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Abstract

My research concentrates on developing reasoning techniques for intelligent, autonomous agent

systems. In particular, I focus on planning techniques for both single and multi-agent systems

acting in uncertain domains. In modeling these domains, I consider two types of uncertainty: (i)

the outcomes of agent actions are uncertain and (ii) the amount of resources consumed by agent

actions is uncertain and only characterized by continuous probability density functions. Such

rich domains, that range from the Mars rover exploration to the unmanned aerial surveillance to

the automated disaster rescue operations are commonly modeled as continuous resource Markov

decision processes (MDPs) that can then be solved in order to construct policies for agents acting

in these domains.

This thesis addresses two major unresolved problems in continuous resource MDPs. First,

they are very difficult to solve and existing algorithms are either fast, but make additional restric-

tive assumptions about the model, or do not introduce these assumptions but are very inefficient.

Second, continuous resource MDP framework is not directly applicable to multi-agent systems

and current approaches all discretize resource levels or assume deterministic resource consump-

tion which automatically invalidates the formal solution quality guarantees. The goal of my thesis

is to fundamentally alter this landscape in three contributions:

ix



I first introduce CPH, a fast analytic algorithm for solving continuous resource MDPs. CPH

solves the planning problems at hand by first approximating with a desired accuracy the proba-

bility distributions over the resource consumptions with phase-type distributions, which use ex-

ponential distributions as building blocks. It then uses value iteration to solve the resulting MDPs

more efficiently than its closest competitor, and allows for a systematic trade-off of solution qual-

ity for speed.

Second, to improve the anytime performance of CPH and other continuous resource MDP

solvers I introduce the DPFP algorithm. Rather than using value iteration to solve the problem

at hand, DPFP performs a forward search in the corresponding dual space of cumulative distri-

bution functions. In doing so, DPFP discriminates in its policy generation effort providing only

approximate policies for regions of the state-space reachable with low probability yet it bounds

the error that such approximation entails.

Third, I introduce CR-DEC-MDP, a framework for planning with continuous resources in

multi-agent systems and propose two algorithms for solving CR-DEC-MDPs: The first algorithm

(VFP) emphasizes scalability. It performs a series of policy iterations in order to quickly find a

locally optimal policy. In contrast, the second algorithm (M-DPFP) stresses optimality; it allows

for a systematic trade-off of solution quality for speed by using the concept of DPFP in a multi-

agent setting.

My results show up to three orders of magnitude speedups in solving single agent planning

problems and up to one order of magnitude speedup in solving multi-agent planning problems.

Furthermore, I demonstrate the practical use of one of my algorithms in a large-scale disaster

simulation where it allows for a more efficient rescue operation.

x



Chapter 1: Introduction

Recent years have seen an unprecedented rise in interest in the deployment of aerial [Beard

and McLain, 2003], underwater [Blidberg, 2001] and terrestrial [Bresina et al., 2002; Thrun

et al., 2006] unmanned vehicles to perform a variety of tasks in environments that are often

hazardous and inaccessible to humans. Whereas some of these vehicles are tele-operated [Beard

and McLain, 2003], vehicles such as the Mars rovers must often act autonomously due to inherent

communication limitations with their human operators [Bresina et al., 2002]. As a result, auto-

mated planning techniques for these vehicles have recently received a lot of attention [Pedersen

et al., 2005].

Of particular importance are planning techniques that take into account the uncertain nature

of agent environments, to construct robust plans for all possible agent action outcomes, including

action failures. For example, current Mars rovers receive only high-level instruction such as

to “move from site A to site B” and plan the optimal traversal between these sites themselves.

In doing so, they currently do not plan for action failures. As a result, it has been estimated

[Mausam et al., 2005] that the 1997 Mars Pathnder rover spent between 40% and 75% of its time

doing nothing because plans did not execute as expected.
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Furthermore, planning techniques for autonomous agents must often take into account the

energy requirements of these agents, or more generally, resource requirements for resources such

as time, energy, storage whose consumption is uncertain and can only characterized by contin-

uous probability density functions. For example, with the data collected during the 1997 Mars

Pathfinder mission, NASA researchers [Bresina et al., 2002] are now in possession of statistical

distributions of energy and time required to perform various rover activities. That abundance

of data has in turn encouraged the Artificial Intelligence community to develop more expres-

sive planning frameworks and more efficient algorithms for planning in continuous, dynamic and

uncertain environments [Pedersen et al., 2005].

1.1 Assumptions

Planning problems for autonomous agents are often characterized by different assumptions. In

particular, the planning problems that this thesis considers share the following characteristics:

• Agents can fully observe their local states and know the rewards for their actions, assumed

to be are positive and obtained upon transitioning to new states.

• The execution of agent actions is related to resource availability: Initial resource levels are

known, actions cause resource levels to decrease (according to a given continuous proba-

bility density function) and can be executed only if required resources are available. This

thesis considers a case where agents have to deal with a single type of resource.

• The goal of the agents is to maximize reward yields.

2



1.2 Problem Statement

Continuous resource MDPs have emerged as a powerful planning technique to address such do-

mains with uncertain resource consumption and resource limits. Unfortunately, continuous re-

source MDPs are very difficult to solve, both for single and multi-agent settings.

For single agent settings, existing algorithms either (i) make additional restrictive assumptions

about the model or (ii) do not add new assumptions, but run very slow. The first limitation applies

to Constraint MDPs [Altman, 1999] [Dolgov and Durfee, 2005] that do not allow for stochastic

resource consumption or Semi MDPs and Generalized Semi MDPs [Puterman, 1994] [Younes

and Simmons, 2004] that do not allow policies to be indexed by the amount of resources left. On

the other hand, the second limitation applies to existing value iteration algorithms [Boyan and

Littman, 2000], [Feng et al., 2004], [Liu and Koenig, 2005] and [Li and Littman, 2005] or policy

iteration algorithms [Lagoudakis and Parr, 2003], [Hauskrecht and Kveton, 2004], [Nikovski

and Brand, 2003], [Dolgov and Durfee, 2006], [Petrik, 2007] [Mahadevan and Maggioni, 2007]

which may exhibit poor performance with the scale-up in their state spaces. To remedy that,

[Guestrin et al., 2004] developed a technique to factor the underlying MDP thus reducing its

complexity and [Mausam et al., 2005] developed a technique that prunes out the unreachable

states and considers the remaining states in the order of their importance. Unfortunately, even

with these improvements, current algorithms for solving continuous resource MDPs may still run

slow in domains where solution quality guarantees are required [Pedersen et al., 2005].

For multi-agent settings, the situation is even worse, as continuous resource MDPs have re-

ceived little attention, despite the increasing popularity of multi-agent domains with continuous

characteristics [Raja and Lesser, 2003], [Becker et al., 2003], [Lesser et al., 2004], [Musliner
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et al., 2006]. In fact, the proposed globally optimal algorithms [Becker et al., 2003], [Becker

et al., 2004], [Nair et al., 2005], [Varakantham et al., 2007] as well as locally optimal algorithms

[Nair et al., 2003], [Beynier and Mouaddib, 2005], [Beynier and Mouaddib, 2006] all discretize

the continuous resources and encode them as separate features of the state. As a consequence,

the planning horizons of those algorithms are limited to only a few time ticks. On top of that,

the discretization process invalidates the formal solution quality guarantees that these algorithms

provide.

Thus, there are two unresolved problems to be addressed: The first is to design new efficient

algorithms for continuous resource MDPs that are faster than existing algorithms, while providing

error bounds. The second is to design a framework and algorithms for planning with continuous

resources in multi-agent systems.

1.3 Thesis Contributions

In this context I introduce the three major contributions of my thesis: First, I develop a new

method for solving MDPs with continuous resources called CPH (Continuous resource MDPs

through PHase-type distributions) which finds solutions with quality guarantees, but is several

orders of magnitude faster than its closest competitor, the Lazy Approximation algorithm [Li and

Littman, 2005]. CPH approximates the probability distributions with phase-type distributions,

which use exponential probability distributions as building blocks [Neuts, 1981]. It then uses

the analytical value iteration technique to solve the resulting MDPs by exploiting the properties

of exponential probability distributions to derive the necessary convolutions efficiently and pre-

cisely. Furthermore, I demonstrate the successful integration of CPH with RIAACT (Reasoning

4



in Adjustable Autonomy in Continuous Time) [Schurr et al., 2008], the adjustable autonomy

component of the DEFACTO system [Schurr et al., 2005] for training the incident commanders

of the Los Angeles Fire Department.

Second, I introduce a DPFP algorithm (Dynamic Probability Function Propagation), to im-

prove the anytime performance of CPH and other techniques for solving MDPs with continuous

resources. Rather than performing value iteration to solve the problem at hand, DPFP performs

a forward search in the corresponding space of cumulative distribution functions. In doing so,

DPFP discriminates in its policy generation effort providing only approximate policies for re-

gions of the state-space reachable with low probability yet it is able to bound the error that such

approximation entails. When run alone, DPFP outperforms other algorithms in terms of its any-

time performance, whereas when run as a hybrid, it allows for a significant speedup of CPH.

The third contribution in my thesis provides techniques for planning with continuous re-

sources in a multi-agent setting. To this end I introduce Continuous Resource, Decentralized

MDP (CR-DEC-MDP), a first framework for planning with continuous resources in multi-agent

systems and propose two algorithms for solving problems modeled as CR-DEC-MDP: Value

Function Propagation (VFP) and Multiagent DPFP (M-DPFP). VFP emphasizes scalability; it

leverages the value function reasoning to a multi-agent setting, that is, it maintains and manipu-

lates a value function over time for each state rather than a separate value for each pair of method

and time interval. Such representation allows VFP to group the time points for which the value

function changes at the same rate which gives a one order of magnitude speedup over VFP’s clos-

est competitor, the OC-DEC-MDP algorithm [Beynier and Mouaddib, 2005]. In addition, VFP

identifies and corrects critical overestimations of the expected value of a policy, that OC-DEC-

MDP fails to address. On the other hand, in order to solve CR-DEC-MDPs optimally, I propose

5



the M-DPFP algorithm. M-DPFP finds policies with solution quality guarantees by employing

the concept of forward search in the space of cumulative distribution functions in a multi-agent

setting.

1.4 Overview of Thesis

Having outlined the major theme of my thesis, the rest of my thesis document is organized as

follows: Chapter 2 provides the motivating domains for my work and introduces the formal

frameworks for planning with continuous resources: (i) The Continuous Resource MDP model

for single agent systems and (ii) the Continuous Resource, Decentralized MDP model for mul-

tiagent systems. In Chapter 3, that focuses on a single agent case, I develop two algorithms for

solving problems modeled as continuous resource MDPs: A value iteration algorithm (CPH) that

attains high quality solutions and a forward search algorithm (DPFP) that exhibits superior any-

time performance. The experimental evaluation of CPH, DPFP as well as a DPFP-CPH hybrid

algorithm that combines the strengths of the two algorithms is presented in Chapter 4. Further-

more, Chapter 4 also reports on the successful integration of CPH with the DEFACTO disaster

rescue simulation system. I then move on to multiagent planning problems. In Chapter 5 I de-

velop two algorithms for solving problems modeled as CR-DEC-MDPs: A fast, locally optimal

algorithm (VFP) and a globally optimal algorithm (M-DPFP). The experimental study of these

algorithms is presented in Chapter 6. I discuss the related work in Chapter 7. The summary of

my dissertation and future research directions are outlined in Chapter 8.
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Chapter 2: Motivating Domains and Formal Models

In this chapter I first introduce three different domains that motivate this research: (i) A planetary

exploration domain for single agent algorithms, (ii) a disaster rescue domain for single agent

algorithms and (iii) a civilian rescue domain for multiagent algorithms. Next, I provide a general

description of the class of multiagent domain that this thesis focuses on. Finally, for modeling

the planning problems of interest, I introduce two formal frameworks: (i) Continuous Resource

MDP, for single agent planning problems and (ii) Continuous Resource, Decentralized MDP, for

multiagent planning problems.

2.1 Motivating Domains

This section presents three different domains that motivate this research: Section 2.1.1 introduces

a planetary exploration domain for single agent algorithms, Section 2.1.2 introduces a disaster

rescue domain for single agent algorithms and finally, Section 2.1.3.1 introduces a civilian rescue

domain for multiagent algorithms. Finally, Section 2.1.4 provides a general description of the

class of multiagent domain that this thesis focuses on.
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2.1.1 Planetary Exploration: Domain for Single Agent Algorithms

I consider time as an example continuous resource and focus on a simplified version of the plan-

etary exploration problem originally introduced by [Bresina et al., 2002] and later extended by

[Pedersen et al., 2005] as a motivation for my work. Following the success of the first NASA

Mars exploration rover Sojourner, there are currently two other rovers rolling on the surface of

Mars: Spirit and Opportunity. The mission of each rover usually consists of visiting various ex-

ploration sites, and transferring the collected data back to the lander base that can later relay it

back to Earth. There are two major challenges that rover exploration presents: (i) since it takes

20 minutes for a control signal from Earth to reach Mars, rovers must act autonomously, and

(ii) because of the uncertain nature of the terrain the rovers traverse, their actions are not deter-

ministic. For example, is has been estimated that Sojourner spent between 40% and 75% of its

time doing nothing because the execution of its actions resulted in situations that have not been

planned for, and consequently the rover had to wait for the arrival of new commands from the

mission operation center on Earth. Since rovers have limited life-span, is it crucial to collect the

important data as soon as possible while ensuring that a rover does not get lost.

Exploration rovers rely on the solar power, and can only operate during a day. At each time

of rover operation hours, one can estimate the remaining time of rover operation for that day.

For simplicity, this remaining time of operation for a day will be referred to as time-to-deadline.

Figure 2.1 illustrates a simple version of the problem outlined by [Bresina et al., 2002]. A rover

has to maximize its expected total reward with time-to-deadline ∆ = 4. There are five locations

that the rover can be in: Rover start location, site 1, site 2, site 3 and rover base station. The

rover can perform two actions with deterministic action outcomes outside of its base station: (1)

8



It can move to the next site and collect a rock probe from there. It receives rewards 4, 2 and 1

for collecting rock probes from sites 1, 2 and 3, respectively. (2) It can also skip all remaining

sites and move back to its base station to perform a communication task, which drains its energy

completely and thus makes it impossible for the rover to perform additional actions. It receives

reward 6 for performing the communication task. Finally, action durations are not deterministic,

they are sampled from either exponential, normal or Weibull distributions. For a domain in Figure

2.1 the ordering in which the rover has to visit different sites is already given. However, depending

on the amount of time left, the rover does not know whether it should (i) move to the next site or

(ii) return to base. Hence, for any point in time and any site of interest, the rover must be able to

efficiently determine the total expected utilities of these two different actions.

start base

site 1 site 2

site 3

return
to base

return
to base

return
to base

return
to base

move
to site 1

move
to site 2

move
to site 3

Figure 2.1: Simplified planetary exploration domain

2.1.2 Adjustable Autonomy: Domain for Single Agent Algorithms

Another important domain that motivates this thesis is the adjustable autonomy problem for a

disaster rescue domain shown in Figure 2.2. In this domain a large scale disaster such as an

earthquake hits a city, resulting in multiple buildings going on fire at the same time. With little
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or no time to prepare for such an eventuality, a disaster rescue operation has to be performed in

a coordinated fashion. In particular, one can envision an incident commander (a person in Figure

2.2) who makes strategic decisions about which fires to fight first. For example, an incident

commander might be aware of the fact that the overall damage in the city can be reduced if

some areas of the city are sacrificed in favor of other areas. The incident commander can then

summon all the available resources (fire engines) to perform a particular task rather than having

the resources be used inefficiently in a non-coordinated fashion on multiple other tasks.

Figure 2.2: DEFACTO disaster simulation system

However, the human incident commander can quickly become overwhelmed by the number

of role allocation requests from the fire engines participating in the disaster rescue operation

[Marecki et al., 2005]. To alleviate that, some of the role allocation burden needs to be shifted

from the human incident commander to a fire engine agent [Schurr et al., 2005]. In essence, the
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agent faces time as a continuous resource to determine whether to take advice from human or not,

and when advice is obtained and the agent disagrees with it, whether to continue negotiating with

a human or not.

2.1.3 Civilian Rescue: Domain for Multiagent Algorithms

Planning under uncertainty for agent teams is more challenging than for single agents systems,

because of the lack of global state knowledge in multiagent systems. In essence, even though

an agent has incomplete knowledge of other agents’ execution status, it must make optimal ac-

tions. The restriction about the lack of global state knowledge can in theory be eliminated by

assuming that the agents can directly communicate. However, such an assumption introduces

two problematic issues:

• If communication fails yet the agents are still executing policies that assume that reliable

communication, the quality of such policies is questionable.

• Communication does not reduce the complexity of the problem. Indeed, as has been shown

in [Nair et al., 2004], communication requires computationally intensive offline planning

about all possible communication messages which often prevents the underlying algorithms

from scaling up to big domains.

This thesis considers a communication mode that mitigates the above-mentioned issues, yet

still allows the agents to exchange the information during the execution phase. What makes it

possible is the use of the environment to transmit the information [Becker et al., 2004].
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2.1.3.1 Example 1: Fully Ordered Domain

For the multi-agent domains in this thesis it is assumed that time is a continuous resource. In

that context, agents must coordinate their plans over time, despite uncertainty in plan execution

duration and outcome. In particular, this section introduces a fully-ordered domain where agents

know the activities that they have to perform, yet do not know when these activities need to be

performed. One example domain is large-scale disaster, like a fire in a skyscraper. Because

there can be hundreds of civilians scattered across numerous floors, multiple rescue teams have

to be dispatched, and radio communication channels can quickly get saturated and useless. In

particular, firefighters must be sent on separate missions to rescue the civilians trapped in dozens

of different locations.

Picture a small mission plan from Figure 2.3, where three firefighters have been assigned a

task to rescue the civilians trapped at site B, accessed from site A. One example of such situation

might be when site B is a conference room and site A is a hall. General fire fighting procedures

involve both: (i) putting out the flames, and (ii) ventilating the site to let the toxic, high temper-

ature gases escape, with the restriction that ventilation should not be performed too fast in order

to prevent the fire from spreading. The team stars its mission at time ES T = 0 (Earliest Starting

Time) and estimates that at LET = 20 (Last Execution Time) the fire at site B will become un-

bearable for the civilians. In addition, the team knows that the fire at site A has to be put out in

order to open the access to site B. Furthermore, each team member knows the actions (methods)

that it has to execute (white boxes inside gray rectangles in Figure 2.3) and the ordering of its

actions (dotted arrows in Figure 2.3).
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As has happened in the past in large scale disasters, communication often breaks down and

hence, the civilian rescue domain introduced here assumes that there is no explicit communication

between firefighters 1,2 and 3 (denoted as FF1, FF2 and FF3). In particular, FF2 does not know

if it is already safe to ventilate site A, FF1 does not know if site A has already been ventilated

and it is safe to start fighting fire at site B, etc. However, agents can communicate through the

environment, e.g., if agent FB2 successfully ventilates site A it can infer without asking agents

FB1 and FB3 that the fire at site A has been put out.

Fight fire
at site A

Ventilate site A 

Fight fire
at site B

Fight fire 
at site A

Evacuate civilians
from site B

Firefighter 1

Firefighter 2

Firefighter 3 Fight fire 
at site B

EST=0

EST=0

LET=20

Reward=50Reward=20

Figure 2.3: Civilian rescue domain and a mission plan

One can clearly see the dilemma that FF2 faces: It can only estimate the durations of the

“Fight fire at site A” methods executed by FF1 and FF3 and at the same time, FF2 knows that

time is running out for civilians. If FF2 ventilates site A too early (before the fire at site A is put

out by agents FF1 and FF3), the fire will spread out of control. On the other hand, if FF2 waits
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with the ventilation of site A for too long, fire at site B will become unbearable for the civilians.

In general, agents have to perform a sequence of such difficult decisions. For example, a decision

process of FF2 involves first choosing when to start ventilating site A, and then (depending on

the time it took to ventilate site A), choosing when to start evacuating the civilians from site B.

Such sequence of decisions constitutes the policy of an agent, and it must be found fast because

time is running out.

2.1.3.2 Example 2: Partially Ordered Domain

This section illustrates a multiagent domain where the activities of the agents are only partially

ordered. Consider a planning problem in Figure 2.4 where a team of agents has to perform a set

of activities in a continuous time interval [τs, τe]. The agent team consists of two agents, Agent 1

and Agent 2 on a mission to perform methods m1,m2,m3 and m4,m5,m6 respectively in any order.

Furthermore, (i) each agent can be executing only one method at a time, (ii) execution of methods

m4, m2 must be preceded by the successful completion of methods m1 and m5 respectively and

(iii) method execution durations are sampled from a normal distribution with a mean µ = 4 and

variance σ = 2. The goal of each agent is to maximize the team reward earnings for rewards

r1 = 1, r2 = 5, r3 = 2, r4 = 5, r5 = 1, r6 = 2 earned upon the successful execution of methods

m1,m2,m3,m4,m5,m6 respectively.

Consider the situation where, at mission start time τs, Agent 1 and Agent 2 are choosing

which methods should they start executing first. Since r2 and r4 are much greater than rewards

for other methods, Agent 1 might be tempted to first execute method m1 in order to allow Agent

2 to successfully start the execution of its method m4 early enough, so that the execution of
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Figure 2.4: Partially ordered multiagent domain

method m4 can finish before the mission deadline. On the other hand, Agent 2 might be tempted

to execute method m5 first such that Agent 1 has enough time to start and finish the execution

of its method m2 before the mission deadline. Clearly, this inconsistency has to be resolved as

there might be not enough time (before the mission deadline τe) to execute both, the execution

sequence m1 followed by m4 and the execution sequence m5 followed by m2.

Suppose that Agent 1 decides that, together with Agent 2, they will attempt to execute the

sequence m1 followed by m4. The plan is that Agent 1 will start executing m1 while Agent 2 will

wait until time t1 after which it will start executing its method m4. When the execution of m4

ends, e.g. at time t2, Agent 2 will make a decision whether to start executing m5 or m6. If there is

enough time left, i.e., if τe − t2 is sufficiently big, Agent 2 will consider that there is still enough

time for the sequence of methods m5 followed by m2 to be executed successfully. Otherwise, it

will simply decide to go after method m6, which is worth more than method m5 alone. Note a

complication here: t2 is not known before the mission starts and thus, to evaluate the utility of the

sequence m1 followed by m4, one would have to consider an infinite number of values t2 which

is impossible.

Notice how the environment is used for communication in this domain: If agent 2 executes

method m4 within its time window but this execution is unsuccessful, agent 2 can immediately

infer that agent 1 has not executed its method m1 successfully. Similarly, if agent 1 executes
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method m2 within its time window and this execution is successful, agent 1 can immediately infer

that agent 2 has successfully executed method m5 before agent 1 has started executing method

m2. Thus, similarly to [Becker et al., 2004] special purpose methods can be added to play a role

in exchanging the information between the agents.

2.1.4 General Description of Multiagent Domains

This section provides a general description of multiagent planning problems analyzed in this

thesis. It assumes assumes a team of agents deployed on a mission to perform a given set of

tasks, referred to as methods. Such formulation has received a lot of attention in the literature. In

particular, it is inspired by the DARPA Coordinators effort Musliner et al. [2006], which in turn

is based on the popular GPGP paradigm Decker and Lesser [1995].

The formal description of the multiagent planning problems considered in this thesis is as

follows: A team of N agents is deployed on a mission to perform a set of methods from the set

M = {m1, ...,mK}. Each agent n is assigned to a set Mn of methods, such that {Mn}
N
n=1 is a par-

titioning of {mk}
K
k=1. Furthermore, each agent can be executing only one method at a time, each

method can be executed only once and each method execution consumes a certain amount of

agent resource — it is assumed that there is only one type of resource. Also, the probability den-

sity function pk of the amount of resource consumed by the execution of method mk is assumed

to be known, for all k = 1, ..,K. For example, every agent knows that method mk will consume t

amount of resource with probability pk(t).

Furthermore, the planning problems of interests are specified by two types of constraints:

Resource precedence and resource limit constraints with the following meaning:

16



• Resource precedence constraints grouped in set C≺ impose restrictions on method execu-

tion based on resource levels of other methods. Precisely, a resource precedence constraint

〈i, j〉 ∈ C≺ is a binary relation that links methods mi,m j ∈ M that belong to possibly dif-

ferent agents. The constraint imposes two necessary (but not sufficient) conditions on the

successful execution of method m j. These are: (i) Method mi must be executed successfully

and (ii) if the execution of method mi finishes with l amount of resource left, the execution

of method m j must start with less than l resource left. For example, if time-to-deadline is a

resource, condition (ii) states that method m j must be started after method mi is finished.

It is often referred to that method m j is enabled at resource level l if all the methods mi

such that 〈i, j〉 ∈ C≺ have been successfully finished with more than l resources left. For

example, if time is a resource than method m j is enabled at time t if all the methods mi such

that 〈i, j〉 ∈ C≺ have been successfully finished before time t. To illustrate this concept

consider Figure 2.3. Here, method “Ventilate site A” is enabled by two methods: “Fight

fire at site A” of Firefighter 1 and “Fight fire at site A” of Firefighter 3.

Checking whether for a given joint policy a resource precedence constraint is met is trivial

if methods mi and m j belong to the same agent. However, it is more problematic if methods

mi and m j belong to different agents because it is assumed that agents cannot directly com-

municate. Indeed, it is by checking whether the method m j has been executed successfully /

unsuccessfully that allows an agent to learn whether method mi has been executed success-

fully / unsuccessfully. Hence, checking the satisfiability of resource precedence constraints

post factum plays a key role in inter-agent communication (see also Section 2.1.3.2).
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• Resource limit constraints grouped in set C[] impose restrictions on internal agent resource

levels during method execution. Precisely, a resource limit constraint 〈i, l1, l2〉 ∈ C[] for

a method mi ∈ M imposes that the resource levels of an agent executing method mi must

stay within the range [l1, l2]. For example, if absolute time is a resource, method mi should

be started after time l1 and finished before time l2. It follows from the resource limit

constraints in C[] that the maximum resource level to be considered when constructing an

optimal plan is ∆ = max{l2 : 〈i, l1, l2〉 ∈ C[]}. Finally, if absolute time is a resource, ∆ is

referred to as the mission deadline.

The goal of the agents is to maximize the joint reward earned by the agent team. The individ-

ual reward ri for executing method mi is earned when: (i) Resource limit constraints for method

mi are met and (ii) method mi is enabled when its execution starts. If condition (i) is met but con-

dition (ii) is not met, the execution of method mi proceeds normally (as if mi was enabled when

it was started), but the execution of mi is unsuccessful and reward ri is not earned. Also, when

during the execution of method mi condition (i) stops to hold (agent resource level drops too low)

the execution of method mi is interrupted, method mi is considered to be executed unsuccessfully

and reward ri is not earned.

2.2 Formal Models

For modeling the planning problems such as the ones introduced in Section 2.1, in this section

I introduce two formal frameworks: (i) Continuous Resource MDP — for single agent planning

problems and (ii) Continuous Resource, Decentralized MDP — for multiagent planning prob-

lems. To this end, I first provide the formal definition of the Markov Decision Process.
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2.2.1 Markov Decision Process

Markov Decision Process (MDP) [Puterman, 1994] is a mathematical model for decision making

where the outcomes of actions are stochastic. MDP assumes a that there is a synchronous dialog

between some environment and some decision making entity. At each step of this dialog, the

entity makes a decision which affects the environment and then receives an observation which

uniquely determines the new state of the environment 2.5. From now on, this entity will be

referred to as an agent.

Figure 2.5: Agent interacting with the environment in a Markov Decision Process

Formally MDP is a tuple 〈S , A, P,R〉 where:

• S is the set of states of the environment;

• A is the set of agent actions and A(s) ⊂ A is the set of actions that can be executed from

state s ∈ S .

• P : S × A × S 7→ [0, 1] is the transition function. For example, P(s, a, s′) is the probability

that the agent will transition to state s′ ∈ S if it executes action a ∈ A(s). For all states

s ∈ S and actions a ∈ A(s) it holds that
∑

s′∈S P(s, a, s′) = 1.
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• R : S × A × S 7→ R is the reward function. For example, R(s, a, s′) is the reward that the

agent receives when it transitions to state s′ ∈ S after executing an action a ∈ A(s).

A deterministic, stationary policy π for an MDP 〈S , A, P,R〉 is a mapping π : S 7→ A. For

example, π(s) = a postulates that an action a ∈ A will be executed from state s ∈ S . For a policy

π and some state s ∈ S , the total expected utility Vπ(s) of policy π started in state s can be derived

using the following recursive equation:

Vπ(s) =
∑
s′∈S

P(s, π(s), s′) ·
(
R(s, π(s), s′) + Vπ(s′)

)
(2.1)

And the policy π∗ is said to be optimal if for a given starting state s0 ∈ S it holds that Vπ∗(s0) ≥

Vπ(s0) for any policy π , π∗.

2.2.2 Continuous Resource MDP

In order to model decision processes that require reasoning with continuous resources, the stan-

dard MDP model has to be extended. In particular, the extended model must capture that: (i)

resources are continuous, i.e., resource levels take real values, (ii) resources are always depleting,

(iii) resource consumption is stochastic and (iii) resources have both lower and upper limits. This

extended model is referred to as a continuous resource MDP. First, the most general version of

the continuous resource MDP model is defined. Next, a narrowed down version is outlined, to

model the planning problems of interest from Sections 2.1.1 and 2.1.2.

Formally, a continuous resource MDP is a tuple 〈S × X, A, P,D,R〉, where:

• S is a set of discrete states and X = ×1≤i≤kXi is a k-dimensional continuous variable whose

values identify current resource levels. For example, the MDP can occupy discrete state
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s ∈ S with current resource levels (xi)1≤i≤k ∈ X where xi is the current level of resource i.

Furthermore, each continuous resource has lower and upper limits, i.e., Xi = [ai, bi] ⊂ R.

For example, in the planetary exploration domain from Section 2.1.1, S = {start,site1,site2,

site3, base} and X = [0,∆] with time-to-deadline being a continuous resource.

• A is a set of actions and A(s) ⊂ A is the set of actions that can be executed from the

discrete state s ∈ S . For example, in the planetary exploration domain from Section 2.1.1,

A = {move-to-next-site, return-to-base }.

• P : S ×A×S 7→ [0, 1] is the discrete state transition function. For example, P(s, a, s′) is the

probability that the agent will transition to discrete state s′ ∈ S if it executes action a ∈ A(s).

For all discrete states s ∈ S and actions a ∈ A(s) it holds that
∑

s′∈S P(s, a, s′) = 1. In the

planetary exploration domain from Section 2.1.1, all discrete transitions are deterministic,

e.g. P(site1,move-to-next-site,site2) = 1.

• D : S × A 7→ (Xi 7→ R)1≤i≤k is the table of resource consumption distributions. For

example, for each action a ∈ A(s) executed from discrete state s ∈ S there exists a set

D(s, a) = (pi
s,a)1≤i≤k of resource consumption probability distribution functions pi

s,a —

one distribution function per each resource i. In particular, pi
s,a(y) is the probability that

action a ∈ A(s) executed from discrete state s will consume y amount of resource i. In the

planetary exploration domain from Section 2.1.1, for each state and action the resource

consumption distribution is the same, e.g. D(site1,move-to-next-site) = f where f (t) = e−t.

• R : S × A × S × X 7→ R is the reward function. For example, R(s, a, s′, x) is the reward that

the agent receives when it executes action a ∈ A(s) from discrete state s ∈ S and transitions

to a discrete state s′ ∈ S with x ∈ X amounts of resources left. In particular, for the
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planetary exploration domain from Section 2.1.1, the rover receives reward R(site1,return-

to-base,base, t) = 6 provided that t > 0.

For modeling the planning problems from Sections 2.1.1 and 2.1.2, the most general version

of the continuous resource MDPs model (defined above) is narrowed down so that it models one

continuous resource, namely, time-to-deadline. For notational convenience, each discrete state

s ∈ S will be referred to as just state whereas current resource level will be referred to as current

time-to-deadline.

For such MDPs, X = [0,∆], where ∆ is the maximum time to deadline at the beginning of

execution. The agent transitions are the rewards it earns are then the following: Assume that

an agent is in discrete state s ∈ S with a deadline being t > 0 time units away (= with time-

to-deadline t), after which execution stops. It executes an action a ∈ A(s) of its choice. The

execution of the action cannot be interrupted, and the action duration t′ is distributed according

to a given probability distribution ps,a(t′) that depends on both the state s and the action a. If

t′ ≥ t, then the time-to-deadline t − t′ ≤ 0 after the action execution is non-positive, which

means that the deadline is reached (resource is depleted) and execution stops. Otherwise, with

probability P(s, a, s′), the agent obtains reward R(s, a, s′) ≥ 0 and transitions to state s′ ∈ S with

time-to-deadline t − t′ and repeats the process.

The objective of the agent is to maximize its expected total reward until execution stops.

Precisely, Let V∗(s)(t) denote the largest expected total reward that the agent can obtain until
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execution stops if it starts in state s ∈ S with time-to-deadline 0 ≤ t ≤ ∆. The agent can

maximize its expected total reward by executing the action

π∗(s)(t) arg max
a∈A(s)

 ∑
s′∈S

P(s, a, s′)
∫ t

0
ps,a(t′)(R(s, a, s′) + V∗(s′)(t − t′)) dt′


in state s ∈ S with time-to-deadline 0 ≤ t ≤ ∆, which can be explained as follows: When it

executes action a ∈ A(s) in state s ∈ S , it incurs action duration t′ with probability ps,a(t′). If

0 ≤ t′ ≤ t, then it transitions to state s′ ∈ S with probability P(s, a, s′) and obtains an expected

total future reward of R(s, a, s′) + V∗(s′)(t − t′). The function π∗ is the optimal agent policy that

needs to be found.

As will be discussed in Chapter 7, there are serious shortcomings in previous work in deter-

mining π∗. In essence, current algorithms either (i) make additional restrictive assumptions about

the model or (ii) do not add new assumptions, but run very slow (see Section 1.2). This thesis

addresses both of these shortcomings in two contributions:

• It introduces CPH, a fast analytic algorithm for solving continuous resource MDPs. CPH

solves the planning problems at hand by first approximating with a desired accuracy the

probability distributions over the resource consumptions with phase-type distributions,

which use exponential distributions as building blocks. It then uses value iteration to solve

the resulting MDPs up to three orders of magnitude faster than its closest competitor, and

allows for a systematic trade-off of solution quality for speed.

• Second, to improve the anytime performance of CPH and other continuous resource MDP

solvers this thesis introduces the DPFP algorithm. Rather than using the principle of value

iteration to solve the planning problems at hand, DPFP performs a forward search in the
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corresponding dual space of cumulative distribution functions. In doing so, DPFP discrim-

inates in its policy generation effort providing only approximate policies for regions of the

state-space reachable with low probability yet it bounds the error that such approximation

entails.

2.2.3 Continuous Resource, Decentralized MDP

This section introduces a formal framework for planning problems outlined in Section 2.1.4. To

this end, the concepts of execution events and histories of execution events must be defined:

Definition 1. An execution event stores all the relevant information about the execution of a

method. Precisely, an execution event e is a tuple 〈i, l1, l2, q〉 where:

• i is the index of method mi ∈ Mn executed by some agent n;

• l1 is agent n resource level when it started executing method mi;

• l2 is agent n resource level when it finished executing method mi;

• q ∈ {0, 1} is the result of the execution of method mi. If q = 1 method mi has been executed

successfully, whereas if q = 0 method mi has been executed unsuccessfully.

Furthermore, a spoof execution event 〈0, l1, l2, 1〉 is used to specify an event when the agent

remained idle (executed a spoof method m0) and its resource level dropped from l1 to l2.

Definition 2. An execution history stores the complete history of execution events of an agent.

Precisely, the execution history h of an agent n is a vector (e1, e2, ..., ek) where e1, e2, ..., ek are the

execution events of agent n.

24



Observe, that agent n knows exactly its execution history. However, because it is assumed

that agents cannot communicate directly their execution status, agent n might not know exactly

the execution histories of other agents. Indeed, agent n only knows the probability distribution of

the execution histories of other agents. This distribution is affected by both: (i) The joint policy

of all the agents that has been found during the planning phase and (i) the observations that agent

n received during the execution phase, where an observation is an outcome of the execution of a

method involved in a resource precedence constraint (explained in Section 5.2.2).

The formal definition of the Continuous Resource, Decentralized MDP (CR-DEC-MDP)

model is then the following:

Definition 3. For a team of N agents, a CR-DEC-MDP is a collection of N continuous resource

Markov decision processesMDPn = 〈Sn,An,Pn,Rn〉 where:

• Sn is the set of states of agent n where each state s ∈ S n is the agent execution history,

e.g. s = (e1, ..., ek). Each MDPn has a distinguished starting state sn,0 ∈ Sn encoded as

sn,0 = (〈−n, ln,0, ln,0, 1〉) ∈ S n where m−n is a unique spoof method of agent n which by

default is completed in the starting state with ln,0 resource left — the only purpose of the

starting state is to encode the initial resource level of the agent. The current state s ∈ S n

of agent n allows the agent to estimate the probability distribution over current states of

MDPs of other agents (explained in Section 5.2.2).

• An is the set of actions of agent n. Furthermore, A(s) ⊂ An is used to denote a set of actions

that agent n can execute in state s ∈ S n. Because methods are allowed to be executed only

once, A(s) = Mn \ {mi : 〈i, l1, l2, q〉 ∈ s}. Alternatively, an agent can choose to remain idle

in which case its resource level drops by the controllable amount δ.
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• Pn is the state transition function of agent n that can depend on the current state ofMDPn′

of any agent n′. When the agent is in state s = (〈i1, l1,1, l1,2, q1〉, ..., 〈ik, lk,1, lk,2, qk〉) it can

either choose to remain idle (deliberately lose a certain amount of resource) or execute a

method m j ∈ A(s). If the agent chooses to remain idle, it looses a controllable amount δ

of resource and transitions to a state s′ = (〈i1, l1,1, l1,2, q1〉, ..., 〈ik, lk,1, lk,2, qk〉, 〈0, lk,2, lk,2 −

δ, 1〉). Else, if the agent decides to execute a method m j ∈ A(s), it transitions with proba-

bility p j(x) to state s′ = (〈i1, l1,1, l1,2, q1〉, ..., 〈ik, lk,1, lk,2, qk〉, 〈 j, lk,2, lk,2 − x, q j〉) where x is

the amount of resource consumed during the execution of method m j. The result q j of the

execution of method m j is 1 (method m j has been executed successfully) if and only if both

the resource limit constraint and resource precedence constraint are satisfied. Precisely:

– The resource limit constraint is met when the agent resource level remains within

some admissible range during the execution of method m j, i.e., if there exist a re-

source limit constraint 〈 j, l1, l2〉 ∈ C[] such that l1 ≥ lk,2 ≥ lk,2 − x ≥ l2.

– The resource precedence constraint is met if method m j is enabled when it is started,

i.e., if the execution of all methods mi ∈ M such that 〈i, j〉 ∈ C≺ has finished success-

fully with at least lk2 resources left. In other words, for each method mi ∈ Mn′ such

that 〈i, j〉 ∈ C≺, the current state of MDPn′ must contain an event e = 〈i, l1, l2, 1〉

where l2 ≥ lk,2.

Finally, since it is assumed that the execution of method m j is automatically interrupted

when the agent resource level drops below value l2, for some admissible resource range

constraint 〈 j, l1, l2〉 ∈ C[] the transition function must be modified respectively. To this end,

26



the probability that the execution of method m j consumes lk,2 − l2 amount of resource must

be 1 −
∫ lk,2−l2

0 p j(x)dx.

• Rn is the reward function of agent n. If the agent executes a method m j ∈ A(s) from state

s = (e1, ..., ek) and transitions to state s′ = (e1, ..., ek, 〈 j, lk,1, lk2 , q j〉) it earns reward q j · r j.

Given local policies πn of agents n = 1, ..,N the joint policy is a vector (π1, ..., πn). The value

of the joint policy is then defined as follows:

Definition 4. The value of the joint policy π = (π1, ..., πN) is given by V(π) =
∑N

n=1 Vπi(sn,0) where

Vπi(sn,0) is the total expected reward of policy πn (of agent n) executed from its starting state sn,0.

The optimal policy π∗ = (π∗1, ..., π
∗
N) is the one that maximizes V(π).

As will be discussed in Chapter 7, there are serious shortcomings in previous work in deter-

mining π∗. First, current algorithms are only applicable to CR-DEC-MDPs where the resource

levels are discretized and second, current algorithms may still exhibit poor performance with the

scale-up in their state-spaces. To remedy these shortcomings, this thesis proposes two different

algorithms for solving CR-DEC-MDPs (see Chapter 5):

• The first algorithm (VFP) considers a special case when CR-DEC-MDPs are fully ordered

(explained in Section 5.1). For such CR-DEC-MDPs, VFP finds locally optimal policies

one order of magnitude faster than its competitors. In addition, VFP implements a set of

heuristics aimed at improving the quality of these locally optimal joint policies.

• The second proposed algorithm (M-DPFP) for solving CR-DEC-MDPs operates on arbi-

trary CR-DEC-MDPs. It finds joint policies that are guaranteed to be within an arbitrary

small ε from the optimal joint policies.
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Both VFP and M-DPFP allow for continuous resource levels and continuous resource consump-

tion probability density functions.
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Chapter 3: Single Agent Solutions

Two algorithms for solving planning problems modeled as continuous resource MDPs are pro-

posed in this chapter: (i) The value iteration algorithm CPH and (ii) the forward search approach

DPFP. The advantages and disadvantages of CPH and DPFP are demonstrated in Chapter 4.

3.1 Value Iteration Approach: The CPH Algorithm

Recall (see Equation 2.2) that the optimal policy π∗ is calculated from values V∗(s)(t) s ∈ S ; t ∈

[0,∆] where V∗(s)(t) is the largest expected total reward that the agent can obtain until execution

stops if it starts in state s ∈ S with time-to-deadline 0 ≤ t ≤ ∆. To calculate values V∗(s)(t) s ∈

S ; t ∈ [0,∆] necessary to determine π∗, value iteration first calculates the values Vn(s)(t) using

the following Bellman updates for all states s ∈ S , time-to-deadlines 0 ≤ t ≤ ∆, and iterations

n ≥ 0:
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V0(s)(t) := 0

Vn+1(s)(t) :=



0 if t ≤ 0

maxa∈A(s) {
∑

s′∈S P(s, a, s′) otherwise∫ t
0 ps,a(t′)(R(s, a, s′) + Vn(s′)(t − t′)) dt′}.

It then holds that limn→∞ Vn(s)(t) = V∗(s)(t) for all states s ∈ S and times-to-deadline 0 ≤

t ≤ ∆.

Unfortunately, value iteration cannot be implemented as stated since the number of values

Vn(s)(t) is infinite for each iteration n since the time-to-deadline t is a real-valued variable. This

thesis remedies this situation by viewing the Vn(s) as value functions that map times-to-deadline

t to the corresponding values Vn(s)(t). As a result CPH can maintain Vn(s) with a finite number

or parametrized, continuous functions. In this context, I make the following contributions:

• First, I show that once the starting MDP is approximated with an MDP with only exponen-

tial action duration distributions, it is possible to find such n, that running the value iteration

for n iterations would produce a solution with an approximation error maxs∈S ,0≤t≤∆ |V∗(s)(t)−

Vn(s)(t)| no larger than a given constant ε > 0.

• Second, I show that each value function Vn(s) can be represented exactly with a vector of

a small number of real values each.

• Finally, I show how the Bellman updates can efficiently transform the vectors of the value

functions Vn(s) to the vectors of the value functions Vn+1(s).
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These three contributions are presented in the following three steps of the CPH algorithm (Continuous

resource MDP through PHase-type approximation).

3.1.1 CPH Step 1: Phase Type Approximation

CPH first approximates the probability distributions ps,a of action durations that are not exponen-

tial with phase-type distributions (see Appendix A), resulting in chains of exponential distribu-

tions E(λ) = λe−λt with potentially different exit rate parameters λ > 0 [Neuts, 1981]. CPH then

uses uniformization [Puterman, 1994] to make all constants λ identical without changing the un-

derlying stochastic process. The detailed description of these two steps is provided in Appendix

C and Appendix D — this section only shows an example of use of phase-type approximation

and uniformization in context of CPH. Furthermore, this section reports on the implications of

phase-type approximation on the CPH’s planning horizon.

The actual implementation of CPH used for the experimental evaluation of CPH (see Chapter

4) employed the Coxian family of distributions (see Appendix B) for phase-type approximation.

The uniformization process (see Appendix D) was then used to uniformize the exit rate parame-

ters of the exponential distributions of the underlying Coxian distributions. The example of this

process is shown in Figure 3.1. Here, an action duration ps,a follows a Normal distribution with

a mean µ = 2 and standard deviation σ = 1. This normal distribution is first approximated with a

3-phase Coxian distribution and then uniformized.

Let a =return-to-base, s = start, s′ = base and P(s, a, s′) = 1 as shown in Figure 3.1. First,

the Expectation-Maximization algorithm [Dempster et al., 1977] is used to approximate the nor-

mal distribution with a 3-phase Coxian distribution. The phase type approximation introduces 2
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auxiliary states Ph2 and Ph3 (also referred to as phases). Two other phases of the phase-type dis-

tribution, Ph1 and Ph4, are the original states of a continuous resource MDP: Ph1 corresponds to

state start and Ph4 (the absorbing phase) corresponds to state base. Observe, that all phase tran-

sition duration times follow exponential distributions — in particular, for the Coxian distribution

shown, the exit rates of these exponential distribution and the discrete phase-to-phase transition

probabilities are shown in Figure 3.1.

start base~N(2,1)
pstart,base=1

start
Ph1

base
Ph4

Ph2 Ph3
~E(1.45)

p1,2=1
~E(1.42)
p2,3=0.97

~E(1.43)
p3,4=1

~E(1.42)
p2,4=0.03

start
Ph1

base
Ph4

Ph2 Ph3
~E(1.45)

p1,2=1

~E(1.45)
p2,2=0.02

~E(1.45)
p2,3=0.95

~E(1.45)
p2,4=0.03

~E(1.45)
p3,4=0.99

~E(1.45)
p3,3=0.01

Initial probability distribution

After transformation to phase-type distribution

After uniformization

Figure 3.1: Phase type approximation example

A phase type distribution f specifies the probabilities of transitioning to the absorbing phase

(to state base in the example above) over time. Formally, a phase-type distribution f is given by:1

f (−→α,Q)(t) = −−→αeQt(−Q
−→
1 ) (3.1)

1For a detailed description of phase-type distributions, refer to Appendix A
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where Q is the infinitesimal generator matrix, −→α is a vector on starting distribution over Markov

states and
−→
1 is the unit column vector. In particular, for the example shown, −→α = (1, 0, 0) (the

Markov process starts in phase Ph1) and Q is given by2:

Q =



−1.45 1 · 1.45 0

0 −1.42 0.97 · 1.42

0 0 −1.43


(3.2)

A common measure of fitness of the phase-type approximation is the KL-divergence [Kullback

and Leibler, 1951]. In particular, the KL-divergence between the original function (normal dis-

tribution with mean µ = 2 and variance σ = 1) and the obtained phase-type distribution is

−1.370521. For details on how to measure the KL-divergence, refer to Section C.

To allow CPH to compute the underlying convolution operations analytically (see Equation

3.1), all phase-type distributions must consists of the exponential distributions that have the same

exit rate parameter λ. In order to achieve that, each phase-type distribution is uniformized (for

details on the uniformization process, refer to Section D). The uniformization does not alter the

generator matrix Q and as such, it does not affect the absorption time of the phase-type distribu-

tion. However, uniformization changes the exit rates of the phase-to-phase transition durations as

well as the phase-to-phase transition probabilities (intuitively, the exit rates are increased but so

are the probabilities of self-transitions). For the example above, the new exit rate (λ = 1.45) and

the new phase-to-phase transition probabilities are shown in Figure 3.1.

From now on, CPH can therefore assume without loss of generality that the action durations

t′ of all actions are distributed according to exponential distributions ps,a(t′) = p(t′) ∼ E(λ)

2For details on how to determine the values of −→α and Q refer to Appendix A and Appendix B.
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with the same constant λ > 0. Note however, that the uniformization process can introduce self-

transitions, and consequently, CPH’s value iteration cannot determine the value functions V∗(s)

with a finite number of iterations. To remedy that, Theorem 3.13 from Section 3.1.4 proves that

the approximation error is no larger than a desired ε > 0 if the value iteration runs for at least n∗

iterations where:

n∗ ≥ log eλ∆−1
eλ∆

(
ε

Rmax(eλ∆ − 1)

)
(3.3)

and Rmax := maxs∈S ,a∈A(s),s′∈S R(s, a, s′).

3.1.2 CPH Step 2: Piecewise Gamma Value Functions

In this section it is explained how CPH breaks up each value function Vn(s)(t) into multiple

sub-functions Vn
i (s)(t) where each sub-function is associated with a particular time interval. In-

formally, for different time intervals (separated by special times-to-deadline referred to as break-

points), the value function Vn(s)(t) will be characterized by a different parametric function. Fur-

thermore, each parametric function will have an associated action that an agent should start exe-

cuting if the current time-to-deadline is inside the time interval of that parametric function.

Formally, it follows directly from the considerations in the next section that there exist times-

to-deadline 0 = ts,0 < ts,1 < . . . < ts,ms+1 = ∆ such that the value function Vn(s) is made of ms + 1

parametric functions Vn
i (s) such that Vn(s)(t) = Vn

i (s)(t) for all t ∈ [ts,i, ts,i+1), where

Vn
i (s)(t) = cs,i,1 − e−λt

(
cs,i,2 + . . . + cs,i,n+1

(λt)n−1

(n − 1)!

)
(3.4)
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for the parameters cs,i, j for all s ∈ S , 0 ≤ i ≤ ms and 1 ≤ j ≤ n+1. These times-to-deadline ts,i

are referred to as breakpoints, [ts,i, ts,i+1) as intervals, the expressions for the parametric functions

Vn
i (s) as gamma functions (which is a simplification since each function Vn

i (s) is actually linear

combinations of Euler’s incomplete gamma functions), and the expressions for the value functions

Vn(s) as piecewise gamma functions. Each gamma function Vn
i (s) is represented as a vector

[cs,i,1, . . . , cs,i,n+1] = [cs,i, j]n+1
j=1 and each piecewise gamma function Vn(s) as a vector of vectors

[ts,i:Vn
i (s)]ms

i=0 = [ts,i:[cs,i, j]n+1
j=1]ms

i=0.

Figure 3.2: CPH Value function V∗(start) consists of four gamma func-
tions: V∗(start) = [0:V∗0 (start), 0.8:V∗1 (start), 1.8:V∗2 (start), 3.2:V∗3 (start)] =

[0:[6, 6], 0.8:[10, 10, 6], 1.8:[12, 8.73, 8, 6], 3.2:[13, 27.1,−1.92, 7, 6]].

Figure 3.2 illustrates the different concepts introduced in this section. The Figure shows the

optimal value function V∗0 (start) for state start of the planetary exploration domain introduced

in Section 2.1.1. Observe that V∗0 (start) is represented by four parametric gamma functions

V∗0 (start), V∗1 (start), V∗2 (start), V∗3 (start) associated with four different time intervals [0, 0.8],
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[0.8, 1.8], [1.8, 3.2], [3.2, 4.0] respectively — times-to-deadline 0.8, 1.8, 3.2 are the breakpoints

of the value function V∗0 (start). Although not shown explicitly in Figure 3.2, the actions associ-

ated with the gamma functions are:

• Return-to-base if time-to-deadline is between 0 and 0.8 (for function V∗0 (start));

• Move-to-next-site if time-to-deadline is between 0.8 and 1.8 (for function V∗1 (start));

• Move-to-next-site if time-to-deadline is between 1.8 and 3.2 (for function V∗2 (start));

• Move-to-next-site if time-to-deadline is between 3.2 and 4 (for function V∗3 (start));

3.1.3 CPH Step 3: Functional Value Iteration

3.1.3.1 Simplified Example

It is first shown how value iteration can calculate the vectors of the value functions for a simplified

example where an agent executes an unconditional sequence of deterministic actions a1, a2, . . . , aN+1

in its initial state s1 with time-to-deadline ∆ and then execution stops. Thus, a2 is executed after

a1, a3 is executed after s2, ..., aN+1 is executed after aN . Furthermore, assume that the execution

of action an in state sn results (with probability one) in state sn+1 for all 1 ≤ n ≤ N. Then, the

Bellman updates that are important (necessary to derive the value functions) are:

V0(sN+1)(t) = 0

Vn(sN+1−n)(t) =

∫ t

0
p(t′)

(
R(sN+1−n, aN+1−n, sN+2−n) + Vn−1(sN+2−n)(t − t′)

)
dt′

for all 0 ≤ t ≤ ∆ and 1 ≤ n ≤ N. The integral in the second equation is an example of the convo-

lution operation
∫ t

0 p(t′) f (t − t′) dt′ commonly denoted as (p ∗ f )(t). This convolution operation

36



is now used recursively to transform the Bellman updates to the vector notation introduced in

Section 3.1.2:

V0(sN+1) = 0

Vn(sN+1−n) = p ∗ (R(sN+1−n, aN+1−n, sN+2−n) + Vn−1(sN+2−n))

= p ∗ R(sN+1−n, aN+1−n, sN+2−n) + p ∗ Vn−1(sN+2−n)

(since convolution is distributive)

= p ∗ R(sN+1−n, aN+1−n, sN+2−n)

+ p ∗ p ∗ R(sN+2−n, aN+2−n, sN+3−n)

+ . . .

+ p ∗ . . . ∗ p︸      ︷︷      ︸
n−1

∗R(sN−1, aN−1, sN)

+ p ∗ . . . ∗ p︸      ︷︷      ︸
n

∗R(sN , aN , sN+1)

(the recursion has been ”unrolled”)

Now, for p(t) sampled from an exponential distribution E(λ) = λe−λt and a constant R it can

easily be derived that p ∗ . . . ∗ p︸      ︷︷      ︸
n

∗R = R − e−λt
(
R + . . . + R (λt)n−1

(n−1)!

)
. Furthermore, this expression

37



can be stored as a vector [R, ...,R︸ ︷︷ ︸
n+1

] = [R]n+1
i=1 in accordance with the vector notation introduced in

Section 3.1.2, Hence, the derivation of Vn(sN+1−n) continues:

= [R(sN+1−n, aN+1−n, sN+2−n)]2
j=1

+ [R(sN+2−n, aN+2−n, sN+3−n)]3
j=1

+ . . .

+[R(sN−1, aN−1, sN)]n
j=1

+[R(sN , aN , sN+1)]n+1
j=1

Finally, the above vectors (of different sizes) are summed into a vector [c1, c2, ..., cN+1] using the

following method: cn is the sum of the n-th elements in the above vectors, for vectors that have

at least n elements. Thus:

Vn(sN+1−n) = [
N∑

j=N+1−n

R(s j, a j, s j+1),
N∑

j=N+1−n

R(s j, a j, s j+1),
N∑

j=N+2−n

R(s j, a j, s j+1), . . . ,
N∑

j=N

R(s j, a j, s j+1)]

for all 1 ≤ n ≤ N. Having transformed the Bellman updates to vector notation, this notation

for n = N can be used in expressing the value function for state s1:

VN(s1) = [
N∑

j=1

R(s j, a j, s j+1),
N∑

j=1

R(s j, a j, s j+1),
N∑

j=2

R(s j, a j, s j+1), . . . ,
N∑

j=N

R(s j, a j, s j+1)].

Example: For the planetary exploration domain, recall the optimal value function V∗(start)

from Figure 3.2. According to this function, the optimal action for the time interval [0, 0.8]
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is to return-to-base and the expected utility of this action over time is given by V∗0 (start)(t) =

6 · (1 − e−λt)3. This result is now verified; when the rover executes the “return-to-base” action

unconditionally at state “start” and then execution stops, it receives reward 6 for completing the

action. Thus, from Equation 3.5, V1(start)(t) = λeλt ∗ 6 = 6 · (1 − e−λt) = [6, 6]4. Similarly,

when the rover executes the “return-to-base” action unconditionally at state “start” and then

execution stops, it holds that V1(site3)(t) = λeλt ∗ 6 = 6 · (1 − e−λt) = [6, 6].

3.1.3.2 The General Case

In the previous section, only for demonstration purposes, it has been assumed that an agent ex-

ecutes an unconditional sequence of deterministic actions. Solving the planning problems, how-

ever, is more complicated since it might not be optimal to, say, always execute action a2 after

action a1 no matter how long it takes to execute action a1 or which state results from its exe-

cution. This is the reason for why for different time intervals, the value function is represented

by a different gamma function (instead of being represented by a single gamma function for all

0 ≤ t ≤ ∆ ).

It is now shown how to generalize the key idea to allow value iteration to solve the planning

problems analytically. For n = 0, the value functions Vn(s) = 0 satisfy Vn(s) = [0:[0]] and thus

are (piecewise) gamma. It is shown by induction that all value functions Vn+1(s) are piecewise

gamma if all value functions Vn(s) are piecewise gamma. It is also shown how the Bellman

updates can efficiently transform the vectors of the value functions Vn(s) to the vectors of the

value functions Vn+1(s). Recall Equation 3.1 which performs the value iteration:

3The lower index in V∗0 represents an index of the gamma function
4The upper index in V1 represents the Bellman update number, not the gamma function index. Indeed, the value

functions for an unconditional sequence of actions considered in this section are always represented by a single gamma
function
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Vn+1(s)(t) := max
a∈A(s)

∑
s′∈S

P(s, a, s′)
∫ t

0
p(t′)(R(s, a, s′) + Vn(s′)(t − t′)) dt′.

This calculation breaks down into four stages:

• First, V
n
(s′)(t − t′) := R(s, a, s′) + Vn(s′)(t − t′).

• Second, Ṽn(s′)(t) :=
∫ t

0 p(t′)V
n
(s′)(t − t′) dt′.

• Third, V̂n(s, a)(t) :=
∑

s′∈S P(s, a, s′)Ṽn(s′)(t).

• Finally, Vn+1(s)(t) := maxa∈A(s) V̂n(s, a)(t).5

Stage 1: Calculate V
n
(s′)(t − t′) := R(s, a, s′) + Vn(s′)(t − t′). The induction assumption is

that all value functions Vn(s′) are piecewise gamma, i.e., Vn(s′) = [ts′,i:[cs′,i, j]n+1
j=1]ms′

i=0. In Stage

1, CPH calculates V
n
(s′)(t − t′) := R(s, a, s′) + Vn(s′)(t − t′), which is the same as calculating

V
n
(s′)(t) := R(s, a, s′) + Vn(s′)(t) since R(s, a, s′) is constant. Then,

V
n
(s′) = R(s, a, s′) + Vn(s′)

= R(s, a, s′) + [ts′,i : [cs′,i, j]n+1
j=1]ms′

i=0

= [ts′,i : [c′s′,i, j]
n+1
j=1]ms′

i=0.

where c′s′,i,1 = R(s, a, s′) + cs′,i,1 and c′s′,i, j = cs′,i, j for all 0 ≤ i ≤ ms′ and 2 ≤ j ≤ n + 1.

Example (continued): In the previous example for the planetary exploration domain it has

been found, that V1(site3) = [6, 6]. This example is now carried on in order to show how CPH
5One should really use V

n
(s, a, s′)(t − t′) and Ṽn(s, a, s′)(t) instead of V

n
(s′)(t − t′) and Ṽn(s′)(t), respectively, but

this would make the notation rather cumbersome.
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derives V2(site2). If in state site2 the rover executes the “move to site 3” action, then the value

function after Step 1 is V
1
(site3) = [1 + 6, 6] = [7, 6] because V1(site3) = [6, 6].

Stage 2: Calculate Ṽn(s′)(t) :=
∫ t

0 p(t′)V
n
(s′)(t−t′) dt′, which is a convolution of p and V

n
(s′)

denoted as p ∗ V
n
(s′). Consider the value functions V

n
(s′) defined in Stage 1. It is now shown by

induction that

Ṽn
i (s′)(t) = (p ∗ V

n
i (s′))(t) − e−λt(

i∑
i′=1

eλts′ ,i′ (p ∗ V
n
i′(s′))(ts′,i′)

−

i−1∑
i′=0

eλts′ ,i′+1(p ∗ V
n
i′(s′))(ts′,i′+1)) (3.5)

for all t ∈ [ts′,i, ts′,i+1). Equation (3.5) holds for i = 0 since Ṽn(s′)(t) = (p ∗ V
n
0(s′))(t) for all

t ∈ [ts′,0, ts′,1). Assume now that Equation (3.5) holds for some i. It then also holds for i + 1 as

shown in Figure 3.3. It has consequently been shown that the transformation performed at stage

2 results in a value function Ṽn(s′)(t) that is piecewise, and that each piece Ṽn
i (s′)(t) is a function

represented by Equation (3.5). In order to complete stage 2, it must also be shown, that Ṽn(s′)(t)

is in piecewise gamma form i.e., it must be shown that each piece Ṽn
i (s′) is a gamma function:

Lemma 1. Let p(t) follow the exponential probability density function with the exit rate λ, i.e.,

p(t) ∼ E(λ). Then, p ∗ [k1, k2, . . . , kn] = [k1, k1, k2, . . . , kn].

Proof. By symbolic integration, p ∗ [k]n
j=1 = [k]n+1

j=1 for any constant k. Then, p ∗ [k1, . . . , kn] =

p∗(
∑n−1

i=1 [ki−ki+1]i
j=1+[kn]n

j=1) =
∑n−1

i=1 (p∗[ki−ki+1]i
j=1)+p∗[kn]n

j=1 =
∑n−1

i=1 [ki−ki+1]i+1
j=1+[kn]n+1

j=1 =

[k1, k1, . . . , kn]. �
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The recursion will be proven for i + 1. Since convolution is commutative it holds that:

Ṽn
i+1(s′)(t) =

∫ t

0
p(t′)V

n
(s′)(t − t′) dt′ =

∫ t

0
p(t − t′)V

n
(s′)(t′) dt′

The integral range [0, t] is now split into ranges [0, ts′,i+1] and (ts′,i+1, t]:

=

∫ t

ts′ ,i+1

p(t − t′)V
n
i+1(s′)(t′) dt′ +

∫ ts′ ,i+1

0
p(t − t′)V

n
i+1(s′)(t′) dt′

For all t′ such that ts′,i+1 ≤ t′ ≤ t < ts′,i+2 it holds that V
n
(s′)(t′) = V

n
i+1(s′)(t′). Thus:

=

∫ t

ts′ ,i+1

p(t − t′)V
n
i+1(s′)(t′) dt′ +

∫ ts′ ,i+1

0
p(t − t′)V

n
(s′)(t′) dt′

By adding and then subtracting [0, ts′,i+1] to the first integral range:

=

∫ t

0
p(t − t′)V

n
i+1(s′)(t′) dt′ −

∫ ts′ ,i+1

0
p(t − t′)V

n
i+1(s′)(t′) dt′

+

∫ ts′ ,i+1

0
p(t − t′)V

n
(s′)(t′) dt′

And since p(t − t′) = λe−λ(t−t′) = e−λ(t−ts′ ,i+1)λe−λ(ts′ ,i+1−t′) = e−λ(t−ts′ ,i+1) p(ts′,i+1 − t′) it holds that:

=

∫ t

0
p(t − t′)V

n
i+1(s′)(t′) dt′ − e−λ(t−ts′ ,i+1)

∫ ts′ ,i+1

0
p(ts′,i+1 − t′)V

n
i+1(s′)(t′) dt′

+e−λ(t−ts′ ,i+1)
∫ ts′ ,i+1

0
p(ts′,i+1 − t′)V

n
(s′)(t′) dt′

Now, by the definition of Ṽn
i (s′):

=

∫ t

0
p(t − t′)V

n
i+1(s′)(t′) dt′ − e−λ(t−ts′ ,i+1)

∫ ts′ ,i+1

0
p(ts′,i+1 − t′)V

n
i+1(s′)(t′) dt′

+e−λ(t−ts′ ,i+1)Ṽn
i (s′)(ts′,i+1)

And compact notation for the convolution p ∗ V
n
i+1(s′):

= (p ∗ V
n
i+1(s′))(t) − e−λ(t−ts′ ,i+1)(p ∗ V

n
i+1(s′))(ts′,i+1) + e−λ(t−ts′ ,i+1)Ṽn

i (s′)(ts′,i+1)

Finally, Ṽn
i (s′)(t) is unrolled by using the induction assumption (for an argument t = ts′,i+1):

= (p ∗ V
n
i+1(s′))(t) − e−λ(t−ts′ ,i+1)(p ∗ V

n
i+1(s′))(ts′,i+1)

+e−λ(t−ts′ ,i+1)( (p ∗ V
n
i (s′))(ts′,i+1)

− e−λts′ ,i+1

 i∑
i′=1

eλts′ ,i′ (p ∗ V
n
i′ (s′))(ts′,i′ ) −

i−1∑
i′=0

eλts′ ,i′+1 (p ∗ V
n
i′ (s′))(ts′,i′+1)

 )

And since all the terms except (p ∗ V
n
i+1(s′))(t) are multiplications of eλt it holds that:

= (p ∗ V
n
i+1(s′))(t) − e−λteλts′ ,i+1 (p ∗ V

n
i+1(s′))(ts′,i+1) + e−λteλts′ ,i+1 (p ∗ V

n
i (s′))(ts′,i+1)

−e−λt

 i∑
i′=1

eλts′ ,i′ (p ∗ V
n
i′ (s′))(ts′,i′ ) −

i−1∑
i′=0

eλts′ ,i′+1 (p ∗ V
n
i′ (s′))(ts′,i′+1)


= (p ∗ V

n
i+1(s′))(t) − e−λt

 i+1∑
i′=1

eλts′ ,i′ (p ∗ V
n
i′ (s′))(ts′,i′ ) −

i∑
i′=0

eλts′ ,i′+1 (p ∗ V
n
i′ (s′))(ts′,i′+1)


Figure 3.3: Proof by induction of Equation (3.5).
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Using the result from the lemma, Equation (3.5) can now be transformed to vector notation.

Ṽn
i (s′) = [c′′s′,i, j]

n+2
j=1

where c′′s′,i,1 := c′s′,i,1 c′′s′,i,2 := c′s′,i,1 + zs′,i

c′′s′,i, j+1 := c′s′,i, j ∀ j=2,3,...,n+1

with zs′,i :=
i∑

i′=1

eλts′ ,i′ (p ∗ V
n
i′(s′))(ts′,i′)

−

i−1∑
i′=0

eλts′ ,i′+1(p ∗ V
n
i′(s′))(ts′,i′+1).

Observe that zs′,i is added to c′′s′,i,2 because zs′,i is multiplied by e−λt in Equation (3.5). Conse-

quently, Ṽn(s′) is in piecewise gamma form: Ṽn(s′) = [ts′,i:[c′′s′,i, j]
n+2
j=1]ms′

i=0. That result completes

all the necessary calculations performed at stage 2.

Note that one could also calculate Ṽn
i+1(s′) recursively based on Ṽn

i (s′) according to line 5 in

Figure 3.3. It then holds that:

Ṽn
i+1(s′)(t) = (p ∗ V

n
i+1(s′))(t) − e−λ(t−ts′ ,i+1)(p ∗ V

n
i+1(s′))(ts′,i+1)

+ e−λ(t−ts′ ,i+1)Ṽn
i (s′)(ts′,i+1)

= (p ∗ V
n
i+1(s′))(t) − e−λteλts′ ,i+1((p ∗ V

n
i+1(s′))(ts′,i+1)

− Ṽn
i (s′)(ts′,i+1))

and in vector notation:

Ṽn
i+1(s′) = [c′s′,i+1,1, c

′
s′,i+1,1 + z′s′,i+1, c

′
s′,i+1,2, . . . , c

′
s′,i+1,n+1]
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for

z′s′,i+1 := eλts′ ,i+1((p ∗ V
n
i+1(s′))(ts′,i+1) − Ṽn

i (s′)(ts′,i+1)).

Example (continued): In the previous example it has been found that if in state site2 the rover

executes the “move to site 3” action, then the value function after Step 1 is V
1
(site3) = [7, 6].

Since V
1
(site3) ≡ V

1
1(site3) (because V

1
(site3) has no breakpoints), it can be easily computed

that after stage 2, Ṽ1(site3) = p ∗ V
1
(site3) = p ∗ [7, 6] = [7, 7, 6].

Stage 3: Calculate V̂n(s, a)(t) :=
∑

s′∈S P(s, a, s′)Ṽn(s′)(t). Consider the value functions

Ṽn(s′) defined in Stage 2. Since they might have different breakpoints {ts′,i}
ms′

i=0 for different states

s′ ∈ S with P(s, a, s′) > 0, CPH introduces the common breakpoints

{ts,a,i}
ms,a
i=0 =

⋃
s′∈S :P(s,a,s′)>0

{ts′,i}
m′s
i=0

without changing the value functions Ṽn(s′). Afterwards, Ṽn(s′) = [ts,a,i:[c′′′s′,i, j]
n+2
j=1]ms,a

i=0 where

c′′′s′,i, j = c′′s′,i′, j for the unique i′ with [ts,a,i, ts,a,i+1) ⊆ [ts′,i′ , ts′,i′+1). Then,

V̂n(s, a) =
∑
s′∈S

P(s, a, s′)Ṽn(s′)

=
∑
s′∈S

P(s, a, s′)[ts,a,i : [c′′′s′,i, j]
n+2
j=1]ms,a

i=0

= [ts,a,i : [
∑
s′∈S

P(s, a, s′)c′′′s′,i, j]
n+2
j=1]ms,a

i=0

= [ts,a,i : [c′′′′s,a,i, j]
n+2
j=1]ms,a

i=0 .
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Example (continued): In the previous example it has been found that if in state site2 the rover

executes the “move to site 3” action, then the value function after Step 2 is Ṽ1(site3) = [7, 7, 6].

Since the “move to site 3” action is deterministic, i.e., P(site2,move-to-site-3, site3) = 1, after

stage 3 it holds that V̂1(site2,move-to-site-3) = 1 · [7, 7, 6] = [7, 6, 6].

Stage 4: Calculate Vn+1(s)(t) := maxa∈A(s) V̂n(s, a)(t). After stage 3, for each action a ∈ A(s)

one has a value function V̂n(s, a) that has a set {ts,a,i}
ms,a
i=0 of breakpoints associated with it. Since

for different actions a ∈ A(s), sets {ts,a,i}
ms,a
i=0 can be different, the first thing CPH does in stage 4 is

to introduce common breakpoints
⋃

a∈A(s){ts,a,i}
ms,a
i=0 without changing the value functions V̂n(s, a).

CPH then introduces additional dominance breakpoints at the intersections of value functions

V̂n(s, a) ∀a∈A(s) to ensure that, over each interval, one of the value functions dominates the other

ones. Let {t′s,i}
m′s
i=0 be the set of breakpoints afterwards. Then, Vn+1(s) = [t′s,i:[c

′′′′′
s,i, j ]

n+2
j=1]m′s

i=0 where

c′′′′′s,i, j = c′′′′s,as,i,i′, j
for actions as,i ∈ A(s) and the unique i′ with [t′s,i, t

′
s,i+1) ⊆ [ts,as,i,i′ , ts,as,i,i′+1) and,

for all t ∈ [t′s,i, t
′
s,i+1), V̂n(s, a)(t) ≤ V̂n(s, as,i)(t). Furthermore, action as,i should be executed

according to the value function Vn+1(s) if the current state is s and the time-to-deadline is t ∈

[t′s,i, t
′
s,i+1).

Example (continued) : It has already been shown that when the rover executes the “move to

site 3” action, after stage 3 it holds that V̂1(site2,move-to-site-3) = [7, 6, 6]. One can calculate

in the similar fashion, that when the rover executes the “move to base” action from site2 , after

stage 3: V̂1(site2,move-to-base) = [6, 6, 0]. Stage 4 calculates the maximum of V̂1(site2,move-

to-site-3) and V̂1(site2,move-to-base). The two functions intersect at 3.06 and the maximum is

V2(site2) = [0 : [6, 6, 0], 3.06 : [7, 7, 6]. Now, to show how to calculate V3(site1) : If the rover
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executes the “move to base” action, then (as before) after stage 1 one obtains: [6 + 0, 0, 0] =

[6, 0, 0] and after stage 2 one obtains: [6, 6, 0, 0]. If the rover executes the “move to site 2” action,

then one obtains after stage 1: [0 : [2 + 6, 6, 0], 3.06 : [2 + 7, 7, 6] = [0 : [8, 6, 0], 3.06 : [9, 7, 6]

and after stage 2: [0 : [8, 8, 6, 0], 3.06 : [9,−2.09, 7, 6]]. Stage 4 calculates the maximum of

[6, 6, 0, 0] and [0 : [8, 8, 6, 0], 3.06 : [9,−2.09, 7, 6]]. The two functions intersect at 1.87 and the

maximum is V3(site1) = [0 : [6, 6, 0, 0], 1.87 : [8, 8, 6, 0], 3.06 : [9,−2.09, 7, 6]].

To summarize, the value functions Vn+1(s) are piecewise gamma, and the vectors of the value

functions Vn(s) can be transformed automatically to the vectors of the value functions Vn+1(s).

The lengths of the vectors increase linearly in the number of iterations and, although the number

of breakpoints (that are placed automatically during the transformations) can increase exponen-

tially, in practice it stays small since one can merge small intervals after each iteration of value

iteration to reduce the number of breakpoints The transformations require only simple vector ma-

nipulations and a numerical method that determines the dominance breakpoints approximately,

for which CPH uses a bisection method. In Chapter 4 it is shown experimentally that these trans-

formations of CPH are both efficient and accurate.

3.1.4 Error Control

The following theorem assumes that all action durations follow phase-type distributions. It does

not take into account the error introduced by approximating non-phase type distributions with

phase-type distributions:
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Theorem 1. Let ε > 0 be any positive constant, Rmax := maxs∈S ,a∈A(s),s′∈S R(s, a, s′) and

n ≥ log eλ∆−1
eλ∆

(
ε

Rmax(eλ∆ − 1)

)
.

It then holds that:

max
s∈S ,0≤t≤∆

|V∗(s)(t) − Vn(s)(t)| ≤ ε.

Proof. Let α := λ∆ > 0 and bi :=
∑∞

j=i
α j

j! for all i ≥ 0. It holds that b0 = eα and b1 = b0 − 1 =

eα − 1. First, a bound on the probability pi(t) that the sum of the action durations of a sequence

of i ≥ 1 actions is no more than 0 ≤ t ≤ ∆ is provided:

pi(t) ≤ pi(∆) =

∫ ∆

0
(p ∗ p ∗ . . . ∗ p︸           ︷︷           ︸

i

)(t′) dt′ =

∫ ∆

0
e−λt′ t

′i−1λi

i!
dt′

=
1
eα

eα − i−1∑
j=0

α j

j!

 =
1
eα

 ∞∑
j=0

α j

j!
−

i−1∑
j=0

α j

j!


=

1
eα

∞∑
j=i

α j

j!
=

bi

eα
.

The values

bi+1

bi
=

bi+1
αi

i! + bi+1
=

1
αi

i! bi+1
+ 1

decrease strictly monotonically in i because the values

αi

i! bi+1
=

αi

i!
∑∞

j=i+1
α j

j!

=
1

α
i+1 + α2

(i+2)(i+1) + α3

(i+3)(i+2)(i+1) + . . .
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increase strictly monotonically in i. Consequently,

1 >
eα − 1

eα
=

b1

b0
>

b2

b1
>

b3

b2
> . . . > 0.

Thus

bi <
bi−1

bi−2
bi−1 <

b1

b0
bi−1 <

b1

b0

bi−2

bi−3
bi−2 <

(
b1

b0

)2

bi−2

< . . . <

(
b1

b0

)i−1

b1.

These results are now used to bound |V∗(s)(t) − Vn(s)(t)| for all s ∈ S and 0 ≤ t ≤ ∆. As-

sume that the agent starts in state s ∈ S with time-to-deadline 0 ≤ t ≤ ∆. Value iteration with

n iterations determines the highest expected total reward Vn(s)(t) under the restriction that exe-

cution stops when the deadline is reached or n actions have been executed. The largest expected

total reward V∗(s)(t) does not have the second restriction and can thus be larger than Vn(s)(t). In

particular, only V∗(s)(t) takes into account that the agent can execute the (n + 1)st action with

probability pn+1(t), the (n + 2)nd action with probability pn+2(t), and so on, receiving a reward of
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at most Rmax for each action execution. Additionally, Vn(s)(t) is locally greedy, i.e., the reward

for its first n actions exceeds the reward for the first n actions of V∗(s)(t). Thus,

0 ≤ V∗(s)(t) − Vn(s)(t) ≤
∞∑

i=n+1

Rmax pi(t)

≤
Rmax

eα

∞∑
i=n+1

bi <
Rmax

eα

∞∑
i=n+1

(
b1

b0

)i−1

b1

=
Rmaxb1

eα

∞∑
i=0

(
b1

b0

)i+n

=
Rmaxb1

eα

(
b1

b0

)n ∞∑
i=0

(
b1

b0

)i

=
Rmaxb1

eα

(
b1

b0

)n 1

1 − b1
b0

.

The goal of this theorem is to bound this expression by ε. If value functions have breakpoints,

chosen error ε must be first reduced by the error ξ introduced by breakpoints (ξ is small and can

be easily bounded by κn∗µ where µ is the bisection method error, κ is the maximum number of

breakpoints and n is the planning horizon). Let ε′ := ε − ξ > 0, then:

Rmaxb1

eα

(
b1

b0

)n 1

1 − b1
b0

≤ ε′

(
b1

b0

)n

≤
ε′(1 − b1

b0
)eα

Rmaxb1

n ≥ log b1
b0

ε′(1 − b1
b0

)eα

Rmaxb1


n ≥ log eλ∆−1

eλ∆

(
ε′

Rmax(eλ∆ − 1)

)
.

�
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3.2 Forward Search Approach: The DPFP Algorithm

In this section the Dynamic Probability Function Propagation (DPFP) approach for solving con-

tinuous resource MDPs is introduced. DPFP alleviates the major weakness of CPH, that is, CPHs

poor anytime performance (see Chapter 4). DPFP approach is a novel combination of three key

ideas:

• It introduces the concept of forward search to a continuous resource MDP setting;

• Its forward search is performed in a dual space of cumulative distribution functions which

allows it to vary the planning effort based on the likelihood of reaching different regions of

the state-space;

• It bounds the error that such approximations entails.

These three features allow for a superior anytime performance of DPFP when compared to

CPH or other algorithms for solving continuous resource MDPs. Furthermore, they allow DPFP

to be run in a hybrid mode with CPH or other continuous resource MDP solvers, to speed up the

search for high quality solutions.

3.2.1 DPFP at a Glance

Before the DPFP algorithm is described formally, the informal intuition behind this approach is

provided. The ability of CPH and other value iteration algorithms to find π∗ comes at a high price.

Indeed, value iteration propagates values backwards, and thus, in order to find π∗(s0)(0), it must

first find π∗(s)(t) for all states s ∈ S reachable from s0 and all t ∈ [0,∆] — no matter how likely it

is that state s is visited at time t (in the Mars rover domain with 10 sites of interest, value iteration
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must plan for all 210 states and for all t ∈ [0,∆]). In fact, value iteration does not even know the

probabilities of transitioning to a state s at time t prior to finding π∗.

DPFP on the other hand, as a forward search algorithm, can determine the probabilities of

transitioning to a state s at time t prior to finding π∗. Hence, DPFP can discriminate in its policy

generation effort providing only approximate policies for pairs (s, t) encountered with low prob-

ability. Unfortunately if an MDP contains cycles or action duration distributions are continuous,

standard forward search cannot be carried out in a standard way as it would have to consider an

infinite number of candidate policies.

To remedy that, DPFP exploits two insights. First, since each action consumes a certain

minimum amount of time, only a finite number of actions can be performed before the deadline

Mausam et al. [2005] and thus, the action horizon of DPFP’s forward search can be finite. Second,

to avoid having to consider an infinite number of policies when action duration distributions are

continuous, DPFP operates on a different search space referred to as the dual space of cumulative

distribution functions. In that dual space, DPFP only finds approximate solutions, yet it can

express the error of its approximations in terms of an arbitrary small parameter κ. This process

will now be explained in detail.

3.2.2 Dual Problem

There exists an alternative technique for determining π∗ that does not use Equation 2.2, and thus,

does not calculate the values V∗(s)(t) for all s ∈ S and t ∈ [0,∆]. For notational convenience,

from now on, and until the end of this chapter absolute-time (not time-to-deadline) is considered

to be a continuous resource. In other words, the process starts at time t = 0 and terminates at time

t = ∆ and each action increases the current absolute time. Note, that replacing time-to-deadline
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with absolute-time does not affect the underlying planning problems, because time-to-deadline is

simply ∆ minus absolute-time. Consequently, the policy for absolute times maps directly to the

policy for times-to-deadline and vice versa. In the following, the absolute-time is simply referred

to as time.

Let φ = (s0, ..., s) be an execution path that starts in state s0 at time t0 and finishes in state s.

Φ(s0) is a set of all paths reachable from state s0. Also, let F∗(φ)(t) be the probability of complet-

ing the traversal of path φ before time t when following the optimal policy π∗, and F∗(φ, a)(t) be

the probability of completing the traversal of path φ and starting the execution of action a ∈ A(s)

before time t when following policy π∗ — both F∗(φ) and F∗(φ, a) are cumulative distribution

functions over t ∈ [0,∆]. In this context, the optimal deterministic policy π∗(s) for state s can be

calculated as follows:

π∗(s)(t) = arg max
a∈A(s)

{
lim
ε→0

F∗(φ, a)(t + ε) − F∗(φ)(t)
}

(3.6)

Since the derivative of F∗(φ, a) with respect to time is positive at time t for only one action

a ∈ A(s). The set F∗ := {F∗(φ); F∗(φ, a) for all φ = (s0, ..., s) ∈ Φ(s0) and a ∈ A(s)} is referred to

as the solution to the dual problem.

It is now shown how to find F∗. For simplicity (but without the loss of generality) assume

that rewards are only dependent on the state that the process transitions to, i.e., R(s) is the reward

for executing any action from any state and transitioning to state s ∈ S . Since rewards R(s) are
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earned upon entering states s ∈ S before time ∆, the expected utility Vπ(s0)(0) of a policy π is

given by:

Vπ(s0)(0) =
∑

φ=(s0,...,s)∈Φ(s0)

Fπ(φ)(∆) · R(s)

Where Fπ differs from F∗ in that Fπ is associated with policy π rather than π∗. Since solution

F∗ must yield V∗(s0)(0), it has to satisfy:

V∗(s0)(0) = max
π

Vπ(s0)(0)

= max
π

∑
φ=(s0,...,s)∈Φ(s0)

Fπ(φ)(∆) · R(s)

=
∑

φ=(s0,...,s)∈Φ(s0)

F∗(φ)(∆) · R(s)

In addition, F∗ ∈ X = {F : (3.7), (3.8), (3.9)} where:

F((s0))(t) = 1 (3.7)

F((s0, ..., s))(t) =
∑

a∈A(s)

F((s0, ..., s), a)(t) (3.8)

F((s0, ..., s, s′))(t) =
∑

a∈A(s)

P(s, a, s′) (3.9)

·

∫ t

0
F((s0, ..., s), a)(t′) · ps,a(t − t′)dt′

In the above set, constraint (3.7) ensures that the process starts in state s0 at time 0. Constraint

(3.8) can be interpreted as the conservation of probability mass flow through path (s0, ..., s); Ap-

plicable only if |A(s)| > 0, it ensures that the cumulative distribution function F((s0, ..., s)) is

split into cumulative distribution functions F((s0, ..., s), a) for a ∈ A(s). Finally, constraint (3.9)
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ensures the correct propagation of probability mass F(s0, ..., s, s′) from path (s0, ..., s) to path

(s0, ..., s, s′). It ensures that path (s0, ..., s, s′) is traversed at time t if path (s0, ..., s) is traversed at

time t′ ∈ [0, t] and then, action a ∈ A(s) takes time t− t′ to transition to state s′. The dual problem

is then stated as:

max
∑

φ=(s0,...,s)∈Φ(s0)

F(φ)(∆) · R(s) | F ∈ X

3.2.3 Solving the Dual Problem

In general, the dual problem is extremely difficult to solve optimally because when action duration

distributions are continuous or the MDP has cycles, the set X where F∗ is to be found is infinite.

Yet, it is now shown that even if action duration distributions are continuous and the MDP has

cycles, the dual problem can be solved near-optimally with guarantees on solution quality. The

idea of the algorithm that is proposed is to restrict the search for F∗ to finite number of elements

in X by pruning from X the elements F that correspond to reaching regions of the state-space

with very low probability. In essence, when the probability of reaching certain regions of the

state-space is below a given threshold, the expected quality loss for executing suboptimal actions

in these regions can be bounded, and this quality loss can be traded off for speed.

More specifically, the algorithm searches for F∗ in set X̂ ⊂ X where X̂ differs from X in that

values of functions F in X̂ are restricted to integer multiples of a given κ ∈ R+. Informally, κ

54



creates a step function approximation of F. Formally, X̂ = {F : (3.7), (3.8), (3.10), (3.11), (3.12)}

where

F′((s0, ..., s, s′))(t) =
∑

a∈A(s)

P(s, a, s′) (3.10)

·

∫ t

0
F((s0, ..., s), a)(t′) · ps,a(t − t′)dt′

F((s0, ..., s, s′))(t) = bF′((s0, ..., s, s′))(t)/κc · κ (3.11)

F((s0, ..., s), a)(t) = κ · n where n ∈ N (3.12)

The restricted dual problem is then stated as:

max
∑

φ=(s0,...,s)∈Φ(s0)

F(φ)(∆) · R(s) | F ∈ X̂

Note, that since X̂ is finite, the restricted dual problem can be solved optimally by iterating

over all elements of X̂. In the following an algorithm that carries out this iteration is shown; the

algorithm returns a policy π̂∗ that is guaranteed to be at most ε away from π∗ where ε can be

expressed in terms of κ. The algorithm is first shown on an example. Then, the pseudo-code of

the algorithm is provided. Finally, the error bound of the algorithm is established.

Figure 3.4 shows the algorithm in action. Assume, A(s0) = {a1}; A(s1) = A(s2) = {a1, a2};

A(s3), A(s4), A(s5) is arbitrary. Also, P(s0, a1, s1) = P(s1, a1, s2) = P(s1, a2, s3) = P(s2, a1, s4) =

P(s2, a2, s5) = 1 and κ = 0.2. The algorithm iterates over all elements in X̂. It starts with F((s0))

which is given by constraint (3.7), then uses constraints (3.8), (3.10) to derive F′((s0, s1)) (solid

gray line for state s1) and finally uses constraint (3.11) to approximate F′((s0, s1)) with a step

function F((s0, s1)) (solid black line for state s1).
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Figure 3.4: Forward search for an optimal probabilistic policy in an approximate space of cumu-
lative distribution functions
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At this point the algorithm knows the probability F((s0, s1))(t) that s1 will be visited be-

fore time t but does not know the probabilities F((s0, s1), a1)(t) F((s0, s1), a2)(t) that actions a1

or a2 will be started from s1 before time t (dotted black lines for state s1). Thus, to iterate

over all elements in X̂, it must iterate over all |A(s1)|F((s0,s1))(∆)/κ = 16 different sets of functions

{F((s0, s1), a1); F((s0, s1), a2)} (also called splittings of F((s0, s1))). A splitting determines the

policy (see Equation 3.6). In particular, for the specific splitting shown, action a1 is started at

times t1, t2, t4 whereas action a2 is started at time t3 (it is shown later show how to extrapolate this

policy on [0,∆]).

At this point, the algorithm calls itself recursively. It now knows F((s0, s1, s2)) and F((s0, s1, s3))

(derived from {F((s0, s1), a1); F((s0, s1), a2)} using constraints (3.10), (3.11)) but does not know

the probabilities F((s0, s1, s2), a1)(t); F((s0, s1, s2), a2)(t) that actions a1 or a2 will be started from

s2 before time t. Thus, to iterate over all elements in X̂, it iterates over all sets {F((s0, s1, s2), a1);

F((s0, s1, s2), a2)} (splittings of F((s0, s1, s2))). In this case, for the specific splitting shown,

F((s0, s1, s2, s4))(∆) < κ and thus, no splittings of F((s0, s1, s2, s4)) are possible (similarly for

F((s0, s1, s2, s5))). In such case, the algorithm stops iterating over policies for states following

s4, because the maximum reward loss for not planning for these states, bounded by κ · R where

R =
∑
φ=(s0,s1,s2,s4,...,s) R(s), can be made arbitrary small by choosing a sufficiently small κ (to be

shown later). Thus, the algorithm evaluates the current splitting of F((s0, s1, s2)) and continues

iterating over remaining splittings of F((s0, s1, s2)) after which it backtracks and picks another

splitting of F((s0, s1)) etc.

In general, the algorithm is started by calling DPFP((s0), 1) for a globally defined and arbi-

trary small κ. When called for some φ = (s0, ..., s) and F′(φ), the DPFP function first derives F(φ)

from F′(φ) using constraint (3.11). It then iterates over all sets of functions {F(φ, a) : a ∈ A(s)}
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Algorithm 1 DPFP(φ = (s0, ..., s), F′(φ))
1: F(φ)(t)← bF′(φ)(t)/κc · κ
2: u∗ ← 0
3: for all sets {F(φ, a) : a ∈ A(s)} s.t. F(φ)(t) =

∑
a∈A(s) F(φ, a)(t) and F(φ, a)(t) = κ · n; n ∈ N

do
4: u← 0
5: for all s′ ∈ S do
6: F′ ←

∑
a∈A(s) P(s, a, s′)

∫ t
0 F(φ, a)(t′)ps,a(t − t′)dt′

7: u← u+ DPFP((s0, ..., s, s′), F′)
8: if u > u∗ then
9: BS← {F(φ, a) : a ∈ A(s)}

10: u∗ ← u
11: for all F(φ, a) ∈ BS and all t ∈ [0,∆] do
12: if limε→0 F(φ, a)(t + ε) − F(φ, a)(t) > 0 then
13: π̂∗(s)(t)← a
14: return u∗ + F(φ)(∆) · R(s)

in order to find the best splitting of F(φ) (lines 3—10). For a particular splitting, the DPFP func-

tion first makes sure that this splitting satisfies constraints (3.8) and (3.12) (line 3) upon which

it calculates the total expected utility u of this splitting (lines 4—7). To this end, for all paths

(s0, ..., s, s′), it uses constraint (3.10) to create functions F′ = F′((s0, ..., s, s′)) (line 6) and then,

calls itself recursively for each pair ((s0, ..., s, s′), F′) (line 10). Finally, if u is greater than the to-

tal expected utility u∗ of the best splitting analyzed so far, DPFP updates the BS (lines

8—10).

Upon finding the BS, the DPFP function uses Equation (3.6) to extract the best

deterministic policy π̂∗ from it (lines 11—13) and terminates returning u∗ plus the expected reward

for entering s before time ∆ (computed in line 14 by multiplying the immediate reward R(s) by

the probability F(s0, ..., s)(∆) of entering s before time ∆). As soon as DPFP((s0), 1) terminates,

the algorithm extrapolates its already known point-based policies onto time interval [0,∆] using

the following method: If π̂∗(s)(t1) = a1, π̂∗(s)(t2) = a2, and π̂∗(s)(t) is not defined for t ∈ (t1, t2),
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the algorithm puts π̂∗(s)(t) = a1 for all t ∈ (t1, t2). For example, if splitting in Figure 3.4 is

optimal, π̂∗(s1)(t) = a1 for t ∈ [0, t1) ∪ [t1, t2) ∪ [t2, t3) ∪ [t4,∆) and π̂∗(s1)(t) = a2 for t ∈ [t3, t4).

3.2.4 Taming the Algorithm Complexity

As stated, the DPFP algorithm can appear to be inefficient since it operates on large number

of paths (exponential in the length of the longest path) and large number of splittings per path

(exponential in b1/κc). However, this exponential complexity is alleviated thanks to the following

features of DPFP:

• Varying policy expressivity for different states: The smaller the probability of traversing a

path φ = (s0, ..., s) before the deadline, the less expressive the policy for state s has to be

(fewer ways in which F(φ) can be split into {F(φ, a) : a ∈ A(s)}). For example, state s2 in

Figure 3.4 is less likely to be visited than state s1 and therefore, DPFP allows for higher

policy expressivity for state s1 (24 policies) than for state s2 (22 policies). Sparing the

policy generation effort in less likely to be visited states enables faster policy generation.

• Varying policy expressivity for different time intervals: The smaller the probability of

traversing to a state inside a time interval, the less expressive the policy for this state and

interval has to be. In Figure 3.4 it is more likely to transition to state s1 at time t ∈ [t1, t3]

(with probability 2κ) than at time t ∈ [t3, t4] (with probability 1κ) and thus, DPFP considers

22 policies for time interval [t1, t3] and only 21 policies for time interval [t3, t4].

• Path independence: When function F(φ) for a sequence φ = (s0, ...s) is split into functions

{F(φ, a) : a ∈ A(s)}, functions {F(φ, a) : a ∈ A(s); P(s, a, s′) = 0} have no impact on
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F((s0, ..., s, s′)). Thus, fewer splittings of F(φ) have to be considered to determine all pos-

sible functions F((s0, ..., s, s′)). For example, in Figure 3.4, F((s0, s1, s2)) is only affected

by F((s0, s1), a1). Consequently, as long as F((s0, s1), a1) remains unaltered when iterating

over different splittings of F((s0, s1)), the best splittings of F((s0, s1, s2)) does not have to

be recomputed.

• Path equivalence. For different paths φ = (s0, ..., s) and φ′ = (s0, ..., s) that coalesce in state

s, the best splitting of F(φ) can be reused to split F(φ′) provided that maxt∈[0,∆] |F′(φ)(t) −

F′(φ′)(t)| ≤ κ.

3.2.5 Error Control

Recall that F̂∗ is the optimal solution to the restricted dual problem returned by DPFP. It will now

be proven that the reward error ε of a policy identified by F̂∗ can be expressed in terms of κ. To

this end, it will first be proven that the maximum loss of probability mass for one sequence φ is

bounded. Then, the error bound of the DPFP algorithm will be expressed as the sum of rewards

collected on all possible execution sequences multiplied by the maximum loss of probability mass

for one sequence.

Hence, it is first proven that for all paths φ ∈ Φ(s0):

max
t∈[0,∆]

|F∗(φ)(t) − F̂∗(φ)(t)| ≤ κ|φ| (3.13)

Statement (3.13) is proven by induction on the length of φ.

• Induction base: For any sequence φ ∈ Φ such that |φ| = 1 it holds that

maxt∈[0,∆] |F∗((s0))(t) − F̂∗((s0))(t)| = maxt∈[0,∆] |1 − 1| = 0 < κ.
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• Induction step: Assume now that statement (3.13) holds for a sequence φ = (s0, ..., sn−1)

of length n. Statement (3.13) then also holds for all sequences φ′ = (s0, ..., sn−1, sn) of

length n + 1 because

|F∗(φ′)(t) − F̂∗(φ′)(t)| ≤ |F∗(φ′)(t) − F̂′
∗
(φ′)(t)| + κ

Where F̂∗(φ′) is derived from F̂′
∗
(φ′) using constraint (3.11)

=
∑

a∈A(s)

P(s, a, s′)|
∫ t

0
F∗(φ, a)(t′) · ps,a(t − t′)dt′

−

∫ t

0
F̂∗(φ, a)(t′) · ps,a(t − t′)dt′| + κ

≤ max
a∈A(s)

∫ t

0
|F∗(φ, a)(t′) − F̂∗(φ, a)(t′)| · ps,a(t − t′)dt′ + κ

≤ max
a∈A(s)

∫ t

0
|F∗(φ)(t′) − F̂∗(φ)(t′)| · ps,a(t − t′)dt′ + κ

And from the induction assumption

≤

∫ t

0
κn · ps,a(t − t′)dt′ + κ ≤ κn + κ ≤ κ|φ′|

holds for t ∈ [0,∆].

Consequently, statement (3.13) holds for any sequence φ ∈ Φ. The error ε of the DPFP

algorithm can then be expressed by multiplying the maximum loss of probability mass for one

sequence by the sum of rewards collected on all possible execution sequences. Precisely, error ε

can be expressed in terms of κ because:

ε = Rmax

∑
φ∈Φ(s0)

max
t∈[0,∆]

|F∗(φ)(t) − F̂∗(φ)(t)|

≤ κRmax

∑
φ∈Φ(s0)

|φ| ≤ κRmaxH|A|H
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Where Rmax = maxs∈S R(s) and H is the action horizon (if the minimal action duration δ is known

than H ≤ b∆/δc). Hence, by decreasing κ, DPFP can trade off speed for optimality.
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Chapter 4: Experiments with Single Agent Algorithms

This chapter reports on the experimental evaluation of the algorithms for solving continuous

resource MDPs. Section 4.1 demonstrates a feasibility study of the CPH algorithm introduced in

Section 3.1. CPH is compared with the Lazy Approximation algorithm [Li and Littman, 2005],

currently the fastest algorithm for solving continuous resource MDPs, on various configurations

of the domain from Figure 2.1. Then, Section 4.2 reports on a comparison of CPH and Lazy

Approximation efficiency on a family of computationally intensive planetary exploration domains

— these two algorithms are joined by the DPFP algorithm in this comparison. Next, Section

4.3 reports on the empirical evaluation of the DPFP-CPH hybrid algorithm that combines the

strengths of CPH and DPFP. Finally, Section 4.4 reports on the successful integration of CPH

with RIAACT [Schurr et al., 2008], the adjustable autonomy system for coordinating a human

incident commander and an agent team in an event of a simulated large scale disaster.

4.1 CPH Feasibility Experiments

This section reports on the small scale experiments involving CPH and Lazy Approximation [Li

and Littman, 2005], currently the leading algorithm for solving continuous resource MDPs. Lazy

Approximation approximates the probability distributions and value functions with piecewise
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constant functions. The Bellman updates then transform the piecewise constant value functions

into piecewise linear value functions, that then need to get approximated again with piecewise

constant value functions. These repeated approximations result in large runtimes and approx-

imation errors that are demonstrated below. Furthermore, the number of intervals needed to

approximate the value functions with piecewise constant functions is large, which results in even

large runtimes.

CPH, on the other hand, approximates the probability distributions with phase-type distri-

butions, resulting in exponential probability distributions that it then uniformizes. One of its

advantages is that the value functions then remain piecewise gamma functions and it thus does

not need to approximate the value functions at all, with only one small exception, which involves

finding the intersections of value functions, for which it uses a numerical method. Another one

of its advantages is that the number of intervals of the piecewise gamma value functions tends

to be smaller than the number of intervals of the piecewise linear value functions. Both of these

advantages result in significant computational savings as can be seen below.

The first set of experiments compares the efficiency of CPH and Lazy Approximation (re-

ferred to as LA) for the planetary exploration domain introduced in Section 2.1.1. The planetary

exploration domain might appear small with only 5 discrete states. However, if one uses stan-

dard MDP framework where time-to-deadline is discretized into 1/100 time units (which for a 4

hour period of rover operation corresponds to a decision point every 36 seconds), then there are

already 5 ∗ 400 = 2000 distinct MDP states. For the three experiments (Figures 4.1, 4.2 and ??)

the error max0≤t≤∆ |V∗(start)(t) − V(start)(t)| of the calculated value function V(start) is always

plot on the x-axis and the corresponding runtime (measured in milliseconds) in logarithmic scale

on the y-axis.
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Experiment 1 determines how CPH and Lazy Approximation trade off between runtime and

error for the planetary exploration domain from Section 2.1.1. Since the action durations in

the Mars rover domain are already distributed exponentially and thus phase-type with one phase,

there are no errors introduced by approximating the probability distributions over the action dura-

tions with phase-type distributions. Also, since these distributions are equal, uniformization will

not introduce self-transitions and value iteration can run for a finite number of iterations. Thus,

for CPH, the accuracy of the bisection method (that determines the dominance breakpoints) was

varied whereas for Lazy Approximation, the accuracy of the piecewise constant approximations

of the probability distributions over the action durations and value functions was varied. The

results show that CPH is faster than Lazy Approximation with the same error, by three orders

of magnitude for small errors. For example, CPH needed 2ms and Lazy Approximation needed

1000ms to compute a policy that is less than 1% off optimal, which corresponds to an error of

0.13 in the Mars rover domain.

Experiments 2 and 3: determine how CPH and Lazy Approximation trade off between run-

time and error when all action durations in the planetary exploration domain from Section 2.1.1

are characterized by either Weibull distributions Weibull(α = 1, β = 2) (Experiment 2) or Nor-

mal distributions N(µ = 2, σ = 1) (Experiment 3). Since the action durations are no longer

exponential, phase-type approximation was used for CPH. Here, the accuracy of the bisection

method used by CPH has been fixed, but the number of phases used by the Coxian distribution

(see Section B) approximating the initial duration distribution was varied. As can be seen, CPH

is still faster than Lazy Approximation with the same error, by more than one order of magnitude

for small errors. For example, CPH needed 149ms (with five phases) and Lazy Approximation

needed 4471ms to compute a policy that is less than 1% off optimal for the Weibull distributions.
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Figure 4.1: Empirical evaluation of CPH for exponential distributions.

In addition, the study the tightness of the error bound for CPH, calculated in Section 3.1.4

has been conducted. To this end, CPH was run with varying number of phases (2,3 and 5) used

to approximate the probability distributions which in turn affected both the error ε and the unified

exit rate parameter λ for the exponential distributions. Those numbers were then plugged into the

formula from Theorem 1 in order to calculate the theoretical planning horizon for CPH. As can

be seen (Figure 4.3) CPH converged much faster than the theoretical planning horizon calculated

from Theorem 1. That encouraging results suggests that tightening the error bound for CPH can

be a worthy topic of future investigation.
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Figure 4.2: Empirical evaluation of CPH for Weibull distributions.

Figure 4.3: Planning horizon of CPH.

4.2 CPH and DPFP Scalability Experiments

This section reports on the scalability experiments of CPH, DPFP and the Lazy Approximation

algorithms. The domains on which all three algorithm were run, the fully ordered domain, un-

ordered domain and partially ordered domain, are presented in Figures 4.4a, 4.4b, 4.4c. In the

fully ordered domain the agent executes an action a′ ∈ A(s0) = {a1, a2, a3}, transitions to state

sa′ , executes a′′ ∈ A(sa′) = {a1, a2, a3}, transitions to state sa′,a′′ — it repeats this scheme up to

67



s0

...........

(a)

m1
m2 m3

m4

s0 m5

m6 m7 m8H=8

(b)
m1 m2 m3

m4
s0 m5

m6

m7

m8

(c)

m9m10

Figure 4.4: Domains for CPH and DPFP scalability experiments: mi denote sites of interest

H = 8 times for a total number of 38 = 6561 states. In the unordered domain (which resembles

the classical Traveling Salesman Problem) the agent visits up to 8 sites in an arbitrary order and

hence, the number of states is 28 = 256. Finally, the partially ordered domain in a combination

of the fully and unordered domains; here, the agent can visit up to 10 sites in a partial order, that

is, site m + 1 can be visited only after site m has already been visited for m = 1, 3, 5, 7, 9. For all

the domains, the mission deadline ∆ = 10. Also, action rewards are drawn uniformly from set

{1, 2, ..., 10} and action durations are sampled from one of the following probability distribution

functions (chosen at random): Normal(µ = 2,σ = 1), Weibull(α = 2,β = 1), Exponential(λ = 2)

and Uniform (a = 0,b = 4).

The scalability experiments that have been conducted determine how the three algorithms

trade off between runtime and error. The following parameters were varied:

• For DPFP, the height κ of the step function that approximates the probability functions;

• For CPH, the number of phases of the Coxian distribution used to approximate the initial

action duration distributions.

• For Lazy Approximation, the tolerance threshold used when approximating piecewise lin-

ear functions with piecewise constant functions in Bellman updates.
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The results of the scalability experiments are shown in Figures 4.5a, 4.5b, 4.5c where runtime (in

seconds) is on the x-axis (notice the logarithmic scale) and the solution quality (% of the optimal

solution) is on the y-axis. In particular, to obtain the benchmark optimal solution quality, Lazy

Approximation was run sufficiently long so that the error margin of its solution was below 10%

of the optimal solution (to see the detailed control of this error, refer to [Li and Littman, 2005]).

The results across all the domains show CPH or DPFP outperform Lazy Approximation in terms

of runtimes necessary to find high quality solutions by up to three orders of magnitude. For

example, to find a solution that is less than 10% off the optimal policy for the unordered domain,

CPH needs 14.5s whereas Lazy Approximation requires 2026.1s for the same task.

Furthermore, as can be seen, DPFP opens up an entirely new area of the solution-quality vs

time tradeoff space that was inaccessible to previous algorithms. In particular DPFP dominates

Lazy approximation in this tradeoff, providing higher quality in lower time. DPFP also provides

very high quality an order of magnitude faster than CPH, e.g. in Figure 4.5a for solutions with

quality higher than 70%, DPFP will provide an answer in 0.46 seconds, while CPH will take 28.1s

for the same task. Finally, DPFP exhibits superior anytime performance, e.g. in Figure 4.5c, run

with κ = 0.3, 0, 25, 0.2 it attains solution qualities 42%, 61%, 72% in just 0.5s, 1.1s, 3.9s.

4.3 DPFP-CPH Hybrid Experiments

Encouraged by DPFP’s any-time performance and CPH’s superior quality results, a DPFP-CPH

hybrid algorithm was developed and its efficiency was contrasted with the efficiency of a stand-

alone CPH. The idea of the DPFP-CPH hybrid is to first use DPFP to quickly find an action to

be executed from the starting state s0 and then, use this action to narrow down CPH’s search for
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Figure 4.5: Scalability experiments for DPFP, CPH and Lazy Approximation
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Figure 4.6: DPFP+CPH hybrid: Fully ordered domain

a high quality policy. For example, the hybrid that was implemented uses DPFP (with κ = .2)

to suggest to CPH which action should be executed in s0 at time 0, and then runs CPH in the

narrowed state-space.

The empirical evaluation of the DPFP-CPH hybrid is shown in Figures 4.6, 4.7 and 4.8.

Across all the Figures, the accuracy of CPH is varied on the x-axis (using more phases translates

into higher accuracy of CPH) whereas the y-axis is used to plot the algorithms runtime (in Figures

4.6a, 4.7a, 4.8a ) and the corresponding solution quality (in Figures 4.6b, 4.7b, 4.8b). The results

across all the domains show that the DPFP-CPH hybrid attains the same quality as stand-alone

CPH, yet requires significantly less runtime (over 3 times). For example, when CPH accuracy is

fixed at 5 phases, DPFP-CPH hybrid needs only 51s to find a solution whereas stand-alone CPH

needs 169.5s for the same task (Figure 4.7a).
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Figure 4.7: DPFP+CPH hybrid: Unordered domain

Figure 4.8: DPFP+CPH hybrid: Partially ordered domain

4.4 DEFACTO Experiments

In the final set of experiments with single agent algorithms, CPH was integrated with RIAACT

[Schurr et al., 2008] - the adjustable autonomy module of the DEFACTO system [Schurr et al.,

2005] for training the incident commanders of the Los Angeles Fire Department. The main
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purpose of RIAACT is to decide who should perform the role allocation in an even of a simulated

city wide disaster: Either (i) the human incident commander or (ii) the agent team. In essence,

whenever a new role appears, e.g. whenever a new building goes on fire, either the human incident

commander or the agent team must decide which fire engine should fight that particular fire. In

this context, it has been demonstrated [Marecki et al., 2005] that, preventing decision conflicts

between the human incident commander and the agent team is a fundamental problem, as it has

direct implications on the outcome of the disaster rescue operation.

At a basic level, RIAACT is an instantiation of the continuous resource MDP model. RI-

AACT makes the following assumptions: (i) Time is a continuous resource; (ii) time at which a

building is completely burnt is the resource limit and (iii) the action durations are uncertain. Pre-

cisely, RIAACT’s states are S = {Aa,Ha, Adi, Adc,Hdi,Hdc, Finish} with the following mean-

ing (see Figure 4.9):

• Aa: The agent team is responsible for deciding who should execute the current role;

• Ha: The human incident commander is responsible for deciding who should execute the

current role;

• Adi: Agent team has decided who should execute the current role, but this decision is

inconsistent with the human incident commander’s preferences;

• Adc: Agent team has decided who should execute the current role and this decision is

consistent with the human incident commander’s preferences;

• Hdi: The human incident commander has decided who should execute the current role, but

this decision is inconsistent with the preferences of the agent team.
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• Hdc: The human incident commander has decided who should execute the current role and

this decision is consistent with the preferences of the agent team.

• Finish: The role allocation has been performed

RIAACT’s actions A = {Trans f erAutonomy,Decide,Resolve, Execute} are as follows:

• Trans f erAutonomy: At any point in time, the agent team can transfer the autonomy (role

allocation request) to the human incident commander (similarly, the human incident com-

mander can transfer the autonomy to the agent team). Although the Trans f erAutonomy

action does not yield any reward, it consumes a certain amount of time which is sampled

from a given probability distribution.

• Decide: At any point in time, when the role allocation request is at the human incident

commander (in state Aa), the human incident commander can make a role allocation de-

cision. Depending on whether this decision is consistent or not with the agent team, the

MDP transitions to state Hdi or state Hdc (similarly, when the agent team makes a deci-

sion, the MDP transitions from state Aa to either state Adi or state Adc). The duration of the

Decide action is uncertain and follows a given probability distribution. RIAACT assumes

that the human incident commander takes longer than the agent team to make a decision.

The Decide action itself yields no reward.

• Resolve: When the role allocation decision is inconsistent (the process transitioned to an

inconsistent state under the Decide action), a Resolve action can be performed, to improve

the decision so that it becomes consistent. The Resolve action does not come for free — it

consumes a certain amount of time which is sampled from a given probability distribution.
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Figure 4.9: RIAACT: Adjustable autonomy component of the DEFACTO system, [Schurr et al.,
2008]

Although there is no reward for the Resolve action, consistent role allocations yield more

reward when the Execute action is performed (see below).

• Execute: When the Execute action is performed, the current role is executed by some

entity. Depending on whether the process occupies states Adi, Adc,Hdi or Hdc when the

Execute action is performed, different rewards can be earned. Typically, the highest reward

is earned if the Execute action is started from state Hdc (the human incident commander

decides who should execute a role, and this decision is consistent with the agent team) and

the lowest reward is earned if the Execute action is started from state Adi (the agent team

decides who should execute a role, but this decision is inconsistent with the intention of the

human incident commander). The duration of the Execute action is uncertain; it is affected

by the intensity of the fire and the proximity of the fire engines.
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To solve the RIAACT model shown in Figure 4.9 the CPH algorithm was used. CPH em-

ployed 3-phase Coxian distributions for the purpose of the underlying phase-type approximation.

The CPH solver was run for n∗ = 80 Bellman update iterations, to ensure that the increase if

value functions in further iterations was marginal. After 27.2 seconds, CPH returned a time de-

pendent policy, both for the human incident commander as well as the agent team, for any state

present in the RIAACT model. As a result, depending on the time remaining before a building is

completely burnt, the human incident commander and the agent knew exactly whether it is more

profitable to: (i) Make a role allocation decision and then try to resolve a potential conflict or (ii)

Choose to transfer the autonomy. The RIAACT approach was compared with the two competing

approaches: (i) The “Always Reject” approach in which the agent team would always perform a

no-return transfer of autonomy to the human incident commander and the (ii) “Always Accept”

approach in which the agent team would always accept a role allocation request and never bother

the human incident commander.

The experimental results of DEFACTO equipped with RIAACT are demonstrated in Figure

4.10. Here, the number of buildings saved in plotted on the y-axis (averaged over 50 runs) whereas

the duration of the Resolve action (which is sampled from a Normal distribution with a different

mean and variance values) is varied on the x-axis. As can be seen, RIAACT approach outperforms

the “Always Accept” and “Always Reject” approaches for any tested distribution of the Resolve

action duration. In particular, when the Resolve action duration follows a normal distribution

with a mean of 3s and the variance of 1s2, DEFACTO with RIAACT allows to save up to 25%

more building in an event of a simulated disaster rescue operation. Furthermore, the duration

of the Resolve action does not have an impact on the number of building saved for the “Always
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Figure 4.10: RIAACT results, [Schurr et al., 2008]

Accept” and “Always Reject” approaches — this is not surprising because these strategies do not

use RIAACT’s inconsistency resolution mechanism.
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Chapter 5: Multiagent Solutions

This chapter focuses on techniques for solving planning problems modeled as Continuous Re-

source, Decentralized MDPs (CR-DEC-MDPs). Two different algorithms for solving CR-DEC-

MDPs are proposed. The first algorithm (VFP) considers a special case when CR-DEC-MDPs

are fully ordered (explained later). For such CR-DEC-MDPs, VFP performs a series of policy

iterations to quickly find locally optimal joint policies. In addition, VFP implements a set of

heuristics aimed at improving the quality of these locally optimal joint policies. The second pro-

posed algorithm (M-DPFP) for solving CR-DEC-MDPs operates on arbitrary CR-DEC-MDPs.

It finds joint policies that are guaranteed to be within an arbitrary small ε from the optimal joint

policies by leveraging the concept of probability function propagation to a multi-agent setting.

Both algorithms consider AbsoluteT ime as a continuous resource whose values monotonically

increase from 0 to some mission deadline ∆1.

5.1 Locally Optimal Solution: The VFP Algorithm

Because CR-DEC-MDPs are hard to solve optimally, this section introduces a locally optimal al-

gorithm (VFP) that operates on CR-DEC-MDPs that are fully-ordered. The approach to simplify

1Such formulation of a continuous resource does not affect the planning problems because ∆ − AbsoluteT ime is
simply a continuous resource whose values monotonically decrease
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the problem by restricting the search for policies to fully ordered Decentralized MDP has been

first proposed in [Beynier and Mouaddib, 2005] and then elaborated on in [Beynier and Mouad-

dib, 2006]. In these works, the authors developed a locally optimal algorithm that has been shown

to scale up to domains with double digit action horizons. The VFP algorithm proposed in this

section builds on on the idea to perform a search for locally optimal policies to fully-ordered

CR-DEC-MDPs.

Precisely, a fully-ordered CR-DEC-MDP assumes that methods are arranged in chains, i.e.,

for any agent n and its set of methods Mn = {m1, ...,mk} there exist resource precedence con-

straints 〈i, i + 1〉 ∈ C≺ for all i = 1, ..., k − 1 which impose a chain ordering of methods from Mn.

Two immediate facts result from imposing such restrictions on CR-DEC-MDPs:

• When agent n executes method mi successfully, it can either start executing method mi+1

(this action is denoted as E) or choose to remain idle for a certain amount of time and then

make the decision (the action is denoted as W);

• When agent n executes method mi unsuccessfully, it can no longer execute any other

method because none of the methods mi+1,mi+2, ...,mk that directly or indirectly precede

method mi will ever be enabled. Hence, the execution of agent n stops. The execution of

other agents can continue, provided that that all their methods have been executed success-

fully thus far.

When operating on fully-ordered CR-DEC-MDPs, agent policy for a method mi+1 is directly

related to the expected utility of starting the execution of mi+1 as shown in Figure 5.1. Here,

the agent is about to start executing a method mi which can be executed in one of the two time

windows (resource ranges): 〈i, l1, l2〉 ∈ C[] or 〈i, l3, l4〉 ∈ C[]. The shaded area represents the
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total expected utility for starting the execution of method mi over time (referred to as the value

function). As can be seen in Figure 5.1, at any time t ∈ [0,∆], the Execute action is better than

the Wait action if it is less profitable to perform the Execute action in the future (after time t).
To
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Figure 5.1: Agent policy in a fully-ordered CR-DEC-MDPs

Since in a fully-ordered CR-DEC-MDP each agent n always knows which method should

be executed next, agent decision making is reduced to choosing the correct method execution

starting time. However, since the model allows for many resource limit constraints for a method

mi (multiple execution time windows in Figure 5.1), the policy πn of agent n cannot be stored

as a set of pairs (mk, tk) where tk is a point in time when the agent switches from action W to

action E. Instead, the policy πn of agent n must be a function πn : Mn × [0,∆] 7→ {W, E} where

“W” represents the Wait action and “E” represents the Execute-next-method action. For example,

πn(〈i, t〉) = E means that, at time t, when agent’s next method to be executed is mi, it will start

executing it. Else, if πn(〈i, t〉) = W the agent will wait for an infinitesimal amount of time ε and
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then make another decision at time t + ε. In the following, the expression πn(〈i, t〉) is referred to

as a policy of agent n for method mi at time t.

5.1.1 Policy Iteration Approach

A popular approach to find the optimal joint policy π∗ is to use the value iteration principle which

in the context of CR-DEC-MDP could work as follows: In order to determine the optimal policy

for method mi one can propagate backwards (in the inverse direction to the resource precedence

constraints relation) the expected utilities of executing methods m j where 〈i, j〉 ∈ C≺. Unfortu-

nately, for the CR-DEC-MDP model, the optimal policy for method mi also depends on policies

for methods m j where 〈 j, i〉 ∈ C≺. This bi-directional dependency results from the fact that the

expected reward for starting the execution of method mi at time t also depends on the probability

that method mi will be enabled before time t. Consequently, as shown in [Bernstein et al., 2000],

the complexity of the optimal algorithms for a CR-DEC-MDP model with discrete resource levels

is NEXP-complete.

Following the limited applicability of globally optimal algorithms, locally optimal algorithms

have recently gained a lot of attention. Of particular importance is the Opportunity Cost, Decen-

tralized MDP (OC-DEC-MDP) algorithm [Beynier and Mouaddib, 2005], [Beynier and Mouad-

dib, 2006] that has been shown to scale up to problems involving double digit action horizons.

The idea of the OC-DEC-MDP algorithm, which also operates on fully ordered MDPs, is to per-

form a series of policy iterations to converge on a locally optimal solution. The algorithm starts

with the earliest starting time policy according to which an agent starts executing a method mi

as soon as it possible. It then improves this policy by performing a opportunity cost propagation
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phase, evaluation the new policy and then, if the new policy is significantly better than the old

policy, the probability propagation phase which prepares the algorithm for its next iteration.

The opportunity cost and probability propagation phases of the OC-DEC-MDP algorithm

consider the AbsoluteTime as a resource, but a discretized one. The algorithm then operates

on discrete time intervals: Fi[t1, t2] is the probability that method mi will be executed in time

interval [t1, t2], and Oi[t1, t2] is the expected utility for executing method mi in time interval

[t1, t2] assuming that method mi is enabled — referred to as the Opportunity Cost of method m j

in time interval [t1, t2]. At each iteration the OC-DEC-MDP algorithm knows the old policy π

and the probabilities Fi[t1, t2] for t1, t2 ∈ N ∩ [0,∆] uniquely identified by π. The algorithm then

searches for a new policy π′ that improves the old policy π in the following two phases:

• Opportunity cost propagation: It calculates opportunity costs Oi[t1, t2] for t1, t2 ∈ N ∩

[0,∆] and mi ∈ M by backward propagation starting from sink methods (methods that do

not enable any other methods) and ending on source methods (methods not enabled by

any other method). Opportunity cost propagation phase utilizes the probabilities Fi[t1, t2]

uniquely identified by the old policy π.

• Probability propagation: Using the opportunity costs Oi[t1, t2] calculated in the opportu-

nity cost propagation phase, the algorithm identifies the most profitable method execution

intervals which are then used to determine the new policy π′. The algorithm then calculates

the probabilities Fi[t1, t2] for t1, t2 ∈ N ∩ [0,∆] and mi ∈ M associated with the new policy

π′. To this end, it propagates the probabilities Fi[t1, t2] forward (from source methods to

sink methods). If the new policy π′ does not improve the old policy π by more than some
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margin ε, the OC-DEC-MDP algorithm terminates. Otherwise, the algorithm repeats the

two above-mentioned steps.

5.1.2 Functional Representation

Unfortunately, the OC-DEC-MDP algorithm has three major shortcomings: (i) It is only applica-

ble to solving problems that assume discrete resource levels; (ii) it does not exploit the functional

representation of the underlying opportunity cost functions and probability functions and can thus

run slow and (iii) it fails to address a critical problem of double-counting when the opportunity

costs Oi[t1, t2] are being derived from opportunity costs O j[t1, t2] for 〈i, j〉 ∈ C≺.

To remedy these shortcomings, the VFP algorithm for solving fully-ordered CR-DEC-MDPs

is proposed. VFP borrows from OC-DEC-MDP the idea to perform a series of policy improve-

ment phases to find a locally optimal solution. Yet, VFP addresses the above-mentioned short-

comings of the OC-DEC-MDP algorithm: First, VFP maintains and manipulates opportunity

cost functions and probability functions over time for each method rather than discrete opportu-

nity costs and probabilities for each pair of method and time interval. Such representation allows

VFP to group the time points for which the opportunity cost function changes at the same rate

which translates into significant speedups of policy improvement phases. Second, VFP’s func-

tional representation preserve the structure of the underlying opportunity cost functions which

allows VFP to identify and correct the critical overestimations of the expected utilities of method

execution.

The general scheme of the VFP algorithm is identical to the OC-DEC-MDP algorithm —

both algorithms perform a series of policy improvement iterations. However, instead of prop-

agating opportunity costs and probabilities in each iteration, VFP propagates opportunity cost
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functions and probability functions. These two phases are therefore referred to as the opportunity

cost function propagation and the probability function propagation. In order to implement these

phases using functional representation, for each method mi ∈ M, the VFP algorithm employs

three different functions (related to each other in Equation 5.4):

• Opportunity Cost Function Oi(t) maps time t ∈ [0,∆] to the expected utility for start-

ing the execution of method mi at time t assuming that mi is enabled (assuming that the

execution of methods m j such that 〈i, j〉 ∈ C≺ has been finished successfully before time t).

• Probability Function Fi(t) maps time t ∈ [0,∆] to the probability that method mi will be

successfully executed before time t.

• Value Function Vi(t) maps time t ∈ [0,∆] to the expected utility for starting the execution

of method mi at time t.

The unique role of the value function Vi(t) is to extract the current policy. Precisely, the policy

πn(〈i, t〉) of agent n for method mi at time t is calculated as follows (see Figure 5.1):

πn(〈i, t〉) =


W if there exists t′ > t such that Vi(t′) > Vi(t)

E otherwise.

Where W is the wait action and E is the execute method action (informally, the agent will Wait

if it is more profitable to start the execution of method mi later).

The next two sections demonstrate how VFP performs a single policy iteration. To this end,

it is first shown how the analytical operations update the opportunity cost functions. It is then

shown how the opportunity cost functions are used to determine the value functions and how to

determine the policy using the value functions. Finally, it is shown how the analytical operations
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update the probability functions — a step necessary to prepare the VFP algorithm for its next

policy iteration.

5.1.3 Opportunity Cost Function Propagation Phase

In analogy to [Beynier and Mouaddib, 2005], [Beynier and Mouaddib, 2006], the opportunity

function propagation phase consists in propagating the opportunity cost functions through the

graph G = (M,C≺) of methods M linked by resource precedence constraints C≺, starting from the

sink methods to the source methods. In particular, for each method mi0 encountered during this

phase (refer to Figure 5.3), the opportunity cost function Oi0 is calculated from the opportunity

cost functions O jn of methods m jn that follow method mi0 in graph G.

Let n = 0, 1, ...,N as shown in Figure 5.3. The opportunity cost function Oi0(t) for time t ∈

[0,∆] is then derived as follows (refer to Equation 5.1): If there is no time window 〈i0, t1, t2〉 ∈ C[]

for time t such that t1 ≤ t ≤ t2, the agent will not start the execution of method mi0 because there

is no chance that the execution of method mi0 will be successful and hence, Oi0(t) = 0. Otherwise,

the execution of method mi0 can be started, because there is a non-zero chance that this execution

will be successful (completed before time t2). In this case, with probability pi0(t′), the execution

of method mi0 will take time t′ to complete and as long as t + t′ ≤ t2 (see Figure 5.2), method mi0

will be executed successfully (provided that method mi0 was enabled at time t). Here, the agent

will earn the immediate reward ri0 plus
∑n=N

n=0 O jn,i0(t + t′) where O jn,i0(t + t′) is the opportunity

cost that method mi0 will receive for enabling the execution of method m jn at time t+ t′. Functions

O j0,ik (t + t′) for k = 0, 1, ...,K are called splittings of the opportunity cost function O j0 and it is
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temporally assumed here that O jn,i0 := O jn — this assumption is waived in Section 5.1.5. The

above discussion justifies why the opportunity cost Oi0(t) is calculated by:2

Oi0(t) =


∫ t2−t

0 pi0(t′)(ri0 +
∑N

n=0 O jn,i0(t + t′))dt′ if ∃〈i0, t1, t2〉 ∈ C[] s.t. t ∈ [t1, t2]

0 otherwise
(5.1)

time

Admissible time window

Method
execution

t1 t2t t+t'

Figure 5.2: Method execution occurring within an admissible time window

It is now shown how to derive O j0,i0 (derivation of O jn,i0 for n , 0 follows the same scheme).

Let O j0,i0(t) be the opportunity cost of starting the execution of method m j0 at time t assuming

that method mi0 has been completed. It can be derived by multiplying O j0 by the probability

functions for all methods other than mi0 that enable m j0 , that is:

O j0,i0(t) = O j0(t) ·
K∏

k=1

Fik (t). (5.2)

Note, that this derivation is only approximate because in general the probability functions

{Fik }
K
k=1 do not have to represent independent random variables (similar approximation is used

in [Beynier and Mouaddib, 2005], [Beynier and Mouaddib, 2006]). Now, the opportunity cost

2Note, that the calculation of Oi0 (t) is equivalent to the convolution operation, because for h(t) := ri0 +∑N
n=0 O jn ,i0 (t2 − t) it holds that Oi0 (t) = (pi0 ∗ h)(t2 − t) where ∗ is the convolution operator.
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Figure 5.3: Propagation of opportunity cost functions and probability functions through one
method: For the opportunity cost function propagation through method mi0 , opportunity cost
functions O jn of methods m jn for n = 0, 1, ...,N are known, and the opportunity cost function Oi0
must be calculated. For the probability function propagation through method m j0 , the probability
functions Fik of methods mik for k = 1, 2, ...,K are known, and the probability function F j0 must
be calculated.

O j0,i0(t) that method mi0 receives for enabling the execution of method m j0 at time t (used in

Equation 5.1) is given by:

O j0,i0(t) = max
t′≥t

O j0,i0(t′) (5.3)

Where O j0,i0 can be greater than O j0,i0 since it can be more profitable to delay the execution of

the method mi0 (as illustrated in Figure 5.4).

It has consequently been shown how to propagate the opportunity cost functions: Knowing

{O jn}
N
n=0 of methods {m jn}

N
n=0 one can derive Oi0 of method mi0 by following Equations 5.2, 5.3

and then 5.1. In general, the opportunity cost function propagation phase starts with sink nodes.

It then visits at each time a method m, such that all the methods that m enables have already been
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marked as visited. The value function propagation phase terminates when all the source methods

have been marked as visited.

Time
Oj0,i0(t)

Time

Oj0,i0(t)

Figure 5.4: Visualization of the operation performed by Equation 5.3

What remains to be shown is how to calculate the value function Vi0 , used in Equation 5.1 to

identify the policy πn(〈i, t〉). Recall, that the value function Vi0 differs from the opportunity cost

function Oi0 in that the opportunity cost function Oi0 assumes that method mi is enabled (methods

m j such that 〈i, j〉 ∈ C≺ have been executed successfully) whereas the value function Vi0 does not

make this assumption. When agent n is about to start the execution of method mi0 it knows that its

method ml0 ∈ Mn such that 〈l0, i0〉 ∈ C≺ has been successfully executed. However, agent n is still
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unsure if other agents have completed their methods {mlk }
k=K
k=1 such that 〈lk, i0〉 ∈ C≺. Therefore,

the value function Vi0 of method mi0 can be calculated as follows:

Vi0(t) = Oi0(t) · Pb
(
Fl0(t) = 1 ∧ Fl1(t) = 1 ∧ ... ∧ FlK (t) = 1

)
= Oi0(t) · Pb

(
Fl1(t) = 1 ∧ ... ∧ FlK (t) = 1

)
= Oi0(t)

K∏
k=1

Flk (t). (5.4)

Where the dependency of probability functions {Flk }
K
k=1 has been ignored (similar approximation

is used in [Beynier and Mouaddib, 2005], [Beynier and Mouaddib, 2006]).

Finally, in order to determine the policy of agent n for method mi0 one must identify the set

Zi0 of intervals of method mi0 activity, that is, intervals [z, z′] ⊂ [0,∆] such that for all t ∈ [z, z′] it

holds that πn(〈i0, t〉) = E. As can be seen in Figure 5.1, these intervals of activity in Zi0 are easily

identifiable.

5.1.4 Probability Function Propagation Phase

Recall the meaning of the following two functions: pi(t) is the probability that execution duration

of method mi will consume time t and Fi(t) is the probability that the execution of method mi

will be completed successfully before time t. Assume now that the opportunity cost function

propagation phase has been completed and that the opportunity cost functions O j and sets Z j for

all methods m j ∈ M have been calculated. Since the opportunity cost function propagation phase

was using probability functions Fi found at previous algorithm iteration (for an old policy), the

new probability functions Fi (for the new policy π identified by the current sets Z j) now have to

be found, to prepare the algorithm for the next policy iteration.
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The general case of the probability function propagation is shown in Figure 5.3 where the

probability functions {Fik }
K
k=0 of methods {mik }

K
k=0 are known, and the probability function F j0

of method m j0 is to be derived. From the probability function Fi0 and the set Z j0 of intervals of

activity one can calculate the probability F′j0(t) that method m j0 will be started before time t:

F′j0(t) =


Fi0(t) if ∃[t1, t2] ∈ Z j0 such that t ∈ [t1, t2]

Fi0(t2) otherwise

Where t2 is such that [t1, t2] ∈ Z j0 is the latest interval of activity before time t. Intuitively,

between time t2 and t the function F′j0 cannot increase because the method will not be started in

the time interval [t2, t]. However, for method m j0 to be executed successfully, method m j0 has

to be enabled, i.e., methods mi1 , ..., miK must be successfully finished before method m j0 starts.

Hence, Equation 5.5 must be modified, to account for probabilities of enabling method m j0 before

time t. Thus, one can calculate the probability F′′j0(t) that method m j0 will be successfully started

before time t as: (ignoring the dependency of {Fik }
K
k=0)

F′′j0(t) =


∏K

k=0 Fik (t) if ∃[t1, t2] ∈ Z j0 such that t ∈ [t1, t2]

∏K
k=0 Fik (t2) otherwise

(5.5)

Where t2 is such that [t1, t2] ∈ Z j0 is the latest interval of activity before time t. Probability

function F j0 is then derived as follows: For notation convenience, let f ′′j0 := d
dt F
′′
j0

and f j0 :=
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d
dt F j0 . Also, let Z j0(t) be a set of time intervals [z1, z2] ∈ Z j0 such that z2 ≤ t augmented with an

additional interval [z1, t] if z1 < t < z2. It then holds that:

F j0(t) =

∫ t

0
f j0(y)dy =

∑
[t1,t2]∈Z j0 (t)

∫ t2

t1
f j0(y)dy

Because f j0(y) is equal to 0 outside the intervals of activity of Z j0

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1

∫ y

t1
f ′′j0 (x) · p j0(y − x)dx dy

The execution of method m j0 will finish at time y, if it starts at time x ∈ [t1, y]

and lasts for y − x time units

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1

∫ y

t1
f ′′j0 (y − x) · p j0(x)dy dx

Because the arguments x and y − x in the nested integral are interchangeable

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1

∫ t2

x
f ′′j0 (y − x) · p j0(x)dy dx

Order of integration has been reversed (integration ranges are updated accordingly)

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1
p j0(x)

∫ t2

x
f ′′j0 (y − x)dy dx

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1
p j0(x)

∫ t2−x

0
f ′′j0 (u)du dx

y − x has been substituted with u

=
∑

[t1,t2]∈Z j0 (t)

∫ t2

t1
p j0(x)F′′j0(t2 − x)dx

=
∑

[t1,t2]∈Z j0 (t)

(p j0 ∗ F′′j0)(t2) − (p j0 ∗ F′′j0)(t1) (5.6)

Where F′′j0 is given by Equation 5.5.

It has consequently been shown how to propagate the probability functions {Fik }
K
k=0 of meth-

ods {mik }
K
k=0 to obtain the probability function F j0 of method m j0 . The general, the probability
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function propagation phase starts with source methods ms ∈ M for which F′′s is calculated from

Equation 5.5 using known sets Zs. The algorithm then visits at each time a method m such that

all the methods that enable m have already been marked as visited. The probability function

propagation phase terminates when all the sink methods have been marked as visited.

To summarize, the VFP algorithm starts with the earliest starting time policy π0. The algo-

rithm then iterates. At each iteration it: (i) Propagates backwards the opportunity cost functions

Oi using the probability functions Fi from the previous algorithm iteration and establishes the

new sets Zi of method activity intervals and then (ii) propagates forwards the new probability

functions Fi using the newly established sets Zi. These new probability functions Fi are then

used in the next iteration of the algorithm. Similarly to the OC-DEC-MDP algorithm, the VFP

algorithm terminates if a new policy does not improve the policy from the previous algorithm

iteration by more than a small value ε.

5.1.5 Splitting the Opportunity Cost Functions

In Section 5.1.3 it has been left unresolved how the opportunity cost function O j0 of method m j0

is split into the opportunity cost functions {O j0,ik }
K
k=0 sent back to methods {mik }

K
k=0 that enable

method m j0 . So far, the approach similar to [Beynier and Mouaddib, 2005] and [Beynier and

Mouaddib, 2006] was taken, referred to as the H〈1,1〉 heuristic. Formally, the H〈1,1〉 heuristic
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Figure 5.5: Splitting the opportunity cost functions

postulates that, for each method mik that enables method m j0 , the opportunity cost O j0,ik (t) is

given by:

O j0,ik (t) := max
t′>t

O j0,ik (t
′)

= max
t′>t

(O j0 ·
∏

k′∈{0,...,K}
k′,k

Fik′ )(t
′). (5.7)

It will be proven shortly, that this heuristic overestimates the opportunity cost.

Three problems might arise when splitting the opportunity cost functions: (i) Overestima-

tion, (ii) underestimation or (iii) starvation. Consider the situation in Figure 5.5 where methods

{mik }
K
k=1 enable method m j0 . When the opportunity cost function is propagated through methods

{mik }
K
k=1, for each k = 0, ...,K, Equation (5.1) determines the opportunity cost function Oik from

the immediate reward rk and the opportunity cost function O j0,ik . If method m0 is the only method

that enables method mk, the opportunity cost function Oik ,0 = Oik is propagated only to method

m0, and consequently, the opportunity cost for completing the execution of method m0 at time t

is equal to
∑K

k=0 Oik ,0(t).
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If the value of
∑K

k=0 Oik ,0(t) is overestimated, agent n that is about to start the execution of

method m0 will have too much incentive to finish the execution of method m0 at time t. Conse-

quently, even when the probability F(t) that method m0 will be enabled by other agents before

time t is low, agent n might still find the expected utility of starting the execution of m0 at time

t higher than the expected utility of doing it later (e.g. in the next time window of method m0).

Hence, at time t the agent will choose to start executing method m0 rather than waiting, which

can have undesirable consequences.

Conversely, if the value of
∑K

k=0 Oik ,0(t) is underestimated, agent n might loose interest in

enabling the execution of future methods {mik }
K
k=0 and just focus on maximizing the likelihood of

earning the immediate reward r0 for the successful execution of method m0. Since this likelihood

can increase when the agent waits, the agent might decide that at time t it is more profitable to wait

rather than to start the execution of method m0 which can also have undesirable consequences.

Finally, one can easily avoid the overestimation and underestimation of
∑K

k=0 Oik ,0(t) if the

opportunity cost function O j0 is split such that O j0,ik′ = 1 and O j0,ik = 0 for k ∈ {0, 1, ...,K} \ {k′}.

However, in such case, agents executing methods mik can underestimate the opportunity cost of

enabling method m j0 — this problem is referred to as the starvation of method mk. That short

discussion shows the importance of devising heuristics that split the opportunity cost function

O j0 in a way that remedies the overestimation, underestimation and starvation problems. In the

following it is shown how to arrive at such heuristics.

Theorem 2. Heuristic H〈1,1〉 overestimates the opportunity cost.

Proof. To prove the theorem is it sufficient to construct a case where the overestimation occurs.

Consider the situation in Figure (5.5) when the H〈1,1〉 heuristic splits the opportunity cost function
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O j0 into the opportunity cost functions O j0,ik = O j0 ·
∏

k′∈{0,...,K}
k′,k

Fik′ sent to methods mik for all

k = 0, 1, ...,K. Let method rewards be rik = 0 and method execution time windows be 〈ik, 0,∆〉 ∈

C[] for k = 0, ...,K. In order to prove that the overestimation of the opportunity cost occurs,

time t0 ∈ [0,∆] must be found for which the opportunity cost
∑K

k=0 Oik (t0) is greater than the

opportunity cost O j0(t0). For the domain described above, Equation (5.1) states that:

Oik (t) =

∫ ∆−t

0
pik (t

′)O j0,ik (t + t′)dt′

Summing over all the methods mik that enable method m j0 it holds that:

K∑
k=0

Oik (t) =

K∑
k=0

∫ ∆−t

0
pik (t

′)O j0,ik (t + t′)dt′ (5.8)

=

K∑
k=0

∫ ∆−t

0
pik (t

′) max
t′′≥t+t′

O j0,ik (t + t′)dt′

≥

K∑
k=0

∫ ∆−t

0
pik (t

′)O j0,ik (t + t′)dt′

=

K∑
k=0

∫ ∆−t

0
pik (t

′)O j0(t + t′)
∏

k′∈{0,...,K}
k′,k

Fik′ (t + t′)dt′

Now, let c ∈ (0, 1] and t0 ∈ [0,∆] be such that for all t > t0 and k ∈ {0, ..,K} it holds that∏
k′∈{0,...,K}

k′,k
Fik′ (t) > c. The lower bound of

∑K
k=0 Oik (t0) for the argument t0 is then as follows:

K∑
k=0

Oik (t0) >

K∑
k=0

∫ ∆−t0

0
pik (t

′)O j0(t0 + t′) · c dt′

Because F jk′ is non-decreasing. Now, suppose that there exists a time point t1 ∈ (t0,∆], such that∑K
k=0

∫ t1−t0
0 pik (t

′)dt′ > O j0(t0)/(c·O j0(t1)). Since the decrease of the upper limit of the integration
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from ∆ − t0 to t1 − t0 decreases the value of the integral (function under the integral is positive) it

holds that:

K∑
k=0

Oik (t0) > c
K∑

k=0

∫ t1−t0

0
pik (t

′)O j0(t′ + t0)dt′

And since O j0(t′ + t0) is non-increasing:

K∑
k=0

Oik (t0) > c · O j0(t1)
K∑

k=0

∫ t1−t0

0
pik (t

′)dt′

K∑
k=0

Oik (t0) > c · O j0(t1)
O j(t0)

c · O j(t1)
= O j(t0)

Consequently, the opportunity cost
∑K

k=0 Oik (t0) for starting the execution of methods {mik }
K
k=0

at time t ∈ [0,∆] is greater than the opportunity cost O j0(t0) which proves the theorem. The

overestimation of the opportunity cost caused by using the H〈1,1〉 heuristic is visualized in Figure

6.1.1. �

In the following, three heuristics that remedy the opportunity cost overestimation problem are

proposed:

• Heuristic H〈1,0〉: Only method mik gets the reward for enabling method m j0 , i.e., O j0,ik (t) =

(O j0 ·
∏

k′∈{0,...,K}
k′,k

Fik′ )(t) and O j0,ik′ (t) = 0 for k′ ∈ {0, ...,K}\{k}.

• Heuristic H〈1/2,1/2〉: Each method mik for k = 0, 1, ...,K gets the full opportunity cost

for enabling method m j0 divided by the number K of methods enabling method m j0 , i.e.,

O j0,ik (t) = 1
K (O j0 ·

∏
k′∈{0,...,K}

k′,k
Fik′ )(t) for k ∈ {0, ...,K}.
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• Heuristic Ĥ〈1,1〉: This is a normalized version of the H〈1,1〉 heuristic in that each method

mik for k = 0, 1, ...K initially (for small t) gets the full opportunity cost for enabling method

m j0 . In order to prevent the opportunity cost overestimation the functions {O j0,ik }
K
k=0 are

normalized when their sum exceeds the opportunity cost function to be split. Formally:

O j0,ik (t) =


OH〈1,1〉

j0,ik
(t) if

∑K
k=0 OH〈1,1〉

j0,ik
(t) < O j0(t)

O j0(t)
O

H〈1,1〉
j0 ,ik

(t)∑K
k=0 O

H〈1,1〉
j0 ,ik

(t)
otherwise

Where OH〈1,1〉
j0,ik

(t) := (O j0 ·
∏

k′∈{0,...,K}
k′,k

F jk′ )(t).

For the new heuristics it then holds that:

Theorem 3. Heuristics H〈1,0〉, H〈1/2,1/2〉 and Ĥ〈1,1〉 do not overestimate the opportunity cost.

Proof. When the H〈1,0〉 heuristic is used to split the opportunity cost function O j0 only one method

(e.g. mik ) gets the opportunity cost for enabling method m j0 . Thus:

K∑
k′=0

Oik′ (t) =

∫ ∆−t

0
pik (t

′)O j0,ik (t + t′)dt′ (5.9)

And since O j0 is non-increasing

≤

∫ ∆−t

0
pik (t

′)O j0(t + t′) ·
∏

k′∈{0,...,K}
k′,k

F jk′ (t + t′)dt′

≤

∫ ∆−t

0
pik (t

′)O j0(t + t′)dt′ ≤ O j0(t)

The last inequality holds because the opportunity cost function O j0 is non-increasing.
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For the H〈1/2,1/2〉 heuristic the proof is similar:

K∑
k=0

Oik (t) ≤
K∑

k=0

∫ ∆−t

0
pik (t

′)
1
K

O j0(t + t′)
∏

k′∈{0,...,K}
k′,k

F jk′ (t + t′)dt′

≤
1
K

K∑
k=0

∫ ∆−t

0
pik (t

′)O j0(t + t′)dt′

≤
1
K
· K · O j0(t) = O j0(t).

For the Ĥ〈1,1〉 heuristic the opportunity cost function O j0 is by definition split such that∑K
k=0 Oik (t) ≤ O j0(t). Thus, is has been proven that the new heuristics H〈1,0〉, H〈1/2,1/2〉 and Ĥ〈1,1〉

prevent the overestimation of the opportunity cost. �

The reason why all three heuristics have been introduced is the following: Since the H〈1,1〉

heuristic overestimates the opportunity cost, one has to choose which method mik should receive

the reward for enabling the method m j0 which is exactly what the H〈1,0〉 heuristic postulates.

However, the H〈1,0〉 heuristic does not reward the other methods for enabling method m j0 which

introduces the starvation problem. Starvation can be avoided if the opportunity cost functions

are split using the H〈1/2,1/2〉 heuristic that provides reward to all enabling methods. However, the

sum of the split opportunity cost functions for the H〈1/2,1/2〉 heuristic can be smaller than the non-

zero opportunity cost function for the H〈1,0〉 heuristic, which is clearly undesirable. This is why

the Ĥ〈1,1〉 heuristic which by definition avoids the overestimation, underestimation and starvation

problems has been introduced.
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5.1.6 Implementation of Function Operations

In the previous sections all the function derivations have been carried out without choosing a

particular representation of the underlying continuous functions. In general, one can choose from

various function approximation techniques such as the piecewise linear [Boyan and Littman,

2000], piecewise constant [Li and Littman, 2005], or piecewise gamma [Marecki et al., 2007]

approximation. In the actual implementation of VFP evaluated in Section 6.1, piecewise linear

function representation has been chosen.

When VFP propagates the opportunity cost functions and probability functions it carries out

operations represented by Equations (5.1) and (5.6) which are equivalent to computing the con-

volution function f (t) = (p ∗ h)(t). If time is discretized, functions p(t) and h(t) are discrete;

however, h(t) can be approximated with a piecewise linear function ĥ(t), which is exactly what

the VFP algorithm does. As a result, instead of performing O(∆2) multiplications to compute f (t)

(as in case of the OC-DEC-MDP algorithm), VFP only needs to perform O(k · ∆) multiplications

to compute f (t) where k is the number of linear segments of ĥ(t) and k < ∆. Since the values of

Fi are in range [0, 1] and the values of Oi are in range [0,
∑

mi∈M ri], opportunity cost functions

Oi are chosen to be approximated within the error εO and the probability functions Fi are chosen

to be approximated within the error εF . The experimental results in Section 6.1 demonstrate the

tradeoff between the runtime and solution quality of VFP for different values of εO and εF .
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5.2 Globally Optimal Solution: The M-DPFP Algorithm

This section introduces an algorithm (M-DPFP3) that finds solutions to CR-DEC-MDPs whose

quality is guaranteed to be within an arbitrary small ε of the quality of the optimal solution.

The idea of M-DPFP is the following: Recall the definition of the CR-DEC-MDP model from

Section 2.2.3 where Sn is the set of states of agent n. Determining the optimal actions for all

states s ∈ Sn is impossible since each state s is specified by continuous variables (method starting

and finishing times) and consequently, set Sn contains an infinite number of elements. Yet, it is

possible to leverage the DPFP algorithm from Section 3.2 to find ε-optimal actions for a finite

number of states in Sn — states referred to as the representative states. One can then prescribe

a greedy policy to non-representative states such that the error of M-DPFP is still expressible in

terms of an arbitrary small parameter ε. These ideas are first shown on an example (Section 5.2.1)

and later generalized to an arbitrary CR-DEC-MDP (Sections 5.2.2).

5.2.1 Arriving at M-DPFP

Consider the search for an optimal policy for the planning problem introduced in Section 2.1.3.2.

Here, both agents know exactly the starting states s1,0 ∈ S1 and s2,0 ∈ S2. However, since no

explicit communication is allowed after the planning phase, each agent can only estimate the

current state of the other agent during the execution phase. For example, if agent 2 finishes the

execution of its method m4 successfully it can infer that agent 1 has successfully finished the

execution of its method m1 (see Figures 5.2.1 and 5.6).

3The M-DPFP algorithm exploits the idea to perform the forward search in the space of cumulative distribution
functions introduced by the DPFP algorithm from Section 3.2, hence the name M-DPFP.

100



t0

end

m1

m2

m3

m3
m2

m3

x

x
x

t1

t2

t4

t3

t5 t6

t7
t8

t10
t9

t0

end

m6

m4

m5

m5
m4

x
x

t11

t12

t15

t13

t16 t17

t18

Agent 1

Agent 2
t19 t20m4

m5

end

t14

m1
m2
m3

m1

m3m2
m3m1m2

m1

m3m2
m3m1m2

t0

m6
m5
m4

m4

m4m5
m6m5m6

m6

m5m4
m4m6m5

t0

Figure 5.6: M-DPFP algorithm: Generation of the representative states. Solid arrows represent
time axes whereas dotted lines passing through representative states illustrate example execution
histories. Each time point ti has a corresponding state si (see Figure 5.2.1).

Adding Representative States

At a basic level, the M-DPFP algorithm intertwines the generation of representative states with

the search for the ε-optimal actions to be executed from these states. When the algorithm starts,

it generates representative states s1,0 = (〈−1, t0, t0, 1〉) and s2,0 = (〈−2, t0, t0, 1〉) which are simply

the starting states of agents 1 and 2 (see the description of states in the CR-DEC-MDP model in

Section 2.2.3). The algorithm then searches for the best actions to be executed from s1,0 and s2,0

using a fast lookahead function (similar to the DPFP algorithm from Section 3.2).

Suppose that the lookahead function found that the best action to be executed from state s1,0

is m1 ∈ A(s1,0) and the best action to be executed from state s2,0 is m6 ∈ A(s2,0) (as illustrated
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s1,0 = (〈−1, t0, t0, 1〉)

s1 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉)

s3 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t3, 1〉)

s6 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t3, 1〉, 〈3, t3, t6, 1〉)

s4 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t4, 1〉)

s7 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t4, 1〉, 〈3, t4, t7, 1〉)

s8 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t4, 1〉, 〈3, t4, t8, 1〉)

s9 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t4, 1〉, 〈3, t4, t9, 1〉)

s2 = (〈−1, t0, t0, 1〉, 〈1, t0, t2, 1〉)

s5 = (〈−1, t0, t0, 1〉, 〈1, t0, t2, 1〉, 〈2, t2, t5, 1〉)

s10 = (〈−1, t0, t0, 1〉, 〈1, t0, t2, 1〉, 〈2, t2, t5, 1〉, 〈3, t5, t10, 1〉)

s2,0 = (〈−2, t0, t0, 1〉)

s11 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉)

s14 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉, 〈5, t11, t14, 1〉)

s18 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉, 〈5, t11, t14, 1〉, 〈4, t14, t18, 1〉)

s19 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉, 〈5, t11, t14, 1〉, 〈4, t14, t19, 1〉)

s15 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉, 〈5, t11, t15, 1〉)

s20 = (〈−2, t0, t0, 1〉, 〈6, t0, t11, 1〉, 〈5, t11, t15, 1〉, 〈4, t15, t20, 1〉)

s12 = (〈−2, t0, t0, 1〉, 〈6, t0, t12, 1〉)

s13 = (〈−2, t0, t0, 1〉, 〈6, t0, t12, 1〉, 〈4, t12, t13, 1〉)

s16 = (〈−2, t0, t0, 1〉, 〈6, t0, t12, 1〉, 〈4, t12, t13, 1〉, 〈5, t13, t16, 1〉)

s17 = (〈−2, t0, t0, 1〉, 〈6, t0, t12, 1〉, 〈4, t12, t13, 1〉, 〈5, t13, t17, 1〉)

(5.10)

Figure 5.7: Representative states for the search problem from Figure 5.6. Note that only the
representative states for the successful execution of methods are shown.

in Figure 5.6). The algorithm now switches to generating new representative states. For agent 1,

the execution of method m1 can finish at any point in time (inside the execution time window of

method m1), yet, the algorithm can only consider a finite set of representative states that agent 1

can transition to having completing the execution of method m1. Figure 5.6 illustrates a situation

when the algorithm considers just two representative states: s1 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉) and
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s2 = (〈−1, t0, t0, 1〉, 〈1, t0, t2, 1〉). In this particular case both s1 and s2 correspond to a situation

where agent 1 has executed method m1 successfully (with q = 1)4, yet in general, both successful

and unsuccessful cases are considered. Furthermore, s1 corresponds to a situation where the

execution of method m1 finished at time t1 and s2 corresponds to a situation where the execution

of method m1 finished at time t2. While it is explained later how the algorithm selects these

finishing times, assume for now that they are arbitrary.

The algorithm then switches back to the search for the ε-optimal actions to be executed from

states s1 and s2 (using the lookahead function) which turn out to be the same, i.e., to execute

method m2 (as illustrated in Figure 5.6). Next, the algorithm switches back to the generation

of new representative states, for a situation where the execution of method m2 starts in state

s1 as well as for a situation where the execution of method m2 starts in state s2. In the ex-

ample from Figure 5.6, the algorithm has chosen to generate two new representative states s3 =

(〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t3, 1〉) and s4 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t4, 1〉) for the ex-

ecution starting in s1 and just one new representative state s5 = (〈−1, t0, t0, 1〉, 〈1, t0, t2, 1〉, 〈2, t2, t5, 1〉)

for the execution starting in s2. The algorithm then continues to intertwine the generation of rep-

resentative states with the search for the ε-optimal actions to be executed from these states using

the technique just discussed. Note, that this approach allows M-DPFP to prune many possible

policies. For example, in Figure 5.6 agent 1 will never choose to execute method m3 after finish-

ing the execution of method m1.

4Recall that states are sequences of events e = 〈i, l1, l2, q〉 where q is the is the result of the execution of method mi
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Using the Lookahead Function

The lookahead function mentioned above (explained in detail in Section 5.2.4) not only finds the

ε-optimal action to be executed from a representative state but also returns the probability dis-

tribution of entering future states (after that representative state) when following the ε-optimal

policy from that representative state. For example, when the lookahead function is called to find

the ε-optimal action to be executed from a representative state s1 = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉)

it also returns the probability of entering future states s = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, ...). Note

however, that these probabilities are not only affected by agent 1’s actions, but also by agent 2’s

actions, e.g., the probability of transitioning to state s = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, 〈2, t1, t3, 1〉)

is affected by the probability that agent 2 will successfully complete the execution of its method

m5 before time t3. Consequently, for the the lookahead function to correctly determine the prob-

abilities of entering future states s = (〈−1, t0, t0, 1〉, 〈1, t0, t1, 1〉, ...) it must know agent 2’s policy

first.

To this end it is required that the lookahead function considers the representative states in a

specific order explained in depth in Section 5.2.2. In essence, this specific order ensures that when

the lookahead function is called for a representative state s, the lookahead function can correctly

estimate (given the information provided in the description of state s) the probability distribution

over the current states of all the agents which may have an impact on the policy executed from s.

For example, in order to estimate the expected utility of starting the execution of method m2 of

agent 1 from state s1 (at time t1) we need to know the probability with which method m5 of agent

2 may have finished before time t1 (because method m5 enables method m2). In the example in

Figure 5.6 the ε-optimal action for agent 2 in state s2,0 is to choose to execute method m6, not
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m5. So, considering only the ε-optimal action from state s2,0 is not enough as it still does not tell

us the probability of method m5’s ending before time t1. (This does not yet provide us enough

information to compute expected utility of starting to execute method m2 from state s1, because

we still cant tell the likelihood of finishing the execution of method m5 before time t1). So now

we must consider the ε-optimal actions that agent 2 will execute after completing the execution

of method m6, in particular, the ε-optimal actions from the representative states s11 and s12 must

be found. For state s12 the ε-optimal action is still not to execute m5 and we must continue to

consider state s13 before the likelihood of finishing the execution of method m5 before time t1 can

be estimated.

To further illustrate the specific ordering in which the lookahead function can be called con-

sider the following two examples (refer to Figure 5.6). Initially, the lookahead function can be

called for the starting state s1,0 or the starting state s2,0 in any order because either way, the

lookahead function knows that the probability distribution over the current states of agent 1 is

Pb(s1,0 = 1) and that the probability distribution over the states of agent 2 is Pb(s2,0 = 1). On

the other hand, having been called only for the representative state s1,0, the lookahead function

cannot be immediately called for the representative state s1 since at this point the probability dis-

tribution over the current states of agent 2 is unknown (because the lookahead function has not

been called for state s2,0 yet). In the next section the specific ordering in which the lookahead

function considers the representative states is formalized.

5.2.2 The M-DPFP Algorithm

In order to formalize the M-DPFP algorithm it is necessary properly define the ordering in which

M-DPFP adds representative states, that is, define the concept of a method sequence and a method
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sequences graph. The formal definition of these two concepts is followed by a concrete example

(refer to Figure 5.8).

Definition 5. Method sequence φ of agent n is a vector φ = (m−n,mi1 , ...,mik ) of executed

methods where m−n is a spoof method completed by agent n before the execution starts and

mi1 , ...,mik ∈ Mn. Furthermore, Φn is the set of all possible sequences φ of agent n and Φ =⋃N
n=1 Φn is the set of all possible method sequences of all agents. Also, for notational conve-

nience, (φ,m) denotes a method sequence that is a concatenation of vector φ with vector (m)

whereas (...,m) denotes a method sequence that ends with a method m. Finally, the set S φ of

states associated with method sequence φ is defined as:

S φ = {(〈i1, li1,1, li1,2, qi1〉, . . . , 〈ik, lik ,1, lik ,2, qik〉) ∈ S such that (mi1 , ...,mik ) = φ}.

For example, in Figure 5.8 method sequences of agent 1 can be (m−1,m1), (m−1,m1,m2),

(m−1,m1,m3), etc. As mentioned in Section 5.2.1, in order to take advantage of the lookahead

function, the representative states must be added in a specific order, i.e., the lookahead function

must be able to estimate the probability distribution over the current states of all the agents (given

the information provided in the description of the current representative state). To this end, M-

DPFP adds representative states one method sequence at a time, considering subsequent method

sequences from a list L defined as follows:

Definition 6. Method sequences graph is a directed graph G = (Φ,C) where Φ is the set of

nodes and C is the set of arcs. The set of arcs C is constructed as follows: For any two nodes

φi = (...,mi), φ j = (...,m j) ∈ Φ an arc (φi, φ j) is added to C if φ j = (φi,m) or 〈i, j〉 ∈ C≺.

The list L of method sequences is then a topological sorting of the elements of Φ, that is, a

method sequence φ j is added at the end of list L only if all the nodes φi that precede node φ j in
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graph G (all the nodes φi such that there exists an arc (φi, φ j) ∈ C) have already been added to

list L.

To illustrate the concept of method sequences, method sequences graph and list L consider

the example in Figure 5.8. Here, each node label is a method sequence, e.g. node −2564 cor-

responds to method sequence (m−2,m5,m6,m4) of agent 2. Also, arcs represents precedence

constraints. For example, node −2564 (that represents the execution of method m4 after the

execution of methods m5 and m6) is preceded by node −256 (that represents the execution of

method m6 after the execution of methods m4 ). Furthermore node −2564 is preceded by nodes

−121, −1231, −11, −131, −1321 because 〈4, 1〉 ∈ C≺ (the execution of method m4 must be

preceded by the successful execution of method m1). The list L for the graph in Figure 5.8

constructed from the topological sorting of the the graph nodes can therefore be: L = ((m−1),

(m−2), (m−1,m1), (m−1,m1,m3), (m−1,m3), (m−1,m3,m1), (m−2,m5), (m−2,m5,m6), (m−2,m6),

(m−2,m6,m5), (m−1,m2), (m−1,m2,m1), (m−1,m2,m1,m3), (m−1,m2,m3), (m−1,m2,m3,m1), (m−2,

m4), (m−2,m4,m6), (m−2,m4,m6,m5), (m−2,m4,m5), (m−2,m4,m5,m6), (m−1,m3,m2), (m−1,m3,

m2,m1), (m−2,m5,m4), (m−2,m5,m4,m6), (m−2,m5,m6,m4), (m−2,m6,m4), (m−2,m6,m4,m5), (m−1,

m3,m1,m2), (m−1,m1,m2), (m−1,m1,m2,m3), (m−1,m1,m3,m2), (m−2,m6,m5,m4)).

At a basic level, the M-DPFP algorithm iterates over all the method sequences φ from L. In

particular, for a method sequence φ, it performs the following three steps:

• Constructs a finite set S̃ φ ⊂ S φ of representative states.

• For each representative state s ∈ S̃ φ calls the lookahead function to determine the ε-optimal

action to be executed from s.
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Figure 5.8: Method sequences graph

• Prunes from the listL all the method sequences that cannot be encountered while executing

the ε-optimal policy.

Precisely, the algorithm starts by calling the AS(Φ) function to arrange the

method sequences into a list L (topological sort of method sequences in Φ). The algorithm then

calls the lookahead function OM(si,0) for the starting state si,0 over all the agents in

order to find the ε-optimal actions to be executed from these starting states as well as to prune

from list L some of the method sequences that are not reachable via the optimal policy. The

algorithm then iterates over the remaining method sequences in L. In particular, for a sequence
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φ ∈ L it first identifies an agent i that this sequence belongs to. The algorithm then incrementally

builds a set S̃ φ of representative states and a set Zφ of optimal actions in these states. Initially,

both S̃ φ and Zφ are empty.

If the error E(S̃ φ) of the current policy for all states s ∈ S φ is greater than

the tolerable error maxError the algorithm tries to reduce the error CE(S̃ φ) by ex-

panding the set S̃ φ of representative states with a new representative state s ∈ S φ (functions

NRS(S φ, S̃ φ) and CE(S̃ φ) are described in Section 5.2.3). To this

end, the algorithm calls the lookahead function OM(s) to find the optimal method m

to be executed from state s of agent i (described in Section 5.2.4), assigns action m to the optimal

policy π∗(s) for state s and updates sets Zφ and S̃ φ respectively.

As soon as the error CE(S̃ φ) is within the tolerable error maxError the algorithm

stops expanding the set S̃ φ with new representative states. It then employs the set Zφ to remove

from the list L the method sequences that are not reachable via the optimal policy. The M-DPFP

algorithm terminates if all method sequences from the pruned list L have been analyzed. At this

point, the algorithm returns the optimal policy π∗ defined for representative states. The error of the

greedy policy for the non-representative states (described in Section 5.2.3.3) is then guaranteed

to be less than maxError.

In the following three sections it is explained how to:

• Select new representative states (the NRS(S φ, S̃ φ) function);

• Bound the error of the algorithm (the E(S̃ φ) function);

• Find the optimal action to be executed from a representative state (the OA(s)

function).
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Algorithm 2 M-DPFP(maxError)
1: L ← AS(Φ)
2:   A i = 1, 2, ...,N 
3: π∗(si,0)← OA(si,0)
4: L← L \ {(m−i,m, ...) ∈ Φi such that m , π∗(si,0)}
5:   φ ∈ L 

6: i← n such that φ ∈ Φn

7: Zφ ← ∅
8: S̃ φ ← ∅

9:  maxError >CE(S̃ φ) 
10: s← NRS(S φ, S̃ φ)
11: m← OA(s)
12: π∗(s)← m
13: Zφ ← Zφ ∪ m
14: S̃ φ ← S̃ φ ∪ s
15: L← L \ {(φ,m′, ...) ∈ Φi such that m′ < Zφ}
16:  π∗

5.2.3 Representative States

Two heuristics according to which new representative states are selected are introduced in this

section. Then, the greedy policy for non-representative states is explained. Finally, the formula

for calculating the error of the M-DPFP algorithm is provided.

5.2.3.1 Representative State Selection

Consider the situation when the M-DPFP algorithm calls the NRS(S φ, S̃ φ)

function to pick a new representative state s (and later added to the set S̃ φ of representative states

associated with the method sequence φ ∈ L). Suppose that φ = (φ−1,mk) for some method

sequence φ−1 ∈ L and method mk ∈ M. For example, in Figure 5.6, φ = (m−1,m1,m2), φ−1 =

(m−1,m1) and mk = m2.
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Upon considering a method sequence φ, the M-DPFP algorithm has already considered the

method sequence φ−1 because by definition, φ−1 is before φ in list L. Furthermore, there exists at

least one representative state s−1 ∈ S̃ φ−1 for which the optimal action is to start executing method

mk because otherwise, φ would have been pruned from L (it would have not been visitable via

the optimal policy). For each such representative state s−1 the execution of method mk can finish

with an outcome q ∈ {0, 1}. Hence, the set S̃ φ ⊂ S φ of representative states for sequence φ is

given by:

S̃ φ =
⋃

s−1∈S̃ φ−1
π(s−1)=mk

q∈{0,1}

S̃ φ,s−1,q

Where S̃ φ,s−1,q is the set of representative states that the agent can transition to after it finished

executing method mk from state s−1 with an outcome q. (The value |S̃ φ|/|S̃ φ−1 | is referred to as

the branching factor for representative states.)

For example, in Figure 5.6 where only successful execution of methods have been considered

(for explanatory purposes) we have s−1 ∈ S̃ (m−1,m1) = {s1, s2} and hence:

S̃ (m−1,m1,m2) = S̃ (m−1,m1,m2),s1,0 ∪ S̃ (m−1,m1,m2),s1,1 ∪ S̃ (m−1,m1,m2),s2,0 ∪ S̃ (m−1,m1,m2),s2,1

= {s3, s4} ∪ {s5} = {s3, s4, s5}.

because sets S̃ (m−1,m1,m2),s1,0 and S̃ (m−1,m1,m2),s2,0 are empty (for explanatory purposes).

When the NRS(S φ, S̃ φ) function is called, it first selects a state s−1 ∈ S̃ φ−1

and an outcome q ∈ {0, 1}. (The selection mechanism considers all possible combinations of

s−1 ∈ S̃ φ−1 and q ∈ {0, 1}). The NRS function then attempts to pick a new

representative state s ∈ S φ and add it to the set S̃ φ,s−1,q. Let s−1 = (e1, ..., em) and recall that
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method mk has been executed in state s−1 with an outcome q. Initially, when set S̃ φ,s−1,q = ∅,

the NRS function adds two delimiting representative states to it: The first

representative state is associated with the earliest completion time of method mk, i.e., it is given

by (e1, ..., em, 〈k, t−1, t−1 + δk, q〉) where δ−k is the minimum duration of the execution of method

mk. On the other hand, the second representative state is associated with the latest completion

time of method mk, i.e., it is given by (e1, ..., em, 〈k, t−1,min{t−1 + δ+
k ,∆k}, q〉) where δ+

k is the

maximum duration of the execution of method mk and ∆k is the latest admissible execution time

of method mk.

In general, the NRS function encounters a situation where the current

set S̃ φ,s−1,q of representative states already contains some representative states (including the two

delimiting representative states), i.e., S̃ φ,s−1,q = {(e1, ..., em, 〈k, t−1, ti, q〉)}ni=1. Here, the NR-

S function adds to S̃ φ,s−1,q a new representative state s = (e1, ..., em, 〈k, t−1, t′, q〉)

where t′ is determined using one of the heuristics below:

Uniform Time Heuristic (HUT ) chooses representative states such that they uniformly cover

the time range [t−1+δ−k ,min{t−1+δ+
k ,∆k}], i.e., such that the maximum distance between two adja-

cent representative states is minimized. Formally, for time points t0, ..., tn sorted in the increasing

order of their values, the HUT chooses t′ to be:

t′ :=
t j + t j+1

2

Where j is such that the distance t j+1 − t j between time points t j+1 and t j is maximized, that is:

j = arg max
i=0,...,n−1

ti+1 − ti.
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For example, suppose that the set of representative states already contains three representative

states with their corresponding times t0 = 5, t1 = 10, and t2 = 20. Here, because t2 − t1 = 10

which is greater than t1 − t0 = 5, the HUT heuristic will pick j = 1 which will result in adding a

new representative state associated with time t′ = (10 + 20)/2 = 15.

The main advantage of the HUT heuristic is that is it easy to implement. However, the HUT

heuristic can in practice be very ineffective because it ignores the likelihood of transitioning to a

new representative state s. As a result, the representative states in set S̃ φ,s−1,q can be situated far

away from the states the process transitions to during the execution phase.

Uniform Probability Heuristic (HUP) improves on the HUT heuristic in that it uses the

likelihood of transitioning to representative state as a metric for picking a new representative

state. The HUP heuristic first estimates5 the probabilities Fφ,s−1,q(t) that the execution of method

mk started in state s−1 will be completed before time t with outcome q. For notational convenience

let F := Fφ,s−1,q(t). The HUP heuristic attempts to uniformly cover the probability range [0, 1],

i.e., it attempts to minimize the maximum distance between the two adjacent probability values

F(t). Formally, for time points t0, ..., tn and their corresponding probability values F(t0), ..., F(tn)

sorted in the increasing order, the HUP chooses t′ to be:

t′ := F−1
(

F(t j) + F(t j+1)
2

)

Where F−1 is the inverse function of function F, i.e., F−1(F(t)) = t for all t whereas j is found

using the formula below:

j = arg max
i=0,...,n−1

F(ti+1) − F(ti).

5This estimation uses the Monte-Carlo sampling explained in Section 5.2.4
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Figure 5.9: Demonstration of the HUP heuristic

To understand how the HUP works in practice and why it is more efficient than the HUT

heuristic, consider the situation in Figure 5.9 Here f := F d
dt is a probability density function of

the time when the execution of method mk will terminate. Assume that function f is given by a

multi-uniform distribution below: (see Figure 5.9)

f (t) =


1
2 if 0 ≤ t < 1

1
8 if 1 ≤ t < 5

Suppose that the HUP heuristic is used to add 9 representative states. The first two represen-

tative states are the delimiting representative states that correspond to t = 0 and t = 5. Now,

the heuristic aims to cover the probability range [0, 1] uniformly. First, the representative state at

t = 1 is added since it splits the probability range [0, 1] into two ranges [0, 1
2 ] and [ 1

2 , 1] of equal

length (such splitting minimizes the length of the longest probability range). After adding 6 ad-

ditional representative states (also in a way that minimizes the length of the longest probability

range) all the probability ranges will have the length of 1
8 and the set of representative states will
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contain elements that correspond to times 0, 1
4 ,

1
2 ,

3
4 , 1, 2, 3, 4, 5 as shown in Figure 5.9. Notice

an important phenomena: since it is 4 times more likely that the execution of method mk will be

finished in the time interval [0, 1) than in the time interval [1, 2), the HUP heuristic introduces 4

times more representative states for the time interval [0, 1) than for the time interval [1, 2). As a

result, the representative states in set S̃ φ,s−1,q are more likely to be situated close to the states the

process transitions to during the execution phase.

5.2.3.2 Policy for non-Representative States

Prior to developing the formula for the error bound of M-DPFP, it is necessary to explain the

greedy policy that agents follow when they transition to non-representative states. Intuitively, the

greedy policy for an non-representative state s is to execute an action from a representative state s̃

which is before s and as close as possible to s. Formally, recall that method sequences φ and φ−1

are such that φ = (φ−1,mk). The greedy policy is then defined as follows: (refer to Figure 5.10)

states for method sequence

x

states for method sequence

s̃−1 s−1 s̃ s
s̃′

π(s̃−1) = mk

π(s−1) := π(s̃−1) π(s) := π(s̃)

π(s̃)

time time

φ−1 φ

Figure 5.10: Greedy policy for the non-representative states

Definition 7. The greedy policy postulates that if an agent:

• Was in a non-representative state s−1 ∈ S φ−1

• Started in state s−1 the execution of action π(s̃−1) = mk where s̃−1 ∈ S̃ φ−1
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• Transitioned with an outcome q to a non-representative state s ∈ S φ

The agent will start in state s the execution an action π(s̃) where:

• s̃ is a representative state from set S̃ φ,̃s−1,q

• s̃ is before s, i.e. , if s̃ = (..., 〈k, t−1, t̃, q〉) and s = (..., 〈k, t−1, t, q〉) then t̃ ≤ t

• s̃ is as close as possible to s, i.e., there exists no s̃′ ∈ S̃ φ,̃s−1,q such that s̃ is before s̃′ and s̃′

is before s.

5.2.3.3 Error Bound

In order to bound the error of the M-DPFP algorithm it is necessary to combine the two following

errors:

• The error produced by the lookahead function (described in Section 5.2.4)

• The error produced by executing the greedy policy.

Consider the situation in Figure 5.11 where according to the greedy policy, action π∗(s̃i) = mg

should be executed in a non-representative state s. The the error of executing in state s a greedy

action mg instead of an optimal action mo can be bound as follows: Let s̃i, s̃i+1 ∈ S̃ φ be two

adjacent representative states such that state s ∈ S φ is located between s̃i and s̃i+1. The times at

which the agent transitions to states s̃i, s, s̃i+1 are ti, ts, ti1 respectively. Futhermore, ti+1− ti = δ as

shown in Figure 5.11. Also, because states s̃i, s, s̃i+1 correspond to the same execution sequence,

the actions applicable in states s̃i, s, s̃i+1 are the same, i.e., A(s) = A(s̃i) = A(s̃i+1) = {m j}i∈J .

The lookahead function called for a representative state s̃i returns (within the accuracy εκ)

the expected utilities ui, j of executing in state s̃i actions m j ∈ A(s̃i), (explained in Section 5.2.4).
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time

s̃i+1s̃i s
0

ui,g

us,g

us,o

ui,o

error

ti ti+1ts

δ

Figure 5.11: Greedy policy and the error bound: Optimal action in state s̃i is to execute method
mg (which yields the utility ui,g) whereas the optimal action in state s is to execute method mo

(which yields the utility us,o). Here, the greedy policy for an agent postulates that method mg

should be executed in state s (which yields the utility us,g). The error of the greedy policy for
state s is bounded by |us,o − us,g|.
Observe now, that the expected utilities us, j of executing actions m j in state s can be the same,

smaller or greater than the corresponding utilities ui, j. In particular (refer to Figure 5.11):

• If the likelihood of method mo being enabled before time ti is smaller than the likelihood

of method mo being enabled before time ts > ti one can have ui,o < us,o.

• Since the likelihood of finishing the execution of method mg within a time window is

greater if the execution of mg is started in state s̃i rather than in state s one can have ui,g >

us,g.

And consequently, the error of the greedy policy for state s is at most us,o − us,g. To bound this

expression, we first find the minimum value of us,g and then the maximum value of us,o. Notice,

that since we are interested in finding the minimum value of us,g it can be assumed without the

loss of generality that method mg is enabled in state s̃i with probability 16. Recall the probability
6If method mg was enabled in state s̃i with probability p1 < 1 then method mg would be enabled in state s with

probability p2 ≥ p1 and consequently, the difference ui,g − usg would be smaller which would translate into smaller
error value.
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F(φ,mg),̃si,q(t) that the execution of method mg started in state s̃i will finish before time t with result

q — the value of F(φ,mg),̃si,q(t) can be easily calculated using Monte-Carlo sampling approach

explained in Section 5.2.4.2. Now, since the later the execution of method mg starts, the smaller

the likelihood of its completion within an admissible time window. Thus:

F(φ,mg),̃si,q(t) > F(φ,mg),s,q(t) > F(φ,mg),̃si,q(t − δ)

And since the expected utility us,g is directly affected by F(φ,mg),s,q(t) it holds that:

us,g > ui,g · (1 − (F(φ,mg),̃si,q(t) − F(φ,mg),̃si,q(t − δ)))

Conversely, it is now shown how to establish the maximum value of us,o. Notice, that since

we are interested in finding the maximum value of uso it can be assumed without the loss of

generality that method mo will be completed within its admissible time window with probability

1, no matter if it is started in state s̃i or s7. Then, using Monte-Carlo sampling approach explained

in Section 5.2.4.2 one can calculate the probabilities Fe
i,o(t) that method mo will be enabled before

time t when the agent is in state s̃i (Fe
i, j is a cumulative distribution function). Finally, since the

later the execution of method mo starts, the higher the probability that it will be enabled. Thus:

Fe
i,o(t) < Fe

s,o(t) < Fe
i,o(t + δ)

7If method mo is completed within its admissible time window with probability p1 < 1 when it is started in state s̃i

then this probability can only get smaller if the execution of mo is started in state s and consequently, the value of uso

and the error can only get smaller.
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And since the expected utility us,o is directly affected by Fe
s,o(t) it holds that:

us,o < ui,o · (1 + (Fe
i,o(t + δ) − Fe

i,o(t)))

Consequently, the error of executing a greedy action mg instead of an optimal action mo in state s

is bounded by:

us,o − us,g < ui,o(1 + (Fe
i,o(t + δ) − Fe

i,o(t))) − ui,g(1 − (F(φ,mg),̃si,q(t) − F(φ,mg),̃si,q(t − δ)))

< ui,g(Fe
i,o(t + δ) − Fe

i,o(t) + F(φ,mg),̃si,q(t − δ) − F(φ,mg),̃si,q(t))

Incorporating the error εκ of the lookahead function in determining us,o and us,g:

< ui,g(Fe
i,o(t + δ) − Fe

i,o(t) + F(φ,mg),̃si,q(t − δ) − F(φ,mg),̃si,q(t)) + 2εκ

(5.11)

And since mo is not known, the error εi produced by following a greedy policy from a state

between the representative states s̃i and s̃i+1 that are δ apart is given by8:

εi < max
mo∈A(s̃i)

ui,g(Fe
i,o(t + δ) − Fe

i,o(t) + F(φ,mg),̃si,q(t − δ) − F(φ,mg),̃si,q(t)) + 2εκ (5.12)

Finally, for a given set S̃ φ of representative states for the method sequence φ = (φ−1,mk), the

error of the M-DPFP algorithm for that sequence, denoted as E(S̃ φ), is bounded by:

E(S̃ φ) < max
s−1∈S̃ φ−1
π(s−1)=mk

q∈{0,1}

max
s̃i∈S̃ φ,s−1 ,q

εi.

8Assuming that representative states s̃i and s̃i+1 exist
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To summarize, the M-DPFP algorithm (see Algorithm 5.2.2) is called with a desirably small

parameter maxError. The algorithm then keeps adding the representative states until E-

 (S̃ φ) is smaller than maxError for any sequence φ that can be encountered while executing

the best policy. Finally, since the total number of sequences that can be encountered by the agent

team while executing a policy is bounded by the number K of methods, the cumulative error of

the M-DPFP algorithm is bounded by K · maxError.

This section demonstrated how to select new representative states, what actions agents should

execute in non-representative states and how to bound the error of the M-DPFP algorithm. The

next section shows how the lookahead function determines which action should be executed from

a representative state.

5.2.4 Lookahead Function

This section describes the lookahead function OM() called by Algorithm 5.2.2 in

Section 5.2.2. The lookahead function takes as an input the representative state s and returns the

expected utilities us,i of executing actions mi ∈ A(s) from state s. In order to calculate us,i the

lookahead function solves a dual problem, i.e., it tries to identify an optimal probability mass

flow through states (of all agents) starting from state s that maximizes the total expected utility

us,i.

As stated, there are clear similarities between the lookahead function of M-DPFP and the

DPFP algorithm from Section 3.2, however there is one key difference: Whereas DPFP could

perform the forward search in the space associated with the future states (methods) of a single

agent, M-DPFP’s search must consider future methods of possibly all agents. In other words, M-

DPFP’s lookahead function called for state s of agent n must consider future methods of agent n
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and future methods of agents n′ , n that are affected by the execution of future methods of agent

n. Hence, M-DPFP’s lookahead function must know the probabilities that agents n′ , n will

start the execution of their future methods and in order to estimate these probabilities, policies of

agents n′ , n must be found first. M-DPFP achieves that by adding the necessary representative

states (and finds policies for these representative states) for agents n′ , n prior to considering

state s of agent n. This process in explained in detail in the next three sections.

5.2.4.1 Dual Problem Formulation

Before the dual problem formulation in context of the lookahead function is used, it is necessary

to develop the dual formulation in the general case. Let φ = (mi1 ...,mik ) denote a sequence of k

methods that an agent has executed and Q = (qi1 , ..., qik ) be the vector of k outcomes of method

execution where qi is the outcome of the execution of method mi. For notational convenience, let

A(φ) be the set of methods that an agent can execute after it completed (successfully or unsuccess-

fully) the execution of methods from sequence φ. Furthermore, let Fπ
φ,Q(t) be the probability that

the agent has completed before time t the execution of methods from sequence φ with outcomes

Q when following a policy π and Fπ
φ,Q(ml)(t) be the probability that the agent has completed the

execution of methods from sequence φ with outcomes Q and started the execution of method ml
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before time t when following a policy π — observe that Fπ
φ,Q and Fπ

φ,Q(ml) are cumulative distri-

bution functions over t ∈ [0,∆]. The expected joint reward that the agents receive for following

the policy π from their starting states s0,n n = 1, ...,N is then given by:

Vπ(s0,1, ..., s0,n) =
∑

n=1,...,N

∑
φ=(mi1 ,...,mik )∈Φn

Q=(qi1 ,...,qik )∈{0,1}k

Fπ
φ,Q(∆) · qik · rik

=
∑

φ=(mi1 ,...,mik )∈∪nΦn

Q=(qi1 ,...,qik )∈{0,1}k

Fπ
φ,Q(∆) · qik · rik (5.13)

In particular, for an optimal policy π∗ the joint expected reward Vπ∗(s0,1, ..., s0,n) (denoted for

notational convenience as V∗(s0,1, ..., s0,n)) is maximized:

V∗(s0,1, ..., s0,n) = max
π

Vπ(s0,1, ..., s0,n) =
∑

φ=(mi1 ,...,mik )∈∪nΦn

Q=(qi1 ,...,qik )∈{0,1}k

F∗φ,Q(∆) · qik · rik (5.14)

Let Fπ := {Fπ
φ,Q such that φ = (mi1 , ...,mik ) ∈ Φ and Q ∈ {0, 1}k} be a set of cumulative dis-

tribution functions associated with a policy π and F∗ := {F∗φ,Q such that φ = (mi1 , ...,mik ) ∈

Φ and Q ∈ {0, 1}k} be a set of optimal cumulative distribution functions associated with the opti-

mal policy π∗. In order to find F∗ observe that the cumulative distribution functions in F∗ must
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maximize the right-hand-side of Equation (5.13). Furthermore, F∗ must be an element of a set

X = {F : (5.15), (5.16), (5.17)} where constraints (5.15), (5.16), (5.17) are defined as follows:9

F(m−n),(1)(t) = 1 (5.15)

Fφ,Q(t) =
∑

ml∈A(φ)

Fφ,Q(ml)(t) + Fφ,Q(m0)(t) (5.16)

F(φ,ml),(Q,q)(t) =

∫ t

0
Pb(ml, t′, q) · Fφ,Q(ml)(t′)pl(t − t′)dt′ (5.17)

for all agents n = 1, ...,N, sequences φ ∈ Φn and outcomes Q ∈ {0, 1}|φ|. Here, (φ,ml) is a

concatenation of φ and (ml), (Q, q) is a concatenation of Q and (q) whereas Pb(ml, t′, q) (explained

later) is the probability that method ml is enabled before time t′ (in case q = 1) or not enabled

before time t′ (in case q = 0). Constraints (5.15), (5.16), (5.17) are explained as follows:

• Constraint (5.15) ensures that each agent n = 1, ..,N starts the execution from its starting

state s0,n. To observe that, recall that the starting state sn,0 of agent n in encoded in the CR-

DEC-MDP framework as sn,0 = (〈−n, ln,0, ln,0, 1〉), that is, a spoof method m−n is by default

completed successfully (with q = 1) at time ln,0 = 0. Hence the probability F(m−n),(1)(t) that

method m−n will be completed successfully before time t must be 1 for all t ∈ [0,∆].

• Constraint (5.16) can be interpreted as the conservation of of probability mass flow through

a method sequence φ. Applicable only if |A(φ)| > 0 it ensures that the cumulative distri-

bution function Fφ,Q is split into cumulative distribution functions Fφ,Q(ml) for methods

9Constraints (5.15), (5.16), (5.17) are defined for a single method execution time windows [0,∆]. Extension to
multiple time windows is shown in Equation (5.6)
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ml ∈ A(φ) plus the cumulative distribution function Fφ,Q(m0) — this latter function repre-

sents the probability that the agent will wait (do nothing) upon completing the execution of

methods from sequence φ with outcomes Q.

• Constraint (5.17) ensures the correct propagation of probability mass from a method se-

quence φ to a method sequence (φ,ml) upon executing method ml with an outcome q. For

q = 1, the constraint ensures that the execution of method ml will be finished successfully at

time t if this execution: (i) is started at time t′, (ii) takes time t− t′ to complete and (iii) was

started after method ml had been enabled. In contrast, for q = 0, constraint (5.17) ensures

that the execution of method ml will be finished unsuccessfully at time t if this execution:

(i) is started at time t′, (ii) takes time t − t′ to complete and (iii) was started when method

ml was not enabled. The correct implementation of constraint (5.17) requires that the prob-

abilities Pb(ml, t′, q) are known — in Section 5.2.4.2 it is explained how to estimate these

probabilities using a Monte-Carlo sampling approach.

The dual problem is then stated as:

max
∑

φ=(mi1 ,...,mik )∈∪nΦn

Q=(qi1 ,...,qik )∈{0,1}k

Fφ,Q(∆) · qik · rik

s.t. F ∈ X (5.18)

And the solution to the dual problem is a set F∗ which yields the total expected utility V∗(s0,1, ..., s0,n).
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5.2.4.2 Dual Problem and the Lookahead Function

It is now shown how the lookahead function takes advantage of the dual problem formulation.

Recall, that the lookahead function takes as an input the representative state s and returns the

expected utilities us,k of executing actions mk ∈ A(s) from state s. It is first shown how the looka-

head function uses the dual problem formulation in a simple case, when s is one of the starting

states of the CR-DEC-MDP model. This result is then generalized to an arbitrary representative

state s.

Consider a situation when s = s0,n, i.e., s is a starting state and A(s0,n) = {m1, ...,mK} as

shown in Figure 5.12a. In order to determine which method should agent n start executing from

state s0,n one must consider K separate cases. In particular, for case k, the dual problem (5.18) is

solved with an additional constraint F(m−n)(1)(mk)(t) = 1 for t ∈ [0,∆] which ensures that method

mk is going to be executed from state s. The solution to the new problem then determines the

expected utility us,k of executing method mk in state s. Upon considering all cases k = 1, ...,K the

lookahead function returns method mk∗ where k∗ = arg maxk=1,...,K us,k.

Consider now a more general case (refer to Figure 5.12b) when the lookahead function is

called to find the method to be executed from a representative state s ∈ S φ of agent n. Assume

that methods from the sequence φ have been executed with outcomes Q and A(s) = A(φ) =

{m1, ...,mK}. Furthermore, let D(φ) be the set of method sequences φ′ ∈ ∪n=1,...,NΦn (of any

agent) that are preceded by the method execution sequence φ, that is, that are reachable from

node φ of the method sequences graph G (see Section 5.2.2). For example, in Figure 5.12b we

have D((m−2,m4,m6)) = {(m−2,m4,m6,m5), (m−1,m1,m2), (m−1,m1,m2,m3), (m−1,m1,m3,m2),

(m−1,m3,m2,m1)}.
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mK

mk

Method sequences affected by the action in state s0,n
(The range of the lookahead function)

a)

s0,1
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s ∈ Sφ

φ′ ∈ D(φ)

φ′′′

φ′′′

Figure 5.12: The range of the lookahead function: (a) Gray rectangles encompass all method
execution sequences of one agent; the dotted triangle encompasses the range of the lookahead
function, i.e., all the sequences that are affected by the decision of agent n in the initial state s0,n.
(b) When the lookahead function is called for state s ∈ S φ of agent n, D(φ) is the set of sequences
φ′ affected by the agent decision in state s. The execution of methods in sequences φ′′′ affect the
execution of methods in sequences φ′ ∈ D(φ).

Observe that the action that agent n executes in state s (for sequence φ) will have an affect

on the execution outcome of other methods (that possibly belong to different agents). Precisely,

action in state s affects all the methods m ∈ ∪n=1,..,N Mn such that there is a sequence φ′ = (...,m) ∈
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D(φ). In other words, the action that the agent executes in state s will impact all the functions

Fφ′,Q′ for φ′ ∈ D(φ). Thus, the objective function of the agent in state s is the following:

max
∑

φ′=(mi1 ,...,mik )∈D(φ)
Q′=(qi1 ,...,qik )∈{0,1}k

Fφ′,Q′(∆) · rik · qik . (5.19)

Furthermore, agent n must consider the impact of methods from external external sequences

(from outside of D(φ)) when maximizing the value of the expression 5.19. Precisely, the fact

that the agent has reached state s imposes additional constraints on the dual problem formulation

(5.18), i.e., set X specified by constraints (5.15), (5.16), (5.17) is now further constrained by:

• Local agent history constraints: Because the state s is fully observable to the agent, the

agent knows exactly the starting times, finishing times and outcomes of the execution

of all its methods of sequence φ. For example, if agent 1 is in state s = (〈−1, t0, t0, 1〉,

〈1, t0, t1, 1〉, 〈2, t1, t2, 0〉) then it can infer that F(m−1),(1)(t) = 1 for t ∈ [0,∆]; F(m−1,m1),(1,1)(t) =

0 if t ∈ [0, t1] and 1 if t ∈ [t1,∆]; F(m−1,m1,m2),(1,1,1)(t) = 0 for t ∈ [0,∆] and finally

F(m−1,m1,m2),(1,1,0)(t) = 0 if t ∈ [0, t2] and 1 if t ∈ [t2,∆]. In general, when methods from

a sequence φ are completed, functions Fφ′′,Q′′ where φ′′ is a prefix of φ can be inferred.

These functions Fφ′′,Q′′ specify new constraints to be added to further restrict set X.

• Other agents histories constraints: Because the information encoded in state s does not

allow the agent to determine precisely the current states of other agents, the agent can only

estimate the starting times, finishing times and outcomes of the execution of methods of

other agents. Of particular importance for solving the dual problem of the agent (when

the agent is about to choose an action to be executed in state s) are the method execution
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sequences φ′′′ of other agents that can affect the execution of methods from sequences

φ′ ∈ D(φ) and thus, influence the decision of the agent in state s. Precisely, in state s the

agent must be able to estimate the status of execution of methods from sequences φ′′′ that

precede method sequences φ′ ∈ D(φ), i.e., sequences φ′′′ of other agents such that there

exists a path (φ′′′, ..., φ′) for some φ′ ∈ D(φ) in the method sequences graph G.

In order to determine Fφ′′′,Q′′′(t) for t ∈ [0,∆] for all such sequences, a Monte-Carlo sam-

pling approach is used [MacKay, 1998]. In essence, the CR-DEC-MDP model assumes

given starting states s0,1, ..., s0,N of the agents. Moreover, thanks to the specific ordering

L in which the lookahead function analyses the method execution sequences, when the

M-DPFP algorithm calls the lookahead function for state s ∈ S̃ φ, the policies for states

s′′′ ∈ S φ′′′ are known (if s′′′ is not a representative state, the greedy policies are used —

refer to Section 5.2.3.2). Thus, a Monte-Carlo algorithm initiated with a given number

of samples (varied in Chapter 6) can simulate the concurrent execution of agents policies

from their starting states. By counting the number of samples that traverse a particular se-

quence φ′′′ with outcomes Q′′′ in a given time interval, one can estimate the probabilities

Fφ′′′,Q′′′(t) for all t ∈ [0,∆]. The functions Fφ′′′,Q′′′ are then used to specify new constraints

to be added to further restrict set X.

To summarize, in order to determine which method should agent n start executing from state

s = (..., 〈ml, t1, t2, q〉) ∈ S̃ φ the lookahead function considers K separate cases. In particular, for

case k the lookahead function instantiates a new dual problem with the objective function (5.19)

and constraints specified by (5.15), (5.16), (5.17), local agent history constraints, other agent

histories constraints and an additional constraint Fφ,Q(mk)(t) = 0 for t ∈ [0, t2] and Fφ,Q(mk)(t) =
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1 for t ∈ [t2,∆] which ensures that method mk is going to be executed from state s . The solution

to the dual problem then determines the expected utility us,k of executing method mk in state

s. Upon considering all cases k = 1, ...,K the lookahead function returns method mk∗ where

k∗ = arg maxk=1,...,K us,k. Finally, if the maximum utility of executing an action in a representative

state s = (..., 〈ml, t1, t2, q〉) is smaller than the maximum utility of executing an action in a later

representative state, i.e. s′ = (..., 〈ml, t1, t2 + t′, q〉) then the optimal policy in the representative

state s is to wait.

5.2.4.3 Solving the Dual Problem

In order to solve the dual problem above, The same approach as in the DPFP algorithm in Section

3.2.3 can be used. Informally, each cumulative distribution function Fφ,Q is approximated with a

step function of a step height κ. With this approximation technique the feasible set X of the dual

problem is narrowed to a restricted feasible set X̂ ⊂ X which contains a finite number of elements.

The search for the optimal solution F̂∗ to the restricted dual problem can then be implemented as

an exhaustive iteration over all the elements of X̂, to find an element that maximizes the objective

function (5.19).

At a basic level, the exhaustive iteration starts with a step function Fφ,Q which is known to

the agent (when the agent is in state s) and then considers all possible ways in which Fφ,Q can

be split into functions Fφ,Q(mi) for mi ∈ A(φ) ∪ {m0}— spoof method m0 is used to implement

the waiting action of the agent. The algorithm then enters a recursive loop; it fixes functions

{Fφ,Q(mi)}mi∈A(φ) and considers a method sequence φ′ such that φ′ ∈ D(φ) and φ′ is the next

element on the list L after φ. For sequence φ′, the algorithm considers all possible ways in which

function Fφ′,Q′ (derived using Monte-Carlo sampling technique discussed above) can be split into
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functions Fφ′,Q′(m j) for m j ∈ A(φ′) ∪ {m0}. Here, the algorithm enters another recursive loop

(2-nd level of recursion); it fixes functions {Fφ′,Q′(m j)}m j∈A(φ′) and considers a method sequence

φ′′ ∈ D(φ′) such that φ′′ is the next element on the list L after φ′ etc. The recursion stops after all

possible elements of X̂ have been considered and evaluated using the objective function (5.19).

At this point, the optimal solution F̂∗ to the restricted dual problem is known.

It is guaranteed that the the reward error εκ of a policy identified by F̂∗ can be expressed in

terms of κ. Indeed, the error εκ of the lookahead function can be bounded in exactly the same way

as the error of the DPFP algorithm: (refer to Section 3.2.5)

εκ = Rmax

∑
φ′∈D(φ)

max
t∈[0,∆]

|F∗φ′,Q(t) − F̂∗φ′,Q(t)|

≤ κRmax

∑
φ′∈D(φ)

|φ′|

Where Rmax = maxmi∈M ri. Hence, by decreasing κ, the lookahead function can trade off speed

for optimality.
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Chapter 6: Experiments with Multiagent Algorithms

This chapter reports on the empirical evaluation of the algorithms for solving CR-DEC-MDPs.

The Chapter is composed of two sections: First, in Section 6.1 the evaluation of the Value Func-

tion Propagation (VFP) algorithm introduced in Section 5.1 is presented. VFP is compared with

its closest competitor, the Opportunity Cost, Decentralized MDP (OC-DEC-MDP) algorithm

[Beynier and Mouaddib, 2006]. Then, in Section 6.2 the evaluation of the Multiagent Dynamic

Probability Function Propagation (M-DPFP) algorithm is conducted. M-DPFP is shown to suc-

cessfully trade-off optimality for speed when solving problems modeled as CR-DEC-MDPs.

6.1 VFP Experiments

First, the experimental evaluation of the VFP algorithm is provided. The VFP algorithm has been

developed to provide two orthogonal improvements over the OC-DEC-MDP algorithm [Beynier

and Mouaddib, 2006]: (i) VFP uses functional representation to speed up the search for poli-

cies carried out by OC-DEC-MDP and (ii) VFP implements a family of opportunity cost splitting

heuristics, to allow to find solutions of higher quality. Both algorithms were run to find locally op-

timal solutions to a special case of CR-DEC-MDPs which assume that methods are fully ordered

(see Section 5.1). Furthermore, method execution durations were assumed to follow discrete
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probability density function because the OC-DEC-MDP algorithm does not allow for continuous

probability density functions of method execution durations.

Hence, the experimental evaluation of VFP consists of two parts: Section 6.1.1 provides a

comparison of the solution quality found by either OC-DEC-MDP or VFP when running with

different opportunity cost splitting heuristics. Then, Section 6.1.2 reports on the evaluation of the

efficiency of both algorithm for a variety of CR-DEC-MDP configurations.

6.1.1 Evaluation of the Opportunity Cost Splitting Heuristics

The VFP algorithm was first run on a generic mission plan configuration from Figure 5.5 in

Section 5.1.5 where only methods m j0 , mi1 , mi2 and m0 were present. Time windows of all

methods were set to 400, duration p j0 of method m j0 was uniform, i.e., p j0(t) = 1
400 and durations

pi1 , pi2 of methods mi1 ,mi2 were normal distributions, i.e., pi1 = N(µ = 250, σ = 20), and

pi2 = N(µ = 200, σ = 100). Furthermore, only method m j0 provided reward, i.e. r j0 = 10 was the

reward for finishing the execution of method m j0 before time t = 400. The results are shown in

Figure (6.1.1) where the x-axis of each of the graphs represents time whereas the y-axis represents

the opportunity cost. The first graph confirms that when the opportunity cost function O j0 was

split into opportunity cost functions Oi1 and Oi2 using the H〈1,1〉 heuristic, the function Oi1 + Oi2

was not always below the O j0 function (the opportunity cost O j0 function was overestimated). In

particular, Oi1(280) + Oi2(280) exceeded O j0(280) by 69%. When heuristics H〈1,0〉, H〈1/2,1/2〉 and

Ĥ〈1,1〉 were used (graphs 2,3 and 4), the function Oi1 + Oi2 was always below O j0 .

Then, the experiments in the the civilian rescue domain introduced in Chapter 2 were con-

ducted. For a CR-DEC-MDP configuration from Figure 2.3 all method execution durations were

sampled from the normal distribution N = (µ = 5, σ = 2)). To obtain the baseline for the heuristic
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Figure 6.1: Visualization of the opportunity costs splitting heuristics
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performance, a globally optimal solver has been implemented — it found a true expected total

reward for this domain (Figure (6.3a)). This reward was then compared with a expected total re-

ward found by a locally optimal solver guided by each of the discussed heuristics. Figure (6.3a),

which plots on the y-axis the expected total reward of a policy complements the previous results:

H〈1,1〉 heuristic overestimated the expected total reward by 280% whereas the other heuristics

were able to guide the locally optimal solver close to a true expected total reward.

............

...............

.................................................

(a) (b)

(c) (d)

Figure 6.2: Mission plan configurations

6.1.2 Comparison of VFP and OC-DEC-MDP Efficiency

The efficiency VFP and OC-DEC-MDP was then compared when the algorithms were run on

configurations shown in Figure 6.2. Both algorithms were using the H〈1,1〉 heuristic to split the
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Figure 6.3: VFP performance in the civilian rescue domain.

opportunity cost functions. Using the performance of the OC-DEC-MDP algorithm as a bench-

mark the VFP scalability experiments were started on a configuration from Figure (6.2a) for

which the method execution durations were extended to normal distributions N(µ = 30, σ = 5)

and the mission deadline was extended to ∆ = 200.

The efficiency of VFP when it was running with three different levels of accuracy was then

tested. Different approximation parameters εP and εV were chosen, such that the total error of the

solution found by VFP stayed within 1%, 5% and 10% of the solution found by OC- DEC-MDP.

Both algorithms were run for a total of 100 policy improvement iterations.

Figure (6.3b) shows the performance of VFP in the civilian rescue domain (y-axis shows

the runtime in milliseconds). As can be seen, for this small domain, VFP runs 15% faster than

OC-DEC-MDP and finds a policy less with an error of less than 1%. For comparison, the glob-

ally optimal solved did not terminate within the first three hours of its runtime which shows the

potential of the approximate algorithm like OC-DEC-MDP and VFP.
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Figure 6.4: Scalability experiments for OC-DEC-MDP and VFP for different CR-DEC-MDP
configurations. 136



Next, VPF was evaluated in a more challenging domain, i.e., with methods forming a long

chain (Figure (6.2b)). The experiments with chains of 10, 20 and 30 methods were conducted,

with the method execution time windows extended to 350, 700 and 1050 time ticks1 , to ensure

that later methods are reachable. The results are shown in Figure (6.4a), where the number of

methods is varied on the x-axis and the algorithm runtime is marked on the y-axis (notice the

logarithmic scale). As can be observed, the increase of the size of the domain reveals high

performance of VFP: Within 1% error, it runs up to 6 times faster than OC-DEC-MDP.

Then, the VFP scalability experiments with methods arranged in a tree have been conducted

(Figure (6.2c)). In particular, trees with branching factors of 3 have been considered, with the tree

depth of 2, 3 and 4. To ensure that methods have a change to be executed, the time horizon was

increased from 200 to 300, and then to 400 time ticks. The results are shown in Figure (6.4b).

Although the speedups are smaller than in case of a chain, VFP still runs up to 4 times faster than

OC-DEC-MDP when computing the policy with an error of less than 1%.

Finally, VFP was tested on a domain with methods arranged in a n × n mesh, i.e., C≺ =

{〈mi, j,mk, j+1〉} for i = 1, ..., n; k = 1, ..., n; j = 1, ..., n−1. In particular, meshes of 3×3, 4×4, and

5 × 5 methods have been considered. For such configurations the time horizons were increased

from 3000 to 4000, and then to 5000, to ensure that all methods have a chance to be executed.

The final set of results is shown in Figure (6.4c). As can be seen, especially for larger meshes,

VFP runs up to one order of magnitude faster than OC-DEC-MDP while finding a policy that is

within less than 1% from the policy found by OC- DEC-MDP.

1Recall, that OC-DEC-MDP requires time to be discretized
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6.2 M-DPFP Experiments

This section reports on the empirical evaluation of the M-DPFP algorithm, developed to provide

error bounded solutions to problems modeled as CR-DEC-MDPs. M-DPFP has been imple-

mented and tested on the domain described in Section 2.1.3.2. All method execution durations

were sampled from the Normal distribution N(µ = 2;σ = 1), method execution time windows

and method rewards were [0, 10], [0, 7], [0, 8], [0, 10], [0, 8], [0, 10] and 5, 10, 3, 6, 2, 2 for meth-

ods m1, m2, m3, m4, m5, m6 respectively. The experiments in this section first evaluate the M-

DPFP lookahead function and then the complete M-DPFP algorithm.

6.2.1 Efficiency of the M-DPFP Lookahead Function

The first set of experiments involved running the lookahead function for a starting state s0,1 in

order to determine the total expected utility of an optimal policy for the agents at time t = 0. To

implement the lookahead function Monte-Carlo sampling was used with sample set sizes between

50 and 400 samples. The first experiment (Figure 6.5) demonstrates how the lookahead function

allows for a systematic trade-off of solution quality for speed. In Figure (6.5) the runtime of

the lookahead function measured in seconds is plot on the x-axis (notice the logarithmic scale)

and the computed total expected utility of an optimal policy from state s0,1 is plot on the y-axis.

Because the expected utility returned by the lookahead function always underestimates the true

expected utility, the y-axis is simply labelled as Solution quality. Data points for each size of the

Monte-Carlo sample set correspond (from left to right) to κ = 0.3, 0.25, 0.2, 0.15, 0.1 while each

data point is an average of 5 algorithm runs.
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Figure 6.5: Runtime and quality of the lookahead function

First, observe that the solution quality converges as κ decreases and that a linear decrease of

κ corresponds to an exponential increase of runtime. Also, an exponential increase of the size of

Monte-Carlo sample set surprisingly translates to only linear increase of the algorithm runtime

whereas the solution quality is comparable, e.g., for κ = 0.15 the solution quality for all sizes of

sample sets differs by less than 8%. This last result is encouraging, as is allows the lookahead

function to find accurate solutions even for small sets of Monte-Carlo samples.

The second experiment shows that the lookahead function finds solutions with quality guar-

antees. In Figure 6.6 the algorithm runtime is marked on the x-axis and the the solution quality

is marked on the y-axis. For κ ∈ {0.3, 0.25, 0.2, 0.15, 0.1} the error bound formula 5.20 is used to

determine the hypothetical maximal quality of the solution; this quality is then contrasted with

the solution quality found by the lookahead function for a fixed size of the Monte-Carlo sample

set. Observe that the lookahead function finds solutions with quality guarantees, e.g., if κ = 0.1,
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Figure 6.6: Error bound of the of the Lookahead function

it finds a solution that is guaranteed to be less than 50% away from the optimal solution. Also,

the lookahead function can trade off speed (by decreasing κ) for optimality.

6.2.2 Efficiency of the M-DPFP algorithm

The second set of experiments reports on the efficiency of the complete M-DPFP algorithm. Here,

the Monte-Carlo sample set size is fixed to 50, but the number of representative states is varied,

i.e., representative state branching factors of 20, 40 and 80 are used (for the definition of the

branching factor, refer to Section 5.2.3.1).

The experiment in Figure 6.7 reports on the total runtime of M-DPFP; the state branching

factor is varied in the x-axis and the total runtime of M-DPFP is plot on the y-axis — each data

point is an average of 5 algorithm runs. As can be seen, the exponential increase of representative

state branching factor translates into the exponential increase of M-DPFP runtime which is not

surprising. More interesting is the the proportion of time that M-DPFP spends finding the optimal
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Figure 6.7: Runtime of the M-DPFP algorithm

first decision (the joint action from joint state (s0,1, s0,2), the second decision (optimal actions after

one method has been executed) and the third decision (optimal actions after two methods have

been executed). When the branching factor for representative states is 20, over 92% of the total

runtime of M-DPFP is spend on finding the optimal first decision, i.e., the lookahead function

for state (s0,1, s0,2) is the major bottleneck of the algorithm. However, as the branching factor

increases, time spent on finding the optimal later decisions becomes a new bottleneck of the

algorithm.

Hence, representative states must be generated wisely, as their number directly affects the run-

time of M-DPFP. The final experiment shows how different representative state selection heuris-

tics affect the maximum quality loss of M-DPFP. In Figure 6.8 x-axis represents the branching

factor for representative states and the y-axis is the maximum quality loss of M-DPFP calculated

using formula 5.12. The first thing to notice is that the increase in the branching factor for rep-

resentative states translates into the decrease of the maximum quality loss of M-DPFP for both

the HUT and HUP heuristics. Furthermore, when M-DPFP uses the HUT heuristic, the maximum
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Figure 6.8: Quality loss of the M-DPFP algorithm for different representative state selection
heuristics

quality loss is generally smaller than the quality loss when M-DPFP uses the HUP heuristic. This

result is in accordance with the intuition that the uniform distribution of representative states over

time, generated by the HUT heuristic, guarantees that all the states on the time dimension are

well represented. In contrast, HUP’s discrimination in choosing where the representative states

should be added, favoring higher-likelihood regions of the time dimension, translates into higher

maximum quality loss values. Note however that in practice, M-DPFP running with the HUP

heuristic might outperform M-DPFP running with the HUT as HUP’s representative states are

more likely to be visited than the HUT ’s representative states and thus, M-DPFP running with the

HUP heuristic is less likely to resort to the greedy policy described in Section 5.2.3.2. Indeed the

study of probabilistic error bounds [Kearns et al., 1999] for both heuristics is a topic worthy of

future investigation.
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Chapter 7: Related Work

Planning with continuous resources has been a very active area of research, with many efficient

algorithms proposed both for single and multi-agent systems.

7.1 Single Agent Systems

Three classes of algorithms have emerged for planning with continuous resources in single agent

systems: (i) Constrained MDPs, (ii) semi MDPs and (iii) continuous state MDPs.

7.1.1 Constrained MDPs

For single agent systems, a popular approach for planning with continuous resources is to use

the Constraint MDP framework proposed by [Altman, 1999]. Constraint MDPs, which allow to

model continuous resource consumption and resource limits can be formulated as either primal or

dual linear programs and solved optimally using existing linear programming solvers. The opti-

mal randomized policy [Paruchuri et al., 2004] can then be found in polynomial time whereas for

optimal deterministic policy, one can introduce additional binary constraints [Dolgov and Durfee,

2005] and then solve the optimization problem using efficient mixed integer linear programming

tools.
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Unfortunately, constrained MDP have two serious restrictions: First, they do not incorporate

the resource levels in the state description, and as such, they model resource limits as upper

bounds on the total expected discounted costs. As a result, the optimal policy for a constrained

MDP is not dependent on actual resource levels which can lead to suboptimal results during

policy execution. Second, constrained MDPs assume that each action consumes a deterministic

amount of resource, and thus, they are not applicable for modeling our domains of interest.

7.1.2 Semi MDPs

In order to model non-deterministic resource consumption, a popular approach is to use the Semi

MDP framework [Howard, 1960]. Semi MDPs, which allow resource consumption to follow

arbitrary continuous probability density functions, can be solved efficiently using either value

iteration [Bellman, 1957] or policy iteration [Howard, 1960] principles. However, similarly to

constrained MDPs, the optimal policies for Semi MDPs are invariant of actual resource limits.

Even worse, they cannot handle resource limits, and instead resort to discount factors to model

the fact that the MDP process whose actions consume resources will run indefinitely. The same

problem pertains to the continuous time MDP model (CTMDP) [Howard, 1971] and the Gener-

alized Semi MDP model (GSMDP) [Younes and Simmons, 2004] and [Younes, 2005], variants

of Semi MDPs introduced to handle action concurrency and exogenous events. For both models

polynomial time algorithms exist, yet these algorithms only return polices that are not indexed by

the amount of resources left.
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7.1.3 Continuous state MDPs

To eliminate the shortcomings of the Constrained MDPs and Semi MDPs, that is, to allow for

continuous resource consumption and policies dependent of resource availability, the common

approach is to encapsulate the amount of resources left in MDP state description. As a result,

each MDP state becomes a hybrid state that consists of discrete and continuous components —

this model is referred to as continuous state MDP, or continuous resource MDP (if continuous

component values always increase/decrease). One can then use either value or policy iteration

algorithms to solve the underlying planning problems.

Many value iteration algorithms for solving continuous resource MDPs have been proposed.

The easiest (but the least efficient) method is to discretize the continuous resources after which

the continuous resource MDP becomes a standard MDP with only discrete states. Alternatively,

instead of discretizing the continuous resources, one can assume discrete probability distributions

which then discretizes the continuous resources automatically [Boyan and Littman, 2000] —

Unfortunately, either way, the discretization invalidates solution quality guarantees and results in

a combinatorial explosion of the number of states as it becomes more and more fine-grained.

To remedy the problem of combinatorial explosion of the number of states caused by dis-

cretizing the continuous resources, [Feng et al., 2004], [Liu and Koenig, 2005] and [Li and

Littman, 2005] have suggested to exploit the structure of the problem. In particular, [Feng et al.,

2004] exploits the structure of the transition and reward function to dynamically partition the

state space into regions where the value function is constant or changes at the same rate. [Li and

Littman, 2005] employs a similar principle but unlike [Feng et al., 2004], allows for continuous

transition functions. On the other hand [Liu and Koenig, 2005] considers discrete MDPs, but
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allows for continuous, one switch utility functions to model risk-sensitive planning problems.

Unfortunately, all these techniques can still be inefficient when the discrete component of states

is large, causing a combinatorial explosion of the state-space.

Several promising techniques have been proposed to alleviate the combinatorial explosion

caused by the discrete component of states. In particular, [Boutilier et al., 1995, 2000; Guestrin

et al., 2004; Dolgov and Durfee, 2006] suggests using dynamic Bayesian Networks to factor the

discrete component of the states when discrete state variables depend on each other. Modified

versions of dynamic programming that operate directly on the factored representation can then

be used to solve the underlying planning problems. More recently, [Mausam et al., 2005] have

developed a Hybrid AO∗ (HAO∗) algorithm that significantly improves the efficiency of continu-

ous resource MDP solvers. The idea in HAO∗ is to prioritize node expansion order based on the

heuristic estimate of the node value. Furthermore, HAO∗ is particularly useful when the starting

state, minimal resource consumption and resource constraints are given — HAO∗ can then prune

infeasible trajectories and reduce the number of states to be considered to find an optimal policy.

Since both DPFP and HAO∗ are the algorithms for speeding up existing continuous resource

MDP solvers, there are some apparent similarities between them. However, DPFP differs from

HAO∗ in significant ways. The most important difference is that DPFP’s forward search is con-

ducted in a dual space of cumulative distribution functions — in particular, DPFP’s key novelty is

its search of the different splittings of the cumulative distribution functions entering a particular

state (e.g. see the splitting of F((s0, s1)) in Figure 3.4). This difference leads to a novel approach

in DPFP’s allocation of effort in determining a policy — less effort is spent on regions of the

state space reachable with lower likelihood (e.g. in Figure 3.4 more effort is spent on time in-

terval [t1, t3] than on time interval [t3, t4]). While this effort allocation idea in DPFP differs from
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HAO∗’s reachability analysis, comparing the runtime efficiency of DPFP and HAO∗ remains an

exciting issue for future work. Such a comparison may potentially lead to creation of a hybrid

algorithm combining these two approaches.

On the other hand, DPFP’s idea to perform a forward search in continuous state-spaces is

similar to [Ng et al., 1999] and [Varakantham et al., 2006], but there are important differences.

In particular, [Ng et al., 1999] exploits approximate probability density propagation in context

of gradient descent algorithms for searching a space of MDP and POMDP stochastic controllers.

Furthermore, for POMDPs and Distributed POMDPs, [Varakantham et al., 2005, 2006] use La-

grangian methods to efficiently calculate the admissible probability ranges, to speed up the search

for policies. In contrast, DPFP’s tailoring to continuous resource MDPs allows it to exploit the

underlying dual space of cumulative distribution functions.

Finally, to address the problem of large runtimes common to value iteration algorithms, a

popular approach is to perform policy iteration in the space of basis functions approximating the

underlying value functions. This approach assumes that a value function has a shape that can be

closely approximated with a linear combination of parametrized basis functions [Lagoudakis and

Parr, 2003], [Hauskrecht and Kveton, 2004]. Unfortunately, the selection of the correct family of

the basis function is problematic; for example [Nikovski and Brand, 2003] uses Gaussian basis

functions to allow for efficient convolution operations, [Mahadevan and Maggioni, 2007] uses

spectral analysis to construct Proto value functions that exhibit good characteristics in spatial

graphs (assumed to be known) whereas [Petrik, 2007] uses Krylov basis functions that provide

a good approximation of the underlying discounted reward-to-go matrices. However, all these

algorithms choose their family of basis functions before the policy iteration starts which can lead

to low quality solutions returned by these algorithms.
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7.2 Multiagent Systems

Planning with resources in multiagent systems has received a lot of attention in recent years, due

to the increasing popularity of multi-agent domains that require agent coordination under resource

constraints [Raja and Lesser, 2003], [Becker et al., 2003], [Lesser et al., 2004], [Musliner et al.,

2006]. For the purpose of planning with continuous resources in such domains, one could encode

the amount of resource left in description of the state using the Decentralized Markov Decision

Processes model (DEC-MDPs) [Goldman and Zilberstein, 2003], Multi agent Team Decision

Problem with Communication model (COM-MTDP) [Pynadath and Tambe, 2002] or Partially

Observable Stochastic Games model (POSGs) [Hansen et al., 2004].

7.2.1 Globally Optimal Solutions

Unfortunately, the problem of solving DEC-MDPs, COM-MTDPs or POSGs optimally has been

proven to be NEXP-complete [Bernstein et al., 2000] and hence, more tractable subclasses of

these models have been studied extensively. One example of such subclass is the Network Dis-

tributed, Partially Observable MDP model (ND-POMDP) [Nair et al., 2005] in which the agents

are transition and observation independent, but share a joint reward structure that gives them an

incentive to act in a coordinated fashion. In order to solve ND-POMDP optimally [Varakantham

et al., 2007] suggested an efficient branch and bound technique combined with an MDP heuris-

tic that provides an upper bound on the value of a joint policy of a subgroup of agents. More

recently, [Marecki et al., 2008] proposed an algorithm (FANS) which builds on the algorithm

of [Varakantham et al., 2007]. FANS’ use of finite state machines for policy representation al-

lows for varying policy expressivity for different agents, according to their needs. That in turn
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allows FANS to scale up to domains involving double digit agent numbers and double digit time

horizons.

Another important model is the Transition Independent, Decentralized MDP (TI-DEC-MDP)

framework [Becker et al., 2003], a subclass of DEC-MDPs. In order to solve TI-DEC-MDPs op-

timally, [Becker et al., 2003] proposed an algorithm (CSA) that exploits a geometrical represen-

tation of the underlying reward structure. For two agent TI-DEC-MDPs, an even more efficient

algorithm has been identified [Petrik and Zilberstein, 2007]; the proposed algorithm casts the

planning problems as bilinear programs and then uses standard MILP toolkits to solve them opti-

mally. Finally, the assumption about transition independence of TI-DEC-MDP has been relaxed

in the Decentralized MDP with Event Driven Interactions model [Becker et al., 2004] in which

the agents are allowed to interact with each other at a fixed number of time points. Although

[Becker et al., 2004] proved that the new model can be solved optimally with a modified version

of the CSA algorithm, the runtime of the proposed algorithm has been shown to be double ex-

ponential in the number of time points at which the agents are allowed to interact. In contrast,

the CR-DEC-MDP model in this thesis allows the agents to interact at any point in time from a

continuous time interval.

7.2.2 Locally Optimal Solutions

Due to problems with the scale-up to big domains that many globally optimal algorithms face,

recent years have seen an increasing popularity of locally optimal algorithms. In particular, for

solving ND-POMDPs, [Nair et al., 2005] proposed a synergistic approach that combines the

strengths of existing distributed constraint optimization algorithms [Modi et al., 2003] with the

advantages of dynamic programming techniques, to scale up to domains with hundreds of agents.
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On the other hand, for solving Decentralized POMDPs, [Seuken and Zilberstein, 2007] proposed

to combine the standard bottom up, value iteration approach with a forward search guided by the

portfolio of heuristic, to scale up to domains with large time horizons.

In the context of Decentralized MDPs [Musliner et al., 2006] suggested to use a fast heuristic

to estimate the state value, to focus the search on the most promising parts of the state-space.

A similar idea was used in the OC-DEC-MDP algorithm [Beynier and Mouaddib, 2005, 2006]

that uses the opportunity cost to estimate the state value. The OC-DEC-MDP algorithm is par-

ticularly notable, as it has been shown to scale up to domains with hundreds of tasks and double

digit time horizons. Additionally, OC-DEC-MDP is unique in its ability to address both temporal

constraints and uncertain method execution durations, which is an important factor for real-world

domains. However, OC-DEC-MDP is still slow, because similarly to previously mentioned mod-

els, it discretizes the resource levels.

To summarize, research in developing algorithms for planning under uncertainty in multi-

agent systems has progressed rapidly in recent years. However, the vast majority of proposed

algorithms resort to discretization when dealing with continuous resources. That approach in

turn has one major drawback: The discretization process invalidates the solution quality guar-

antees established for these algorithms. To date, only [Benazera, 2007] proposed a multi-agent

framework (TI-DEC-HMDP) that allows for optimal planning with continuous resources in a

multiagent setting. However, TI-DEC-HMDP’s assumption that agents are transition indepen-

dent can be problematic in many important multiagent domains.
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Chapter 8: Conclusions

8.1 Summary

Recent advances in robotics have made aerial, underwater and terrestrial unmanned autonomous

vehicles possible. Many domains for which such unmanned vehicles are constructed are uncertain

and exhibit inherent continuous characteristics, such as time required to act or other continuous

resources at the disposal of the vehicles, e.g. battery power. Therefore, fast construction of

efficient plans for agents acting in such domains characterized by constrained and continuous

resources has been a major challenge for AI research. Such rich domains can be modeled as

Markov decision processes (MDPs) with continuous resources, that can then be solved in order

to construct optimal policies for agents acting in these domains.

This thesis addressed two major unresolved problems in continuous resource MDPs. First,

they are very difficult to solve and existing algorithms are either fast, but make additional restric-

tive assumptions about the model, or do not introduce these assumptions but are very inefficient.

Second, continuous resource MDP framework is not directly applicable to multi-agent systems

and current approaches commonly discretize resource levels or assume deterministic resource

consumption which automatically invalidates the formal solution quality guarantees. My thesis

addressed these unresolved problems in three key contributions:
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• To speed up the search for policies to continuous resource MDPs, I developed an algo-

rithm called CPH. CPH solves the planning problems at hand by first approximating with a

desired accuracy the probability distributions over the resource consumptions with phase-

type distributions, which use exponential distributions as building blocks. It then uses value

iteration to solve the resulting MDPs more efficiently then its closest competitors.

• To improve the anytime performance of CPH and other continuous resource MDP solvers

I developed DPFP, an algorithm that solves the planning problems at hand by performing

a forward search in the corresponding dual space of cumulative distribution functions. In

doing so, DPFP discriminates in its policy generation effort providing only approximate

policies for regions of the state-space reachable with low probability yet it bounds the error

that such approximation entails.

• For planning with with continuous resources in multi-agent systems a proposed a novel

framework called CR-DEC-MDP and developed two algorithms for solving CR-DEC-

MDPs: The first algorithm (VFP) emphasizes scalability. It performs a series of policy

iterations in order to quickly find a locally optimal policy. In contrast, the second algo-

rithm (M-DPFP) stresses optimality; it allows for a systematic trade-off of solution quality

for speed by using the idea of a forward search in a dual space of cumulative distribution

functions in a multi-agent setting.

The empirical evaluation of my algorithms revealed a speedup of up to three orders of magni-

tude when solving single agent planning problems and up to one order of magnitude when solving
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multi-agent planning problems. Furthermore, I demonstrated the practical use of the CPH algo-

rithm in a large-scale disaster simulation DEFACTO. In this context, CPH has contributed to a

significant improvement in the efficiency of a simulated disaster rescue operation.

8.2 Future Work

In the future one can imagine that agents will be seamlessly integrated with our society: in the

offices, in supply chains, in electronic commerce, in the gaming industry and in all our activities.

In fact, many breathtaking agent applications are just around the corner: Robotic cars could

soon drive without the human intervention; sensor networks could instantly identify and respond

to phenomena in the natural environment and software agents can help to fully automate first

responders missions.

These exciting future single and multiagent applications emphasize the research challenge of

planning with uncertainty and continuous resources, but in a very large-scale environment. In ad-

dressing these challenges I envision continuing to build on some of the basic insights developed in

my thesis: exploiting agent interaction structure and tailoring the computation to continuous vari-

ables, to fundamentally alter the complexity landscape in addressing such large-scale domains.

In the short run, my goal remains to develop new single and multiagent frameworks for rea-

soning under uncertainty that will (i) scale up the current state of the art by one order of magni-

tude, e.g. instead of the 10s of agents in agent networks to 100s of such agents and (ii) allow for

multiple depleting or replenishing continuous resources. Such reasoning is important for some of

the domains mentioned above, including mobile or stationary sensor networks.
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In the longer run, it will be crucial to develop adaptive algorithms that tailor themselves or

exploit domain structure themselves, autonomously, rather than relying on human developers’

insights. And as I pursue this research trajectory, just as I have done in my thesis work, I will

strive to balance the dual goals of developing fundamental research with grounding these ideas in

concrete domains.
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Appendix A: Phase Type Distribution

This appendix introduces the formal definition of a phase-type distribution. Let E(λ) denote an

exponential probability density function given by the formula E(λ)(t) = λe−λt where λ > 0 is

the exit rate parameter. Also, let s1, ..., sm denote the transitory states (also called phases) and

sm+1 denote the absorbing state of a Markovian process — the transitory states are not the real

states of an MDP, and they are only introduced for the purposes of phase-type approximation.

Furthermore, let −→α = (p1, ..., pm) :
∑m

i=1 pi = 1 specify the initial discrete distribution over

transitory states, i.e., a Markovian process starts in transitory state si with probability pi. Finally,

let pi, j be the probability that the process will transition from state si to state s j for a transition

whose duration follows E(λi) where λi is the exit rate associated with state si — for all i = 1, ...,m

we have
∑m

j=1 pi, j = 1 − qi where qi is the probability of transitioning to the absorbing state sm+1
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from phase si. In order to write down the formula for a phase-type distribution, the probabilities

pi, j and exit rates λi are first encoded in an infinitesimal generator matrix Q given by:

Q=



−λ1(1 − p1,1) λ1 p1,2 λ1 p1,3 . . . λ1 p1,m−1 λ1 p1,m

λ2 p2,1 −λ2(1 − p2,2) λ2 p2,3 . . . λ2 p2,m−1 λ2 p2,m

λ3 p3,1 λ3 p3,2 −λ3(1 − p3,3)
. . . λ3 p3,m−1 λ3 p3,m

. . . . . .
. . .

. . .
. . .

...

λm−1 pm−1,1 λm−1 pm−1,2 λm−1 pm−1,3
. . . −λm−1(1 − pm−1,m−1) λm−1 pm−1,m

λm pm,1 λm pm,2 λm pm,3 · · · λm pm,m−1 −λm(1 − pm,m)


(A.1)

A Phase-type distribution f (−→α,Q), which specifies the probabilities of entering the absorbing

state sm+1 over time, is then given by:

f (−→α,Q)(t) = −−→αeQt(−Q
−→
1 ) (A.2)

where
−→
1 is the unit column vector of size m. The corresponding cumulative distribution function

is then given by:

∫ t

−∞

f (−→α,Q)(t′)dt′ = 1 − −→αetQ−→1 (A.3)
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Appendix B: Classes of Phase Type Distributions

Thanks to their analytical properties, some classes of phase-type distributions have been given

particular attention. We now illustrate some of the most important classes and show their gener-

ator matrices Q.

• Exponential distribution: If m = 1, p1 = 1 and p1,1 = 0 then the phase-type distribution

f (−→α,Q) = λ1e−λ1t = E(λ1) is an exponential distribution. Here, the generator matrix Q is

simply Q = (λ1) for a given exit rate parameter λ1.

• Erlang distribution [Erlang, 1917] (also known as hyper-exponential distribution) is a

phase-type distribution determined by two parameters: the number of phases m and the

common exit rate λ. Intuitively, an m-phase Erlang distribution is a deterministic sequence

of m exponential distributions, each once sampled from E(λ). Formally, p1 = 1, pi = 0,

pi,i+1 = 1 and λi = λ for all i = 1, ...,m. The generator matrix Q for the m-phase Erlang

distribution is then the following:
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Q =



−λ λ 0 0 . . . 0 0

0 −λ λ 0 . . . 0 0

0 0 −λ λ
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

0 0 0 0
. . . −λ 0

0 0 0 0 . . . 0 −λ



(B.1)

• Generalized Erlang distribution is a generalization to the Erlang distribution that allows

the process to transition from state s1 to the absorbing state sm+1, that is, q1 ≥ 0. Formally,

p1 = 1, pi = 0, λi = λ for all i = 1, ...,m and pi,i+1 = 1 for all i = 2, ...,m. However,

p1,2 = p and p1,i = 0 for i = 2, ...,m for a given probability p ≥ 0. The generator matrix Q

for the m-phase generalized Erlang distribution is then the following:

Q =



−λ pλ 0 0 . . . 0 0

0 −λ λ 0 . . . 0 0

0 0 −λ λ
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

0 0 0 0
. . . −λ 0

0 0 0 0 . . . 0 −λ



(B.2)
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• Coxian distribution [Cox, 1955] is a further generalization of the generalized Erlang dis-

tribution that allows the process to transition from each state si to the absorbing state sm+1,

that is, qi ≥ 0 for i = 1, ...,m. Also, the transition duration distributions are allowed be be

different exponential distributions. Formally, an m-phase Coxian distribution is specified

by 2m − 1 parameters: exit rates λ1, ..., λm and probabilities pi,i+1 for i = 1, ...,m − 1. It

assumes that p1 = 1 and pi, j = 0 for all i = 1, ...,m and j ∈ {1, ...,m} \ i + 1. The generator

matrix Q for the m-phase Coxian distribution is then the following:

Q =



−λ1 p1,2λ1 0 0 . . . 0 0

0 −λ2 p2,3λ2 0 . . . 0 0

0 0 −λ3 p3,4λ3
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

0 0 0 0
. . . −λm−1 pm−1,mλm−1

0 0 0 0 . . . 0 −λm



(B.3)
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Appendix C: Fitting to Phase-Type Distributions

There are two leading approaches for determining the coefficients of the generator matrix Q when

fitting to phase-type distributions: the method of moments and the method of shapes. The method

of moments aims to approximate the first few moments of the approximated distribution with a

phase-type distribution. The nth moment of a real-valued probability density function f (x) of a

random variable X is defined as:

µn = E[Xn] =

∫ ∞

−∞

xn f (x)dx. (C.1)

In particular, the mean µ of a distribution is the first moment of this distribution, whereas the

variance σ2 of a distribution can be derived with the help of the first two moments:

σ2 = E[(X − σ1)2] = E[X2] − 2µ1E[X] + µ2
1 = µ2 − 2µ2

1 + µ2
1 = µ2 − µ

2
1. (C.2)

Although the first moment of a distribution is easily matched by the mean of this distribution,

matching subsequent moments is a non-trivial task. In particular, for a squared coefficient of

variation defined as cv2 := σ2/µ, we match the first two moments of a distribution depending on

the value of cv2. If cv2 < 1 we use the n-phase generalized Erlang distribution with n = d1/(cv2)e,
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λ = (1− p + np)/µ1 and p = 1− (2n · cv2 + n− 2−
√

n2 + 4 − 4n · cv2)/(2(n− 1)(cv2 + 1)) [Sauer

and Chandy, 1975; Marie, 1980]. If, on the other hand, cv2 ≥ 1/2 we use a 2-phase Coxian

distribution with λ1 = 2/µ1, λ2 = 1/(µ1 · cv2) and p = 1/(2 · cv2) [Marie, 1980]. Depending on

the values of cv2 and µ3, there are also several approaches for matching the first three moments

of a distribution [Johnson, 1990; Telek and Heindl, 2002; Osogami and Harchol-Balter, 2003].

Matching the first few moments of an initial distribution does not necessary lead to a good

approximation. For example, if a distribution is multi-modal and we match its two first moments,

i.e., its mean and standard deviation, then the obtained approximation is still single-modal. In

situation like these, it is better to approximate directly the shape of the initial distribution, by

minimizing the distance between the initial distribution and its approximation. A common metric

for determining the distance between two distributions f and g is the Kullback-Leibler divergence

(KL-divergence) proposed in [Kullback and Leibler, 1951]. For two probability density functions

f and g, their KL-divergence DKL( f ||g) is defined as:

DKL( f ||g) =

∫ ∞

−∞

f (x) log
f (x)
g(x)

dx. (C.3)

The leading algorithms that approximate the initial distribution by minimizing the KL diver-

gence are the EM (Expectation-Maximization) algorithm [Dempster et al., 1977] and the max-

imum likelihood estimation algorithm [Bobbio and Cumani, 1992]. Both algorithms take as an

input the desired number of phases used by the phase-type distribution as well as the desired

structure of the phase-type distribution (e.g. Erlang, Coxian, etc.). In my implementation of CPH

I have used the EM algorithm, thanks to its superior convergence properties [Asmussen et al.,

1996].
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Appendix D: Uniformization of Phase Type Distributions

As shown in Equation A.3, a phase-type distribution in uniquely specified by its generator matrix

Q. This matrix, in its most general form, does not make any assumption about the exit rate

parameters λi which may be arbitrary. However, for many analytical operations, such as the ones

performed by CPH, it is required that these exit rates are uniform, that is, λ1 = ... = λm = λ. We

now show a technique, called uniformization [Puterman, 1994], which transforms an arbitrary

phase-type distribution to a phase-type distribution with uniform exit rates, that is, λ1 = ... =

λm = maxi=1,...,m λi = λ.

For each row j of the generator matrix Q let k j := (maxi=1,...,m λi)/λ j. Observe, that the

generator matrix Q shown in Equation A.1 can also be written as:

Q =



−(λ1k1)(1 − k1−1+p1,1
k1

) (λ1k1) p1,2
k1

. . . (λ1k1) p1,m
k1

(λ2k2) p2,1
k2

−(λ2k2)(1 − k2−1+p2,2
k2

)
. . . (λ2k2) p2,m

k2

(λ3k3) p3,1
k3

(λ3k3) p3,2
k3

. . . (λ3k3) p3,m
k3

. . . . . .
. . .

...

(λm−1km−1) pm−1,1
km−1

(λm−1km−1) pm−1,2
km−1

. . . (λm−1km−1) pm−1,m
km−1

(λmkm) pm,1
km

(λmkm) pm,2
km

· · · −(λmkm)(1 − km−1+pm,m
km

)



(D.1)

167



Or simply as:

Q =



−λ′1(1 − p′1,1) λ′1 p′1,2 . . . λ′1 p′1,m

λ′2 p′2,1 −λ′2(1 − p′2,2)
. . . λ′2 p′2,m

λ′3 p′3,1 λ′3 p′3,2
. . . λ′3 p′3,m

. . . . . .
. . .

...

λ′m−1 p′m−1,1 λ′m−1 p′m−1,2
. . . λ′m−1 p′m−1,m

λ′m p′m,1 λ′m p′m,2 · · · −λ′m(1 − p′m,m)



(D.2)

where λ′i := λiki, p′i, j := pi, j
ki

for i , j and p′i,i := ki−1+pi,i
ki

are exit rates and state-to-state

transition probabilities of a new phase-type distribution f (α,Q). Note that the new phase-type

distribution has λ′i = maxi=1,...,m λi = λ for all i = 1, ...,m and thus, the new phase-type distribution

is uniformized.
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