
ARMOR Security for Los Angeles International Airport

James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway, Milind Tambe, Craig Western,
*Praveen Paruchuri, **Sarit Kraus

University of Southern California, Los Angeles, CA 90089
*Intelligent Automation, Inc., RockVille, MD 20855

**Bar-llan University, Ramat-Gan 52900, Israel
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

Abstract

Security at major locations of economic or political impor-
tance is a key concern around the world, particularly given
the threat of terrorism. Limited security resources prevent
full security coverage at all times, which allows adversaries
to observe and exploit patterns in selective patrolling or mon-
itoring, e.g. they can plan an attack avoiding existing patrols.
Hence, randomized patrolling or monitoring is important, but
randomization must provide distinct weights to different ac-
tions based on their complex costs and benefits. To this end,
this demonstration showcases a promising transition of the
latest in multi-agent algorithms into a deployed application.
In particular, it exhibits a software assistant agent called AR-
MOR (Assistant for Randomized Monitoring over Routes)
that casts this patrolling/monitoring problem as a Bayesian
Stackelberg game, allowing the agent to appropriately weigh
the different actions in randomization, as well as uncertainty
over adversary types. ARMOR combines two key features:
(i) It uses the fastest known solver for Bayesian Stackelberg
games called DOBSS, where the dominant mixed strategies
enable randomization; (ii) Its mixed-initiative based interface
allows users to occasionally adjust or override the automated
schedule based on their local constraints. ARMOR has been
successfully deployed since August 2007 at the Los Angeles
International Airport (LAX) to randomize checkpoints on the
roadways entering the airport and canine patrol routes within
the airport terminals.

Introduction
Protecting national infrastructure is a challenging task for
police and security agencies around the world; a challenge
that is exacerbated by the threat of terrorism. Such protec-
tion of important locations includes tasks such as monitoring
all entrances or inbound roads and checking inbound traffic.
However, limited resources imply that it is typically impos-
sible to provide full security coverage at all times. Further-
more, adversaries can observe security arrangements over
time and exploit any predictable patterns to their advantage.
Randomizing schedules for patrolling, checking, or moni-
toring is thus an important tool in the police arsenal to avoid
the vulnerability that comes with predictability.

This demonstration focuses on a deployed software as-
sistant agent that can aid police or other security agencies
in randomizing their security schedules. We face at least
three key challenges in building such a software assistant.

First, the assistant must provide quality guarantees in ran-
domization by appropriately weighing the costs and benefits
of the different options available. Second, the assistant must
address the uncertainty in information that security forces
have about the adversary. Third, the assistant must enable a
mixed-initiative interaction with potential users rather than
dictating a schedule; the assistant may be unaware of users’
real-world constraints and hence users must be able to shape
the schedule development.

We have addressed these challenges in a software assis-
tant agent called ARMOR (Assistant for Randomized Mon-
itoring over Routes). Based on game-theoretic principles,
ARMOR combines three key features to address each of the
challenges outlined above. We build on these game theoretic
foundations to reason about two agents — the police force
and their adversary — in providing a method of randomiza-
tion. In particular, the main contribution of our software is
mapping the problem of security scheduling as a Bayesian
Stackelberg game (Conitzer & Sandholm 2006) and solv-
ing it via the fastest optimal algorithm for such games
called DOBSS (Decomponsed Optimal Bayesian Stackel-
berg Solver) (Paruchuri et al. 2008), addressing the first
two challenges. While a Bayesian game allows us to ad-
dress uncertainty over adversary types, by optimally solving
such Bayesian Stackelberg games (which yield optimal ran-
domized strategies as solutions), ARMOR provides quality
guarantees on the schedules generated. The third challenge
is addressed by ARMOR’s use of a mixed-initiative based
interface, where users are allowed to graphically enter dif-
ferent constraints to shape the schedule generated. ARMOR
is thus a collaborative assistant that iterates over generated
schedules rather than a rigid one-shot scheduler.

ARMOR has been deployed by Los Angeles Airport
(LAX) police for the past six months to randomize schedul-
ing of checkpoints (to check vehicles inbound to LAX) and
canine patrols; pictures of these checkpoints and canine pa-
trols are shown in Figure 1(a) and Figure 1(b).

System Architecture
There are two separate versions of ARMOR, ARMOR-
checkpoint and ARMOR-canine. While in the following
we focus on ARMOR-checkpoint for illustration, both these
versions use the same underlying architecture with differ-
ent inputs. This architecture consists of a front-end and

(a) LAX Checkpoint (b) Canine Patrol

Figure 1: LAX Security

a back-end, integrating four key components: (i) a front-
end interface for user interaction; (ii) a method for creat-
ing Bayesian Stackelberg game matrices; (iii) an implemen-
tation of DOBSS; (iv) a method for producing suggested
schedules for the user. They also contain two major forms
of external input. First, they allow for direct user input into
the system through the interface. Second, they allow for
file input of relevant information for checkpoints or canines,
such as traffic/passenger volume by time of day, which can
greatly affect the security measures taken and the values of
certain actions.

The ARMOR interface, seen in Figure 2, consists of a file
menu, options for local constraints, options to alter the ac-
tion space, a monthly calendar and a main spreadsheet to
view any day(s) from the calendar. Together these compo-
nents create a working interface that meets all the key re-
quirements set forth by LAX officers for checkpoint and ca-
nine deployment at LAX.

The base of the interface is designed around six possi-
ble adjustable options. The first three options alter the ac-
tion space and are as follows: (i) number of checkpoints al-
lowed during a particular timeslot; (ii) time interval of each
timeslot; (iii) number of days to schedule over. For each
given timeslot, the system constructs a new game. Given
knowledge of the total number of inbound roads, the num-
ber of checkpoints allowed during that timeslot determines
the available actions for the LAX police, whereas the ac-
tion space of the adversary is determined by the number
of inbound roads. Thus, the system can set up the foun-
dation for the Bayesian Stackelberg game by providing all
the actions possible in the game. Once the action space has
been generated, it can be sent to the back-end to be set up
as a Bayesian Stackelberg game, solved, and returned as a
suggested schedule, which is displayed to the user via the
spreadsheet. The third option determines how many itera-
tions of the game will be played (as it determines the number
of days to schedule over).

Given the submitted user information, the system must
create a meaningful Bayesian Stackelberg game matrix.
Based on pre-specified rewards we can provide the rewards
for the LAX police and the adversaries to generate a game
matrix for each adversary type. After the final game ma-
trices are constructed for each adversary type, they are sent
to the DOBSS implementation, which chooses the optimal
mixed strategy over the current action space.

To demonstrate the process, assume there are three possi-
ble inbound roads or checkpoint locations (A, B, C), one
possible timeslot to schedule over, and two checkpoints

Figure 2: ARMOR Interface

available for scheduling. Given this scenario, the unique
combinations possible include scheduling checkpoints A
and B, A and C, and B and C, over the given time frame.
We will assume that checkpoints A and B are highly valu-
able while C, although not completely invaluable, has a very
low value. Based on this information, a likely mixed strat-
egy generated by DOBSS would be to assign a high proba-
bility to choosing action A and B, say seventy percent, and a
low probability to both the other actions, say fifteen percent
each. Whatever the mixed strategy actually comes out to be,
it is the optimal strategy a user could take to maximize se-
curity based on the given information. This mixed strategy
is then stored and used for the actual schedule generation.

The next three options serve to impose local constraints in
the generated schedule: (i) forced checkpoint; (ii) forbidden
checkpoint; (iii) at least one checkpoint. These constraints
are intended to be used sparingly to accommodate situations
where a user, faced with exceptional circumstances and extra
knowledge, wishes to modify the output of the game. The
user may impose these restrictions by forcing specific ac-
tions in the schedule. In particular, the “forced checkpoint”
option schedules a checkpoint at a specific time on a spe-
cific day. The “forbidden checkpoint” option designates a
specific time on a specific day when a checkpoint should not
be scheduled. Finally, the “at least one checkpoint” option
designates a set of time slots and ensures that a checkpoint
is scheduled in at least one of the slots.

Acknowledgements: This research is supported by
the United States Department of Homeland Security
through Center for Risk and Economic Analysis of Ter-
rorism Events (CREATE).

References
Conitzer, V., and Sandholm, T. 2006. Computing the Op-
timal Strategy to Commit to. In Proceeding of the ACM
Conference on Electronic Commerce (ACM-EC).
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.;
Ordóñez, F.; and Kraus, S. 2008. Playing Games for Se-
curity: An Efficient Exact Algorithm for Solving Bayesian
Stackelberg Games. In AAMAS.

