
In Proceedings of the Twenty-first Intenational Joint Conference on Artificial Intelligence (IJCAI),
Pasadena, CA, July 2009.

DCOPs Meet the Real World: Exploring Unknown Reward Matrices with
Applications to Mobile Sensor Networks

Manish Jain, Matthew Taylor, Milind Tambe

University of Southern California

Los Angeles, CA 90089

{manish.jain,taylorm,tambe}@usc.edu

Makoto Yokoo

Kyushu University

Fukuoka 819-0395, Japan

yokoo@is.kyushu-u.ac.jp

Abstract

Buoyed by recent successes in the area of
distributed constraint optimization problems
(DCOPs), this paper addresses challenges faced
when applying DCOPs to real-world domains.
Three fundamental challenges must be addressed
for a class of real-world domains, requiring novel
DCOP algorithms. First, agents may not know the
payoff matrix and must explore the environment
to determine rewards associated with variable
settings. Second, agents may need to maximize
total accumulated reward rather than instantaneous
final reward. Third, limited time horizons disallow
exhaustive exploration of the environment. We
propose and implement a set of novel algorithms
that combine decision-theoretic exploration ap-
proaches with DCOP-mandated coordination. In
addition to simulation results, we implement these
algorithms on robots, deploying DCOPs on a
distributed mobile sensor network.

1 Introduction

Distributed constraint optimization problems (DCOPs)
[Zhang et al., 2003; Mailler and Lesser, 2004; Modi et al.,
2005] are a class of problems where cooperative agents must
coordinate to maximize some reward. Examples include
multiagent plan coordination [Cox et al., 2005] and sen-
sor networks [Lesser et al., 2003]. Because the utility of
an agent’s action depends on the actions of others, agents
must coordinate their individual actions via local interac-
tions to achieve joint goals. Significant progress has been
made in the design and analysis of globally optimal DCOP
algorithms [Modi et al., 2005; Petcu and Faltings, 2005;
Mailler and Lesser, 2004]. However, given that DCOPs are
NP-Hard [Modi et al., 2005], optimal solutions require signif-
icant communication and computation overhead, motivating
the need for locally optimal algorithms that can scale to much
larger tasks [Zhang et al., 2003; Pearce and Tambe, 2007].

Given their ability to handle large-scale coordination via
local interactions and distributed control, DCOPs are ideally
suited for a large class of real-world applications. We target
the large class of real-world distributed sensor network ap-
plications, including autonomous underwater vehicles used

for surveying underwater structures [Zhang et al., 2005] and
small mobile robots that establish a communication network.
Our study reveals that three novel challenges must be ad-
dressed in applying DCOPs to these domains. First, agents
are unaware of the initial payoff matrix and must explore the
environment to determine rewards associated with different
variable settings. Second, the agents’ objective is to max-
imize the total accumulated reward rather than the final in-
stantaneous reward. Third, agents face a limited time hori-
zon, necessitating efficient exploration. These challenges dis-
allow direct application of current DCOP algorithms as they
implicitly assume knowledge of the full payoff matrix. Fur-
thermore, time constraints disallow using a globally optimal
algorithm as agents cannot fully explore their environment.

This paper introduces and analyzes a family of five novel
DCOP algorithms to address these challenges, based on both
decision theoretic exploration strategies and simpler “static
estimation” strategies. These algorithms are based on two key
ideas: (1) exploration and exploitation are interleaved within
the context of locally optimal DCOP algorithms, and (2) dif-
ferent settings may require different exploration strategies.

We implement our new DCOP algorithms not only on sim-
ulated agents, but on physical robots as well. Our empiri-
cal domain is based on a real-world problem in which robots
maximize the accumulated signal strength in a mobile sensor
network within a time limit. While we acknowledge work
on the early precursors to DCOPs in sensor networks [Lesser
et al., 2003], our work is the first test of DCOPs on phys-
ical distributed hardware and to address the problem of un-
known reward matrices. Key experimental results include:
(1) in most circumstances, algorithms that update their rea-
soning after every variable assignment dominate algorithms
that pre-compute a multi-step exploration strategy, (2) rela-
tively simple strategies are sufficient in networks that are fully
connected and are superior only when the task time horizon is
short, and (3) algorithms are able to achieve improvements in
reward of up to 80% of an artificially “omniscient” algorithm.

2 Problem Description

2.1 Motivating Domain

This paper focuses on tasks where agents do not initially
know their rewards, there is a fixed time horizon, and on-line
reward is critical. One such task is wireless sensor networks,

where the common goal is to monitor a region of the world
and report when interesting objects or events are perceived.
We assume robots have limited movement abilities such that
they may attempt to optimize the wireless connectivity with
their neighbors but not modify the topology of the network.
Each robot knows its neighbors, the robots with which it can
directly communicate. During natural disasters, rescue per-
sonnel may quickly form such a network by placing mobile
robots around a disaster site to relay information about en-
dangered victims, fires, etc. The robots need to optimize the
signal strengths over the network to ensure reliable and effec-
tive communication for the duration of the task.

Radio communication in wireless sensor networks has a
predictable signal strength loss inversely proportional to the
square of the distance between transmitter and receiver. In
urban or indoor settings, scattering, reflection, and diffrac-
tion create a multi-path setting. Radio wave interference,
i.e. small scale fading, results in significant signal strength
differences over small distances, the prediction of which is
very difficult [Molisch, 2005]. This paper assumes that small
scale fading dominates: if a wireless sensor is moved ≥ 1

2

of a wavelength, it will measure a new (uncorrelated) sig-
nal strength from each neighbor. Such signals can be mod-
eled as an independent random number drawn from some
distribution [Kozono, 1994]. Our initial experiments suggest
a Normal distribution, but our algorithms are distribution-
independent and other distributions can easily be substituted.

Figure 1: An iRobot Cre-
ate and its wireless card.

Given a network and duration
of an experiment, our goal is
to maximize the sum of signal
strengths on all network links
over this time. Each experiment
is discretized into synchronized
rounds. A round ends after all
robots perform the required com-
putation, finish communication,
and execute an action. An action
can be either “move” or “stay.”
The length of a round in our distributed setting is dominated
by robot movement, which takes longer than either the com-
putation or communication for the algorithms presented.

Experiments in this paper use a set of Creates (mobile
robots from iRobot, shown in Figure 1) and a custom-built
simulator based on these robots. Each Create has a wire-
less CenGen radio card, also shown in Figure 1. Robots rely
on odometry to localize. Based on the specifications of the
agents used, two distinct cases may be valid. An agent may:
(1) either stay, or explore a new location, or (2) addition-
ally execute backtrack (returning to a previous location)
if odometry errors can be ignored. In our physical imple-
mentation, robots are able to backtrack; but we also run
experiments assuming they cannot.

2.2 Problem Mapping

A DCOP consists of a set V of n variables, {x1, x2, . . . , xn},
assigned to a set of agents, where each agent controls one
variable’s assignment. Variable xi can take on any value from
the discrete finite domain Di. The goal is to choose values for
the variables such that the sum over a set of binary constraints

x 2

x 1 1
0 10 37 22 x 2

x 3

01
0 1

922152 31
R2,3R1,2

Figure 2: This figure depicts a three agent DCOP.

and associated payoff or reward functions, fij : Di ×Dj →
N , is maximized. More specifically, find an assignment,
A, s.t. F(A) is maximized: F (A) =

∑

xi,xj∈V fij(di, dj),

where di ∈ Di, dj ∈ Dj and xi ← di, xj ← dj ∈ A. For
example, in figure 2, x1, x2, and x3 are variables, each with a
domain of {0,1} and the reward function as shown. If agents
2 and 3 choose the value 1, the agent pair gets a reward of
9. If agent 1 now chooses value 1 as well, the total solution
quality of this complete assignment is 12, which is locally
optimal as no single agent can change its value to improve
its own reward (and that of the entire DCOP). F ((x1 ← 0),
(x2 ← 0), (x3 ← 0)) = 22 and is globally optimal.

The agents in a DCOP are traditionally assumed to have
a priori knowledge of the corresponding reward functions.
This assumption may not hold in real-world domains. The
problem addressed in this paper involves DCOPs where: (1)
agents are not provided reward functions and only know the
distributions from which the rewards are sampled, (2) when
the agents choose a value, they learn the current rewards on
all their constraints, (3) there is a finite horizon T after which
the task ends, and (4) the agents’ objective is to maximize the
cumulative reward over this time horizon T .

We use the mobile sensor network domain introduced in
Section 2.1 as an experimental domain for our algorithms.
The different robots in the network are the DCOP-aware
agents. Communication links between robots represent con-
straints between agents and the signal strength obtained mea-
sures the reward of an assignment. The different physical
positions of a robot constitute the domain of values possible
for agents. An agent can accurately sense the signal strength
between its current location and the current location of each
of its neighbors only when it explores that particular location.

3 Solution Techniques

This section describes our novel algorithms, using the mobile
sensor network domain as an example. Our algorithms be-
long to two classes: (1) static estimation algorithms which as-
sign a constant estimate to all unexplored states, and (2) bal-
anced exploration algorithms, which compute the expected
utility of exploration based on factors such as time horizon.

Given the inapplicability of globally optimal algorithms,
we build on locally optimal DCOP algorithms. The Maxi-
mal Gain Messaging (MGM) algorithm [Pearce and Tambe,
2007] and DSA [Fitzpatrick and Meertens, 2003] are natural
candidates, but DSA has an additional probability parameter
that must be set which has a significant impact on its perfor-
mance [Maheswaran et al., 2004]. While all the algorithms
presented are in the framework of MGM, the key ideas can
be embedded in any locally optimal DCOP framework. We
keep the framework constant to ensure a fair comparison.

MGM-Omniscient: We first implement MGM and artifi-
cially provide agents with the reward for each possible value.

Provided such a matrix, MGM-Omniscient will find a locally
optimal assignment of values for all agents, and this gives an
upper bound. MGM-Omniscient defines a round as a period
in which every agent: (1) communicates its current value to
all its neighbors, (2) calculates and communicates its bid (the
maximum gain in its local reward if it is allowed to change
values) to all its neighbors, and (3) changes its value (if al-
lowed). An agent is allowed to change its value if its bid
is larger than all the bids it receives from its neighbors. At
quiescence, no one agent can deviate from the proposed as-
signment and increase the net reward.

3.1 Static Estimation (SE) Algorithms

SE-Optimistic assumes the maximum reward on each con-
straint for all unexplored values for agents. Thus, in our
domain, it assumes that when moving to a new location,
the signal strength between it and every neighbor is maxi-
mized. On every round, each agent bids its expected gain:
NumberLinks × MaximumReward − Rc where Rc is the
current reward. The algorithm then proceeds as in MGM-
Omniscient. This is similar to a 1-step greedy approach where
agents with the lowest rewards have the highest bid. Agents
typically explore on every round for the entire experiment.

SE-Mean modifies the previous algorithm to assume that
visiting an unexplored value will result in the average reward
to all neighbors (denoted µ) instead of the maximum. Agents
have an expected gain of: NumberLinks × µ − Rc, causing
the agents to greedily explore until they achieve the average
reward (averaged over all neighbors), allowing them to con-
verge on an assignment. Note that MaximumReward and µ
can be defined initially as the reward distribution is known.

3.2 Balanced Exploration (BE) Algorithms

These algorithms allow agents to estimate the maximum ex-
pected utility of exploration given a time horizon, as well
as precisely when to stop exploring within this time hori-
zon. Each agent compares the expected gain it can accrue
over the given time horizon from exploration against the gain
from backtracking (or staying at current value) for its own
bid. This gain from exploration depends on: (1) the number
of timesteps left in the trial, (2) the distribution of rewards,
and (3) the current reward of the agent, or the best explored
reward if the agent can backtrack to a previously explored
state. As in MGM, the agent with the highest bid (gain) per
neighborhood wins the ability to move.

BE-backtrack takes a multi-step approach, where an agent
calculates the expected utility of its current state V (s) given
the time horizon T for the task. This expected utility is the
maximum of what it would obtain from immediately back-
tracking to the best known reward for T steps, and the maxi-
mum expected utility from exploration. This expected utility
is what it uses as its bid to other agents.

BE-Backtrack requires agents to be able to backtrack. It
tracks the value with the highest total received reward (Rb).
At any point, the agent may return to this value (e.g., a lo-
cation in our domain) if its neighbors have not changed their
values. The state of the agent can thus be defined as (Rb, T):
the agent can backtrack to receive reward Rb for T timesteps
remaining in the current test. This notion of the agent’s state

differs from the actual value of the agent’s assignment. The
utility of backtracking is: Vback(Rb, T) = RbT .

If an agent explores, its utility will be based on the reward
of the best value found during exploration. Let the number
of rounds for which the agent explores be te. An explo-
ration policy would be in the form “explore for te rounds,
backtrack to the best value found on round te+1, and then
stay with that value for the remainder of the experiment for
ts rounds,” where ts = T − (te + 1).

Vexplore(Rb, T) can be calculated by summing three sepa-
rate components: the expected utility accrued while exploring
for te steps, the utility accrued after exploration multiplied by
the probability of finding a reward better than Rb, and finally
the utility accrued after exploration multiplied by the proba-
bility of failing to find a reward better than Rb.

The first component is te×µ(n), where µ(n) is the average
expected reward over all n neighbors. The second component
depends on the probability of finding values with a total re-
ward higher than Rb, multiplied by the number of steps left
in the trial. The expected best reward in this case is described
by the distribution:

∫

x>Rb
x ·P (x, n, te)dx where P (x, n, te)

gives the probability of x being the maximum sample among
the te samples drawn and is defined as:

P (x, n, te) = te × f(x, n)× F (x, n)te−1.

This nth order statistics calculates the probability that x will
be the maximum reward found in te values. n is the num-
ber of neighbors, f(x, n) is the probability of drawing x as a
sample, and F (x, n) is the cumulative probability of drawing
a sample less than or equal to x, defined as

∫

y≤x
f(y, n)dy.

Informally, P (x, n, te) is calculated by drawing a sample x
from any of the te samples with a probability f(x, n), and
drawing the rest of the te − 1 samples, such that their values
are less than x, with a probability of F (x, n)te−1.

The third component will depend on how likely it is that we
fail to discover a reward greater than Rb, times the number of
steps left in the trial. After the agent explores, it will back-
track and receive Rb for the remaining ts rounds. Again, the
cumulative probability of drawing a sample less than or equal
to Rb in te samples is defined as F (Rb, n)te , where F (x, n)
is defined as before. Thus, Vexplore(Rb, T) =

max
0≤te≤T

{

teµ(n)+ts

∫

x>Rb

xP (x, n, te)dx+tsRbF (Rb, n)te

}

(1)

The value of te that maximizes Vexplore gives the number of
exploration steps. The expected reward of state (Rb, T) is:

V (Rb, T) = max

{

Vback(Rb, T), Vexplore(Rb, T)

}

.

The bid of the agent is V (Rb, T)−RcT and the agent with
the highest bid per neighborhood can change its value (e.g.,
move) for te rounds, after which it backtracks to the value
of the highest reward found thus far. BE-Backtrack dictates
that the agent will not change its value after backtracking in
the (te + 1)th round. However, if the agent’s neighbors later
change their value, the agent may choose to explore rather
than staying at its backtracked value.

Notice that when an agent’s neighbors explore and then
backtrack, they could not have reduced the overall DCOP re-
ward. In particular, the reward of an agent that has back-
tracked after exploring cannot be lower than its reward at the
time it started exploring (although it may be lower during ex-
ploration). This is because only this agent was allowed to
change values in its neighborhood, and the agent could have
backtracked to its initial value (and, thus initial reward) if it
were unable to find a better configuration.

BE-Rebid agents calculate their gain using the BE-
Backtrack equations but all agents re-calculate and rebid at
each timestep. Prior work in different decision making con-
texts [Montemerlo et al., 2004] has shown that such reevalu-
ation can lead to better performance in practice. Equation 1
again calculates the expected gain of exploring for te steps,
but now the agent may execute fewer than te exploratory
steps. If this happens, it will be due to rewards received after
moving: either the moving agent has found itself in a favor-
able position and no more exploration is needed or the cumu-
lative reward has decreased significantly and one or more of
its neighbors have now won the bid to change their values.

BE-Stay applies when agents are unable to backtrack.
Based on initial experiments which suggested that BE-Rebid
outperformed BE-Backtrack, BE-Stay was designed as an-
other approach where agents make a decision every round.

In this approach, every agent considers its current total
reward and compares the expected reward it would receive
if it kept the same variable assignment (Vstay) with the ex-
pected reward of exploring (Vexplore). The reward of explor-
ing, given the current reward Rc, is calculated recursively as:

V (Rc, T)=

{

Vstay(Rc, 0) = Vexplore(Rc, 0) = 0 for T = 0

max(Vstay(Rc, T), Vexplore(Rc, T)) for T > 0

The expected reward from stay will be the current reward
multiplied by the time left in the trial: Vstay(Rc, T) = RcT .

The expected reward of exploring will depend on the prob-
ability of achieving a given reward in the next state, the re-
ward received for that one timestep, and the expected reward
of the rest of the trial:

Vexplore(Rc, T) =

∫ ∞

−∞

P (x)(V (x, T − 1) + x)dx

where P (x) is the probability of receiving the total reward x
in an unexplored location.

In each round, agents calculate Vstay and Vexplore. If
explore has the higher expected reward, an agent will bid
to change its value. Note that BE-Stay differs from BE-Rebid
even when the backtrack state is the current state: BE-Rebid
assumes the agent may backtrack to this state in the future,
which BE-Stay does not.

4 Experimental Results

Experiments in this section compare the performance of our
DCOP algorithms in multiple settings. In our domain, the
number of locations is large, relative to T , and agents are
always able to explore new locations. Signal strength val-
ues were all non-negative integers which allowed our imple-
mentations to use summations rather than integrations. In

12000!

12200!

12400!

12600!

12800!

13000!

13200!

13400!

13600!

13800!

0! 4! 8! 12! 16! 20! 24! 28! 32! 36! 40! 44! 48! 52! 56! 60! 64! 68! 72! 76! 80! 84! 88! 92! 96!100!

S
u

m
 o

f
S

ig
n

al
 S

tr
en

g
th

s!

Round!

Total Signal Strength Per Round!

BE-Backtrack!

BE-Rebid!

BE-Stay!

SE-Mean!

SE-Optimistic!

No Movement!

MGM-Omniscient!

Figure 3: A representative learning curve for 20 agents in a chain
topology where T = 100.

simulation, 30 random initial configurations were generated.
Then each algorithm was run on every configuration. Lower
and upper bounds were determined by disallowing all robot
movement and using MGM-Omniscient, respectively.

Results are reported as a scaled gain, scaled uniformly be-
tween 0 and 1. Any gain greater than zero represents an im-
provement directly due to the controlling DCOP algorithm.
Such a metric helps isolate the improvement due to robot
movement and scales across tasks with different numbers of
links, agents, and horizons. Signal strengths are drawn from
a normal distribution defined by N (100, 162). 1

Experiments with physical robots were conducted with
four agents running the DCOP, three of which were Creates
and the fourth was a fixed radio controller. Due to the wave-
length used by our robots (5 GHz), the state space was dis-
cretized so that the agents moved by 2.5cm, or half a wave-
length, at a time. In each round, the robots waited for one
second for signals to stabilize before measuring their sig-
nal strengths (average of 10 samples taken 1

4
second apart).

Robots were placed at a distance of 5–10 meters in a non-line-
of-sight configuration. Since the objective of the agents was
to maximize the cumulative reward in the given time horizon,
we did not analyze the runtime of the experiments either in
simulation or on physical robots.

4.1 Simulation Results

This section presents three sets of results, each of which
varies a different component of the problem domain: the
number of agents, the time horizon, or the network topology.
However, we first present a single trial to illustrate the typical
behavior of our algorithms. Figure 3 is a learning curve from
20 agents in a chain topology. It shows the total reward per
timestep when run for 100 rounds each, along with MGM-
Omniscient (top line) and NoMovement (bottom line). The
y-axis shows the total signal strength and the x-axis shows
the time horizon. For each algorithm, the total cumulative
signal strength is the area under the curve and the gain is
the area between the curve and the NoMovement line. SE-
Mean converges quickly to a comparatively low value while
SE-Optimistic explores continually, attempting to achieve the
maximal signal strength. BE-Stay cannot backtrack and must

1The range µ−6σ to µ+6σ covers 99.999% of the samples for a
normal distribution; we considered signals within the range [0,200].

0!

0.2!

0.4!

0.6!

0.8!

5! 25! 50! 75! 100!

Sc
al

ed
 G

ai
n!

Rounds!

(a) Varying Total Number of Rounds!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

5! 15! 30! 50!

Sc
al

ed
 G

ai
n!

Robots!

(b) Varying Number of Robots!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

Chain! Density

1/3!

Density

2/3!

Fully

Connected!

Sc
al

ed
 G

ai
n!

(c) Varying Topology!
SE-Optimistic!

SE-Mean!

BE-Stay!

BE-Backtrack!

BE-Rebid!

Figure 4: The performance of different algorithms is shown where the y-axis is the scaled gain (0 represents No-Movement and 1 represents
the gain of MGM-Omniscient), the x-axis describes the setting, and the error bars show standard error.

be more cautious; it converges the fastest of all three BE
methods. BE-Backtrack attains the highest final reward, but
it takes much longer to converge than BE-Rebid and does
not achieve the highest cumulative signal strength (BE-Rebid
explored for only 36 rounds and received a final reward of
13,198, whereas BE-Backtrack received 13,347 while explor-
ing for 76 rounds; the cumulative rewards for BE-Rebid and
BE-Backtrack were 666,062 and 659,925 respectively).

Having examined a single trial, consider the first set of re-
sults shown in Figure 4(a) showing the algorithms’ relative
performance over different experiment lengths. The y-axis
measures the scaled gain. The x-axis shows the five values of
T , the total number of rounds in a trial. All trials use random
sparse graphs with 15–20 links and 10 agents. Each result is
averaged over 30 independent trials and the error bars show
the standard error. The difference between scaled gain for
each pair of algorithms is statistically significant within a sin-
gle value of T (paired Student’s t-tests calculate p < 0.05),
except for T = 5. When the time horizon is very small, all but
SE-Optimistic perform roughly the same because all four al-
gorithms explore very little. As the number of rounds per ex-
periment increases, BE algorithms outperform SE algorithms,
and BE-Rebid consistently achieves the highest scaled gain.

The second set of results, shown in Figure 4(b), varies the
number of agents and again uses random sparse graphs. The
time horizon is 100 rounds. The x-axis shows the number of
agents, varied from 5 to 50. Paired Student’s t-tests determine
all results to be statistically significantly different (p < 0.05),
confirming that BE-Rebid outperforms all other algorithms.

The third set of results shown in Figure 4(c) compares the
performance on different graph topologies: a chain structure,
random structures (with 1

3
or 2

3
of all possible links enabled),

and a fully connected topology. Each test uses 20 agents and
100 rounds. All results within a single topology are again
statistically different (p < 0.05).

Three trends in Figure 4(c) are worth noting. First, BE-
Rebid statistically significantly (p < 0.05) outperforms oth-
ers in all topologies tested, except in the fully connected
graph (where it is roughly equivalent to SE-Optimistic as only
one agent can move per round). Fully connected graphs are
thus one setting where the static estimation algorithms can
perform just as well as the more complex BE algorithms.

Second, as the link density of the graph is increased, the
relative performance of BE-Backtrack decreases, with statis-
tical significance (p < 0.05), due to the aggressive nature
of the algorithm. A BE-Backtrack agent will explore for te
steps, preventing all neighbors from moving during this time.
Thus, as the link density increases, higher number of agents

are not allowed to move until after te steps.
Third, SE-Mean outperforms SE-Optimistic in randomly

generated graphs, but not in chain and fully connected graphs.
Unlike in chain and fully connected graphs, agents in random
graphs can have a high variance in their degrees of network
connectivity. We analyze the number of agents that were able
to optimize their rewards. While 40% of the robots moved
when running SE-Mean, only 18.5% robots could do so when
running SE-Optimistic in random graphs with density 1

3
. SE-

Optimistic agents with a high degree of connectivity monopo-
lize movement opportunities because they bid unrealistically
high rewards. Their bid is relatively large when compared to
the bids of agents with lower degrees. There exists a large
correlation (Pearson’s coefficient of ρ > 0.5) between the de-
gree of the agent and the number of moves made by the agent
in SE-Optimistic. In contrast, SE-Mean agents allow others
to win bids once the reward of an agent reaches the average
over all neighbors. There exists only a weak correlation with
ρ < 0.05 between the degree of the agent and the number of
moves made by the agent for SE-Mean, explaining this dif-
ference in performance.

The results also show that BE-Stay is statistically signifi-
cantly dominated by BE-Rebid, demonstrating that the ability
to backtrack can lead to significantly better performance.

4.2 Physical Robots Results

Three topologies were tested with physical robots: chain, ran-
dom, and fully connected. In the random topology tests, the
robots were randomly placed and the CenGen API automati-
cally defined the neighbors, whereas the robots had a fixed set
of neighbors over all trials in the chain and fully connected
tests. Each of the three experiments were repeated 5 times
with a time horizon of 20 rounds.

Figure 5 shows the results of running BE-Rebid and SE-
Mean on the robots. SE-Mean is chosen because it performed
best with a small number of agents in simulation and BE-
Rebid is chosen because it almost always outperformed all
other algorithms. The gain on the y-axis has not been nor-
malized as MGM-Omniscient cannot be run on the physi-
cal robots (the actual signal strength cannot be determined
a-priori). The values are signal strengths in decibels (dB).
BE-Rebid performs better than SE-Mean in the chain and ran-
dom graphs, but loses in the fully connected graph. While too
few trials were conducted for statistical significance, it is im-
portant to note that in all cases there is an improvement over
the initial configuration of the robots. Additionally, because
decibels are a log-scale metric, the gains are even more sig-
nificant than one may think on first glance.

0!

200!

400!

600!

800!

1000!

Chain! Random! Fully

Connected !

A
bs

ol
ut

e
G

ai
n!

Physical Robot Results!

SE-Mean! BE-Rebid!

Figure 5: Performance of
SE-Mean and BE-Rebid for
different topologies show
our DCOP methods signif-
icantly improve over ini-
tial configurations. The er-
ror bars show the standard
error.

5 Related Work and Conclusions

Related work in DCOPs has been discussed in earlier sec-
tions. Specifically, previous work in distributed constraint
reasoning in sensor networks [Lesser et al., 2003; Zhang et
al., 2003] does not use a DCOP formulation or handle un-
known reward matrices. Farinelli et al [2008] also perform
decentralized coordination on physical hardware using factor
graphs, however, rewards are known and cumulative reward
is not considered. A number of other works on mobile sensor
networks for communications (c.f., Cheng. et al [2005], Mar-
den et al. [2007]) are based on other techniques (e.g., swarm
intelligence, potential games, or other robotic approaches).
Instead, we extended DCOPs as they can scale to large tasks
using local interactions. Reinforcement learning [Sutton and
Barto, 1998], a popular approach in multiagent learning, does
not directly apply in this domain as agents must quickly dis-
cover good variable settings, not a control policy. Optimal
Stopping Problems (c.f., the Secretary Problem [Freeman,
1983]) optimize the final rank of the selected instance, not
on-line metrics, and are exclusively single agent.

This paper focuses on a class of problems that DCOPs
could not address before. Apart from early work on dis-
tributed constraint reasoning by Lesser et al. [2003], this is the
first application of DCOPs that demonstrates improvement in
performance in a real-world problem. We show that such real
world domains raise new challenges: (1) agents do not know
the initial payoff matrices, (2) the goal is to maximize the total
reward instead of the final reward, and (3) agents have insuffi-
cient time to fully explore the environment. These challenges
open up a new area for DCOP research, as current DCOP
algorithms cannot be directly applied. We present and empir-
ically compare five novel DCOP algorithms addressing these
challenges. We also present results from two algorithms im-
plemented on physical robots. Our results show significant
improvement in the reward in mobile sensor networks. Our
experiments demonstrate the superiority of decision theoretic
approaches, but static estimation strategies perform well on
fully connected graphs or when task time horizon is small. In
the future, we anticipate scaling up our evaluation to include
additional robots, verifying our algorithms in other domains,
and examining alternate reward metrics, such as minimizing
battery drain.

6 Acknowledgements

We would like to thank Rajiv Maheswaran, Chris Kiek-
intveld, James Pita, Jason Tsai and the reviewers for their
helpful comments and suggestions. This work has been spon-
sored by the DARPA under contract FA8650-08-C-7811 and
subcontracted from Lockheed Martin Cooperation.

References
[Cheng et al., 2005] J. Cheng, W. Cheng, and R. Nagpal. Robust

and self-repairing formation control for swarms of mobile agents.
AAAI, 2005.

[Cox et al., 2005] J. Cox, E. Durfee, and T. Bartold. A distributed
framework for solving the multiagent plan coordination problem.
In AAMAS, 2005.

[Farinelli et al., 2008] A. Farinelli, A. Rogers, A. Petcu, and N.R.
Jennings. Decentralized coordination of low-power embedded
devices using the max-sum algorithm. In AAMAS, 2008.

[Fitzpatrick and Meertens, 2003] S. Fitzpatrick and L. Meertens.
Distributed coordination through anarchic optimization. In Victor
Lesser, Charles L. Ortiz, and Milind Tambe, editors, Distributed
Sensor Networks. Kluwer Academic Publishers, 2003.

[Freeman, 1983] P. R. Freeman. The secretary problem and its ex-
tensions: A review. International Statistical Review, 51, 1983.

[Kozono, 1994] S. Kozono. Received signal-level characteristics
in a wide-band mobile radio channel. In IEEE Transactions on
Vehicular Technology, 1994.

[Lesser et al., 2003] V. Lesser, C. Ortiz, and M. Tambe. Distributed
sensor nets: A multiagent perspective. Kluwer Academic Pub-
lishers, 2003.

[Maheswaran et al., 2004] R. T. Maheswaran, J. P. Pearce, and
M. Tambe. Distributed algorithms for DCOP: A graphical-game-
based approach. In PDCS, 2004.

[Mailler and Lesser, 2004] R. Mailler and V. Lesser. Solving dis-
tributed constraint optimization problems using cooperative me-
diation. In AAMAS, 2004.

[Marden et al., 2007] J.R. Marden, G. Arslan, and J.S. Shamma.
Connections between cooperative control and potential games il-
lustrated on the consensus problem. In European Control Con-
ference, 2007.

[Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161:149–180, 2005.

[Molisch, 2005] A. F. Molisch. Wireless Communications. IEEE
Press, 2005.

[Montemerlo et al., 2004] R.E. Montemerlo, G. Gordon, J. Schnei-
der, and S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In AAMAS, 2004.

[Pearce and Tambe, 2007] J. Pearce and M. Tambe. Quality guar-
antees on k-optimal solutions for distributed constraint optimiza-
tion. In IJCAI, 2007.

[Petcu and Faltings, 2005] A. Petcu and B. Faltings. A scalable
method for multiagent constraint optimization. In IJCAI, 2005.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Introduction
to Reinforcement Learning. MIT Press, 1998.

[Zhang et al., 2003] W. Zhang, Z. Xing, G. Wang, and L. Witten-
burg. An analysis and application of distributed constraint satis-
faction and optimization algorithms in sensor networks. In AA-
MAS, 2003.

[Zhang et al., 2005] Y. Zhang, J. G. Bellingham, R. E. Davis, and
Y. Chao. Optimizing autonomous underwater vehicles’ survey
for reconstruction of an ocean field that varies in space and time.
In AGS, Fall Meeting, 2005.

