
ARMOR Software: A Game Theoretic Approach for Airport Security

James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway, Milind Tambe, Craig Western

University of Southern California, Los Angeles, CA 90089

Praveen Paruchuri

Intelligent Automation, Inc., Rockville, MD 20855

Sarit Kraus

Bar-llan University, Ramat-Gan 52900, Israel

Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

1 Introduction

Protecting national infrastructure such as airports, is a challenging task for police and security agencies

around the world; a challenge that is exacerbated by the threat of terrorism. Such protection of these

important locations includes, but is not limited to, tasks such as monitoring all entrances or inbound roads

and checking inbound traffic. However, limited resources imply that it is typically impossible to provide

full security coverage at all times. Furthermore, adversaries can observe security arrangements over time

and exploit any predictable patterns to their advantage. Randomizing schedules for patrolling, checking,

or monitoring is thus an important tool in the police arsenal to avoid the vulnerability that comes with

predictability.

This chapter focuses on a deployed software assistant agent that can aid police or other security agencies

in randomizing their security schedules. We face at least three key challenges in building such a software

assistant. First, the assistant must provide quality guarantees in randomization by appropriately weighing

the costs and benefits of the different options available. For example, if an attack on one part of an

infrastructure will cause economic damage while an attack on another could potentially cost human lives,

we must weigh the two options differently – giving higher weight (probability) to guarding the latter.

Second, the assistant must address the uncertainty in information that security forces have about the

adversary. Third, the assistant must enable a mixed-initiative interaction with potential users rather than

dictating a schedule; the assistant may be unaware of users’ real-world constraints and hence users must

be able to shape the schedule development.

We have addressed these challenges in a software assistant agent called ARMOR (Assistant for

Randomized Monitoring over Routes). Based on game-theoretic principles, ARMOR combines three key

features to address each of the challenges outlined above. Game theory is a well-established foundational

principle within multi-agent systems to reason about multiple agents each pursuing their own interests

(Fudenberg & Tirole 1991). We build on these game theoretic foundations to reason about two agents –

the police force and their adversary – in providing a method of randomization.

In particular, the main contribution of our work is mapping the problem of security scheduling as a

Bayesian Stackelberg game (Conitzer & Sandholm 2006) and solving it within our software system using

the fastest optimal algorithm for such games (Paruchuri et al. 2008), addressing the first two challenges.

While a Bayesian game allows us to address uncertainty over adversary types, by optimally solving such

Bayesian Stackelberg games (which yield optimal randomized strategies as solutions), ARMOR provides

quality guarantees on the schedules generated. The algorithm used builds on several years of research

regarding multi-agent systems and security (Paruchuri et al. 205; 2006; 2007). ARMOR employs an

algorithm that is a logical culmination of this line of research; in particular, ARMOR relies on an optimal

algorithm called DOBSS (Decomposed Optimal Bayesian Stackelberg Solver) (Paruchuri et al. 2008).

The third challenge is addressed by ARMOR’s use of a mixed-initiative based interface, where users are

allowed to graphically enter different constraints to shape the schedule generated. ARMOR is thus a

collaborative assistant that iterates over generated schedules rather than a rigid one-shot scheduler.

ARMOR also alerts users in case overrides may potentially deteriorate schedule quality.

ARMOR therefore represents a very promising transition of multi-agent research into a deployed

application. ARMOR has been successfully deployed since August 2007 at the Los Angeles International

Airport (LAX) to assist the Los Angeles World Airport (LAWA) police in randomized scheduling of

checkpoints, and since November 2007 for generating randomized patrolling schedules for canine units.

In particular, it assists police in determining where to randomly set up checkpoints and where to randomly

allocate canines to terminals. Indeed, February 2008 marked the successful end of the six month trial

period of ARMOR deployment at LAX. The feedback from police at the end of this six month period is

extremely positive; ARMOR will continue to be deployed at LAX and expand to other police activities at

LAX.

2 Security Domain Description

We will now describe the specific challenges in the security problems faced by the LAWA police in order

to motivate the use of our software. LAX is the fifth busiest airport in the United States and the largest

destination airport in the United States, serving 60-70 million passengers per year (Airport 2007; Stevens

et al. 2006). LAX is unfortunately also suspected to be a prime terrorist target on the west coast of the

United States, with multiple arrests of plotters attempting to attack LAX (Stevens et al. 2006). To protect

LAX, LAWA police have designed a security system that utilizes multiple rings of protection. As is

evident to anyone traveling through an airport, these rings include such things as vehicular checkpoints,

police units patrolling the roads to the terminals and inside the terminals (with canines) and security

screening and bag checks for passengers. There are unfortunately not enough resources (police officers)

to monitor every single event at the airport; given its size and number of passengers served, such a level

of screening would require considerably more personnel and cause greater delays to travelers. Thus,

assuming that all checkpoints and terminals are not being monitored at all times, setting up available

checkpoints, canine units or other patrols on deterministic schedules allows adversaries to learn the

schedules and plot an attack that avoids the police checkpoints and patrols, which makes deterministic

schedules ineffective.

Randomization offers a solution here. In particular, from among all the security measures to which

randomization could be applied, LAWA police have so far posed two crucial problems to us. First, given

that there are many roads leading into LAX, where and when they should set up checkpoints to check cars

driving into LAX. For example, Figure 1 shows a vehicular checkpoint set up on a road inbound towards

LAX. Police officers examine cars that drive by, and if any car appears suspicious, they do a more

detailed inspection of that car. LAWA police wished to obtain a randomized schedule for such

checkpoints for a particular time frame. For instance, if we are to set up two checkpoints, and the

timeframe of interest is 8 AM to 11 AM, then a candidate schedule may suggest to the police that on

Monday, checkpoints should be placed on route 1 and route 2, whereas on Tuesday during the same time

slot, they should be on route 1 and 3, and so on. Second, LAWA police wished to obtain an assignment

of canines to patrol routes through the terminals inside LAX. To illustrate this, assume there are three

canine units available, a possible assignment may be to place canines on terminals 1, 3, and 6 on the first

day, but on terminals 2, 4, and 6 on another day and so on based on the available information. Figure 2

illustrates a canine unit on patrol at LAX.

Given these problems, our analysis revealed the following key challenges: (i) potential attackers can

observe security forces’ schedules over time and then choose their attack strategy – the fact that the

adversary acts with knowledge of the security forces’ schedule makes deterministic schedules highly

susceptible to attack; (ii) there is unknown and uncertain information regarding the types of adversary we

Figure 1: LAX Checkpoint Figure 2: LAX Canine Patrol

may face; (iii) although randomization helps eliminate deterministic patterns, it must also account for the

different costs and benefits associated with particular targets.

3 Approach

We modeled the decisions of setting checkpoints or canine patrol routes at the LAX airport as Bayesian

Stackelberg games. These games allow us to accomplish three important tasks, meeting the challenges

outlined in the previous section: (i) they model the fact that an adversary acts with knowledge of security

forces’ schedules, and thus randomize schedules appropriately; (ii) they allow us to define multiple

adversary types, meeting the challenge of our uncertain information about our adversaries; (iii) they

enable us to weigh the significance of different targets differently. Since Bayesian Stackelberg games

address the challenges posed by our domain, they are at the heart of generating meaningfully randomized

schedules. From this point we will explain what a Bayesian Stackelberg games consists of, how an LAX

security problem can be mapped onto Bayesian Stackelberg games, some of the previous methods for

solving Bayesian Stackelberg games, and how we use DOBSS to optimally solve the problem at hand.

3.1 Bayesian Stackelberg Games

In a Stackelberg game, a leader commits to a strategy first, and then a follower selfishly optimizes its

reward, considering the action chosen by the leader. For example, given our security domain, the police

force (leader) must first commit to a mixed strategy for placing checkpoints on roads in order to be

unpredictable to the adversaries (followers), where a mixed strategy implies a probability distribution

over the actions of setting checkpoints. The adversaries, after observing checkpoints over time, can then

choose their own strategy of attacking a specific road. To see the advantage of being the leader in a

Stackelberg game, consider a simple game with the payoff table as shown in Figure 3. The leader is the

row player and the follower is the column player. Given a simultaneous move game, i.e. the leader and

follower now act at the same time, the only pure-strategy Nash equilibrium for this game is when the

leader plays a and the follower plays c, which gives the leader a payoff of 2; in fact, for the leader,

playing a strictly dominates playing b, since for any action of the follower the leader would obtain a

higher reward for choosing action a. However, if the leader commits to a uniform strategy of playing a

and b with equal (0.5) probability, then the follower will play d in order to maximize its payoff, leading to

a payoff for the leader of 3.5. Thus, by committing to a mixed strategy first, the leader is able to obtain a

higher payoff than could be obtained in a simultaneous move situation.

The Bayesian form of such a game then, implies that each agent must be of a given set of types. For our

security domain, we have two agents, the police force and the adversary. While there is only one police

force type, there are many different adversary types, such as serious terrorists, drug smugglers and petty

criminals, denoted by L. During the game, the adversary knows its type, but the police do not know the

adversary’s type, this is an incomplete information game. For each agent (the police force and the

adversary) i, there is a set of strategies i and a utility function ui : L x 1 x 2  R. Figure 4 shows a

Bayesian Stackelberg game with two follower types. Notice that follower type 2 changes the payoff of

both the leader and the follower. We also assume known a-priori probability p
l
, where l represents the

type of adversary (1, 2, etc.), of the different follower types (i.e. l ε L). Our goal is to find the optimal

mixed strategy for the leader to commit to, given that the follower may know the leader’s mixed strategy

when choosing its strategy and that the leader will not know the follower’s type in advance.

Figure 3: Payoff Table for Example Normal Form Game

Figure 4: Security Agent VS Followers 1 and 2

3.2 Techniques for Solving Stackelberg Games

In previous work it has been shown that finding an optimal solution to a Bayesian Stackelberg game with

multiple follower types is NP-hard (Conitzer & Sandholm 2006). Researchers in the past have identified

an approach, which we will refer to as the Multiple-LPs method, to solve Stackelberg games (Conitzer &

Sandholm 2006), and this can be used to solve Bayesian Stackelberg games. This approach, however,

requires transforming a Bayesian game into a normal form game using the Harsanyi transformation

(Harsanyi & Selten 1972). Similarly one may apply efficient algorithms for finding Nash equilibria

(Sandholm, Gilpin, & Conitzer 2005), but they require the same Harsanyi transformation. Since our work

crucially differs in its non-use of the Harsanyi transformation, it is important to understand this

transformation and its impact.

3.2.1 Harsanyi Transformation

The first step in solving Bayesian games for previous methods is to apply the Harsanyi transformation

(Harsanyi & Selten 1972) that converts the incomplete information game into a normal-form game.

Given that the Harsanyi transformation is a standard concept in game theory, we explain it briefly through

a simple example without introducing the mathematical formulations. Consider the case of the two

follower types 1 and 2 as shown in Figure 4. Follower types 1 will be active with probability , and

follower type 2 will be active with probability 1 - . Performing the Harsanyi transformation involves

introducing a chance node that determines the follower’s type, thus transforming the leader’s incomplete

information regarding the follower into an imperfect information game. The transformed, normal-form

game is shown in Figure 5. In the transformed game, the leader still has two strategies while there is a

single follower type with four (2*2) strategies. For example, consider the situation in the transformed

game where the leader takes actions a and the follower takes action cc’. The leader’s payoff in the new

game is calculated as a weighted sum of its payoffs from the two tables in Figure 4, i.e. times payoff of

leader when follower type 1 takes action c plus 1- times payoff of leader when follower type 2 takes

action c’. All the other entries in the new table, both for the leader and the follower, are derived in a

similar fashion. In general, for n follower types with k strategies per follower types, the transformation

results in a game with k
n
 strategies for the follower, thus causing an exponential blowup losing

compactness.

Methods such as (Conitzer & Sandholm 2006; Sandholm, Gilpin, & Conitzer 2005) must use this

Harsanyi transformation, which implies the game loses its compact structure. Nonetheless, the solutions

their methods obtain can be transformed back into the original game.

3.3 DOBSS

One key advantage of the DOBSS approach is that it operates directly on the Bayesian representation,

without requiring the Harsanyi transformation. In particular, DOBSS obtains a decomposition scheme by

exploiting the property that follower types are independent of each other. The key to the DOBSS

decomposition is the observation that evaluating the leader strategy against a Harsanyi-transformed game

matrix is equivalent to evaluating against each of the game matrices for the individual follower types.

We first present DOBSS in its most intuitive form as a Mixed-Integer Quadratic Program (MIQP); we

then illustrate how it may be transformed into a linearized equivalent Mixed-Integer Linear Program

(MILP). While a more detailed discussion of the MILP is available in (Paruchuri et al. 2008), the current

section may at least serve to explain at a high level the key idea of the decomposition used in this MILP.

Figure 5: Harsanyi Transformed Payoff Table

The model we propose explicitly represents the actions by leader and the optimal actions for the follower

types in the problem solved by the agent. We denote by x the leader’s policy (mixed strategy), which

consists of a vector of probability distributions over the leader’s pure strategies. Hence, the value xi is the

proportion of times in which pure strategy I is used in the policy. We denote by q
l
 the vector of strategies

of follower type l L. We also denote by X and Q the index sets of leader and follower l’s pure

strategies, respectively. We also index the payoff matrices of the leader and each of the follower types l

by the matrices R
l
 and C

l
. Let M be a large positive number. Given a priori probabilities p

l
, with l L, of

facing each follower type the leader solves the following:

Ra

q

x

MqxCa

q

xts

qxRp

l

j

i

Xi

l

ji

l

ij

l

Qj

l

j

Xi

i

l

ji

l

ij

Xi Ll Qj

l

aqx

}1,0{

]1...0[

)1()(0

1

1..

max ,,

Here for a set of leader’s actions x and actions for each follower q
l
, the objective represents the expected

reward for the agent considering the a-priori distribution over different follower types p
l
. Constraints

with free indices mean they are repeated for all values of the index. For example, the fourth constraint

means xi [0 … 1] for all i X. The first and the fourth constraints define the set of feasible solutions x

as a probability distribution over the set of actions X. The second and fifth constraints limit the vector of

actions of follower type l, q
l
 to be a pure distribution over the set Q (that is each q

l
 has exactly one

coordinate equal to one and the rest equal to zero). Note that we need to consider only the reward-

maximizing pure strategies of the follower types, since for a given fixed mixed strategy x of the leader,

each follower type faces a problem with fixed linear rewards. If a mixed strategy is optimal for the

follower, then so are all the pure strategies in support of that mixed strategy.

Equation 1:

The two inequalities in the third constraint ensure that qj
l
 = 1 only for a strategy j that is optimal for

follower type l. Indeed this is a linearized form of the optimality conditions for the linear programming

problem solved by each follower type. We explain these constraints as follows: note that the leftmost

inequality ensures that for all j Q, a
l
 ≥ Σi X Ci

l
j xi. This means that given the leader’s vector x, a

l
 is an

upper bound on follower type l’s reward for any action. The rightmost inequality is inactive for every

action where qj
l
 = 0, since M is a large positive quantity. For the action that has qj

l
 = 1 this inequality

states that the adversary’s payoff for this action must be ≥ a
l
, which combined with the previous

inequality shows that this action must be optimal for the follower type l. Notice that Equation 1 is a

decomposed MIQP in the sense that it does not utilize a full-blown Harsanyi transformation; instead it

solves multiple smaller problems using individual adversaries’ payoffs (indexed by l). Furthermore, this

decomposition does not cause any suboptimality (Paruchuri et al. 2008).

We can linearize the quadratic programming equation 1 through the change of variables zi
l
j = xi qj

l
. The

substitution of this one variable allows us to create an MILP. The details of this transformation and its

equivalence to equation 1 are presented in (Paruchuri et al. 2008). DOBSS refers to this equivalent

mixed-integer linear program, which can be solved with efficient integer programming packages.

3.4 Bayesian Stackelberg Game for the Los Angeles International Airport

We now illustrate how the security problems set forth by LAWA police, i.e. where and when to deploy

checkpoints and canines, can be cast in terms of a Bayesian Stackelberg game. We focus on the

checkpoint problem for illustration, but the case of the canine problem is similar. Given the checkpoint

problem our game consists of two players: the LAWA police (the leader) and the adversary (the

follower) in a situation consisting of a specific number of inbound roads on which to set up checkpoints,

say roads 1 through k. LAWA police’s set of pure strategies consist of a particular subset of those roads

to place checkpoints on prior to adversaries selecting which roads to attack. LAWA police can choose a

mixed strategy so that the adversary will be unsure of exactly where the checkpoints may be set up, but

the adversary will know the mixed strategy LAWA police have chosen. We assume that there are m

different types of adversaries, each with different attack capabilities, planning constraints, and financial

ability. Each adversary type observes the LAWA-police checkpoint policy and then decides where to

attack. Since adversaries can observe the LAWA police policy before deciding on their actions, this can

be modeled via a Stackelberg game with the police as the leader.

In this setting the set X of possible actions for LAWA police is the set of possible checkpoint

combinations. If, for instance, LAWA police were setting up one checkpoint then X = {1,…,k}. If

LAWA police were setting up a combination of two checkpoints, then X = {(1,2),(1,3),…,(k-1,k)}, i.e. all

combinations of two checkpoints. Each adversary type l L = {1,…,m} can decide to attack one of the k

roads or maybe not attack at all (none), so its set of actions is Q = {1,…,k, none}. If LAWA police select

road I to place a checkpoint on and adversary type l L selects road j to attack then the police receive a

reward Ri
l
j and the adversary receives a reward Ci

l
j. These reward values vary based on three

considerations: (i) the chance that the LAWA police checkpoint will catch the adversary on a particular

inbound road; (ii) the damage the adversary will cause if it attacks via a particular inbound road; (iii) type

of adversary, i.e. adversary capability. If LAWA police catch the adversary when i = j we make Ri
l
j a

large positive value and Ci
l
j a large negative value. However, the probability of catching the adversary at

a checkpoint is based on the volume of traffic through the checkpoint (significant traffic will increase the

difficulty of catching the adversary), which is an input to the system. If the LAWA police are unable to

catch the adversary, then the adversary may succeed, i.e. we make Ri
l
j a large negative value and Ci

l
j a

large positive value. Certainly, if the adversary attacks via an inbound road where no checkpoint was set

up, there is no chance that the police will catch the adversary. The magnitude of Ri
l
j and Ci

l
j vary based

on the adversary’s potential target, given the road from which the adversary attacks. Some roads lead to

higher valued targets for the adversary than others. The game is not a zero sum game however, as even if

the adversary is caught, the adversary may benefit due to publicity.

The reason we consider a Bayesian Stackelberg game is because LAWA police face multiple adversary

types. Thus, differing values of the reward matrices across the different adversary types l L represent

the different objectives and valuations of the different attackers (e.g. smugglers, criminals, terrorists). For

example, a hard-core, well-financed adversary could inflict significant damage on LAX; thus, the

negative rewards to the LAWA police are much higher in magnitude than an amateur attacker who may

not have sufficient resources to carry out a large-scale attack. If these are the only two types of

adversaries faced, then a 20-80 split of probability implies that while there is a 20% chance that the

LAWA police face the former type of adversary, there is an 80% chance that they face an amateur

attacker. Our experimental data provides initial results about the sensitivity of our algorithms to the

probability distributions over these two different adversary types. While the number of adversary types

has varied based on inputs from LAWA police, for any one adversary type the largest game that has been

constructed, which was done for canine deployment, consisted of 784 actions for the LAWA police (when

multiple canine units were active) for the eight possible terminals within the airport and 8 actions per

adversary type (one for a possible attack on each terminal).

4 System Architecture

There are two separate versions of ARMOR, ARMOR-checkpoint and ARMOR-canine. While in the

following we focus on ARMOR-checkpoint for illustration, both these versions use the same underlying

architecture with different inputs. As shown in Figure 6, this architecture consists of a front-end and a

back-end, integrating four key components: (i) a front-end interface for user interaction; (ii) a method for

creating Bayesian Stackelberg game matrices; (iii) an implementation of DOBSS; (iv) a method for

producing suggested schedules for the user. They also contain two major forms of external input. First,

they allow for direct user input into the system through the interface. Second, they allow for file input of

relevant information for checkpoints or canines, such as traffic/passenger volume by time of day, which

can greatly affect the security measures taken and the values of certain actions. At this point we will

discuss in detail what each component consists of and how they interact with each other.

Figure 6: ARMOR System Flow Diagram

Figure 7: ARMOR Interface

4.1 Interface

The ARMOR interface, seen in Figure 7, consists of a file menu, options for local constraints, options to

alter the action space, a monthly calendar and a main spreadsheet to view any day(s) from the calendar.

Together these components create a working interface that meets all the key requirements set forth by

LAWA officers for checkpoint and canine deployment at LAX.

The base of the interface is designed around six possible adjustable options; three of them alter the action

space and three impose local constraints. The three options to alter the action space are the following: (i)

number of checkpoints allowed during a particular timeslot; (ii) time interval of each timeslot; (iii)

number of days to schedule over. For each given timeslot, the system constructs a new game. As

discusses previously, given knowledge of the total number of inbound roads, the number of checkpoints

allowed during that timeslot determines the available actions for the LAWA police, whereas the action

space of the adversary is determined as discussed previously by the number of inbound roads. Thus, the

system can set up the foundation for the Bayesian Stackelberg game by providing all the actions possible

in the game. Once the action space has been generated, it can be sent to the back-end to be set up as a

Bayesian Stackelberg game, solved, and returned as a suggested schedule, which is displayed to the user

via the spreadsheet. The third option determines how many iterations of the game will be played (as it

determines the number of days to schedule over).

Once the game is solved, there are three options that serve to restrict certain actions in the generated

schedule: (i) forced checkpoint; (ii) forbidden checkpoint; (iii) at least one checkpoint. These constraints

are intended to be used sparingly to accommodate situations where a user, faced with exceptional

circumstances and extra knowledge, wishes to modify the output of the game. For example, if a road is

under construction and is thereby closed the user may forbid the system from placing a checkpoint on that

road. The user may impose these restrictions by forcing specific actions in the schedule. In particular,

the “forced checkpoint” option schedules a checkpoint at a specific time on a specific day. The

“forbidden checkpoint” option designates a specific time on a specific day when a checkpoint should not

be schedules. Finally, the “at least one checkpoint” option designates a set of time slots and ensures that a

checkpoint is scheduled in at least one of the slots. We will return to these constraints in the next section.

The spreadsheet in the interface serves as the main mechanism for viewing, altering, and constraining

schedules. The columns correspond to the possible checkpoints, and the rows correspond to the time

frames in which to schedule them. Up to a full week can be viewed within the spreadsheet at a single

time with each day being marked as seen in Figure 7. Once a particular day is in view, the user can assign

to that day any constraints that they desire. Each constraint is represented by a specific color within the

spreadsheet, namely green, red, and yellow for forced, forbidden, and at least constraints respectively.

4.2 Matrix Generation and DOBSS

Given the submitted user information, the system must create a meaningful Bayesian Stackelberg game

matrix. Previously we illustrated the generation of the action space in this game. Based on the pre-

specified rewards as discussed earlier, we can provide the rewards for the LAWA police and the

adversaries to generate a game matrix for each adversary type. After the final game matrices are

constructed for each adversary type, they are sent to the DOBSS implementation, which chooses the

optimal mixed strategy over the current action space.

To demonstrate the process, assume there are three possible inbound roads or checkpoint locations (A, B,

C), one possible timeslot to schedule over, and two checkpoints available for scheduling. Given this

scenario, the unique combinations possible include scheduling checkpoints A and B, A and C, and B and

C, over the given time frame. We will assume that checkpoints A and B are highly valuable while C,

although not completely invaluable, has a very low value. Based on this information, a likely mixed

strategy generated by DOBSS would be to assign a high probability to choosing action A and B, say

seventy percent, and a low probability to both the other actions, say fifteen percent each. Whatever the

mixed strategy actually comes out to be, it is the optimal strategy a user could take to maximize security

based on the given information. This mixed strategy is then stored and used for the actual schedule

generation.

4.3 Mixed Strategy and Schedule Generation

Once an optimal mixed strategy has been chosen by DOBSS and stored within the system, a particular

combination of actions must be chosen to be displayed to the user. Consider our example from the

previous section involving three possibilities (checkpoints A and B, A and C, B and C) and their

probabilities of 70%, 15% and 15%. Knowing this probability distribution, the system can formulate a

method to randomly select between the combinations with the given probabilities. Each time a selection

is made, that combination is sent to the user interface to be reviewed by the user as necessary. So, if for

instance combination one was chosen, the user would see checkpoint A and B as scheduled for the given

timeslot.

In rare cases, as mentioned previously, a user may have forbidden a checkpoint, or required a checkpoint.

ARMOR accommodates such user directives when creating its schedule, e.g. if checkpoint C is forbidden,

then all the probability in our example shifts to the combination A and B. Unfortunately, by using this

capability frequently (e.g. frequent use of forbidden and required checkpoints), a user can completely

alter the mixed strategy produced as the output of DOBSS, defeating DOBSS’s guarantee of optimality.

To avoid such a possibility, ARMOR incorporates certain alerts (warnings) to encourage non-interference

in its schedule generation. For example, if a combination has zero or very low probability of being

chosen and the user has forced that checkpoint combination to occur, ARMOR will alert the user.

Similarly, if a combination has a very high likelihood and the user has forbidden that event, ARMOR will

again alert the user. However, ARMOR only alerts the user; it does not autonomously remove the user’s

constraints. Resolving more subtle interactions between the users imposed constraints and DOBSS’s

output strategy remains an issue for future work.

When a schedule is presented to the user with alerts as mentioned above, the user may later the schedule

by altering the forbidden/required checkpoints, or possibly by directly altering the schedule. Both

possibilities are accommodated in ARMOR. If the user simply adds or removes constraints, ARMOR can

create a new schedule. Once the schedule is finalized, it can be saved for actual use, thus completing the

system cycle. This full process was designed to specifically meet the requirements at LAX for checkpoint

and canine allocation

5 Design Challenges

Designing and deploying the ARMOR software on a trial basis at LAX posed numerous challenges and

problems to our research group. Here we outline some key lessons learned during the design and

deployment of ARMOR:

 Importance of tools for randomization: There is a critical need for randomization in security

operations. Security officials are aware that requiring humans to generate randomized schedules

is unsatisfactory because as psychological studies have often shown (Wagenaar 1972), humans

have difficulty randomizing, and also they can fall into predictable patterns. Instead,

mathematical randomization that appropriately weighs the costs and benefits of different actions,

and randomizes with appropriate weights leads to improved results. LAWA Security officials

were hence extremely enthusiastic in their reception of our research and eager to apply it to LAX.

In additions, these officials have indicated that obtaining schedules automatically reduces their

burden of having to construct such schedules manually taking all the relevant factors into

account.

 Importance of manual schedule overrides: While ARMOR incorporates all the knowledge that

we could obtain from LAWA police and provides the best output possible, it may not be aware of

dynamic developments on the ground. For example, police officers may have very specific

intelligence for requiring a checkpoint on a particular inbound road. Hence, it was crucial to

allow LAWA police officers (in rare instances when it is necessary) to manually selectively

override the schedule provided.

 Importance of providing police officers with operational flexibility: When initially generating

schedules for canine patrols, the system created a very detailed schedule, micro-managing the

patrols. This did not get as positive a reception from the officers. Instead, an abstract schedule

that afforded the officers some flexibility to respond to dynamic situation on the ground was

better received

6 Experimental Results

Our experimental results evaluate the solution quality and implementation of the ARMOR system. In

particular, we evaluate the solution quality obtained when DOBSS is applied to the LAX security domain.

We offer three types of evaluation. While our first evaluation is “in the lab,” ARMOR deployed as an

assistant, our remaining two evaluations are of its deployment “in the field.” With respect to our first

evaluation we conducted four experiments. The first three compared ARMOR’s randomization with the

uniform randomization technique that does not use ARMOR’s weights in randomization. The uniformly

random strategy gives equal probabilities to all possible actions.

The results of the first experiment are shown in Figures 9(a), 9(b) and 9(c). The x-axis represents the

probabilities of occurrence of the two adversary types we chose to focus on. Since the actual number of

adversary types used for LAX is secure information, we use 2 adversary types for simplicity in this

analysis. The x-axis shows the probability p of adversary type 2 (the probability of adversary type 1 is

then obtained on 1-p). The y-axis represents the reward obtained by LAWA. This reward represents the

expected reward LAWA would obtain given the optimal adversary response to the strategy adopted by

LAWA. Figure 9(a) shows the comparison when one checkpoint is placed. For example, when adversary

of type 1 occurs with a probability of 0.1 and type 2 occurs with a probability of 0.9, the reward obtained

by the DOBSS strategy is -1.72 whereas the reward obtained by a uniform random strategy is -2.112. It is

important to note that the reward of the DOBSS strategy is strictly greater than the reward of the uniform

random strategy for all probabilities of occurrence of the adversary types.

Figure 9(b) also has the probability distribution on the x-axis and the reward obtained on the y-axis. It

shows the difference in the obtained reward when 2 checkpoints are placed. Here also the reward in the

case of the DOBSS strategy is greater than the reward of the uniform random strategy. When we have 2

checkpoints, the type 2 adversary chooses the action none (to not attack). This leads to the observation

that the reward of the DOBSS strategy and the reward of the uniform strategy are the same when only the

type 2 adversary is present. Figure 9(c) presents the case of 3 checkpoints. Here the reward values

obtained by DOBSS are always positive – this is because the chances of catching the adversary of type 1

(a) 1 Checkpoint (b) 2 Checkpoints

(c) 3 Checkpoints (d) Canines

Figure 9: DOBSS Strategy v/s Uniformly Random Strategy

improve significantly with 3 checkpoints. This also leads to the reward of DOBSS decreasing with the

decrease in the probability of occurrence of the adversary of type 1. Note that the type 2 adversary, as

with the case of 2 checkpoints, decides none and hence the reward of the DOBSS strategy and the

uniformly random strategy are the same when only type 2 adversary is present.

The three experiments reported above allow us to conclude that DOBSS weighted randomization provides

significant improvements over uniform randomization in the same domain, thus illustrating the utility of

our algorithm. We continue these results in the following fourth experiment, focusing now on canine

units. Figure 9(d) shows the comparison of the reward obtained between scheduling canine units with

DOBSS and scheduling them with a uniform random strategy (denoted URS). In the uniform random

strategy, canines are randomly assigned to terminals with equal probability. The x-axis represents the

weekday and the y-axis represents the reward obtained. We can see that DOBSS performs better even

with 3 canine units as compared to 6 canine units being scheduled using the uniform random strategy.

For example, on Friday, the reward of a uniformly random strategy with 6 canine units is -1.47 whereas

the reward 3, 5 and 6 canines with DOBSS is 1.37, 3.50 and 4.50 respectively. These results show that

DOBSS weighted randomization with even 3 canines provides better results against uniform

randomization in the same domain with 6 canines. Thus our algorithm provides better rewards and can

help in reducing the cost of resources needed.

Table 1: Variation in Usage Percentage

Checkpoint

Number 1 2 3 4 5

Week 1 33.33 4.76 33.33 0 28.57
Week 2 19.04 23.80 23.80 14.28 19.05

Now we analyze the performance of ARMOR as it is deployed in the field. In the next evaluation, we

examine ARMOR’s setting of checkpoints at LAX. The first experiment examines the change in

checkpoint deployment during a fixed shift (i.e. keeping the time fixed) over two weeks. The results are

shown in Table 1. The numbers 1 to 5 in the table denote the checkpoint number (we have assigned

arbitrary identification numbers to all checkpoints for the purpose of this experiment) and the values of

the table show the percentage of times this checkpoint was used. For example, in week 1, checkpoint 2

was used just less than 5% of times, while checkpoint 2 was used about 25% of the times in week 2. We

can make two observations from these two weeks: (i) we do not appear to have uniform use of these

checkpoints, i.e. there is great variance in the percentage of times checkpoints are deployed; (ii) the

checkpoint deployment varies from week to week, e.g. checkpoint 4 was not used in week 1, but it was

used 15% of the times in week 2.

The goal of the next experiment was to provide results on the sensitivity analysis, specifically, how the

probabilities of different actions will change if we change the proportion of adversary types. Figure 10

shows the variation in strategy for placing two checkpoints together when the probability of occurrence of

the adversary changes. The x-axis shows the variation in the probability of occurrence of the adversary

types, whereas the y-axis shows the variation in the probabilities in the DOBSS strategy. For example,

when adversary of type 1 occurs with a probability of 1, the probability of placing both checkpoints 1 and

Figure 10: Sensitivity Analysis

4 is 0.353, when adversaries 1 and 2 occur with probabilities 0.4 and 0.6 respectively, then the probability

of placing checkpoints 3 and 4 is 0.127. We can observe that there is very little to no variation in the

probabilities in the DOBSS strategies when the probabilities of occurrence of the two adversary types

vary from .1 to .9. This indicates that our results are not particularly sensitive to variations in

probabilities of opponents except at the extremes.

Our final evaluation is a more informal evaluation based on feedback from the LAWA police. First, they

have provided very positive feedback about the deployment. They suggest that the technique they had

previously used was not one of randomization, but one of alternating checkpoints (e.g. if checkpoint 1

was active today, it would be inactive tomorrow); such a routine can bring about determinism in the

scheduling which we have avoided. Second, ARMOR has eliminated the burden for creating schedules,

thus reducing routine work and allowing LAWA police to focus on more important tasks. Third, several

arrests have been made at checkpoints scheduled by ARMOR: typically these involved cars attempting to

carry weapons into LAX. This does not necessarily suggest that ARMOR’s schedule was responsible

because this is not a controlled experiment per se. Nonetheless, it illustrates that one of the first lines of

defense at the outer airport perimeter is helping alleviate the threat of violence at the airport.

7 Related Work and Summary

The patrolling problem itself has received significant attention in multi-agent literature due to its wide

variety of applications ranging from robot patrol to border patrolling of large areas (Ruan et al. 2005;

Billante 2003). The key idea behind the policies provided by these techniques is randomization, which

decreases the amount of information given to an adversary. However, no specific algorithm/procedure

has been provided for the generation of randomized policies; hence, they can lead to highly suboptimal

policies. Two exceptions are Paruchuri et al and their early work (Paruchuri et al. 2006), which provides

algorithms for analyzing randomization-reward trade offs, and Agmon et al and their recent work

(Agmon, Kraus, & Kamink 2008), which provides algorithms for reducing the probability of penetration.

However, unlike our work, neither models any adversaries or adversary types.

Finally, the sequence from (Koller & Pfeffer 1997) provides an alternative compact representation to

normal form representation. However, representing commitment to a mixed strategy, as required in our

Stackelberg games is difficult in this representation, making its use difficult. Furthermore, their work has

not focused on computing optimal response in Stackelberg games, but rather in only finding equilibria.

While ARMOR is a game theoretic security scheduler, there are many other competing non-game

theoretic tools in use for related applications. For example, the “Hypercube Queuing Model” (Larson

1974) based on queuing theory depicts the detailed spatial operation of urban police departments and

emergency medical services and has found application in police beat design, allocation of patrolling time,

etc. However, this model does not take specific adversary models into account; ARMOR, on the other

hand, tailors policies to combat various potential adversaries.

Two different approaches have been presented previously to find solutions to Bayesian Stackelberg

games efficiently. One of the approaches, named ASAP (Paruchuri et al. 2007), is able to operate on the

Bayesian form of Stackelberg games, but it provides an approximate solution. The second approach, the

Multiple-LPs method mentioned earlier, requires a Bayesian game to be transformed into a normal-form

game using the Harsanyi Transformation (Harsanyi & Selten 1972). DOBSS is superior to ASAP in that

I provides exact solutions and as shown earlier it also outperforms the Multiple-LPs method for out

domain of interest, airport security utilizing canines and checkpoints.

In summary, establishing security around airports is a challenge that is faced today by police forces

around the world. While randomized monitoring (patrolling, checking, searching) is important – as

adversaries can observe and exploit any predictability in launching an attack – randomization must use

different weighing functions to reflect the complex costs and benefits of different police actions. This

chapter describes a deployed agent assistant called ARMOR that casts the monitoring problem as a

Bayesian Stackelberg game, where randomized schedule generation for police forces can appropriately

weight the costs and benefits as well as uncertainty over adversary types. ARMOR combines two key

features: (i) it uses the fastest known solver for Bayesian Stackelberg games called DOBSS, where the

dominant mixed strategies provide schedule randomization; (ii) its mixed-initiative based interface allows

users to occasionally adjust or override the automated schedule based on their local constraints. ARMOR

has been successfully deployed at the Los Angeles International Airport, randomizing allocation of

checkpoints since August 2007 and canine deployment since November 2007. ARMOR thus represents a

successful transition of multi-agent algorithmic advances (Paruchuri et al. 2006; 2007; 2008) for the past

three years into the real-world.

8 Acknowledgements

ARMOR’s deployment at LAX has only been possible due to the exceptional effort by LAWA police to

strike a collaboration. This research was supported by the United States Department of Homeland

Security through the Center for Risk and Economic Analysis of Terrorism Events (CREATE) under grant

number 2007-ST-061-000001. However, any opinions, findings, and conclusions or recommendations in

this chapter are those of the authors and do not necessarily reflect views of the United States Department

of Homeland Security. We would also like to thank the National Science Foundation for their

contributions under grant number IS0705587.

9 References

Agmon, N., Kraus, S., and Kamink, G. A. (2008). “Multi-Robot Perimeter Patrol in Adversarial Settings.”

In Proceedings of the International Conference on Robotics and Automation (ICRA).

Airport, Los Angeles International. (2007). “General Description: Just the Facts.”

http://www.lawa.org/lax/justTheFact.cfm.

Billante, N. (2003). “The Beat Goes On: Policing for Crime Prevention.”

http://www.cis.org.au/issue_analysis/IA38/IA38.HTM

Conitzer, V., and Sandholm, T. (2006). “Computing the Optimal Strategy to Commit to.” In Proceeding

of the ACM Conference on Electronic Commerce (ACM-EC).

Fedenberg, D., and Tirole, J. (1991). “Game Theory.” MIT Press.

Harsanyi, J. C., and Selten, R. (1972). “A Generalized Nash Solution for Two-Person Bargaining Games

with Incomplete Information..” Management Science 18(5):80-106

Koller, D., and Pfeffer, A. (1997). “Representations and Solutions for Game-Theoretic Problems.”

Artificial Intelligence 94(1-2):167-215.

Larson, R. C. (1974). “A Hypercube Queuing Model for Facility Location and Redistricting in Urban

Emergency Services.” Computer and OR 1(1):67-95.

Paruchuri, P., Tambe, M., Ordóñez, F., and Kraus, S. (2005). “Safety in Multiagent Systems by Policy

Randomization.” In Proceedings of the International Workshop on Safety and Security in Multiagent

Systems (SASEMAS).

Paruchuri, P., Tambe, M., Ordóñez, F., and Kraus, S. (2006). “Security in Multiagent Systems by Policy

Randomization.” In Proceedings of the International Conference on Autonomous Agents and Multiagent

Systems (AAMAS).

Paruchuri, P., Pearce, J. P., Tambe, M., Ordóñez, F., and Kraus, S. (2007). “An Efficient Heuristic

Approach for Security Against Multiple Adversaries.” In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems (AAMAS).

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordóñez, F., and Kraus, S. (2008). “Playing Games

for Security: An Efficient Exact Algorithm for Solving Bayesian Stackelberg Games.” In Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Ruan, S., Meirina, C. Yu, F., Pattipati, K. R., and Popp, R. L. (2005). “Patrolling in a Stochastic

Environment.” In Proceedings of the International Command and Control Research and Technology

Symposium.

Sandholm, T., Gilpin, A., and Conitzer, V. (2005). “Mixed Integer Programming Methods for Finding

Nash Equilibria.” In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI).

Stevens, D., et al. (2006). “Implementing Security Improvement Options at Los Angeles International

Airport.” http://www.rand.org/pubs/documented_briefings/2006/RAND_DB499-1.pdf.

Wagenaar, W. A. (1972). “Generation of Random Sequences by Human Subjects: A critical Survey of

Literature.” Psychological Bulletin.

