i) 3 agents (ii) 4 agents (iii) 5 agents

Loc 1 Loc 2

Figure 5. Sensor net configurations

able), we cannot estimate the new synchronized belief state
after communication. Thus, we assign default policies to
agents whose policies are not assigned yet and estimate the
new synchronized belief state after communication assum-
ing these agents use the default policies. We can use these
default policies also for evaluating the expected reward for
the current k steps. In this case, the heuristic function is no
longer admissible, but it can prune more nodes and the run-
time can be reduced. We will evaluate this trade-off in the
next section.

5 Experimental Results

Our experiments were conducted on the example of the
sensor network domain described in Section 2. We use three
different topologies of sensors shown in Figure 5. Figure
5 (i) shows the example where there are three agents and
two targets. Target 1 is either absent or in Loc1, and target
2 is either absent or in Loc2. Thus, there are 4 unaffectable

Table 1. Run time (msec) /expected value for
SPIDER and SPIDER-Comm (T = 3)

SPIDER SPIDER-Comm
runtime [msec] 20797 390.00
value 141.90 87.05

states. Each agent can perform turnOff, scanEast, or scan-
West. Agents receive +45 as an immediate reward for find-
ing target 1, +35 for finding target 2, and −5 for failing
to find any target. Figure 5 (ii) shows the example where
there are four agents and three targets, and (iii) shows the
example where there are five agents and four targets.

We have compared two alternative methods for select-
ing representative points, i.e., RA or SSEA. We found that
SSEA dominates RA, especially when the number of repre-
sentative points is small. Thus, we use SSEA for selecting
representative points in the following experiments.

Table 1 shows the runtime and the expected reward of
the obtained joint policy of SPIDER and SPIDER-Comm
for a sensor network with three sensors (T = 3 and k = 1).
We cannot run SPIDER for larger T , since the size/number
of local policies grow exponentially. By introducing com-
munication, the runtime is drastically reduced. In fact, SPI-
DER takes 20797 ms, while SPIDER-Comm takes only 390
ms. The expected rewards are 141.9 and 87.05, respec-
tively. The expected reward of SPIDER-Comm is about 2/3
compared with SPIDER, since SPIDER spends all of three
steps for executing actions, while SPIDER-Comm spends
one step for communication.

Next, we evaluate the runtime and expected reward of
SPIDER-Comm and LED-JESP-Comm. Figure 6 (a) pro-
vides runtime comparisons between SPIDER-Comm and
LID-JESP-Comm that for k = 2 and c = 1 (c is the
number of communications). In Figure 6, SPIDER-Comm
(Default policy) indicates that SPIDER-Comm uses default
policies both for the heuristic function for the current k
steps and for estimating the belief states after communi-
cation. SPIDER-Comm (MDP+Default policy) indicates
that SPIDER-Comm uses the MDP heuristic function for
the current k steps and default policies for estimating the
belief states after communication. The X-axis denotes the
number of agents, while the Y-axis indicates the amount
of time taken to compute the solution. SPIDER-Comm
(MDP+Default policy) obtains runtime improvements over
other methods in 3 agents configuration, while, in 4 and 5
agents configurations, SPIDER-Comm (Default policy) ob-
tains runtime improvements over other methods. In Fig-
ure 6 (b), We evaluate the expected reward of SPIDER-
Comm and LID-JESP-Comm in the same setting as Fig-

6

 0.1

 1

 10

 100

 1000

3 agents 4 agents 5 agents

Ru
n

tim
e

(s
ec

s)

SPIDER-Comm (Default Policy)
LID-JESP-Comm

SPIDER-Comm (MDP+Default Policy)

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

3 agents 4 agents 5 agents

ex
pe

ct
ed

 re
w

ar
d

SPIDER-Comm (Default Policy)
LID-JESP-Comm

SPIDER-Comm (MDP+Default Policy)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

Ru
n

tim
e

(s
ec

s)

the number of communications

SPIDER-Comm (MDP+Default Policy)

(c)

SPIDER

Figure 6. Runtime (a) and expected reward (b) of SPIDER-Comm and LID-JESP-Comm, and runtime
(c) of SPIDER-Comm by increasing the number of communications

ure 6 (a). In 3 agents configuration, all methods obtain the
same expected values. While, in 4 and 5 agents configura-
tions, SPIDER-Comm (MDP+Default policy) obtains sig-
nificantly better expected reward over other methods.

Finally, we evaluate the run-time of SPIDER and
SPIDER-Comm (MDP+Default policy) by increasing the
number of communications c for k = 2 in 4 agents config-
uration (Figure 6 (c)). When c = 6, the total time horizon
is 20. We have obtained similar results for the run-time of
other methods. We can see that our newly developed meth-
ods can obtain policies even if the length of the time horizon
is large, as long as the interval between communications is
small. For the original SPIDER, the maximal length of the
time horizon is at most 4, and for LID-JESP, the maximal
length is around 6.

6 Conclusion

In this paper, we extended ND-POMDP so that agents
can periodically communicate their observation and action
histories with each other, and developed two new algo-
rithms: LID-JESP-Comm and SPIDER-Comm. To address
the problem that the number of new synchronized belief
states after communication will grow exponentially, we in-
troduced an idea similar to the PBVI algorithm. Our exper-
imental results show that these algorithms can obtain much
longer policies than existing algorithms within a reasonable
amount of time. Our future works include introducing a
more flexible communication scheme, such as varying the
interval between communications, introducing partial com-
munications, etc.

References

[1] D. S. Bernstein, S. Zilberstein, and N. Immerman. The
complexity of decentralized control of markov decision pro-
cesses. In Proceedings of the 16th Conference on Uncer-
tainty in Artificial Intelligence (UAI-00), pages 32–37, 2000.

[2] C. V. Goldman and S. Zilberstein. Optimizing informa-
tion exchange in cooperative multi-agent systems. In Pro-
ceedings of the Second International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS-03),
pages 137–144, 2003.

[3] R. Nair, M. Roth, M. Yokoo, and M. Tambe. Commu-
nication for improving policy computation in distributed
pomdps. In Proceedings of the Third International joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-04), pages 1096–1103, 2004.

[4] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Net-
worked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proceedings of
the Twentieth National Conference on Artificial Intelligence
(AAAI-05), pages 133–139, 2005.

[5] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based
approximations for large POMDPs. Journal of Artificial In-
telligence Research, 227:335–380, 2006.

[6] M. Roth, R. Simmons, and M. Veloso. Exploiting fac-
tored representations for decentralized execution in multi-
agent teams. In Proceedings of the 6th International joint
conference on Autonomous agents and Multi-agent Systems
(AAMAS-07), pages 457–463, 2007.

[7] J. Shen, R. Becker, and V. Lesser. Agent interaction in dis-
tributed POMDPs and its implications on complexity. In
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems (AAMAS-06),
pages 529–536, 2006.

[8] D. Szer and S. Z. Francois Charpillet. MAA*: A heuris-
tic search algorithm for solving decentralized POMDPs. In
Proceedings of the 21th Conference on Uncertainty in Arti-
ficial Intelligence (UAI-05), pages 576–590, 2005.

[9] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and
M. Yokoo. Letting loose a SPIDER on a network of
POMDPs: Generating quality guaranteed policies. In Pro-
ceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS-07),
pages 822–829, May 2007.

[10] M. Yokoo and K. Hirayama. Distributed breakout algorithm
for solving distributed constraint satisfaction problems. In
Proceeding of the Second International Conference on Mul-
tiagent Systems (ICMAS-96), pages 401–408, 1996.

7

