
Solving Multiagent Networks using Distributed Constraint Optimization

Jonathan P. Pearce, Milind Tambe
Computer Science Dept.

University of Southern California
Los Angeles, CA 90089

{jppearce,tambe}@usc.edu

Rajiv Maheswaran
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

maheswar@isi.edu

Abstract

In many cooperative multiagent domains, the effect of local
interactions between agents can be compactly represented as
a network structure. Given that agents are spread across such
a network, agents directly interact only with a small group
of neighbors. A distributed constraint optimization problem
(DCOP) is a useful framework to reason about such networks
of agents. Given agents’ inability to communicate and col-
laborate in large groups in such networks, we focus on an
approach calledk-optimalityfor solving DCOPs. In this ap-
proach, agents form groups of one or more agents until no
group ofk or fewer agents can possibly improve the DCOP
solution; we define this type of local optimum, and any algo-
rithm guaranteed to reach such a local optimum, ask-optimal.
The article provides an overview of three key results related
to k-optimality. The first set of results are worst-case guar-
antees on the solution quality ofk-optima in a DCOP. These
guarantees can help determine an appropriatek-optimal algo-
rithm, or possibly an appropriate constraint graph structure,
for agents to use in situations where the cost of coordination
between agents must be weighed against the quality of the
solution reached. The second set of results are upper bounds
on the number ofk-optima that can exist in a DCOP. These
results are useful in domains where a DCOP must generate a
set of solutions rather than single solution. Finally, we sketch
algorithms fork-optimality and provide some experimental
results for 1-, 2- and 3-optimal algorithms for several types
of DCOPs.

Introduction
In many multi-agent domains, including sensor networks,
teams of unmanned air vehicles, or teams of personal assis-
tant agents, a set of agents chooses a joint action as a com-
bination of individual actions. Often, the locality of agents’
interactions means that the utility generated by each agent’s
action depends only on the actions of a subset of the other
agents. In this case, the outcomes of possible joint actions
can be compactly represented by graphical models, such as
a distributed constraint optimization problem (DCOP)(Modi
et al. 2005; Mailler & Lesser 2004) for cooperative domains
or by a graphical game (Kearns, Littman, & Singh 2001;
Vickrey & Koller 2002) for noncooperative domains. Each
of these models can take the form of a graph in which each

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

node is an agent and each (hyper)edge denotes a subset of lo-
cally interacting agents. In particular, associated with each
such hyperedge is a reward matrix that indicates the costs
or rewards incurred due to the joint action of the subset of
agents involved, either to the agent team (in DCOPs) or to
individual agents (in graphical games).1 Local interaction is
a key property captured in such graphs; not all agents inter-
act with all other agents. This article focuses on the team set-
ting, using DCOP, whose applications include multi-agent
plan coordination (Cox, Durfee, & Bartold 2005), sensor
networks (Zhanget al. 2003), meeting scheduling (Petcu
& Faltings 2005) and RoboCup soccer (Vlassis, Elhorst, &
Kok 2004).

Traditionally, researchers have focused on obtaining a sin-
gle, globally optimal solution to DCOPs, introducing com-
plete algorithms such as Adopt (Modiet al. 2005), Op-
tAPO (Mailler & Lesser 2004), and DPOP (Petcu & Falt-
ings 2005). However, because DCOP is NP-hard(Modiet al.
2005), as the scale of these domains become large, current
complete algorithms can incur large computation or com-
munication costs. For example, a large-scale network of
personal assistant agents might require global optimization
over hundreds of agents and thousands of variables. How-
ever, incomplete algorithms — in which agents form small
groups and optimize within these groups — can lead to a
system that scales up easily and is more robust to dynamic
environments. In existing incomplete algorithms, such as
DSA (Fitzpatrick & Meertens 2003) and DBA (Yokoo &
Hirayama 1996; Zhanget al. 2003), agents are bounded
in their ability to aggregate information about one another’s
constraints; in these algorithms, each individual agent opti-
mizes based on its individual constraints, given the actions
of all its neighbors, until a local optimum is reached where
no single agent can improve the overall solution. Unfortu-
nately, no guarantees on solution quality currently exist for
these types of local optima.

This article presents an overview of a generalization
of such incomplete algorithms via an approach calledk-
optimality. The key idea is that agents within small DCOP
subgraphs optimize such that no group ofk or fewer agents

1Here, costs refer to negative real numbers and rewards refer to
positive real numbers to reflect intuition; we could use either costs
or rewards exclusively if we assume they can span all real numbers.

can possibly improve the solution; we define this type of lo-
cal optimum as ak-optimum. (Note that we do not require
completely connected DCOP subgraphs for k-optimality.)
According to this definition of k-optimality, for a DCOP
with n agents, DSA and DBA are 1-optimal, while all com-
plete algorithms aren-optimal. Here, we focus onk-optima
andk-optimal algorithms for1 < k < n. Thek-optimality
concept provides an algorithm-independent classification for
local optima in a DCOP that allows for quality guarantees.

In addition to the introduction ofk-optimality itself, the
article presents an overview of three sets of results about
k-optimality. The first set of results are worst-case guaran-
tees on the solution quality ofk-optima in a DCOP. These
guarantees can help determine an appropriatek-optimal al-
gorithm, or possibly an appropriate constraint graph struc-
ture, for agents to use in situations where the cost of coordi-
nation between agents must be weighed against the quality
of the solution reached. If increasing the value ofk will pro-
vide a large increase in guaranteed solution quality, it may
be worth the extra computation or communication required
to reach a higherk-optimal solution.

As an example of the use of these worst-case bounds, con-
sider a team of mobile sensors that must quickly choose a
joint action in order to observe some transitory phenomenon.
This problem can be represented as a DCOP graph, where
constraints exist between nearby sensors, and there are no
constraints between far-away sensors. In particular, the
combination of individual actions by nearby sensors may
generate costs or rewards to the team, and the overall util-
ity of the joint action is determined by the sum of these
costs and rewards. Given such a large-sized DCOP graph,
and time-limits to solve it, an incomplete,k-optimal algo-
rithm, rather than a complete algorithm, must be used to
find a solution. However, what is the right level of “k” in
this k-optimal algorithm? Answering this question is further
complicated because the actual DCOP rewards may not be
known until the sensors are deployed. In this case, worst-
case quality guarantees fork-optimal solutions for a given
k, that are independent of the actual costs and rewards in the
DCOP, are useful to help decide which k-optimal algorithm
to use. Alternatively, the guarantees can help to choose be-
tween different sensor formations, i.e., different constraint
graphs.

The second set of results are upper bounds on the num-
ber ofk-optima that can exist in a DCOP. These results are
valuable in domains where we need the DCOP to generates
a set of k-optimal assignments, i.e., multiple assignments
to the same DCOP. Generating sets of assignments is use-
ful in domains such as disaster rescue (to provide multiple
rescue options to a human commander) (Schurret al. 2005)
or patrolling (to execute multiple patrols in the same area)
(Ruanet al. 2005) and others. Given that we need a set
of assignments, the upper bounds are useful given two key
features of the domains of interest. First, eachk-optimum
in the set consumes some resources that must be allocated
in advance. Such resource consumption arises because: (i)
a team actually executes eachk-optimum in the set, or (ii)
the k-optimal set is presented to a human user (or another
agent) as a list of options to choose from, requiring time. In

each case, resources are consumed based on thek-optimal
set size. Second, while the existence of the constraints be-
tween agents is knowna priori, the actual rewards and costs
on the constraints depend on conditions that are not known
until runtime, and so resources must be allocated before the
rewards and costs are known and before the agents generate
thek-optimal set.

To understand the utility of these upper bounds, consider
another domain involving a team of disaster rescue agents
that must generate a set ofk-optimal joint actions. This set
is to be presented as a set of diverse options to a human
commander, so the commander can choose one joint action
for the team to actually execute. Constraints exist between
agents whose actions must be coordinated (i.e., members
of subteams) but their costs and rewards depend on condi-
tions on the ground that are unknown until the time when
the agents must be deployed. Here, the resource is the time
available to the commander to make the decision, and exam-
ination of each option consumes this resource. Thus, pre-
senting too many options will cause the commander to run
out of time before considering them all, but presenting too
few may cause high-quality options to be omitted. Knowing
the maximal number ofk-optimal joint actions that could
exist for a given DCOP allows us to choose the right level
of k given the amount of time available or allocate sufficient
resources (time) for a given level ofk.

The third result is a set of 2- and 3-optimal algorithms and
an experimental analysis of the performance of 1-, 2- and 3-
optimal algorithms on several types of DCOPs. Although
we now have theoretical lower bounds on solution quality
of k-optima, experimental results are useful to understand
average-case performance on common DCOP problems.

DCOP
A Distributed Constraint Optimization Problem (DCOP)
consists of a set of variables, each assigned to an agent which
must assign a value to the variable; these values correspond
to individual actions that can be taken by the agents. Con-
straints exist between subsets of these variables that deter-
mine costs and rewards to the agent team based on the com-
binations of values chosen by their respective agents. Be-
cause in this article we assume each agent controls a single
variable, we will use the terms “agent” and “variable” inter-
changeably.

Formally, a DCOP is a set of variables (one per agent)
N := {1, . . . , n} and a set of domainsA := {A1, . . . ,An},
where theith variable takes valueai ∈ Ai. We denote the
joint action (or assignment) of a subgroup of agentsS ⊂ N
by aS and the joint action of the multi-agent team bya =
[a1 · · · an].

Valued constraints exist on various minimal subsetsS ⊂
N of these variables. A constraint onS is expressed as a
reward functionRS(aS). This function represents the re-
ward to the team generated by the constraint onS when the
agents take assignmentaS . By minimality of S, we mean
that the reward obtained by that subset of agents,RS , can-
not be decomposed further through addition. We will refer
to these subsetsS as “constraints” and the functionsRS(·)
as “constraint reward functions.” The cardinality ofS is also

1 2 3

R
23

R
12

501

0100

10

1101

0200

10

Figure 1: DCOP example

referred to as the arity of the constraint. Thus, for example,
if the maximum cardinality is ofS is two, the DCOP is a
binary DCOP. The solution quality for a particular complete
assignmenta, R(a), is the sum of the rewards for that as-
signment from all constraints (captured in the set denoted
by θ) in the DCOP.

Example 1 Figure 1 shows a binary DCOP in which agents
choose actions from the domain{0, 1}, with rewards shown
for the two constraintsS1,2 = {1, 2} and S2,3 = {2, 3}.
Thus for example, if agent2 chooses action0, and agent3
chooses action0, the team gets a reward of20.

As discussed earlier, several algorithms exist for solv-
ing DCOPs: complete algorithms, which are guaranteed
to reach a globally optimal solution, and incomplete algo-
rithms, which reach a local optimum, and do not provide
guarantees on solution quality. These algorithms differ in
the numbers and sizes of messages that are communicated
among agents. In this article, we providek-optimality as
an algorithm-independent classification of local optima, and
show how their solution quality can be guaranteed.

k-Optimality
Before formally introducing the concept ofk-optimality, we
must define the following terms. For two assignments,a and
ã, the deviating group, D(a, ã) is the set of agents whose
actions in assignment̃a differ from their actions ina. For
example, in Figure 1, given an assignment[1 1 1] (agents
1, 2 and 3 all choose action 1) and an assignment[0 1 0],
the deviating group D([1 1 1], [0 1 0]) = {1, 3}. The dis-
tancebetween two assignments,d(a, ã) is the cardinality of
the deviating group, i.e., the number of agents with differ-
ent actions. Therelative rewardof an assignmenta with
respect to another assignmentã is ∆(a, ã) := R(a)−R(ã).
We classify an assignmenta as ak-optimal assignmentor
k-optimumif

∆(a, ã) ≥ 0 ∀ã such that d(a, ã) ≤ k.

That is,a has a higher or equal reward to any assignment a
distance ofk or less froma. Equivalently, if the set of agents
have reached ak-optimum, then no subgroup of cardinality
k or less can improve the overall reward by choosing dif-
ferent actions; every such subgroup is acting optimally with
respect to its context. LetAq(n, k) be the set of allk-optima
for a team ofn agents with domains of cardinalityq. It is
straightforward to showAq(n, k + 1) ⊆ Aq(n, k): all k + 1
optimal solutions are alsok-optimal.

If no ties occur between the rewards of DCOP assign-
ments that are a distance ofk or less apart, then a collection
of k-optima must be mutually separated by a distance of at

leastk + 1 as they each have the highest reward within a
radius ofk. Thus, if no ties occur, higherk implies that the
k-optima are farther apart, and eachk-optima has a higher
reward than a larger proportion of assignments. (This as-
sumption of no ties will be exploited only in our results re-
lated to upper bounds in this article.)

For illustration, let us go back to Figure 1. The assign-
menta = [1 1 1] (with a total reward of 16) is1-optimal
because any single agent that deviates reduces the team re-
ward. For example, if agent 1 changes its action from 1 to
0, the reward onS1,2 decreases from 5 to 0 (and hence the
team reward from 16 to 11). If agent 2 changes its action
from 1 to 0, the rewards onS1,2 andS2,3 decrease from 5
to 0 and from 11 to 0, respectively. If agent 3 changes its
action from 1 to 0, the reward onS2,3 decreases from 11 to
0. However,[1 1 1] is not 2-optimal because if the group
{2, 3} deviated, making the assignmentã = [1 0 0], team
reward would increase from 16 to 20. The globally optimal
solution,a∗ = [0 0 0], with a total reward of 30, isk-optimal
for all k ∈ {1, 2, 3}.

Properties ofk-Optimal DCOP Solutions
We now show, in an experiment, the advantages ofk-optimal
assignment sets as capturing both diversity and high reward
compared with assignment sets chosen by other metrics. Di-
versity is important in domains where manyk-optimal as-
signments are presented as choices to a human or the agents
must execute multiple assignments from their set of assign-
ments. In either case, it is important that all these assign-
ments are not essentially the same with very minor discrep-
ancies either to provide a useful choice or to ensure that the
agents actions cover different parts of the solution space.

This illustrative experiment is based on a patrolling do-
main. In particular, domains requiring repeated patrols in
an area by a team of UAVs (unmanned air vehicles), UGVs
(unmanned ground vehicles), or robots, for peacekeeping or
law enforcement after a disaster, provide one key illustra-
tion of the utility of k-optimality. Thus, given a team of
patrol robots in charge of executing multiple joint patrols in
an area as in (Ruanet al. 2005), each robot may be assigned
a region within the area. Each robot is controlled by a sin-
gle agent, and hence, for one joint patrol, each agent must
choose one of several possible routes to patrol within its re-
gion. A joint patrol is an assignment, where each agent’s ac-
tion is the route it has chosen to patrol, and rewards and costs
arise from the combination of routes patrolled by agents in
adjacent or overlapping regions. For example, if two nearby
agents choose routes that largely overlap on a low-activity
street, the constraint between those agents would incur a
cost, while routes that overlap on a high-activity street would
generate a reward. Agents in distant regions would not share
a constraint.

Given such a patrolling domain, the lower half of Fig-
ure 2(a) shows a DCOP graph representing a team of 10 pa-
trol robots, each of whom must choose one of two routes to
patrol in its region. The nodes are agents and the edges rep-
resent binary constraints between agents assigned to over-
lapping regions. The actions (i.e., the chosen routes) of these
agents combine to produce a cost or reward to the team. For

(a)

 1-optima
 reward only

 dist. of 2

avg.
reward

avg. min.
distance

(b) (c)

.850

.950

.037

2.25
1.21
2.00

 1-optima
 reward only

 dist. of 2

avg.
reward

avg. min.
distance

.809

.930
-.101

2.39
1.00
2.00

 1-optima
 reward only

 dist. of 2

avg.
reward

avg. min.
distance

.832

.911

.033

2.63
1.21
2.00

Figure 2: 1-optima vs. assignment sets chosen using other
metrics

each of 20 runs, the edges were initialized with rewards from
a uniform random distribution. The set of all 1-optima was
enumerated. Then, for the same DCOP, we used two other
metrics to produce equal-sized sets of assignments. For one
metric, the assignments with highest reward were included
in the set, and for the next metric, assignments were included
in the set by the following method, which selects assign-
ments purely based on diversity (expressed as distance). We
repeatedly cycled through all possible assignments in lexi-
cographic order, and included an assignment in the set if the
distance between it and every assignment already in the set
was not less than a specified distance; in this case 2. The
average reward and the diversity (expressed as the minimum
distance between any pair of assignments in the set) for the
sets chosen using each of the three metrics over all 20 runs
is shown in the upper half of Figure 2(a). While the sets of
1-optima come close to the reward level of the sets chosen
purely according to reward, they are clearly more diverse (t-
tests significance within .0001%). If a minimum distance
of 2 is required in order to guarantee diversity, then using
reward alone as a metric is insufficient; in fact the assign-
ment sets generated using that metric had an average min-
imum distance of 1.21, compared with 2.25 for 1-optimal
assignment sets (which guarantee a minimum distance of
k + 1 = 2). The 1-optimal assignment set also provides
significantly higher average reward than the sets chosen to
maintain a given minimum distance, which had an average
reward of 0.037 (t-test significance within .0001%.). Simi-
lar results with equal significance were observed for the 10-
agent graph in Figure 2(b) and the nine-agent graph in Fig-
ure 2(c). Note also that this experiment usedk = 1, the low-
est possiblek. Increasingk would, by definition, increase
the diversity of thek-optimal assignment set as well as the
neighborhood size for which each assignment is optimal.

In addition to categorizing local optima in a DCOP,k-
optimality provides a natural classification for DCOP algo-
rithms. Many known algorithms are guaranteed to converge
to k-optima fork = 1, including DBA (Zhanget al. 2003),
DSA (Fitzpatrick & Meertens 2003), and coordinate ascent
(Vlassis, Elhorst, & Kok 2004). Complete algorithms such
as (Modiet al. 2005), OptAPO (Mailler & Lesser 2004) and
DPOP (Petcu & Faltings 2005) arek-optimal fork = n.

Lower Bounds on Solution Quality
In this section we introduce the first known guaranteed lower
bounds on the solution quality ofk-optimal DCOP assign-
ments. These guarantees can help determine an appropriate
k-optimal algorithm, or possibly an appropriate constraint

graph structure, for agents to use in situations where the cost
of coordination between agents must be weighed against the
quality of the solution reached. If increasing the value of
k will provide a large increase in guaranteed solution qual-
ity, it may be worth the extra computation or communica-
tion required to reach a higherk-optimal solution. For ex-
ample, consider a team of mobile sensors mentioned earlier
that must quickly choose a joint action in order to observe
some transitory phenomenon. While we wish to use a DCOP
formalism to solve this problem, and utilize ak-optimal al-
gorithm, exactly what level ofk to use remains unclear. In
attempting to address this problem, we also assume the ac-
tual costs and rewards on the DCOP are not knowna pri-
ori (otherwise the DCOP could be solved centrally ahead of
time; or allk-optima could be found by brute force, with the
lowest-qualityk-optimum providing an exact guarantee for
a particular problem instance).

In cases such as these, worst-case quality guarantees for
k-optimal solutions for a givenk, that are independent of
the actual costs and rewards in the DCOP, are useful to de-
cide which algorithm (level ofk) to use. Alternatively, these
guarantees can help to choose between different constraint
graphs, e.g. different sensor network formations. To this
end, this section provides reward-independent guarantees on
solution quality for anyk-optimal DCOP assignment. We
provide a guarantee for ak-optimal solution as a fraction of
the reward of the optimal solution, assuming that all rewards
in the DCOP are non-negative (the reward structure of any
DCOP can be transformed to meet this condition if no re-
wards of negative infinite exist).

Proposition 1 For any DCOP ofn agents, with maximum
constraint arity ofm, where all constraint rewards are non-
negative, and wherea∗ is the globally optimal solution, then,
for anyk-optimal assignment,a, whereR(a) < R(a∗) and

m ≤ k < n, we haveR(a) ≥ (n−m
k−m)

(n
k)−(n−m

k)R(a∗).

Given ourk-optimal assignmenta and the global opti-
mal a∗, the key to proving this proposition is to define a set
Âa,k that contains all assignmentsâ where exactlyk vari-
ables have deviated from their values ina, and these vari-
ables are taking the same values that they take ina∗. This
set allows us to express the relationship betweenR(a) and
R(a∗). While a detailed proof of this proposition appears in
(Pearce & Tambe 2007), we provide an example providing
an intuitive sense for this result.

Consider a DCOP with five variables numbered 1 to 5,
with domains of{0,1}. Suppose that this DCOP is a fully
connected binary DCOP with constraints between every pair
of variables (i.e.,|S| = 2 for all RS). Suppose thata =
[0 0 0 0 0] is a 3-optimum, and thata∗ = [1 1 1 1 1] is the
global optimum. Thend(a, a∗) = 5. We now consider the
setÂa,k discussed above (k = 3, in this example). We can
show thatÂa,k contains

(
d(a,a∗)

k

)
= 10 assignments, listed

below:
[1 1 1 0 0], [1 1 0 1 0], [1 1 0 0 1], [1 0 1 1 0], [1 0 1 0 1],
[1 0 0 1 1], [0 1 1 1 0], [0 1 1 0 1], [0 1 0 1 1], [0 0 1 1 1].

These are all the assignments that deviate froma by 3
actions and take the value from the optimal solution in

those deviations. We can now use this setÂa,k to ex-
pressR(a) in terms ofR(a∗). We begin by noting that
R(a) ≥ R(â),∀â ∈ Âa,k, becausea is a 3-optimum. Then,
by adding this over all the assignments in̂Aa,k we get:
10 ·R(a) ≥

∑
Âa,k R(â).

We can then engage in a counting exercise by types of
constraints. For example, forS = {1, 2}, a∗1 = â1 = 1
anda∗2 = â2 = 1 for â = [1 1 1 0 0], [1 1 0 1 0], and
[1 1 0 0 1]. Here we are counting the number of assign-
ments where for a given constraint, all values are the same
as the optimal assignment. We can also count how often for
a given constraint, all values are the same as thek-optimal
assignment. For example, forS = {1, 2}, a1 = â1 = 0
anda2 = â2 = 0 only for â = [0 0 1 1 1]. By doing this
counting over all the constraints, we can bound the sum of
rewards of the assignments in̂Aa,k in terms of the rewards
R(a∗) andR(a). For our example, we can obtain a bound
that states10 ·R(a) ≥

∑
Âa,k R(â) ≥ 3 ·R(a∗) + 1 ·R(a),

and henceR(a) ≥ 3
10−1R(a∗) = 1

3R(a∗). By solving for
R(a), we get the bound in the proposition.�

Graph-Based Quality Guarantees
The guarantee fork-optima in the previous section applies
to all possible DCOP graph structures. However, knowledge
of the structure of constraint graphs can be used to obtain
tighter guarantees. If the graph structure of the DCOP is
known, we can exploit it by refining our definition of̂Aa,k.

In the previous section, we defined̂Aa,k as all assignments
â that have a distance ofk from a k-optimal assignmenta
where the values of the deviating variables take on those
from the optimal solutiona∗. If the graph is known, let
Âa,k contain all possible deviations ofk connected agents
rather than all possible deviations ofk agents. With this re-
finement, we can produce tighter guarantees fork-optima in
sparse graphs.

To illustrate graph-based bounds, let us consider binary
DCOPs where all constraint rewards are non-negative anda∗

is the globally optimal solution. For ring graphs (where each
variable has two constraints), we haveR(a) ≥ k−1

k+1R(a∗).
For star graphs (each variable has one constraint except
the central variable, which hasn − 1), we haveR(a) ≥
k−1
n−1R(a∗). These are provable tight guarantees.

Finally, bounds for DCOPs with arbitrary graphs and non-
negative constraint rewards can be found using a linear-
fractional program (LFP)(Pearce & Tambe 2007). A linear-
fractional program consists of a set of variables, an objec-
tive function of these variables to be maximized or (in this
case) minimized, and a set of equations or inequalities rep-
resenting constraints on these variables. It is important to
distinguish between the variables and constraints in the LFP
and the variables and constraints in the DCOP. In our LFP,
we have two variables for each constraintS in the DCOP
graph. The first variable, denoted asRS(a∗), represents the
reward that occurs onS in the globally optimal solutiona∗.
The other,RS(a), represents the reward that occurs onS in
a k-optimal solutiona. The objective is to find a complete
set of rewards that minimizes our objective function:

R(a)
R(a∗)

=
∑

S∈θ RS(a)∑
S∈θ RS(a∗)

(1)

In other words, we want to find the set of rewards that will
bring about the worst possiblek-optimal solution to get our
lower bound.

We minimize this objective function subject to a set of
constraints that ensure thata is in factk-optimal. We have
one constraint in the LFP for every assignmentã in the
DCOP such that: (i)all variables iña take only values that
appear in eithera or a∗ (ii)the distance betweena and ã is
less than or equal tok. These constraints are of the form
R(a) − R(ã) ≥ 0 for every possiblẽa. The first condition
ensuresR(a) and R(ã) can be expressed in terms of our
variablesRS(a) andRS(a∗). The second condition ensures
thata will be k-optimal.

LFPs have been shown to be reducible to standard Linear
Programs (LPs) (Boyd & Vandenberghe 2004). This method
gives a tight bound for any graph, but requires a globally op-
timal solution to the resulting LP, in contrast to the constant-
time guarantees of the bounds for the fully-connected, ring
and star graphs.

Experimental Results for Lower Bounds
While we have so far focused on theoretical guarantees for
k-optima, this section provides an illustration of these guar-
antees in action, and how they are affected by constraint
graph structure. Figures 3a, 3b, and 3c show quality guar-
antees for binary DCOPs with fully connected graphs, ring
graphs, and star graphs, calculated directly from the bounds
discussed earlier.

Figure 3d shows quality guarantees for DCOPs whose
graphs are binary trees, obtained using the LFP mentioned
in the previous section. Constructing these LFPs and solv-
ing them optimally with LINGO 8.0 global solver took about
two minutes on a 3 GHz Pentium IV with 1GB RAM.

Figure 3: Quality guarantees fork-optima with respect to
the global optimum for DCOPs of various graph structures.

For each of the graphs, thex-axis plots the value cho-
sen fork, and they-axis plots the lower bound fork-optima
as a percentage of the optimal solution quality for systems
of 5, 10, 15, and 20 agents. These results show how the
worst-case benefit of increasingk varies depending on graph
structure. For example, in a five-agent DCOP, a 3-optimum
is guaranteed to be 50% of optimal whether the graph is a
star or a ring. However, moving tok = 4 means that worst-
case solution quality will improve to 75% for a star, but only
to 60% for a ring. For fully connected graphs, the benefit
of increasingk goes up ask increases; whereas for stars it
stays constant, and for chains it decreases, except for when
k = n. Results for binary trees are mixed.

Upper Bounds on the Number ofk-Optima
Traditionally, researchers have focused on obtaining a single
DCOP solution, expressed as a single assignment of actions
to agents. However, in this section, we consider a multi-
agent system that generates asetof k-optimal assignments,
i.e., multiple assignments to the same DCOP. Generating
sets of assignments is useful in domains such as disaster
rescue (to provide multiple rescue options to a human com-
mander) (Schurret al. 2005), patrolling (to execute multiple
patrols in the same area) (Ruanet al. 2005), training sim-
ulations (to provide several options to a student) and oth-
ers (Tate, Dalton, & Levine 1998). As discussed earlier in
the context of the patrolling domain, when generating such
a set of assignments, use of rewards alone leads to some-
what repetitive and predictable solutions (patrols). Picking
diverse joint patrols at random on the other hand leads to
low-quality solutions. Usingk-optimality directly addresses
such circumstances; if no ties exist between the rewards of
patrols a distancek or fewer apart,k-optimality ensures that
all joint patrols differ by at leastk + 1 agents’ actions, as
well as ensuring that this diversity would not come at the
expense of obviously bad joint patrols, as each is optimal
within a radius of at leastk agents’ actions.

Our key contribution in this section is addressing effi-
cient resource allocation for the multiple assignments in a
k-optimal set, by defining tight upper bounds on the number
of k-optimal assignments that can exist for a given DCOP.
These bounds are necessitated by two key features of the
typical domains where ak-optimal set is applicable. First,
each assignment in the set consumes some resources that
must be allocated in advance. Such resource consumption
arises because: (i) a team actually executes each assignment
in the set, as in our patrolling example above, or (ii) the as-
signment set is presented to a human user (or another agent)
as a list of options to choose from, requiring time. In each
case, resources are consumed based on the assignment set
size. Second, while the existence of the constraints between
agents is knowna priori, the actual rewards and costs on the
constraints depend on conditions that are not known until
runtime, and so resources must be allocated before the re-
wards and costs are known and before the agents generate
thek-optimal assignment set. In the patrolling domain, con-
straints are known to exist between patrol robots assigned to
adjacent or overlapping regions. However, their costs and
rewards depend on recent field reports of adversarial activ-

ity that are not known until the robots are deployed. At this
point the robots must already be fueled in order for them
to immediately generate and execute a set ofk-optimal pa-
trols. The resource to be allocated to the robots is the amount
of fuel required to execute each patrol; thus it is critical to
ensure that enough fuel is given to each robot so that each
assignment found can be executed, without burdening the
robots with wasted fuel that will go unused. Recall the other
domain mentioned earlier of a team of disaster rescue agents
that must generate a set ofk-optimal assignments in order to
present a set of diverse options to a human commander. Up-
per bounds were useful in this domain to choose the right
level of k. Choosing the wrongk would result in possibly
presenting too many options, causing the commander to run
out of time before considering them all, or presenting too
few (causing high-quality options to be omitted).

Thus, because each assignment consumes resources, it is
useful to know the maximal number ofk-optimal assign-
ments that could exist for a given DCOP. Unfortunately, we
cannot predict this number because the costs and rewards
for the DCOP are not known in advance. Despite this uncer-
tainty, reward-independent bounds can be obtained on the
size of ak-optimal assignment set, i.e., to safely allocate
enough resources for a given value ofk for any DCOP with
a particular graph structure. In addition to their uses in re-
source allocation, these bounds also provide insight into the
problem landscapes.

From Coding Theory to Upper Bounds

To find the first upper bounds on the number ofk-optima
(i.e. on|Aq(n, k)|) for a given DCOP graph, we discovered a
correspondence to coding theory (Ling & Xing 2004), yield-
ing bounds independent of both reward and graph structure.
In the next section, we provide a method to use the struc-
ture of the DCOP graph (or hypergraph of arbitrary arity) to
obtain significantly tighter bounds.

In error-correcting codes, a set of codewords must be cho-
sen from the space of all possible words, where each word
is a string of characters from an alphabet. All codewords are
sufficiently different from one another so that transmission
errors will not cause one to be confused for another. Finding
the maximum possible number ofk-optima can be mapped
to finding the maximum number of codewords in a space
of qn words where the minimum distance between any two
codewords isd = k + 1. We can map DCOP assignments
to words andk-optima to codewords as follows: an assign-
menta taken byn agents each with a domain of cardinality
q is analogous to a word of lengthn from an alphabet of
cardinalityq. The distanced(a, ã) can then be interpreted
as a Hamming distance between two words. Then, ifa is
k-optimal, andd(a, ã) ≤ k, thenã cannot also bek-optimal
by definition. Thus, any twok-optima must be separated by
distance≥ k + 1. (In this section, we assume no ties in
k-optima).

Three well-known bounds on codewords are the Ham-
ming, Singleton and Plotkin bounds (Ling & Xing 2004).
We will refer to βHSP is the best of these (graph-
independent) bounds.

Graph-Based Upper Bounds
The βHSP bound depend only on the number of agentsn,
the degree of optimalityk and the number of actions avail-
able to each agentq. It ignores the graph structure and thus
how the team reward is decomposed onto constraints, i.e.
the bounds are the same for all possible sets of constraintsθ.
For instance, the bound on 1-optima for Example 1 accord-
ing to βHSP is 4, and it ignores the fact that agents1 and
3 do not share a constraint, and yields the same result inde-
pendent of the DCOP graph structure. However, exploiting
this structure (as captured byθ) can significantly tighten the
bounds on the number ofk-optimal solution that could ex-
ist. In particular, when obtaining the bounds in the previous
section, pairs of assignments were mutually exclusive ask-
optima (only one of the two could bek-optimal) if they were
separated by a distance≤ k. We now show how some as-
signments separated by a distance≥ k + 1 must also be
mutually exclusive ask-optima.

If we let G be some subgroup of agents, then letDG(a, ã)
be the set of agents within the subgroupG who have chosen
different actions betweena and ã. Let V (G) be the set of
agents (including those inG) who are a member of some
constraintS ∈ θ incident on a member ofG (e.g.,G and
the agents who share a constraint with some member ofG).
Then,V (G)C is the set of all agents whose contribution to
the team reward is independent of the values taken byG.

Proposition 2 Let there be an assignmenta∗ ∈ Aq(n, k)
and letã ∈ A be another assignment for whichd(a∗, ã) >
k. If ∃ G ⊂ N , G 6= ∅ for which |G| ≤ k and
DV (G)(a∗, ã) = G, thenã /∈ Aq(n, k).

In other words, if an assignmentã contains some group
G that is facing the same context as it does in thek-optimal
assignmenta∗, but chooses different values than those ina∗,
thenã cannot bek-optimal even though its distance froma∗

is greater thank.
Proposition 2 provides conditions where ifa∗ isk-optimal

thenã, which may be separated froma∗ by a distance greater
thank may not bek-optimal, thus tightening bounds onk-
optimal assignment sets. With Proposition 2, since agents
are typically not fully connected to all other agents, therel-
evant contexta subgroup faces is not the entire set of other
agents. Thus, the subgroup and its relevant context form a
view (captured byV (G)) that is not the entire team. We
note that this proposition does not imply any relationship
between the reward ofa∗ and that of̃a.

Figure 4(a) showsG, V (G), andV (G)C for a sample
DCOP of six agents with a domain of two actions, white
and gray. Without Proposition 2,̃a1, ã2, and ã3 could all
potentially be 2-optimal. However, Proposition 2 guarantees
that they are not, leading to a tighter bound on the number of
2-optima that could exist. To see the effect, note that ifa∗ is
2-optimal, thenG = {1, 2}, a subgroup of size 2, must have
taken an optimal subgroup joint action (all white) given its
relevant context (all white). Even thoughã1, ã2, andã3 are
a distance greater than 2 froma∗, they cannot be 2-optimal,
since in each of them,G faces the same relevant context (all
white) but is now taking a suboptimal subgroup joint action
(all gray).

2

1 3

4

5

6G
V (G) V (G)C

a∗ :
Joint actions (JAs):DCOP graph:

ã1 :

ã2 :

ã3 :

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(a) (b)

Figure 4: A visual representation of the effect of Proposition
2.

βSRP

βHSP

(a) (b) (c)

Figure 5:βSRP vs. βHSP for DCOP graphs from Figure 2

Based on Proposition 2 we investigated heuristic tech-
niques to obtain an upper bound on|Aq(n, k)| that exploits
DCOP graph structure. One key heuristic we developed
is theSymmetric Region Packing bound, βSRP . More de-
tails aboutβSRP are presented in (Pearce, Tambe, & Mah-
eswaran 2006).

Experimental Results for Upper Bounds
We present two evaluations to explore the effectiveness of
the different bounds on the number ofk-optima. First, for
the three DCOP graphs shown in Figure 2, Figure 5 pro-
vides a concrete demonstration of the gains in resource allo-
cation due to the tighter bounds made possible with graph-
based analysis. Thex axis in Figure 5 showsk, and the
y axis shows theβHSP andβSRP bounds on the number
of k-optima that can exist. To understand the implications
of these results on resource allocation, consider a patrolling
problem where the constraints between agents are shown in
the 10-agent DCOP graph from Figure 2(a), and all agents
consume one unit of fuel for each assignment taken. Sup-
pose thatk = 2 has been chosen, and so at runtime, the
agents will use MGM-2 (to be described in the next sec-
tion), repeatedly, to find and execute a set of 2-optimal as-
signments. We must allocate enough fuel to the agentsa pri-
ori so they can execute up to all possible 2-optimal assign-
ments. Figure 5(a) shows that ifβHSP is used, the agents
would be loaded with 93 units of fuel to ensure enough for
all 2-optimal assignments. However,βSRP reveals that only
18 units of fuel are sufficient, a five-fold savings. (For clar-
ity we note that on all three graphs, both bounds are 1 when
k = n and 2 whenn− 3 ≤ k < n.)

Second, to systematically investigate the impact of graph
structure on bounds, we generated a large number of DCOP
graphs of varying size and density. We started with complete
binary graphs (all pairs of agents are connected) where each
node (agent) had a unique ID. To gradually make each graph
sparser, edges were repeatedly removed according to the fol-

βHSPβSRP

Figure 6: Comparisons ofβSRP vs. βHSP

lowing two-step process: (1) Find the lowest-ID node that
has more than one incident edge. (2) If such a node exists,
find the lowest-ID node that shares an edge with it, and re-
move this edge. Figure 6 shows theβHSP andβSRP bounds
for k-optima fork ∈ {1, 2, 3, 4} andn ∈ {7, 8, 9, 10}. For
each of the 16 plots shown, they axis shows the bounds
and thex-axis shows the number of links removed from the
graph according to the above method.

While βHSP < βSRP for very dense graphs,βSRP pro-
vides significant gains for the vast majority of cases. For ex-
ample, for the graph with 10 agents, and 24 links removed,
and a fixedk = 1, βHSP implies that we must equip the
agents with 512 resources to ensure that all resources are not
exhausted before all 1-optimal actions are executed. How-
ever,βSRP indicates that a 15-fold reduction to 34 resources
will suffice, yielding a savings of 478 due to the use of graph
structure when computing bounds.

Algorithms
This section contains a description of existing 1-optimal al-
gorithms, new 2- and 3-optimal algorithms, as well as a the-
oretical analysis of key properties of these algorithms and
experimental comparisons.

1-Optimal Algorithms
We begin with two algorithms that only consider unilateral
actions by agents in a given context. The first is the MGM
(Maximum Gain Message) Algorithm which is a modifica-
tion of DBA (Distributed Breakout Algorithm) (Yokoo &
Hirayama 1996) focused solely on gain message passing.
MGM is not a novel algorithm, but simply a name chosen

Algorithm 1 DSA (myNeighbors, myValue)
1: SendValueMessage(myNeighbors, myValue)
2: currentContext = GetValueMessages(myNeighbors)
3: [gain,newValue] = BestUnilateralGain(currentContext)
4: if Random(0,1)< Thresholdthen
5: myValue = newValue

Algorithm 2 MGM (myNeighbors, myValue)
1: SendValueMessage(myNeighbors, myValue)
2: currentContext = GetValueMessages(myNeighbors)
3: [gain,newValue] = BestUnilateralGain(currentContext)
4: SendGainMessage(myNeighbors,gain)
5: neighborGains = ReceiveGainMessages(myNeighbors)
6: if gain> max(neighborGains)then
7: myValue = newValue

to describe DBA without the changes on constraint costs
that DBA uses to break out of local minima. We note that
DBA itself cannot be applied in an optimization context, as
it would require global knowledge of solution quality (it can
be applied in a satisfaction context because any agent en-
countering a violated constraint would know that the current
solution is not a satisfying solution). The second is DSA
(Distributed Stochastic Algorithm) (Fitzpatrick & Meertens
2003), which is a randomized algorithm. Our analysis will
focus on synchronous applications of these algorithms.

Let us define aroundas involving multiple broadcasts of
messages. Every time a messaging phase occurs in a round,
we will count that as onecycleand cycles will be our perfor-
mance metric for speed, as is common in DCOP literature.
Let x(n) ∈ X denote the assignments at the beginning of
then-th round. We assume that every agent will broadcast
its current value to all its neighbors at the beginning of the
round taking up one cycle. Once agents are aware of their
current contexts (i.e. values of neighboring agents), they
will go through a process as determined by the specific al-
gorithm to decide which of them will be able to modify their
value. LetM (n) ⊆ N denote the set of agents allowed to
modify the values in then-th round. For MGM, each agent
broadcasts a gain message to all its neighbors that represents
the maximum change in its local utility if it is allowed to act
under the current context. An agent is then allowed to act
if its gain message is larger than all the gain messages it
receives from all its neighbors (ties can be broken through
variable ordering or another method) (Yokoo & Hirayama
1996). For DSA, each agent generates a random number
from a uniform distribution on[0, 1] and acts if that number
is less than some thresholdp (Fitzpatrick & Meertens 2003).
We note that MGM has a cost of two cycles per round while
DSA only has a cost of one cycle per round. Pseudocode for
DSA and MGM is given in Algorithms 2 and 3 respectively.

We are able to prove the following monotonicity property
of MGM. Let us refer to the set of terminal states of the
class of 1-optimal algorithms asXE , i.e. no unilateral mod-
ification of values will increase sum of all constraint utilities
connected to the acting agent(s) ifx ∈ XE .

Proposition 3 When applying MGM, the global utility
U(x(n)) is strictly increasing with respect to the round (n)
until x(n) ∈ XE .

Why is monotonicity important? In anytime domains
where communication may be halted arbitrarily and exist-
ing strategies must be executed, randomized algorithms risk
being terminated at highly undesirable assignments. Given
a starting condition with a minimum acceptable global util-
ity, monotonic algorithms guarantee lower bounds on per-
formance in anytime environments. Consider the following
example.

The Traffic Light Game. Consider two variables, both of
which can take on the valuesred or green, with a constraint
that takes on utilities as follows:

• U(red, red) = 0.

• U(red, green) = U(green, red) = 1.

• U(green, green) = −1000.

If (red, red) is the initial condition, each agent would
choose to alter its value togreen if given the opportunity
to move. If both agents are allowed to alter their value
in the same round, we would end up in the adverse state
(green, green). When using DSA, there is always a pos-
itive probability for any time horizon that(green, green)
will be the resulting assignment.

2-Optimal Algorithms
When applying 1-optimal algorithms, the evolution of the
assignments will terminate at a 1-optimum within the setXE

described earlier. One method to improve the solution qual-
ity is for agents to coordinate actions with their neighbors.
This allows the evolution to follow a richer space of trajecto-
ries and alters the set of terminal assignments. In this section
we introduce two 2-optimal algorithms, where agents can
coordinate actions with one other agent. Let us refer to the
set of terminal states of the class of 2-optimal algorithms as
X2E , i.e. neither a unilateral nor a bilateral modification of
values will increase sum of all constraint utilities connected
to the acting agent(s) ifx ∈ X2E .

We now introduce two algorithms that allow for coordi-
nation while maintaining the underlying distributed decision
making process: MGM-2 (Maximum Gain Message-2) and
SCA-2 (Stochastic Coordination Algorithm-2).

Both MGM-2 and SCA-2 begin a round with agents
broadcasting their current values. The first step in both al-
gorithms is to decide which subset of agents are allowed
to makeoffers. We resolve this by randomization, as each
agent generates a random number uniformly from[0, 1] and
considers themselves to be anofferer if the random number
is below a thresholdq. If an agent is an offerer, it cannot ac-
cept offers from other agents. All agents who are not offer-
ers are considered to bereceivers. Each offerer will choose
a neighbor at random (uniformly) and send it an offer mes-
sage which consists of all coordinated moves between the
offerer and receiver that will yield a gain in local utility to
the offerer under the current context. The offer message will
contain both the suggested values for each agent and the of-
ferer’s local utility gain for each value pair. Each receiver

will then calculate the global utility gain for each value pair
in the offer message by adding the offerer’s local utility gain
to its own utility change under the new context and (very
importantly) subtracting the difference in the link between
the two so it is not counted twice. If the maximum global
gain over all offered value pairs is positive, the receiver will
send anacceptmessage to the offerer with the appropriate
value pair and both the offerer and receiver are considered
to be committed. Otherwise, it sends arejectmessage to the
offerer, and neither agent is committed.

At this point, the algorithms diverge. For SCA-2, any
agent who is not committed and can make a local utility
gain with a unilateral move generates a random number uni-
formly from [0, 1] and considers themselves to beactive if
the number is under a thresholdp. At the end of the round,
all committed agents change their values to the committed
offer and all active agents change their values according to
their unilateral best response. Thus, SCA-2 requires three
cycles (value, offer, accept/reject) per round. In MGM-2
(after the offers and replies are settled), each agent sends a
gain message to all its neighbors. Uncommitted agents send
their best local utility gain for a unilateral move. Committed
agents send the global gain for their coordinated move. Un-
committed agents follow the same procedure as in MGM,
where they modify their value if their gain message was
larger than all the gain messages they received. Commit-
ted agents send their partners aconfirmmessage if all the
gain messages they received were less than the calculated
global gain for the coordinated move and send adeconfirm
message, otherwise. A committed agent will only modify
its value if it receives aconfirm message from its partner.
We note that MGM-2 requires five cycles (value, offer, ac-
cept/reject, gain, confirm/deconfirm) per round, and has less
concurrency than SCA-2 (since no two neighboring groups
in MGM-2 will ever move together). Given the excess cost
of MGM-2, why would one choose to apply it? We can show
that MGM-2 is monotonic in global utility.

Proposition 4 When applying MGM-2, the global utility
U(x(n)) is strictly increasing with respect to the round (n)
until x(n) ∈ X2E .

Furthermore, 2-optimal algorithms will sometimes yield
a solution of higher quality than 1-optimal algorithms as
shown in the example below; however, this is not true of
all situations.

Meeting Scheduling. Consider two agents trying to
schedule a meeting at either 7:00 AM or 1:00 PM with
the constraint utility as follows:U(7, 7) = 1, U(7, 1) =
U(1, 7) = −100, U(1, 1) = 10. If the agents started at
(7, 7), any 1-coordinated algorithm would not be able to
reach the global optimum, while 2-coordinated algorithms
would.

3-Optimal Algorithms
The main complication with moving to 3-optimality is the
following: With 2-optimal algorithms, the offerer could sim-
ply send all information the receiver needed to compute the
optimal joint move in the offer message itself. With groups
of three agents, this is no longer possible, and thus two more

message cycles are needed. MGM-3, the monotonic version
of the 3-optimal algorithm thus requires seven cycles. How-
ever, SCA-3, the stochastic version only requires five.

Experiments
We performed two groups of experiments - one for
“medium-sized” DCOPs of forty variables and one for
DCOPs of 1000 variables, larger than any problems consid-
ered in papers on complete DCOP algorithms.

We considered three different domains for our first group
of experiments. The first was a standard graph-coloring sce-
nario, in which a cost of one is incurred if two neighboring
agents choose the same color, and no cost is incurred oth-
erwise. Real-world problems involving sensor networks, in
which it may be undesirable for neighboring sensors to be
observing the same location, are commonly mapped to this
type of graph-coloring scenario. The second was a fully ran-
domized DCOP, in which every combination of values on a
constraint between two neighboring agents was assigned a
random reward chosen uniformly from the set{1, . . . , 10}.
The third domain was chosen to simulate a high-stakes sce-
nario, in which miscoordination is very costly. In this en-
viroment, agents are negotiating over the use of resources.
If two agents decide to use the same resource, the result
could be catastrophic. An example of such a scenario might
be a set of unmanned aerial vehicles (UAVs) negotiating
over sections of airspace, or rovers negotiating over sections
of terrain. In this domain, if two neighboring agents take
the same value, there is a large penalty incurred (-1000).
If two neighboring agents take different values, they ob-
tain a reward chosen uniformly from{10, . . . , 100}. In all
of these domains, we considered ten randomly generated
graphs with forty variables, three values per variable, and
120 constraints. For each graph, we ran 100 runs of each
algorithm.

We used communication cycles as the metric for our
experiments, as is common in the DCOP literature, since
it is assumed that communication is the speed bottleneck.
(However, we note that, as we move from 1-optimal to 2-
optimal to 3-optimal algorithms, the computational cost at
each agenti increases by a polynomial factor. For brevity,
computational load is not discussed further in this article.)
Although each run was for 256 cycles, most of the graphs
display a cropped view, to show the important phenomena.

Figure 7 shows a comparison between MGM and DSA
for several values ofp. For graph coloring, MGM is dom-
inated, first by DSA withp = 0.5, and then by DSA with
p = 0.9. For the randomized DCOP, MGM is completely
dominated by DSA withp = 0.9. MGM does better in the
high-stakes scenario as all DSA algorithms have a negative
solution quality (not shown in the graph) for the first few cy-
cles. This happens because at the beginning of a run, almost
every agent will want to move. As the value ofp increases,
more agents act simultaneously, and thus, many pairs of
neighbors are choosing the same value, causing large penal-
ties. Thus, these results show that the nature of the constraint
utility function makes a fundamental difference in which al-
gorithm dominates. Results from the high-stakes scenario
contrast with (Zhanget al. 2003) and show that DSA is

Figure 7: Comparison of the performance of MGM and
DSA

not necessarily the algorithm of choice when compared with
DBA across all domains.

Figure 8 compares MGM, MGM-2, and MGM-3 forq =
0.5. In all three cases, MGM-3 increases at the slowest rate,
but eventually overtakes MGM-2. Similar results were ob-
served in our comparison of DSA, SCA-2 and SCA-3.

For our second group of experiments, we considered
DCOPs of 1000 variables using the graph-coloring and ran-
dom DCOP domains. The main purpose of these exper-
iments was to demonstrate that thek-optimal algorithms
quickly converge to a solution even for very large problems
such as these. A random DCOP graph was generated for
each domain, for link densities ranging from 1 to 5, and
results for MGM and MGM-3 are shown in the following
tables. The tables shown represent an average of 100 runs
(from a random initial set of values) for each DCOP. For
comparison, complete algorithms (Modiet al. 2005) require
1000s of cycles just for graphs of less than 50 variables and
constraint density of 3.

Density Cycles (MGM) Cycles (MGM-3)
1 7.12 270.62
2 11.74 3277.89
3 15.58 4708.06
4 19.92 5220.46
5 23.30 5448.10

Table 1: Results for MGM and MGM-3 for large DCOPs:
Graph Coloring

Figure 8: Comparison of the performance of MGM, MGM-
2, and MGM-3

Conclusion
In multiagent domains involving teams of sensors, or teams
of unmanned air vehicles or of personal assistant agents, the
effect of local interactions between agents can be compactly
represented as a network structure. In such agent networks,
not all agents interact with all others. DCOP is a useful to
framework to reason about agents’ local interactions in such
networks. This article considers the case ofk-optimality
for DCOPs: agents optimize a DCOP by forming groups
of one or more agents until no group ofk or fewer agents
can possibly improve the solution. The article provides an
overview of three key results related tok-optimality. The
first set of results are worst-case guarantees on the solution
quality of k-optima in a DCOP. These guarantees can help
determine an appropriatek-optimal algorithm, or possibly
an appropriate constraint graph structure, for agents to use
in situations where the cost of coordination between agents
must be weighed against the quality of the solution reached.
The second set of results are upper bounds on the number of
k-optima that can exist in a DCOP. Because each joint ac-
tion consumes resources, knowing the maximal number of
k-optimal joint actions that could exist for a given DCOP
allows us to allocate sufficient resources for a given level of
k. Finally, we sketched algorithms for k-optimality and pro-
vided some experimental results on the performance of 1-,
2- and 3-optimal algorithms for several types of DCOPs.

References
Boyd, S., and Vandenberghe, L. 2004.Convex Optimiza-
tion. Cambridge U. Press.
Cox, J.; Durfee, E.; and Bartold, T. 2005. A distributed

framework for solving the multiagent plan coordination
problem. InAAMAS.
Fitzpatrick, S., and Meertens, L. 2003. Distributed coordi-
nation through anarchic optimization. In Lesser, V.; Ortiz,
C. L.; and Tambe, M., eds.,Distributed Sensor Networks:
A Multiagent Perspective. Kluwer. 257–295.
Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical
models for game theory. InProc. UAI.
Ling, S., and Xing, C. 2004.Coding Theory: A First
Course. Cambridge U. Press.
Mailler, R., and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In AAMAS.
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005.
Adopt: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161(1-
2):149–180.
Pearce, J., and Tambe, M. 2007. Quality guarantees on
k-optimal solutions for distributed constraint optimization.
In Proceedings of the International Joint Conference on AI
(IJCAI).
Pearce, J.; Tambe, M.; and Maheswaran, R. 2006. Solution
sets for dcops and graphical games. InProceedings of the
International Joint Conference on Agents and Multiagent
Systems (AAMAS).
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. InIJCAI.
Ruan, S.; Meirina, C.; Yu, F.; Pattipati, K. R.; and Popp,
R. L. 2005. Patrolling in a stochastic environment. In10th
Intl. Command and Control Research Symp.
Schurr, N.; Marecki, J.; Scerri, P.; Lewis, J.; and Tambe, M.
2005. The DEFACTO system: Training tool for incident
commanders. InIAAI.
Tate, A.; Dalton, J.; and Levine, J. 1998. Generation of
multiple qualitatively different plan options. InProc. AIPS.
Vickrey, D., and Koller, D. 2002. Multi-agent algorithms
for solving graphical games. InProc. AAAI, 345–351.
Vlassis, N.; Elhorst, R.; and Kok, J. R. 2004. Anytime
algorithms for multiagent decision making using coordi-
nation graphs. InProc. Intl. Conf. on Systems, Man and
Cybernetics.
Yokoo, M., and Hirayama, K. 1996. Distributed breakout
algorithm for solving distributed constraint satisfaction and
optimization problems. InICMAS.
Zhang, W.; Xing, Z.; Wang, G.; and Wittenburg, L. 2003.
An analysis and application of distributed constraint satis-
faction and optimization algorithms in sensor networks. In
AAMAS.

