Local Optimal Solutions for DCOP: New Criteria, Bound,
and Algorithm

Zhengyu Yin, Christopher Kiekintveld, Atul Kumar, and Milind Tambe
Computer Science Department
University of Southern California, Los Angeles, CA, 90089
{zhengyuy, kiekintv, atulk, tambe}@usc.edu

ABSTRACT

Distributed constraint optimization (DCOP) is a popular formal-
ism for modeling cooperative multi-agent systems. In large-scale
networks, finding a global optimum using complete algorithms is
often impractical, which leads to the study on incomplete algo-
rithms. Traditionally incomplete algorithms can only find locally
optimal solution with no quality guarantees. Recent work on k-
size-optimality has established bounds on solution quality, but size
is not the only criteria for forming local optimization groups. In
addition, there is only one algorithm for computing solutions for
arbitrary k£ and it is quite inefficient. We introduce t-distance-
optimality, which offers an alternative way to specify optimization
groups. We establish bounds for this criteria that are often tighter
than those for k-optimality. We then introduce an asynchronous lo-
cal search algorithm for t-distance-optimality. We implement and
evaluate the algorithm for both ¢ and k optimality that offer signifi-
cant improvements over KOPT — the only existing algorithm for k-
size-optimality. Our experiment shows t-distance-optimality con-
verges more quickly and to better solutions than k-size-optimality
in scale-free graphs, but k-size-optimality has advantages for ran-
dom graphs.

1. INTRODUCTION

In various cooperative multi-agent domains, agents have limited
information and can directly communicate with only a subset of
other agents. Typically, in these domains, the utility generated by
an individual action of one agent depends only on the actions of a
set of nearby agents. Distributed constraint optimization (DCOP)
is a popular formalism for modeling such cooperative multi-agent
systems in which agents work together to optimize a global objec-
tive. The objective function can be decomposed into constraints
with associated utility matrixes across local subsets. There are
lots of applications of DCOP including multi-agent plan coordi-
nation [5], sensor networks [15], allocation of resources in peer-to-
peer networks [6], and meeting scheduling [13].

Various complete algorithms have been developed for finding
globally optimal solution to DCOPs, e.g. ADOPT [10], OptAPO [9],
DPOP [13], and NCBB [4]. However, DCOP is NP-hard [10]. It
is hard for complete algorithms to scale up because the computa-
tion burden might increase exponentially with the increasing num-
ber of variables. Therefore, researchers have been studying incom-

Cite as: Local Optimal Solutions for DCOP: New Criteria, Bound, and
Algorithm, Z. Yin, C. Kiekintveld, A. Kumar, and M. Tambe, Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10—
15, 2009, Budapest, Hungary, pp. XXX-XXX.

Copyright (©) 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

plete algorithms, in which agents normally form local groups with
small size and optimize within these groups. Incomplete algorithm
have better scalability and robustness in dynamic environments.
Existing incomplete algorithms include MGM/DBA [12, 15] and
DSA [7]. Recent studies with k-size-optimality by Pearce et al. [11]
have begun to provide theoretical quality guarantees of locally op-
timal solutions with certain properties. k-size-optimality is char-
acterized by the size of local groups, i.e. the minimum number
of variables which must change their values to improve the overall
solution quality.

Unfortunately, k-size-optimality suffers from several shortcom-
ings. First, our theoretical analysis shows the quality lower bound
for k-size-optimality is inversely related to the graph density. The
worst case is complete graphs, where the lower bound for k-size-
optimality decreases to 57— [11]. As n increases, this bound
gets unacceptably low for some domains. Second, k-size-optimality
considers all types of k-size groups, among which some may have
nodes that are far apart from each other. In such groups, coordina-
tion to perform a joint move can be expensive, as messages have to
be delivered to some nodes far away from the center node. Third,
the number of possible k-size groups in the graph grows combi-
natorially with increasing values of k. Basically, any combination
of k connected nodes can form a k-size group. The complexity of
enumerating and optimizing all k-size groups makes it difficult to
design efficient algorithms for k-size-optimality with k > 3. This
explains why most local search algorithms have limited group size
to 1 or 2. “KOPT” [8], recently introduced by Katagishi and Pearce,
is the only known algorithm for k-size-optimality that supports ar-
bitrary values of k. However it suffers from significant messaging
overhead, particularly in highly dense graphs.

In this paper, we introduce a new locally optimal criteria — ¢-
distance-optimality which has fixed number of local optimization
groups defined by graph distance. We provide formal quality bounds
for t-distance-optimal solutions with and without prior knowledge
about graph structure, and show these bounds can yield signifi-
cantly better guarantees than comparable k-size-optimal solutions.
Furthermore, we present an asynchronous local search algorithm
for t-distance-optimality based on standard lock/commit protocol,
and show its significant improvements over KOPT in various met-
rics. Finally we conducted comprehensive experiments to evalu-
ate tradeoffs between algorithms for ¢-distance-optimality and k-
size-optimality considering a variety of metrics. Our experiments
show t-distance-optimality converges more quickly and to better
solutions than k-size-optimality in scale-free graphs, but k-size-
optimality has advantages in random graphs.

2. BACKGROUND

2.1 DCOP Definition

A finite distributed constraint optimization (DCOP) problem com-
prises sets of variables V' := {v1,...,v,} and constraints C' :=
{c1,...,cm}. Variables have finite domains and are each con-
trolled by a decision-making agent (for convenience we assume
one variable per agent). A joint assignment for all variables is
given by A := {a1,...,an}. We follow the convention in the
literature and consider only binary constraints. For some pair of
variables (v;,v;), a constraint ¢ defines a real-valued reward for
all possible joint assignments, ¢(a;, a;). The reward function R(-)
of an assignment A is defined as the sum of rewards, R(A) =
> ecc clai, a;). The agents’ objective is to find an assignment A™
that maximizes the reward function, i.e. A* = argmax, R(A).
The constraint graph has a node for each variable and an edge for
each constraint. In the sequel, we use the terms node, variable and
agent interchangeably. Agents initially know only their own con-
straints, and can communicate only with neighbors in the constraint

graph.
()—()
01
0 0
Vi
(=)=)—(bk

Figure 1: An example DCOP with six binary variables. Each con-
straint has the same reward table.

w

DCOP shown in figure 1 contains 6 variables, and 6 constraints
with the same reward matrix. The optimal assignment of this prob-
lemis A ={1,1,1,1,1, 1} with a reward R(A) = 24.

2.2 k-Size Optimality

Pearce et. al. recently introduced k-size-optimality (as “k-optimality”

in the original work) as a local optimality criteria that offers theoret-
ical guarantees on solution quality. In their approach, agents form
groups of one or more agents until no group of k or fewer agents
can possibly improve the DCOP solution. This type of local opti-
mum is defined as k-size-optimal. Let A be a DCOP assignment
and A(7) be the value of v; in A.

DEFINITION 1. The deviation group D(A, A") is defined as the
set of nodes with a different assignment in Aand A', i.e. D(A, A’) =

{vil Ad) # A'(i)}-

DEFINITION 2. A DCOP assignment A is k-size optimal if R(A) >

R(A") for all A’ for which |D(A, A")| < k.

In Figure 1, the assignment A = {0,0,0,0,0,0} with reward
R(A) = 18 is a k-size optimal solution for & = 1,2, 3,4, but
not for K = 5,6. It is 1-size optimal because the reward is re-
duced if any single variable changes assignment, and by carefully
examining all possibilities it can also be proved to be 2, 3, 4-size
optimal. However, it is not 5-size-optimal because if we change
the values of v1, v2, vs, v4, and vs from O to 1, the solution reward
is improved to 20. For any binary DCOP with n variables, a k-size
optimal solution A has quality R(A) > %=1 R(A*), where A*
is the globally optimal solution [11]. This bound is independent
on the graph structure and reward structure, but tighter bounds are
possible given additional information about the problem [3]. Many
incomplete DCOP algorithms including MGM and DSA yield 1-
size optimal solutions. General k-size-optimality offers a spectrum
of solutions with stronger guarantees in exchange for greater com-
putation [11].

3. 71-DISTANCE OPTIMALITY

We introduce a novel local optimality criteria, t-distance-optimality,
that defines local optimization groups based on graph distance. We
begin with a formal definition, and discuss the relationship be-
tween k-size-optimality and t-distance-optimality. Then, we give
a general lower bound on solution quality of ¢-distance-optimality
regardless of graph structure. Finally, we present graph-specific
bounds on sets of graphs with varying properties.

For a pair of variables v and v, let T'(u, v) be the shortest dis-
tance between them in the constraint graph.

DEFINITION 3. Denote by Q:(v) the group of variables that
can be reached from v within t hops, i.e. Q(v) = {u|T(u,v) <
t}.

DEFINITION 4. A DCOP assignment A is t-distance optimal if
R(A) > R(A') for all A', where D(A, A") C Q.(v) for some
velV.

There are at most n distinct ¢-distance groups centered on n vari-
ables. Some groups may be redundant when they are subsumed
by or equivalent to others. For example, in a complete graph,
only one group is not redundant because all n 1-distance groups
comprise the full set of variables and are thus identical. Further-
more, consider the example shown in Figure 1. No two 1-distance
groups are identical. However, Q1 (v3) = {vs,v4} is subsumed
by Q1(va) = {vs,va,v1,v5}, so ©Q1(v3) is redundant. To bet-
ter understand the difference between ¢-groups and k-groups, we
consider another example shown in Figure 2. Figure 2(a) shows
all three 3-size groups in the graph: {v1,v2,vs}, {v1,vs3,v4}, and
{v1,v2,v4}. Figure 2(b) shows the only non-redundant 1-distance
group: {v1, vz, v3, V4 }.

(a) 3-size groups

(b) 1-distance groups

Figure 2: k-size groups and ¢-distance groups

Consider, again, the example in Figure 1, where we show as-
signment A = {0,0,0,0,0,0} is O-distance optimal with quality
R(A) = 18. In 0-distance optimality, each group contains exactly
one variable, which is equivalent to 1-size optimality. Changing
the value of any single variable from 0 to 1 will reduce the qual-
ity. This is because flipping the value of either vs or ve leads to
reward 15, flipping the value of either v; or vy leads to reward
12, and flipping the value of either v4 or vs leads to reward 9.
Since none of these groups has an incentive to deviate, A is 0-
distance optimal. Similarly we can test whether A is 1-distance op-
timal by checking all 1-distance groups. In this example, there are
four non-redundant 1-distance groups: Q1 (v4) = {v1,vs, va,vs5},
Q1(U1) = {1)1,1)2,1)4}, Ql(’Ug) = {vl,vg,v5}, and Ql(’Us) =
{v2, v4, U5, v6 }. After enumerating all possible deviations in these
groups, we find no group can improve solution quality by local op-
timization. Therefore A is also 1-distance optimal. However, it is
not 2-distance optimal because {1,1,1,1,1, 1} is a better assign-
ment whose deviation group is fully comprised by 2 (v4). In this
example, 2-distance optimality already guarantees global optimal-
ity because Q2 (v4) contains exactly all variables in the network.

3.1 Comparing ¢t and ¥ Optimality

Both t-distance-optimality and k-size-optimality are criteria for
local optimality, but there is a key distinction between them. In k-
size-optimality, the size of local optimization group is fixed, but the
number of possible k-size groups may be very large, especially in
dense graphs. In contrast, in t-distance-optimality, the number of
optimization groups is fixed, but the size of ¢-distance groups can
be very large, particularly in dense graphs. For example, in a com-
plete graph with n variables, there are (g) distinct 3-size groups
where each has a fixed size 3. However, there is only one unique
1-distance group comprising all n variables. One of our primary
contributions in this paper is to empirically test the implications of
this tradeoff for local search methods.

To further understand the connection between k-optimality and
t-optimality, we examine some special cases. The first observation
is that 1-size optimality is equivalent to O-distance optimality. In
both criteria, one single node forms the local optimization group.
Furthermore, in ring graphs, t-distance-optimality is also equiva-
lent to k-size-optimality for k = 2t 4+ 1. For example, 3-size
optimality is exactly the same as 1-distance optimality in a ring
graph, because every section of 3 connected nodes is an optimiza-
tion group for both k = 3 and ¢t = 1 and no additional groups exist
for either case.

There are several reasons to believe t-distance-optimality poten-
tially offers benefits over k-size-optimality as a criterion for dis-
tributed local search algorithms. First of all, a ¢-distance optimal
solution always guarantees (2t + 1)-size optimality, since every
(2t 4 1)-size group must be contained in some ¢-distance group.
But the reverse is not true; there are (2¢ + 1)-size optimal solu-
tions that are not ¢-distance optimal. For example, in a complete
graph, t-distance optimal solution always guarantees global opti-
mality for ¢ > 1, while a k-size optimum can possibly reach the
lower bound given in Section 2.2 which is known to be tight for
complete graphs. While complete graphs are a somewhat artificial
example, we might expect to find similar advantages for ¢-distance
optimality when there are hub nodes with many connections or sub-
graphs that are densely connected. Second, t-distance-optimality
naturally captures graph locality which might help improving ef-
ficiency of local search algorithms particularly in distributed envi-
ronment where communication delay is the dominating cost. Also,
algorithms for t-distance-optimality may reduce privacy loss as pri-
vate information of an agent can only be obtained by those within
a fixed distance.

3.2 General Lower Bound

We derive a general lower bound on solution quality for ¢-distance-
optimality, regardless of the graph structure.

PROPOSITION 1. Consider a DCOP with n variables, mini-
mum constraint arity m, where all constraint rewards are non-
negative, and A* is the globally optimal solution, then, for any t-
distance optimal assignment Aiopt, wheret > 0 and m~+t—1 < n,
we have R(Aopt) > "L R(AY).

PROOF. Let R.(A) denote the reward on constraint c for any as-
signment A. For any set of constraints S, let Rs(A) = Y ¢
Let o(c) be the set of variables in constraint ¢, and (W) be the
set of constraints across a subset of variables W C V (c € #(W)
iff o(c) C (W)).

Let A’(v) be an assignment derived from A¢op¢ by changing all
assignments in Q;(v) to their corresponding values in A*. Since
Atopt 18 a t-distance optimal assignment, R(Azopt) > R(A'(v)).

Because all constraint values in the DCOP are non-negative, R(A’ (v)) >

Ry (9, (v)) (A’ (v)). Furthermore A’(v) has the identical assignment

Re(A).

as A™ over Q:(v), so

R(Avopt) = Rr(a, () (A (v)) = Ra(a,) (A")

Summing over all ¢t-groups, we have:

nR(Atopt) > Z RW(Qt(Uq'))(A*) M
i=1

Now we count the contribution of each constraint c to the rhs.
Because ¢ has an arity of at least m, |o(c)| > m. Pick an arbi-
trary variable v in o (c), if the ¢t-group Q¢ (v) is identical to V, i.e.
comprising all variables in the graph, then R(Aopt) = R(A").
Otherwise, there exists a v; € V such that T'(v, v;) > t. Write the
first 41 variables on the shortest path from v tov; as v, v1, ..., v¢.
T (v,v;) = 4, which implies that for i > 1, v; ¢ o(c).

Consider two cases. First, if v1 € o(c), c appears in 7(Q¢ (v
forall v’ € o(c) U {v2, v3, ..., v }. Certainly c appears (¢ (v
for v € o(c) ast > 1. c also appears m(Q2:(v')) for v' €
{v2,vs, ..., v+ } because for any variable v’ in o(c) and any 2 <
i <t, T v;) <TW v1)+T(vi,v;) = 1+i—1 < t. There-
fore in the rhs of inequality 1, ¢ is counted at least |o(c)| +¢t —1 >
m +t — 1 times.

Now consider the other case where v1 ¢ o(c). c appears in
w(Q(v")) forallv’ € o(c)U{v1,vs, ..., v:_1}. cappears w(Q:(v'))
for v’ € {v1,v2,...,v:—1} because for any v" in o(c) and any
1<i<t—1,TwO,v) <TOW" v)+Twv)=1+13 <t
Therefore, ¢ will be also counted at least |o(¢)|+t—1 > m+t—1
times in this case. Since cis counted at least 7 +¢ — 1 times in the
rhs of inequality 1 in both cases we have,

/

)
)

R(Awp) > do(mAt—1DR(A") (m+t—1)
n n

U

To demonstrate the two cases in the proof above, we consider
the example shown in Figure 3, where |c¢| = 3 and ¢ = 2. In this
example, we show constraint ¢ appears in |c| + ¢t — 1 = 4 distinct
2-distance groups. Figure 3(a) demonstrates the situation where
v1 € o(c). In this case, constraint ¢ appears in four groups cen-
tered on v, u1, v1, and v respectively. Figure 3(b) shows the other
situation where v1 ¢ o(c). In this case, constraint c appears in four
groups centered on v, u1, U2, and vy respectively. In both figures,
variables inside the dashed circle represent o(c) and variables in-
side the dashed box represent those whose t-groups have constraint
c. As we can see in both cases, ¢ appears in at least 4 different
2-distance groups.

R(A™)

PROPOSITION 2. For binary constraint DCOP with n variables,
the lower bound for 1-distance optimality in proposition 1 is tight.

PROOF. Consider a complete bipartite graph with 2k variables
(figure 4 shows an example of h = 3). Let S1 = {v11, v12,...,Vin}
and So = {v21,v22,...,v2n}. Forany 1 < 4,5 < n, there
is a constraint between vy; and ve;. Variables can take a value
of either 0 or 1. All constraints have the same reward matrix as
shown in figure 4. The global optimum is {1,1, ..., 1} with qual-
ity h3. Proposition 1 gives the lower bound for 1-distance opti-
mum of %h‘g = h?. We claim that assignment {0,0,...,0} is an
1-distance optimum with quality h?. Consider only variable v11,
w.l.o.g. due to symmetry. €1 (vi1) contains all h variables in Sa
and none in S1.

i. Suppose the value of v1; remains 0, and 1 < b < n vari-
ables in S2 change to 1, then the total quality will decrease
to h(h — b).

(a) In the first case, constraint ¢ appears in groups
centered on v, u1, v1, and v2

(b) In the second case, constraint c¢ appears in
groups centered on v, u1, u2, and vy

Figure 3: Example showing the two cases

Figure 4: Example showing bound tightness for ¢ = 1

ii. Suppose the value of v1; is changedto 1,and 0 < b < n
variables in S2 change to 1, then the total quality will be to
bh+ (h—1)(h —b) =h®* —h +b < h?

In either case, the solution quality can’t be improved. Therefore
{0,0,...,0} is 1-distance optimal. []

3.3 Graph-Specific Lower Bound

In previous work on k-size-optimality, linear fractional program-
ming (LFP) was used to find tighter bounds for specific graphs [11].
We use a similar method for ¢-distance optimality. One LFP vari-
able R.(Atopt) represents the reward on ¢ in the ¢-distance opti-
mal solution, and a second R.(A") represents the reward in the
optimal solution. By definition R(Asopt) > R(A’) for all A’,
where the deviation group between Aoyt and A’ is comprised in
some t-group. Let © be the set of assignments such that A’ €
O iff D(Aiopt, A') € Qu(v) for some v € V and variables in
D(Aiopt, A”) take the same value as in A*. The objective is to

minimize “54228) such that VA’ € ©, R(Awpe) — R(A") > 0.
Note that R(A¢opt) and R(A™) can be expressed as) . Rc(Atopt)
and), Rc(A"). R(A’) can also be represented as the sum over

all constraints, R(A") = > .o Re(A’). So far we can write down

the LFP:
. R(Atopt)
Min 7R(A*)
s.t. R(Atopt) = Z Rc(Atopt)
ceC
st R(A") =1 R(A")
ceC
st. R(A)=) Re(A),VA' €O
ceC

s.t. R(Atopt) Z R(A/),VA/ c @

In the LFP above we still need to represent R.(A’). Consider
any constraint ¢, suppose it has two variables v; and v;. Denote by
A(3) the value of v; in assignment A. Then,

i. Re(A") = Re(Aiopt), if A'(1) = Awope(i) N A'(§) =
Atopt(F)-

ii. Re(A') = Ro(A%),if A'(3) = A*(i) A A'(§) = A*(5).
iii. R.(A") =0, otherwise.

Figure 5 shows the average graph-specific bounds over 30 sam-
ples. (see Section 5 for details on graph generation). In Figure 5(a)
and Figure 5(b), we see that t-distance-optimality provides much
stronger lower bounds on average than comparable k-size-optimality
on both scale free and random graphs. We note ¢ = 2 provides a
substantial improvement over ¢ = 1. Comparing lower bounds on
different types of graphs, we also note t-distance-optimality offers
more benefits on scale free graphs than on random graphs. The
lower bound for ¢ = 1 is generally better than that for kK = 5 on
scale free graphs while k = 5 constantly outperforms ¢ = 1 on ran-
dom graphs. The differences shown are statistically significant (for
example, the p-value for a comparison of ¢ = 1 and k = 3 on 25-
node scale free graphs is 4.58 x 10~2%). We also did tests on graphs
with varying density. Figure 5(c) and Figure 5(d) show the results
fort = 1, k = 3, and k = 5 on 10-node and 15-node random
graphs with varying density respectively. We note that k-size opti-
mal bounds tend to degrade more quickly with increasing density,
which t-distance optimality is more stable and eventually improves
for very high densities. Finally, we tested bounds on large graphs.
Figure 5(e) and Figure 5(f) show the bounds fort = 1 and &k = 3
on random graphs with varying graph size. We can see both ¢-
distance-optimality and k-size-optimality bounds degrade quickly
at relatively small graph size. However, after graph size reach-
ing 100, both bounds begin to stabilize and eventually converge to
some fixed value. We can see t = 1 on average guarantees 21.2%
of the global optimum on density 4 graphs with 640 nodes while
k = 3 guarantees 11.9%.

4. ASYNCHRONOUS ALGORITHM

In this section, we introduce our novel asynchronous algorithm
for DCOP based on t-distance-optimality. 1t is a variant of dis-
tributed local search which improves quality monotonically over
time from a random initial assignment. It is fully distributed and
uses asynchronous methods for both computation and coordination.

We give an overview of the algorithm before discussing key stages
in more detail. First, agents broadcast local information about the
graph structure and use this to determine group members. During
the main phase, all groups compute new optimal assignments in
parallel, assuming nodes outside of the group maintain unchanged.
If an improvement is found, the group leader attempts to imple-
ment the new assignment by sending out requests. This can cause

Bounds for Scale Free Graphs

Bound Fraction

0.2 -

5 10 15 20 25
Number of Nodes

(a) Scale free density 2

Bounds for Random Graphs
1

Bound Fraction

Density

(c) 10-Node varying density

Bounds for Random Graphs

045

Bounds for Random Graphs

Bound Fraction

5 10 15 20 25
Number of Nodes

(b) Random density 2

Bounds for Random Graphs

0.55

Bound Fraction
°
@

Density

(d) 15-Node varying density

Bounds for Random Graphs
0.35

Bound Fraction
Bound Fraction

2 - 01
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Number of Nodes Number of Nodes

(e) Bounds fort =1 (f) Bounds for k = 3

Figure 5: Graph-specific bounds comparison

conflicts among overlapping groups, which is resolved by an asyn-
chronous locking and commitment protocol in our approach.

4.1 Initialization

An agent begins by picking a random value from its domain as
its initial assignment. It then composes a message containing all
its constraints and broadcasts the message to a distance of ¢ hops.
After that, it broadcasts its initial value to a distance of ¢ + 1 hops
in a separate message. Here we assume each agent has an unique
ID (e.g. a MAC address) which can be included in the message to
identify the sender.

In the initial stage, the center node of each group will receive full
constraint information and values of nodes inside the group. Since
the initial values are broadcast an additional hop, the center node
will also receive the values of all fringe nodes of the group. Fringe
nodes of a group are those outside the group but directly linked
to some node inside the group. Local optimization of a group is
performed under the assumption that all the fringe nodes remain
static.

Every agent in the network will automatically be the leader of
a t-distance group centered on it. However, some groups may be
subsumed by or equivalent to others, leading to redundant compu-
tations. We remove some redundant groups using a simple opti-
mization. Each agent computes a shortest distance matrix within
its local view (t + 1 hops). Its t-group is redundant if

i. there is an agent whose shortest distance to every other agent
is strictly less than ¢ + 1;

ii. there is an agent with a lower id whose shortest distance to
every other agent is less than or equal to ¢ 4- 1.

4.2 Computation for Local Optimum

In the previous stage, the leader has gathered all the information
required for computing the local optimal solution. During the main
phase of the algorithm new optimal assignments for each group are
computed in parallel. In principle, any complete DCOP solver can
be adapted to this purpose. We implement a centralized approach
motivated by OptAPO [9] for our experiments.

Our implementation uses a variable elimination algorithm com-
parable to a centralized version of DPOP [13] if the average den-
sity of the local perspective is less than 5 and a branch-and-bound
solver otherwise. Variable elimination methods like DPOP are ex-
ponentially complex with respect to the width of the pseudo tree.
Therefore, the centralized DPOP solver can be very efficient in low
density graphs. However, a branch-and-bound solver has advantage
in dense graphs thanks to the pruning on solution space based on
reward structure. To perform this computation, the leader needs to
know the current assignments of the fringe nodes. Each time a node
commits a change and switches to a new assignment, it broadcasts
the new value to a distance of ¢t + 1 hops to ensure that all lead-
ers have the required information. Once the leader receives new
assignment information, it immediately gives up the ongoing lock
attempt (if there is one), unlocks all group members, and recom-
putes a new optimal assignment.

4.3 Asynchronous Assignment Implementation

When the leader finds the local optimum of the group that can
yield improved solution quality, it will attempt to implement the
new assignment. While implementing changes in a single group
guarantees monotonically increasing quality, multiple overlapping

groups implementing assignments simultaneously might lead to degra-

dations. Conflicts happen when some agent receives exclusive value
changing requests from multiple group leaders. Existing incom-
plete DCOP solvers, including KOPT [8], typically requires syn-
chronization to resolve such conflicts. However, in real problems,
synchronization over the whole network is not trivial to achieve in
the first place. Furthermore, synchronous algorithms can be fragile
in dynamic environments where message loss, node failures, and
other unpredictable events happen frequently. For example, when a
node loses connection to the network, synchronous algorithm com-
pletely stops working due to the failure of synchronization. In our
algorithm, we use an asynchronous protocol, which is generally
more robust to various types of noise in real applications. In asyn-
chronous algorithms, when a single node failure happens, only a
small set of nodes are affected and the remaining part of the net-
work still works as normal.

The protocol is based on a standard lock/commit pattern. The
leader sends lock requests to all group members and fringe nodes,
which accept the request unless they have already locked on a dif-
ferent assignment (multiple locks for the same assignment are ac-
ceptable). If all nodes accept, the leader sends a commit message
and the assignment is implemented. Otherwise, the leader unlocks
all nodes and backs off to prevent deadlock.

It is trivial for the leader to lock the group when all lock requests
are sent to its direct neighbors. However, we need a protocol to for-
ward lock requests in large groups where the leader cannot directly
communicate with all group and fringe nodes. A simple flooding
approach based on broadcasting is inefficient, especially in dense
graphs. Our algorithm fully utilizes the graph information procured
in the initial stage to reduce number of messages. The leader first
performs a breadth-first search and builds a BFS tree rooted on it-
self, in which a tree node represents an agent. A tree node is as-
signed an (ID, Val) pair, indicating agent ID is locked on Val. Each
neighbor of the leader corresponds to a child of the root in the BES
tree. The leader sends the corresponding subtree to every neighbor

as alock request. An agent that receives a lock message extracts the
lock value from the root, and forwards the subtrees to its children.
Figure 6 is a demonstration for this protocol.

6: Example demon-
strating lock message
forwarding protocol.
Each node represents a
variable v;. The gray
number in the node
indicates the value to
be locked on. Each
arrow associated with a
subtree that represents
a lock message.

If a previous lock attempt fails, the leader will wait for a random
interval between 0 and the maximum interval I,,, before sending
lock requests again. Failure of each lock attempt doubles I,, un-
til reaching a threshold (256 time units). To reduce conflicts in the
beginning, every leader waits for a random number of time units be-
tween 0 and 32 before the first lock attempt. When a node commits
to an assignment, it broadcasts the new assignment to a distance
of t + 1 hops and is able to accept new lock requests. Leaders re-
ceiving new assignment information unlock nodes if necessary and
recompute a new optimal assignment. Conflicts have a substan-
tial cost, so we implemented several techniques to improve locking
performance.

Subset Locking (SL): If a new assignment does not change the
assignment for every node, it is not necessary to lock all group
and fringe nodes. Subset locking only requests locks from nodes
changing assignment and their neighbors, rather than the full group,
reducing the chance for conflicts.

Partial Synchronization (PS): A benefit of synchronized con-
flict resolution is that nodes can implement heuristics to commit to
groups with a high gain for changing assignment. We approximate
this in the asynchronous setting by waiting for a fixed time period
to pool lock requests at each node. Once the timer expires, a node
selects the lock message with the largest gain to accept (group gain
is included in the lock message when using PS).

5. EXPERIMENTAL EVALUATION

In addition to the algorithm for ¢-distance-optimality described
in Section 4, we implement a comparable algorithm for k-size-
optimality using the same asynchronous coordination protocol. We
explain some non-trivial details. First, in the initialization stage,
constraints are broadcast to a distance of Lg] instead of ¢ hops.
And after changing value, agents broadcast the new value to a dis-
tance of ng + 1 instead of ¢ 4+ 1 hops. Second, each agent can
be the leader for multiple k-size groups. Each k-size group selects
the most centralized agent (using ID as secondary comparator) to
be the leader. Third, each agent computes the locally optimal solu-
tion for each k-size group it leads and locks the one that yields the
maximum gain.

We test our algorithms in simulation, using the DAJ toolkit [14]
which provides low-level support for simulating distributed algo-
rithms in Java. This toolkit provides a simple programming inter-
face that allows to develop distributed algorithms based on a mes-
sage passing model. The primary performance metric we use is so-
lution quality per unit of global time. Global time unit is motivated
by the metric of cycles commonly used in evaluating synchronous
DCOP algorithms. We made some small modifications to the DAJ
toolkit so that in a single global time unit, each node can process

all messages in the incoming queue, and send as many messages
as desired to neighbors. Messages are delivered on the subsequent
time steps, e.g. a message sent at time x will be received at time
z+ 1.

We generate DCOPs for three main classes of constraint graphs:

i. G(n, M) random graphs [2]. In this model, the graph is gen-
erated by randomly adding M edges. Each is picked out of
(’;) possible choices with equal probability. However, by ex-
cluding disconnected graphs to guarantee connectivity, our
random graphs may be slightly different from the original
model.

ii. Barabasi-Albert (BA) scale-free graphs [1]. This is one sim-
ple algorithm for generating random scale-free graphs using
a linear preferential attachment mechanism. In this model,
graphs begin with a complete graph of mg nodes, where mgo
is a small number but at least 2. New nodes are added to
the network one at a time. Each new node is connected
to m < mg of the existing nodes with a biased probabil-
ity proportional to the number of links the existing node al-
ready has. The degree distribution resulting from the BA
model is scale-free, in particular, it is a power law of the
form P(k) ~ k3.

iii. Non-linear preferential attachment (NLPA) graphs based on
the BA model, but with a stronger bias towards larger num-
bers of nodes with few connections. This model is based
on the BA model, but instead of adding a new node to ex-
isting nodes with probability linear to their degree, we alter
the probability to be non-linear to the degree, in particular,
degree!"”. As a result, heavily linked nodes (“hubs”) tend to
quickly accumulate even more links than those in scale-free
graphs, while nodes with only a few links are less likely to
be chosen as the destination for a new link.

All variables have domain size 10 and constraint rewards are all
randomly drawn from the uniform distribution of integers in the
range [0 . ..10000].

Our first experiment compares k-size and t-distance optimality
on random, scale free, and NLPA graphs. Each graph has 100 vari-
ables. Both k-size and t¢-distance algorithms use subset locking
and partial synchronization. PS window size is selected after test-
ing several possible settings. “KOPT” introduced by Katagishi and
Pearce [8] is included as a benchmark. We show solution quality
at each global time, averaged over 50 sample graphs. Each algo-
rithm starts from the same random assignment. Quality is normal-
ized by subtracting the value of the initial random assignment and
dividing by the maximum value found by any algorithm for each
problem instance. We do not include error bars so as not to clutter
the graphs, but the primary comparisons described are all highly
significant based on paired t-tests.

Results of the first experiment are shown in Figures 7(a), 7(b),
and 7(c). Settings with k = 2t + 1 are comparable and equivalent
for some classes of graphs (Section 3.1); we use settings of k =
3 and t = 1 to examine the tradeoff in local optimization group
type. Our algorithms for both t-opt and k-opt clearly outperform
KOPT on both random and scale-free graphs. Our k-size-optimality
algorithm is similar to KOPT on NLPA, but t-distance-optimality
strongly outperforms both other algorithms in this case. By time
100, its improvement in solution quality is double that of the other
algorithms. In scale-free graphs t-distance-optimality is also a clear
winner in both convergence speed and final quality. For random
graphs, k-size-optimality has advantages in convergence speed, but
converges to a lower final quality.

Comparison: k vs t

Comparison: k vs t

Comparison: k vs t

> > >
= 100 o = 10 xxxxxxxxxxxx; 2 10
g 80 ¥ *** g 80 HK HHHHHX g ***;ﬁ*xxxxx
* e =) *x X
g 60 4 g 60 g 60 *5&
(0] (0] [} xx"'x
N N 4w} N X
© © o X
E 2 y E 20t E 2){*
5] 5 S e S K
Z 0 200 300 46 560 Z 0 00 200 300 460 560 Z 0 0 200 300 400 500
* Gldbal Time Global Time * GIdbal Time
(a) Random Density 4 (b) Scale-free Density 4 (c) NLPA Density 4
Scaling to Large Graphs Effects of Larger Group Locking Improvements
[0] > >
80 M R Y1001 .,awwmwwwww =
= 00 X o] X ©
© 250 8; 91 C:;
o -2 g--a—8 8 a
c 200 /j +— f ° O
o 1 D 9o @
[@)) 150 N N
- - « — —
DO 007K Xy TRk B gl ©
= 100% Quality, T 1 -3 e £
c 50 95% Quality, K3 ¥ = =
Q 100% Quality, K3 £ o i (=]
o U1 00 200 300 400 500 600 700 800 900 1000 z 80 0 100 200 300 400 500 z 0 0 50 250 300

Number of Nodes
(d) Random Density 4

Global Time
(e) Random Density 2

iU 200

Global Time
(f) Random Density 4

Figure 7: Results of experiments (1) comparing k-size and ¢-distance optimality, (2) examining scalability to large graphs, (3) exploring the
effects of increasing ¢, and (4) showing the benefits of locking improvements.

T=1

K=3

100
80
60
40

20 et

Number of Variables Locked
Number of Variables Locked

™ o W
0 20 40 60 80 100 120 140 160 0 10 20 30 40 50 60 70

Gain (In Thousands) Gain (In Thousands)

(a) Random Density 4 (b) Random Density 4

T=1

Number of Variables Locked
+
Number of Variables Locked

0
0 10 20 30 40 50 60 70 80 90 100
Gain (In Thousands)

(d) Scale-free Density 4

0 50 100 150 200 250 300 350 400
Gain (In Thousands)

(c) Scale-free Density 4

100 o + 100
. e fl* e 5 '
g il A 3
3 80 +¢ e Ly g w0
S A S
5 e " 2w
ko + g
5 i + 4+ &
2 af A4 Z 40
5 - 5
I 3
E 20 + E 2048
H 2

0 0
0 100 200 300 400 500 600 700 0

Gain (In Thousands)

(e) NLPA Density 4

20 40 60 80 100 120 140 160
Gain (In Thousands)

(f) NLPA Density 4

Figure 8: Analysis on Local Group Changes

To further understand the performance of ¢-opt and k-opt, we
provide analysis on local group changes. A local group change is
a successful assignment implementation in an optimization group.

For every group change, we collect the quality gain and the number
of variables that were locked for implementing the new assignment.
We plot all group changes for each set of graphs in a scatter chart,
where a data point represents a (Gain, #Locked Variables) pair.
The efficiency of an algorithm can be measured by the distribution
of all group changes. Since larger lock sizes indicate higher chance
of conflicts, group changes that have a large gain but small number
of variables locked are most favored. The results on random graphs
are shown in Figure 8(a) and Figure 8(b). We can see, t = 1 often
has a larger gain but needs to lock more variables than £ = 3. In
particular, while £ = 3 never identifies a gain larger than 70,000
and barely locks more than 20 variables, ¢ = 1 often finds group
changes where the gain is greater than 70,000 and the number of
locked variables is greater than 20. On scale free graphs, as shown
in Figure 8(c) and Figure 8(d), ¢ = 1 often finds larger gains than
k = 3. Particularly, the largest gain of ¢ = 1 is almost quadruple
of that of k = 3. We also note k = 3 often locks a large set of
variables. Nearly half of the group changes require to lock more
than 20 variables. This explains why ¢ = 1 outperforms £ = 3 in
both convergence speed and final quality on scale free graphs. Fig-
ure 8(e) and Figure 8(f) show the results on NLPA graphs, where
k = 3 is the most inefficient because it often locks a huge number
of variables but barely identifies large gains.

Figure 7(e) shows the effect of increasing values of ¢ on density 2
random graphs (domain size 5, reward drawn uniformly randomly
from 0 to 625). We see that the different levels of ¢ offer increasing
final quality but also increasing convergence time. We also note
increasing ¢ doesn’t give consistent gain in final quality. While

= 1 is significantly better than ¢ = 0, the gain of ¢ = 3 over
t = 2 is much smaller. We also tested the ability of our algorithms
to scale to very large graphs. In Figure 7(d), we show the num-
ber of time units required to reach a percentage of the final quality
for both t-distance-optimality and k-size-optimality. We see that
increasing the size of the random graph by tenfold to 1000 nodes

barely increases the time necessary for convergence at all, showing
impressive scalability. To show the improvements offered by the
partial synchronization (PS) and subset locking (SL) methods, we
tested the ¢-distance algorithm for ¢ = 1 with different PS window
sizes and without SL. As can be seen in Figure 7(f), both techniques
improve performance in isolation and in tandem.

Tables 1(a), 1(b), and 1(c) give additional statistics about al-
gorithm performance in the first set of experiments on density 4
graphs. “Msgs” is the average number of messages per agent per
time step. “MsgSize” is the average message size per message.
“Evals” is the average number of constraint evaluations per agent
per time step, which is a rough measure of the computation bur-
den on each node. “Conflicts” is the total number of failed lock
attempts. All of these are accumulated for 500 time units. We
see that our algorithm for t-distance-optimality is generally much
more efficient than KOPT in message size and the number of mes-
sages sent out, but does place a somewhat higher computational
burden on the nodes. t-distance-optimality generally requires more
computation than k-size-optimality because of its larger group size.
We also note that k-size-optimality generally sends fewer but larger
messages, which may offer some additional benefits in real world
implementations.

Table 1: Additional Statistics
(a) Statistics for scale-free density 4 graphs.

Msgs MsgSize Evals Conflicts

Tl 1.27 28.44 187.62 405.64
K3 0.72 4399 114.64 411.60
KOPT 3 3.12 2970.83 72.84 0.00

(b) Statistics for random density 4 graphs.

Msgs MsgSize Evals Conflicts

T1 0.85 26.68 81.81 445.76
K3 0.47 4151 4551 410.50
KOPT 3 3.20 1209.94 57.29 0.00

(c) Statistics for NLPA density 4 graphs.

Msgs MsgSize Evals Conflicts

T1 2.55 36.52 270.65 300.72
K3 1.90 46.01 338.76 358.54
KOPT 3 3.12 7093.90 100.42 0.00

6. CONCLUSION

We make three key contributions. First, we introduce the novel

concept of t-distance-optimality, and establish solution quality bounds

for this concept that are often tighter than known bounds for k-
size optimality. Second, we develop asynchronous local search
algorithms for t-distance-optimality that outperform existing syn-
chronous algorithms for k-size-optimality. Finally, in our experi-
mental evaluation we investigate the tradeoff between k and ¢ op-
timality, showing that ¢-distance-optimality offers considerable ad-
vantages for some types of DCOP (notably scale free graphs), while
k-size-optimality has advantages in others.

7. ACKNOWLEDGEMENT

This research was supported by a subcontract from Perceptron-
ics.

8. REFERENCES

[1] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509-512, 1999.

[2] B. Bollobas. Random Graphs. Cambridge University Press,
2nd edition, 2001.

[3] E. Bowring, J. P. Pearce, C. Portway, M. Jain, and M. Tambe.

On k-optimal distributed constraint optimization algorithms:

New bounds and algorithms. In AAMAS-08, 2008.

A. Chechetka and K. Sycara. No-commitment branch and

bound search for distributed constraint optimization. In

AAMAS ’06: Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems,

pages 1427-1429, New York, NY, USA, 2006. ACM.

J. S. Cox, E. H. Durfee, and T. Bartold. A distributed

framework for solving the multiagent plan coordination

problem. In AAMAS °05: Proceedings of the fourth
international joint conference on Autonomous agents and
multiagent systems, pages 821-827, New York, NY, USA,

2005. ACM.

B. Faltings, D. Parkes, A. Petcu, and J. Shneidman.

Optimizing streaming applications with self-interested users

using M-DPOP. In COMSOC-06, 2006.

S. Fitzpatrick and L. Meertens. Distributed coordination

through anarchic optimization. In V. Lesser, C. L. Ortiz, and

M. Tambe, editors, Distributed Sensor Networks: A

Multiagent Perspective, pages 257-295. Kluwer, 2003.

H. Katagishi and J. P. Pearce. KOPT: Distributed DCOP

algorithm for arbitrary k-optima with monotonically

increasing utility. In DCR-07, 2007.

R. Mailler and V. Lesser. Using cooperative mediation to

solve distributed constraint satisfaction problems. In

AAMAS-04, 2004.

[10] P.J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149-180,
2005.

[11] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
1JCAI-07,2007.

[12] J. P. Pearce, M. Tambe, and R. T. Maheswaran. Solving
multiagent networks using distributed constraint
optimization. Al Magazine, 29(3):47-66, 2008.

[13] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. In ZJCAI-05, 2005.

[14] W. Schreiner. A java toolkit for teaching distributed
algorithms. In ITCSE-02, pages 111-115, 2002.

[15] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: Properties,
comparison and applications to constraint optimization
problems in sensor networks. Artificial Intelligence,
161(1-2):55-87, 2005.

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

[

