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ABSTRACT
Game theoretic methods for making resource allocation decision
in security domains have attracted growing attention from both re-
searchers and security practitioners, including deployed applica-
tions at both the LAX airport and the Federal Air Marshals Ser-
vice. We develop a new class of security games designed to model
decisions faced by the Transportation Security Administration and
other agencies in protecting airports, ports, and other critical in-
frastructure. Our model allows for a more diverse set of security
activities for the defensive resources than previous work, which
has generally focused on interchangeable resources that can only
defend against possible attacks in one way. Here, we are concerned
in particular with the possibility that adversaries can circumvent
specific security activities if they are aware of common security
measures. The model we propose takes this capability into ac-
count and generates more unpredictable, diverse security policies
as a result—without resorting to an external value for entropy or
randomness.

Solving these games is a significant computational challenge, and
existing algorithms are not capable of solving realistic games. We
introduce a new method that exploits common structure in these
problems to reduce the size of the game representation and enable
faster solution algorithm. These algorithms are able to scale to
make larger games than existing solvers, as we show in our ex-
perimental results.

Categories and Subject Descriptors
I.0 [Computing Methodologies]: General

General Terms
Game Theory, Security
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1. INTRODUCTION
Security officials face many difficult decisions in how to provide
security for critical infrastructure, high-profile events, and other
potential targets of criminal or terrorist attacks. Game theory is in-
creasingly viewed as a powerful tool for modeling these decisions,

due in part to the ability of these models to account for adaptive ad-
versaries and to identify optimal randomized strategies for security
forces. This basic idea has been applied in several contexts, includ-
ing autonomous robot patrolling [1, 3], scheduling checkpoints and
canine patrols at the Los Angeles International Airport (LAX) [14],
and scheduling Federal Air Marshals (FAMS) on flights [8]. The fi-
nal two examples are real-world software systems that are deployed
to make critical resource allocation decisions using game-theoretic
reasoning.

Our work in this paper is motivated by the challenges of a different
class of security allocations problems faced by agencies in charge
of security at airports, ports, and other large physical areas. We de-
velop a new class of game models that offer a richer model of the
possible security strategies for the defender, allowing the specifi-
cation of both the area(s) that are defended along with the activity
that is executed by the security resource. An important aspect of
this model is that it represents asymmetric knowledge between the
attacker and defender. While we have a detailed understanding of
the possible security policies, we have less detail about all of the
possible attacker strategies—in reality, it is difficult if not impossi-
ble to predict all of the possible attack scenarios a sophisticated at-
tacker might use. Instead, we introduce the possibility for attackers
to circumvent specific security measures into the model, at some
cost. As we show in our analysis, randomized policies are much
more difficult for the attacker to plan around, increasing the value
of unpredictable activities. Previous models have directly added
values for ”entropy" as part of the objective function; in our model,
the value for randomizing among similar activities is driven by the
circumvention capability of the adversary.

Another way that our model generalizes previous work is by allow-
ing multiple resources to be assigned to the same physical area (or
target), increasing the level of protection afforded to this area. In
addition, the most general form of our model allows for different
levels of effectiveness to be associated with different activities, so
some are more likely than others to prevent attacks. This is used
in particular to model the effects of executing activities such as pa-
trols in physically adjacent areas. While the main protective effect
is in the area directly being patrolled, there may be some visibility
and capability to respond to incidents in nearby areas, providing a
reduced level of protection for those areas as an additional benefit.



The additional richness of this model comes at a computational
cost, and computing solutions to this model using existing algo-
rithms is not feasible. In particular, the standard Stackelberg ap-
proach is capable of representing these games only by enumerating
an exponential number of strategies for both the attacker and de-
fender. While similar issues have been addressed in recent work
on algorithms for the FAMS game [8], these methods cannot be di-
rectly applied here because they are not designed to handle cases
where resources may carry out different activities and provide vary-
ing levels of protection. We develop a novel compact representation
for this game based on identifying classes of strategies that can be
treated symmetrically for the purposes of computing an optimal so-
lution. By exploiting these symmetries we are able to solve much
larger game instances than previous methods, which we demon-
strate in our experimental results.

2. RELATED WORK
There is work on resource allocation for security settings that uses
both game-theoretic approaches as well as more standard optimiza-
tion frameworks. Our work focuses on developing more detailed
models of the possible security measures than previous game-theoretic
approaches. A particularly unique aspect of our model is the generic
capability that attackers have to circumvent specific security mea-
sures.

There are three main areas of related work. The first apply opti-
mization techniques to model the security domain, but do not ad-
dress the strategic aspects of the problem. These methods provide
a randomization strategy for the defender, but they do not take into
account the fact that the adversaries can observe the defender’s ac-
tions and then adjust their behavior. Examples of such approaches
include [13, 15] which are based on learning, Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Pro-
cesses(POMDPs). As part of this work, the authors model the pa-
trolling problem with locations and varying incident rates in each
of the locations and solve for optimal routes using a MDP frame-
work. Another example is the ”Hypercube Queueing Model" [9]
which is based on queueing theory and depicts the detailed spa-
tial operation of urban police departments and emergency medical
services. Such frameworks can address many of the problems we
raise, including different area values and increasing uncertainty by
using many possible patrol routes. However, they fail to account for
the possibility that an intelligent attacker will observe and exploit
patterns in the security policy. If a policy is based on the historical
frequency of attacks, it is essentially a reactive policy, one that an
intelligent adversary can exploit.

A second set of work uses Stackelberg games to model a variety of
security domains. Game-theoretic models have been applied in a
variety of security settings, such as protecting critical infrastructure
[6, 11, 14]. Lawrence [18] applies Stackelberg games in the context
of screening visitors entering the US. They have also been used for
studying missile defense systems [4] and for studying the develop-
ment of an adversary’s weapon system [5]. Other recent work is on
randomized security patrolling using Stackelberg games for generic
”police and robbers" scenarios [7] and perimeter patrols [1]. Our
work differs from the previous work in that it allows for a more
fine-grained representation of security domains. A representation
that allows for different levels of protection from security measures
and unique security activities that are no longer interchangeable.
It also allows for adversary models that do not explicitly represent
modes of attack, as in much of the previous work, but still manages
to capture some of the adversary’s capabilities.

The final set of related work is the application of game theoretic
techniques that are not based on Stackelberg games to security ap-
plications. Security problems are increasingly studied using game-
theoretic analysis, ranging from computer network security [17, 10]
to terrorism [16]. Babu et al [2] have worked on modeling pas-
senger security system at US airports using linear programming
approaches, however, their objective is to classify the passengers
in various groups and then screen them based on the group they
belong to. Thus, although game theory has been used in security
domains in the past, our work focuses on extending these domains
to relax some of the previous assumptions that have been made.

3. MOTIVATING DOMAINS
Our work here is motivated by a large number of security domains
where the challenge is to protect a large physical environment from
attackers using limited security resources. Such domains include
examples like railroad and subway systems, power generation fa-
cilities, shipping ports, and airports. In any of these domains there
exist a wide variety of possible security measures that could be im-
plemented to provide protection for the facility, including activities
such as perimeter patrols, screening inbound vehicles, or verify-
ing the credentials of employees or passengers. The organizations
tasked with providing security for these domains include local law
enforcement, port authorities, and the Transportation Security Ad-
ministration (TSA). These organizations face the challenging prob-
lem of maximizing the protection of the critical infrastructure using
a limited number of available resources.

Assigning resources is complicated by the fact that there are many
different areas of a large facility where resources could be allo-
cated. For example, in an airport there are public areas (e.g., tick-
eting and check in areas), boarding areas, as well as secured areas
such as the aircraft runways. Some of these areas are physically
distant, while others may be adjoining or accessible through other
areas. In addition, these areas may have different values from a se-
curity perspective, since they have different numbers of people and
some may have other important assets (e.g., aircraft or expensive
machinery).

There is also a wide variety of different kinds of tasks or activities
that security forces could perform. Each type of activity may be
able to prevent different kinds of harmful actions or events. For
example, a security activity might be screening baggage for harm-
ful substances, patrolling the perimeter for unauthorized entrants,
or verifying the identify of passengers. These activities may have
different effects on protecting different areas of the facility. For
example, if passengers are screened at the check-in area then this
may also help protect the individual terminals since it can stop a po-
tential threat from entering the terminal area through the check-in
area. Although a security activity may protect more than one area
at a time, the level of protection it provides to each area may vary.
Returning to our check-in area example, although screening pas-
sengers at the check-in area may protect terminals from unwanted
passengers, there may be other threats to the terminals like a worker
who enters from a different area. Thus screening only helps par-
tially protect the terminal area, and different combinations of secu-
rity activities may provide additional protection against a broader
range of threats. We will refer to the combination of a security ac-
tivity and the area where it is performed as a security "operation."

The goal of an attacker is to find a successful strategy to attack some
area of the facility. This decision depends both on the goals of the
attacker and on the security measures taken by the security forces.



Areas that have less security will be less costly to attack, but they
may also not be desirable depending on the overall objective of the
attacker. To increase the chances of success an attacker may also try
to specifically circumvent particular kinds of security measures that
the attacker believes are likely to be in place. This could also take
the form of choosing a particular type of attack vector that will not
be detected or prevented by known security measures. However,
this becomes increasingly difficult as the number and variety of
security activities taking place in any given area increases.

Based on these domains we are interested in, we develop a game
model to capture the salient features of these domains. Our base
model is a Stackelberg game, similar to previous models discussed
in Section 2. However, we extend these models to incorporate deci-
sions about both location and the types of security activities being
carried out, as well as to incorporate the possibility that attackers
can circumvent specific security measures at some additional cost.
We begin by introducing a basic version of the model, and then de-
scribe a compact representation of this model that allows for more
scalable solution methods. We then present an extension to this
model that allows greater flexibility in modeling different levels of
protection for different types of security activities.

4. SECURITY GAMES WITH
COMPLEX ACTIONS

We begin with a high-level description of our game model before
giving a more formal definition. Our game model has two players,
an attacker and a defender (i.e., the security forces). The defender
is trying to prevent attacks on a large physical space—such as an
airport or port facility—that can be partitioned into a number of
smaller areas. To prevent attacks the defender is able to execute
various actions (i.e., ”operations") using security resources; these
actions are associated with a specific area(s), and perform a partic-
ular kind of activity.

The attacker’s goal is to successfully attack one of the areas in the
facility, but to do so the attacker must also avoid any security activ-
ities being performed in the area. As the defender allocates more
resources to protect one area, it becomes more difficult for the at-
tacker to successfully attack this area. In our model, areas may have
different characteristics, including the payoff each player receives
if there is a successful attack on the area, or a failed attack attempt
in the area. The defender’s actions also have different effects on
each area, providing different degrees of protection in different ar-
eas. It may also be more or less difficult for attackers to circumvent
security measures in different areas.

Real-world terrorist attacks are based on careful planning and of-
ten use surveillance or other means to gather detailed informa-
tion about security procedures. To model this, previous work has
adopted Stackelberg game models where the defender moves first
and commits to a (randomized) strategy for deploying security re-
sources. The attacker is able to observe this strategy and plan the
best possible attack, based on this knowledge. A standard solution
concept for these game is a Strong Stackelberg Equilibrium (SSE)
in which the defender chooses an optimal mixed strategy, assum-
ing that the attacker will choose an optimal strategy in response.
We adopt this Stackelberg framework and solution concepts for the
model and algorithms presented in this paper.

In the remainder of this section we define the possible strategies for
both the defender and the attacker, and then describe how payoffs
are assigned for the possible outcomes of the game. We initially

assume for expository purposes that each operation affects exactly
one area, and that all operations are identical in how effective they
are at preventing attacks. We relax both of these assumptions in
Section 6.

4.1 Defender Strategies
We denote the defender by Θ, and the set of defender’s pure strate-
gies by σΘ ∈ ΣΘ. In our model the defender is able to execute
a variety of security activities called operations, which we denote
by O = {o1, . . . , om}. Each individual operation has two compo-
nents. The first is the type of activity that the operation represents,
and the second is the area(s) where the activity is performed. For
now, we assume that each operation affects exactly one area from
the set of areas denoted by A = {a1, . . . , an}.

The defender has limited resources available for running defensive
operations, and so is able to run a maximum of K operations on
any day. An assignment of K resources to a set of K operations
represents a single strategy σΘ ∈ ΣΘ. For example, if there are
three operations, O = {o1, o2, o3} and two resources available,
one possible pure strategy for the defender is to assign these two
resources to o1 and o3. The defender’s mixed strategies δΘ ∈ ∆Θ

are the possible probability distributions over ΣΘ.

4.2 Attacker Strategies
The attacker is denoted by Ψ, and the set of pure strategies for the
attacker is given by σΨ ∈ ΣΨ. Similarly, the attacker’s mixed
strategies are probability distributions over the pure strategies and
are denoted by δΨ ∈ ∆Ψ. Each pure strategy for the attacker cor-
responds to selecting a single area ai ∈ A to attack. In principle,
the attacker will also choose a specific mode of attack. However,
in security domains it is typically not feasible to enumerate all pos-
sible modes of attack, and attackers often develop new or modified
versions of attacks that have not been seen before. This is particu-
larly the case when security measures are known and predictable,
so that attackers are able to specifically plan countermeasures to
circumvent the security procedures.

Rather than try to enumerate specific attack scenarios and run the
risk of failing to include important possibilities, we model the at-
tacker’s strategies at a higher level of abstraction. In addition to
selecting an area to attack, the attacker chooses a subset of the pos-
sible operations that could be run in that area to avoid, or circum-
vent. Circumventing operations will increase the attacker’s chances
of success, but comes with a fixed cost that is a parameter of the
model. This cost could capture a variety of different things, such as
using more sophisticated technology or additional people to launch
the attack, or switching to a less ideal means of attack that is less
destructive. For example, if the defender is searching baggage for
harmful substances (the operation), but not screening passengers,
the attacker could choose to use a vest bomb as their mode of at-
tack which would avoid the baggage screening. Formally, a pure
strategy for the attacker consists of an area ai and a subset of the
operations in O to circumvent. It is only necessary for the attacker
to circumvent operations that affect area ai.

4.3 Payoff Definition
Payoffs for each player are defined over all possible joint pure-
strategy outcomes: ΩΘ : ΣΨ × ΣΘ → < for the defender and
similarly for the attacker. The payoff functions are extended to
mixed strategies in the standard way by taking the expectation over
pure-strategy outcomes. The first component of the payoff de-
pends on which area the attacker chooses to attack, and whether



or not the attack was successful. We define four values for each
area: V d

Θ(ai) and V a
Θ(ai) for the defender and V d

Ψ(ai) and V a
Ψ(ai)

for the attacker. Here d signifies the area being successfully de-
fended while a signifies the area being successfully attacked so
V d

Θ(ai) > V a
Θ(ai) for the defender while V d

Ψ(ai) < V a
Ψ(ai) for

the attacker.

The probability of success or failure depends on both the operations
the defender is running in the attacked area, and the set of opera-
tions the attacker is circumventing. We define λ(ai, σΘ) to be the
set of operations oi ∈ σΘ that affect area ai (which might be the
empty set). For now, we assume that an attack is successful if and
only if λ(ai, σΘ) ⊆ σΨ. This assumes that every operation has a
100% chance of preventing the attack unless it is circumvented by
the attacker.

After the attack is determined to be successful or not the payoff
also depends on which operations the attacker has chosen to cir-
cumvent. We introduce this cost as a function C(ai, σΨ) which is
the cost of circumventing the set of operations chosen in σΨ for
the attacked area. The larger the set of operations σΨ contains the
larger the cost becomes, so it is more difficult to successfully attack
areas that are more heavily defended. We include the area because
circumventing certain operations may be easier in some areas than
in others depending on factors like layout, daily activities in that
area, and the number of people who are regularly present in that
area. This cost is deducted from the attacker’s payoff and added
to the defender’s overall payoff, resulting in the following overall
payoffs for both players in the case of a successful attack:

V a
Θ(ai) + C(ai, σΨ) (1)

V a
Ψ(ai)− C(ai, σΨ) (2)

The payoff for a failed attack is identical except for substituting V a
Θ

with V d
Θ for the defender and the same for the attacker. To further

explain the game representation we have just outlined and how pay-
offs are calculated in this game we will turn to a concrete example.
In this example there are two areas, A = {a1, a2}, and four opera-
tions O = {o1, o2, o3, o4}. Here o1 and o2 affect only a1, and o3

and o4 affect only a2. For the follower we set V a
Ψ(a1) = 5, and

V d
Ψ(a1) = −1 for the first area and V a

Ψ(a2) = 10, and V d
Ψ(a2) =

−5 for the second area. For the defender we set V d
Θ(a1) = 2,

and V a
Θ(a1) = −10, for the first area and V d

Θ(a2) = 5, and
V a

Θ(a2) = −20 for the second area. Finally we set the costs as
C(a1, o1) = C(a1, o2) = 2 and C(a2, o3) = C(a2, o4) = 3.
Figure 1 shows a physical representation of this game with cor-
responding payoffs. In our example there will be 2 resources to
assign, K = 2. We show the possible outcomes of this game in
normal-form in Table 1.

In Table 1 the first value represents the defender’s payoff and the
second value represents the attacker’s payoff. The attacker’s ac-
tions are represented first by the area selected for the attack and
then by the operations avoided. For instance, the second column
represents the attacker choosing area a1 and avoiding operation o1

where the third column represents the attacker choosing area a1

and avoiding operation o2. To illustrate how these values are trans-
lated into the table lets look at the case where the defender chooses
o1, o3 and the attacker attacks area a1 while avoiding o1. Since the
attacker avoided all the operations we were running in that area he
succeeds in his attack, thus he receives V a

Ψ(a1) or 5 points. How-

Figure 1: Game Example

ever, the cost to avoid o1, or C(a1, o1), is 2 so the attacker only
receives 3 points (5 - 2). On the defender’s side we go through
similar logic to arrive at a payoff of -8 (-10 + 2).

a1 : ∅ a1 : o1 a1 : o2 a2 : ∅ a2 : o3 a2 : o4

o1, o2 2, -1 4, -3 4, -3 -20, 10 -17, 7 -17, 7
o1, o3 2, -1 -8, 3 4, -3 5, -5 -17, 7 8, -8
o1, o4 2, -1 -8, 3 4, -3 5, -5 8, -8 -17, 7
o2, o3 2, -1 4, -3 -8, 3 5, -5 -17, 7 8, -8
o2, o4 2, -1 4, -3 -8, 3 5, -5 8, -8 -17, 7
o3, o4 -10, 5 -8, 3 -8, 3 5, -5 8, -8 8, -8

Table 1: Example payoffs for sample game

a1 : ∅ a1 : γ1 a2 : ∅ a2 : γ2

γ1, γ1 2, -1 4, -3 -20, 10 -17, 7
γ1, γ2 2, -1 -2, 0 5, -5 -4.5, -5
γ2, γ2 -10, 5 -8, 3 5, -5 8, -8

Table 2: Example compact version

Given this setup we can construct a standard Stackelberg game.
Namely, we have outlined the strategy space, ΣΘ, for the defender
to be the set of all possible combinations of K operations and the
strategy space, ΣΨ, for the attacker to be the set of all possible cir-
cumvention strategies for each area. We have also outlined how
payoffs are determined based on the strategy chosen by the de-
fender and the attacker. Particularly, the attack fails or succeeds
based on whether the attacker has circumvented the necessary op-
erations at the area he chooses to attack and the cost of the attack
is factored into both the defender’s and attacker’s payoffs irrespec-
tive of whether the attack succeeds or fails. Given the normal-form
representation of any of these games similar to that shown in Table
1, this game can be solved using the fastest known general Stackel-
berg solver, DOBSS [12].

5. COMPACT REPRESENTATION
Although setting up our new problem as described is solvable us-
ing a general Stackelberg solver, it does not scale well as the size
of the game increases. Both the attacker and defender strategy
spaces grow combinatorially as the number of defender operations
increases. We introduce a compact representation that exploits sim-
ilarities in defender operations to reduce the number of strategies



that must be enumerated and considered when finding an optimal
solution to the game.

5.1 Exploiting Identical Operations
First, we identify operations that provide coverage to the same ar-
eas, and have the same circumvention costs; so far, all operations
within a given area are identical. Let γi ∈ Γ represent the sets of
operations that can be grouped together because they have identical
properties. The key is that each of these operations will have the
same effect on the payoffs, so we can reason about them as a group
and only consider the number of operations of each type that are
selected by the defender or circumvented by the adversary. We can
show that in the optimal solution, the selection probabilities and
circumvention strategies take a simple form. In particular, we now
argue that it is optimal for the defender to distribute probability uni-
formly at random across all operations within a set γi, so that all
operations are chosen with equal probability in the solution. Given
this, we only need to know how many operations are selected from
each set in order to compute the expected payoffs for each player
in the optimal solution.

PROPOSITION 1. Selecting each operation oj ∈ γi with equal
probability provides the maximum expected payoff for the defender.

Proof Sketch: Let the vector X = 〈x1, x2, . . . , xj〉 represent the
total probability with which each operation associated with a given
area is selected according to some mixed strategy δ. Without loss
of generality, assume that this vector is sorted in descending order
such that x1 ≥ x2 ≥ · · · ≥ xn. The attacker strictly prefers to
circumvent operations that are selected with higher probability, so
the attacker will always choose to circumvent operations x1 . . . xm

for any number of circumvented operations m. Now, consider the
alternative defender strategy δ̂ with uniform coverage probabilities
x̂1 = x̂2 = · · · = x̂n = (

Pn
i=1 xi)/n. For any m operations

that the attacker could circumvent,
Pn

i=m+1 xi ≤
Pn

i=m+1 x̂i

because the vectors have the same sum and we have eliminated
the m maximum elements of X . Therefore, the attacker succeeds
no more frequently against strategy δ than δ̂, and the defender’s
expected payoff is at least as great for the uniform strategy δ̂. �

A strategy σΘ ∈ ΣΘ can now be represented by the number of
resources assigned to each set of identical operations γi. For exam-
ple, if there are two sets γ1 and γ2, and the defender has 2 available
resources, the possible strategies are to assign both to γ1, one to
each set, or both to γ2 (assuming at least two operations in each
set). The original strategy space consists of all possible ways to
select two operations from n possible operations, which is much
larger than the compact strategy space as n grows large.

We now define define λ(γi, σΘ) to be number of resources assigned
to γi in the strategy σΘ. We also use the notation Υai to represent
the set of all γi that affect area ai. Finally, we define QΘ to be the
vector of resource assignments over Γ where QΘ

i is the number of
resources assigned to γi.

Given that the defender strategy uniformly distributes resources
among all operations oj ∈ γi we also know that it does not matter
which specific operations the attacker chooses to circumvent from
the set γi. For any given number of operations circumvented, the
expected payoff is identical regardless of which specific operations
within the set are chosen. Therefore, we can use a similar compact

representation for the attacker strategy space as for the defender,
reasoning only over the aggregate number of operations of each
type rather than specific operations. Specifically, a strategy σΨ is
represented by which area the attacker chooses to attack and then
by how many operations from each set γi the attacker circumvents.
Similar to the defender, this is a much smaller strategy space than
the original strategy space which enumerates all possible unique
circumvention strategies. We define QΨ to be the vector of the
number of operations circumvented over Γ where QΨ

i is the num-
ber of operations circumvented from the set γi.

A concrete example of this representation is presented in Table 2,
for the same game shown in Table 1. In this representation there
are only 3 pure strategies for the defender: assign both resources
to γ1 operations, assign one resource to γ1 and one to γ2, or as-
sign both resources to γ2. Similarly, for the attacker there are now
only 2 circumvention options per area: circumvent no operations
or circumvent one operation of the appropriate set γi. We will now
explain how payoffs are calculated in this new compact version and
how these payoffs map back to the full representation.

5.2 Computing Payoffs in the
Compact Representation

We have defined a compact representation for both the defender
and attacker strategies. It remains to describe how payoffs are cal-
culated for combinations of these strategies, and how these payoffs
reflect the payoffs in the original game. To compute the payoffs
for a combination of strategies we must first calculated the prob-
ability that an attack succeeds. For any given defender strategy
the defender resources allocated to each operation type (QΘ

i ) are
uniformly distributed over the operations in γi. In addition, the
attacker will receive an identical payoff for any set of operations
circumvented within γi. Therefore, we can select an arbitrary pure
strategy from the full representation for the attacker which circum-
vents each fixed number of operations; we will refer to this strategy
as τ .

We now describe how to compute the expected payoffs for both
players for attacker strategy τ by computing the probability that the
attacker will succeed against the defender strategy. Let ξi ∈ Ξi rep-
resent the possible combinations of operations in γi ∈ Υai , where
ai is the area attacked in τ . The attack succeeds if and only if the
operations circumvented in τ are a superset of the operations in ξ.
For each ξ we compute the number of times the attacker fails, fi,
by counting the occurrences where all operations in ξ are not cir-
cumvented in τ . The attacker succeeds in all other cases, denoted
by wi. The attacker’s overall probability of failure taking into ac-
count all types of operations is given by ε = Πn

i=0fi/(fi + wi),
and corresponding probability of success is 1 − ε. We can now
compute payoffs for both defender and attacker:

(1−ε)∗V d
Θ(ai)+ε∗V a

Θ(ai)+
X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj)∗QΨ
i (3)

(1−ε)∗V d
Ψ(ai)+ε∗V a

Ψ(ai)−
X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj)∗QΨ
i (4)

We note that it is also possible to quickly detect situations where the
attacker cannot possibly succeed because the number of operations
circumvented for some type is less than the number of operations



run by the defender for this type. In these cases, the above equa-
tions simplify to:

V d
Θ(ai) +

X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj) ∗QΨ
i (5)

V d
Ψ(ai)−

X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj) ∗QΨ
i (6)

Looking back at Table 1 we can provide some additional insight
into why this compact representation works. Notice that regardless
of whether the defender chooses operation o1 or o2 he will receive
identical payoffs. For example, if the defender chooses operation
o1 the reward value if the attacker just avoids o1 is -8 and if the
attacker just avoids o2 it is 4. Similarly, if the defender chooses op-
eration o2 their reward value if the attacker just avoids o2 is -8 and
if the attacker just avoids o1 it is 4. Given that the attacker’s strategy
is to optimize against the defender’s strategy and that resources are
split equally among o1 and o2, the attacker is indifferent between
avoiding just o1 or just o2 since both yield identical payoffs.

6. EXTENSION TO MULTIPLE LEVELS OF
PROTECTION

Up to this point we have assumed that each operation affects ex-
actly one area, and that every operation is able to prevent any at-
tack if it is not circumvented by the attacker. In this section we
relax these assumptions and allow for a more general model of the
effects of operations on the success or failure of an attack. We al-
low each operation to affect an arbitrary number of areas, and to
prevent attacks in each area with a different probability. The abil-
ity to represent operations that affect different areas is useful for
representing patrols in adjacent areas, or for representing security
measures that may not be directly applicable to a single physical
area, but has a broad effect across many different areas.

We define a function S(ai, oj) ∈ [0 . . . 1] that expresses the proba-
bility that operation oj will prevent an attack in area ai. A value of
0 represents an operation that has no effect on a particular area, and
a value of 1 represents perfect protection. As before, any operation
can be circumvented by the adversary to mitigate the protective ef-
fect of the operation. The main difference in this model is that
we must now consider a definition of operation types that accounts
for the effectiveness of operations in different areas. Operations
may only be collapsed in the compact representation if they pro-
vide identical coverage in every area. Given that restriction, we
can extend Proposition 1 by a similar argument (omitted here) to
show that it is optimal to randomize uniformly across operations
that are identical in this respect.

Extending our model to this more comprehensive model in both the
full representation and compact representation requires only a min-
imal change to the payoff calculations. Specifically, the total prob-
ability of successfully preventing an attack is computed by multi-
plying together the 1− S(ai, oj) values for all of the operations in
σΘ that are not circumvented in σΨ for the area ai that is attacked
and then subtracting this value from 1. Specifically, the multipli-
cation of these values, 1− S(ai, oj), represents the chance that all
operations failed to catch the adversary and the chance of success
is easily determined by subtracting this value from 1. Denoting this
value by Z we have the revised equations:

(1− Z) ∗ V d
Θ(ai) + Z ∗ V a

Θ(ai) +
X

oi∈σΨ

C(ai, oi) (7)

(1− Z) ∗ V d
Ψ(ai) + Z ∗ V a

Ψ(ai)−
X

oi∈σΨ

C(ai, oi) (8)

Computing the payoffs for the compact representation in this case
requires one additional manipulation. First, we must compute the
probability that each operation is circumvented for each set of iden-
tical operations γi, based on the attacker strategy. This probability
of circumvention is factored into the computation of the overall
probability of capture by scaling each S(ai, oj) in the computa-
tion by the probability that oj will be circumvented by the attacker.
Given this scaling term, the process for computing the payoffs is
the same as described previously.

7. EVALUATION
In this section we provide empirical results to demonstrate the ben-
efits of our compact representation on scalability. The effectiveness
of this representation depends primarily on the number of unique
types of operations that are present in the original game; in the
worst case every operation is unique in some way and in that case
the compact representation is identical to the full representation.
Our compact representation is most effective in cases where each
operation affects relatively few areas, and the effectiveness of op-
erations (in terms of the probability of preventing an attack) can
be categorized into a small number of discrete levels of protection.
This maximizes the chance that there will be identical operations
which can be merged in the compact representation. In principle it
would also be possible to merge similar operations with some loss
of solution quality, but we defer investigation of this method for
approximation to future work.

We present simulation results focusing on the computational effi-
ciency of our methods, and particularly the benefits of the compact
representation in cases where there are identical operations. All ex-
periments are run on a system with an Intel 2 GHz processor and
1 GB of RAM. We used a publicly available linear programming
package called GLPK to solve optimization problems as specified
in the original DOBSS procedure. The solver was allowed to use up
to 700 MB of memory during the solution process. For larger game
instances, solving the problem with the full representation runs out
of memory and solutions cannot be found. In the results presented
below we exclude results for cases where the full representation
was not able to produce a result using the allotted memory.

To test the solution methods we generate random game instances
by randomly selecting payoff values and the circumvention costs
for each area. For each experiment we generated 20 random game
instances and averaged the results (there is little variance in the run-
times for different problem instances). We consider three different
scenarios. The first scenario shown in Figure 2 has a single area,
and the defender is allowed to allocate up to 5 resources to run op-
erations. We increase the number of different operations available
to protect this area along the x-axis. For the compact representation
we vary the number of unique types of operations to show how this
impacts the efficiency of the solution method. Results are shown
for 1, 2, and 4 unique operation types, however, we only show the
results in the 4 unique operation types case up to 10 operations. It is
clear that more operations in this case would have taken a substan-
tial amount of time. As shown in Figure 2, the full representation is



unable to find a solution within the memory limit for games with 8
or more operations, while the compact representation is able to run
up to 20 operations in less than 1 second in the ideal case where
there is a single operation type.

The next scenario presents results for the case where there is an
increasing number of areas, and each area has exactly 3 operations
associated with it. There are 5 resources available for the defender,
and each operation provides maximum protection for the area it is
associated with. This implies that there is one unique operation
type for every area. Examining Figure 3, we show the improve-
ment of our compact representation over the full representation.
For more than 4 areas, the full representation failed to achieve a so-
lution within the memory bounds. For 5 areas, the compact repre-
sentation runs much faster than the full representation, with a total
runtime of less than 1 second versus the 177 seconds required by
the full representation to find a solution for the case with only 4
areas. Even if the number of operations associated with each area
is a relatively small constant our compact representation provides
substantial benefits. As the number of similar operations associated
with an area increases, this advantage grows (as shown in our first
experiment).

Finally we consider a scenario where operations are distributed ran-
domly across possible areas. Again, each operation is associated
with a single area. The total number of operations is set similarly
to the previous experiment, in that that the total number of oper-
ations is three times the number of areas. However, we randomly
assign operations to areas (with each area having at least one oper-
ation) so the number is no longer uniform. Once again the defender
has 5 resources available and each operation provides full protec-
tion to the area it is associated with. Looking at Figure 4, we see
similar benefits for the compact representation in this case as in the
previous experiment with a uniform distribution of operations.

These results show the potential benefits of the compact representa-
tion in improving scalability by exploiting similarities in the effects
of some operations. We have shown that the most important fac-
tor is the number of unique types of operations that exist and how
many of these operations there are. If the number of types is low
the compact representation performs efficiently.

Figure 2: Runtime: Increasing number of operations with 1
target and 5 resources

8. CONCLUSION
Allocating resources to defend critical infrastructure, high profile
events, and transportation systems among other things remains an
important problem in many security domains. While there are a
number of methods in use today for addressing this problem, one
notable approach that is increasingly finding more use in security
applications is that of game theory. In fact, game theory has seen
successful application at the Los Angeles International Airport and
for the United States Federal Air Marshals Services [8, 14].

Figure 3: Runtime: Increasing areas with 5 resources and 3
operations per area

Figure 4: Runtime: Increasing areas with operations randomly
distributed and 5 resources

We introduce a new form of security game that extends previous
models in several important directions. First, this model includes a
more fine-grained representation for the defender’s strategy space,
explicitly considering both the location of a security activity and the
type of activity that a security resource will perform. Second, we
allow for different levels of effectiveness for different security ac-
tions, including the possibility that an activity has different effects
across multiple locations. Previous models have also assumed that
all of the possible attack strategies for the attacker are known with
certainty, which is unrealistic in real-world security problems. In
particular, attackers can often adapt to circumvent specific known
security measures. We extend the security game model on the at-
tacker’s side to handle this possible in a generic way, allowing at-
tackers to circumvent specific security activities at some cost. This
leads to an increased value for randomness and unpredictability in
the defender’s strategy, even among actions that may be similar in
terms of the areas they affect. Solving this new class of games
presents a computational challenge that existing solution methods
are not able to handle. We address this by introducing a compact
representation for these games that exploits symmetries between
similar types of security activities, and provide experimental results
showing the resulting improvements in runtime.
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