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ABSTRACT
Law enforcement agencies frequently must allocate limited resources
to protect targets embedded in a network, such as important build-
ings in a city road network. Since intelligent attackers may observe
and exploit patterns in the allocation, it is crucial that the alloca-
tions be randomized. We cast this problem as an attacker-defender
Stackelberg game: the defender’s goal is to obtain an optimal mixed
strategy for allocating resources. The defender’s strategy space is
exponential in the number of resources, and the attacker’s exponen-
tial in the network size. Existing algorithms are therefore useless
for all but the smallest networks.

We present a solution approach based on two key ideas: (i) a
polynomial-sized game model obtained via an approximation of
the strategy space, solved efficiently using a linear program; (ii)
two efficient techniques that map solutions from the approximate
game to the original, with proofs of correctness under certain as-
sumptions. We present in-depth experimental results, including an
evaluation on part of the Mumbai road network.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Algorithms, Performance, Experimentation, Security, Theory

Keywords
Game Theory, Stackelberg Games, Algorithms, Uncertainty, Secu-
rity, Randomization, Patrolling, Risk Analysis

1. INTRODUCTION
Protecting targets against potential attacks is an important prob-

lem for security forces worldwide. The general setting is as fol-
lows: An attacker assigns different values to reaching (and dam-
aging or destroying) one of multiple targets. A defender wants to
allocate resources (such as patrol cars or canine units) to capture
the attacker before he reaches a target. In many of these situa-
tions, the domain has structure that is naturally modeled as a graph.
For example, city maps can be modeled with intersections as nodes
and roads as edges, where nodes are targets for attackers. In or-
der to prevent attacks, security forces can schedule checkpoints on
edges (e.g., roads) to detect intruders. For instance, in response to
the devastating terrorist attacks in 2008 [3], Mumbai police deploy
randomized checkpoints as one countermeasure to prevent future
attacks [1]. The strategy for placing these checkpoints must neces-
sarily be decided in advance of attack attempts, should account for

targets of differing importance, and should anticipate an intelligent
adversary who can observe the strategy prior to attacking.

In light of these requirements, game-theoretic approaches have
been developed to assist in generating randomized security strate-
gies in several real-world domains, including applications in use by
the Los Angeles International Airport [14] and the Federal Air Mar-
shals Service [15]. To account for the attacker’s ability to observe
deployment patterns, these methods model the problem as a Stack-
elberg game and solve for an optimal probability distribution over
the possible deployments to ensure unpredictability. Novel solvers
for classes of security games have recently been developed [2, 13,
4]. However, these solvers take time at least polynomial in the
number of actions of both players. In our setting, every path from
an entry point to a target is an attacker action, and every set of r
or fewer edges is a defender action. (r is the maximum number
of checkpoints.) Since the attacker’s actions grow exponentially
with the size of the network, and the defender’s actions grow expo-
nentially with r, existing methods quickly become too slow when
applied to large real-world domains.

In this work, we develop an efficient procedure for generating
checkpoint deployments based on two key ideas: (i) a polynomial-
sized approximation of the strategy space solved using a linear
program; (ii) two efficient sampling techniques to map solutions
back to the original space. To avoid the exponential strategy space
over all possible combinations of checkpoint placements (the joint
distribution), our methods operate on the marginal probabilities of
edges, i.e., the total probability of placing a checkpoint on an edge.
Our linear program, RANGER, upper-bounds the capture probabil-
ities along paths by the sum of marginal probabilities.

Our sampling algorithms efficiently generate joint distributions
in the original problem space from RANGER’s solution of marginal
probabilities. We prove that under certain conditions, the actual
capture probabilities of our algorithms match the upper bounds of
RANGER, and thus necessarily give optimal payoff. Radius Sam-
pling generates optimal joint distributions if certain conditions on
the marginal distribution are met. Comb Sampling generates distri-
butions which are optimal against an approximating attacker who
calculates the expected value of an attack by summing the marginal
probabilities on the path.

In addition to our theoretical results, we test our methods empiri-
cally. First, we evaluate the quality of RANGER against an optimal
solution technique, DOBSS, to verify the accuracy of RANGER’s
approximation. Then, we evaluate the sampling procedures by test-
ing against an exact attacker who plays a best response to the de-
fender’s true joint distribution. We also apply our methods to a
game model of the city of Mumbai and the targets attacked in 2008.

2. RELATED WORK



Aside from the literature on Stackelberg games for security, our
approach is also based on insights from network interdiction [17,
16, 9, 5]. These are the special case of our model when there is
a single target, or — equivalently — all targets have identical val-
ues. For such games, Washburn and Wood (1995) give an algo-
rithm finding optimal strategies for both players based on Min-Cut
computations. However, different target values can cause their al-
gorithm to perform arbitrarily poorly, as we see in our experiments.

Two additional lines of work are somewhat related. Mavronico-
las et al. (2008) define and analyze a network security game where
each attacker can attack any node of the network, and the defender
chooses a path to patrol to capture as many attackers as possible.
Because the attacker is not restricted to paths, the types of results
for this game are different from ours, and the focus in [12, 11] is
on understanding the impact of selfish behavior by defenders rather
than optimal strategies. Hider-seeker games [2, 8] are also studied
on graphs, but here, the attacker’s goal is only to evade capture, not
to reach any particular target.

3. PROBLEM DESCRIPTION
A graph-based security game models an attacker and a defender

who take actions on a graph G = (V, E), with n = |V | nodes
and m = |E| edges. The attacker starts at one of the source nodes
s ∈ S ⊆ V of his choosing and travels along a path in an attempt to
reach one of the targets t ∈ T ⊆ V . The attacker’s pure strategies
are thus all s-t paths P , denoted by B, from some source s to some
target t. The defender tries to capture the attacker before he reaches
a target, by placing up to r resources on edges of the graph. The
defender’s pure strategies are subsets of r or fewer edges; we de-
note the set of all such sets by L. Assuming that the defender plays
L ∈ L and the attacker P ∈ B, the attacker is captured whenever
P ∩ L 6= ∅, and succeeds in his attack when P ∩ L = ∅.

Unsuccessful attacks always have a payoff of c for the defender,
while successful ones have a penalty of D(t). We make the natural
restriction that D(t) ≤ c. We also assume that the game is zero-
sum, meaning that the attacker’s payoff for a successful attack on
target t is −D(t), and −c for an unsuccessful one. We stress here
that targets may have vastly different payoffs associated with them,
unlike in [16]. This distinction is crucial to model real security
domains, and thus to bridge the gap between theory and practice.

Since the attacker can choose which source to enter from, for
our analysis, we merge all sources into a single source without loss
of generality. More formally, we reform the graph so that all orig-
inal source-incident edges are incident to the new source. While
this operation obviously changes the graph, it does so only in a
way that does not impact the game: no rational attacker would ever
include multiple sources in his path, and therefore, a defender will
never select an edge between two sources. Those are the only edges
that disappear from the problem. Thus, to simplify presentation
and analysis, we will assume that the attacker always enters from a
unique known source s.

In a world of increasingly sophisticated and determined attack-
ers, a good defender strategy must take into account the fact that the
attacker will observe and exploit patterns in the defender’s behav-
ior. Thus, the game is naturally modeled as a Stackelberg game, an
approach also taken (for the same reasons) in past work in security
settings [7, 10]. The defender is modeled as the leader and moves
first, by selecting a mixed strategy λ ∈ Λ that assigns a probabil-
ity to each pure strategy L ∈ L. The attacker is the follower and
chooses a strategy after observing the defender’s mixed strategy.
There is always a pure-strategy best response for the attacker, so
we restrict the attacker to pure strategies without loss of generality.
Thus, the attacker’s Stackelberg strategy is a function f : λ 7→ P .

For any pair of strategy profiles (λ, f), the expected rewards for the
defender (RD) and attacker (RA) are given by:

RD(λ, f) = p · c + (1− p) ·D(t) (1)
RA(λ, f) = p · −c + (1− p) · −D(t), (2)

where t is the target at the end of the path specified by f(λ),
and p the probability that the attacker is captured on the path to
t given the defender’s strategy λ. Although the optimal defender
strategy is a Stackelberg Equilibrium, since our game is zero-sum,
this is equivalent to a Maximin strategy [6]. Unfortunately, as L
has size Θ(mr), and B has size exponential in n, existing meth-
ods for computing such strategies do not scale to realistic problem
sizes. We therefore develop a linear program and two accompa-
nying sampling methods to efficiently solve graph-based security
games.

4. RANGER
We first introduce RANGER (Resource Allocation for Network-

based Games with Efficient Representations), a linear program for
finding an optimal set of marginal checkpoint probabilities for the
defender. We denote the marginal probability associated with edge
e by xe. Formally, xe =

∑
L∈L,e∈L λL, where λL is the proba-

bility of the set L under λ. We denote the marginal distribution by
~x = 〈xe〉.

By reasoning over ~x, we avoid the exponential size of the de-
fender’s space. The key insight of our approach is the following
simple consequence of the Union Bound: For any path P , the cap-
ture probability under λ is at most

∑
e∈P xe. We use this upper

bound (the sum of xe) as an approximation of the true capture prob-
ability in deriving RANGER. The power of our approach is that we
subsequently present ways to sample joint distributions where the
total capture probability matches this upper bound under certain
conditions; this immediately implies optimality of our procedures,
and retroactively justifies the approximation.

In the RANGER linear program below, xe is the marginal prob-
ability of placing a checkpoint on edge e. The dv are, for each ver-
tex v, the minimum sum of checkpoint probabilities along any path
from the source s to v1. This is enforced by the constraints (4)–(6).
Constraint (7) enforces that at most r checkpoints are placed, and
Constraint (3) captures the payoff for the defender.

Maximize RD , s.t.:
RD ≤ (1− dt) ·D(t) + dt · c (3)
ds = 0 (4)
dv ≤ min(1, du + xe) ∀e = (u, v) (5)
0 ≤ xe ≤ 1 ∀e ∈ E (6)∑
e∈E

xe ≤ r (7)

Notice that, as specified, the dv values do not have a lower bound.
However, we can show that in an optimal solution, we can, with-
out loss of generality, raise all dv values to their upper bound, the
shortest sum of marginals of a path to v.

THEOREM 1. Let (R∗
D, ~x∗, ~d∗) be an optimal solution returned

by RANGER. Define ~d′ = 〈d′v〉 for v ∈ V , where
d′v = min(1, minP∈Pv

∑
e∈P xe). Pv is the set of paths from s to

v. Then (R∗
D, ~x∗, ~d′) is also an optimal solution.

1Recall that we can assume a single source w.l.o.g.



PROOF. We will show that (R∗
D, ~x∗, ~d′) satisfies all RANGER

constraints and leads to a reward greater than or equal to R∗
D and,

therefore, must also be optimal.
From Constraint 5 in RANGER, for any node v, d∗v ≤ d′v . By

definition of ~d′, d′s = 0. In addition, consider edge e′ = (u, v).
Let Pu = arg minP∈Pu

∑
e∈P xe. By definition d′v ≤ 1. And,

d′v = min

(
1, min

P∈Pv

∑
e∈P

xe

)
≤ min

(
1,
∑

e∈Pu

xe + xe′

)

≤ min

(
1,
∑

e∈Pu

xe

)
+ xe′ = d′u + xe′ .

Hence, d′v ≤ min(1, d′u + xe′). Finally, given c ≥ D(t) and
d′t ≥ d∗t ,

R∗
D ≤ (1− d∗t )D(t) + (d∗t )c

≤ (1− d′t)D(t) + (d′t)c.

Thus, (R∗
D, ~x∗, ~d′) satisfies all RANGER constraints and leads to

a reward greater than or equal to R∗
D . Since R∗

D is the optimal
value of RANGER, (R∗

D, ~x∗, ~d′) must also be an optimal solution
to RANGER.

Thus, although RANGER may not produce these maximal dv

values, in an optimal solution each dv can be set to exactly the
shortest sum of marginals to v without loss of generality. We will
define dv as such going forward to simplify our analysis.

We verify the claim that RANGER’s solution is an overestimate
of an optimal solution.

THEOREM 2. Let λ∗ be the optimal strategy and R∗ the cor-
responding defender reward. Then, R∗

D ≥ R∗, where R∗
D is the

defender reward returned by the LP.

PROOF. Let ~x∗ be the marginal probabilities of λ∗. Obviously,
0 ≤ x∗e ≤ 1, and

∑
e∈E x∗e =

∑
L∈L |L|·λ

∗
L ≤ r. For each vertex

v, let d∗v be the probability (under λ∗) of capturing the intruder
assuming he chooses the best path to reach v. Then 0 ≤ d∗v ≤ 1,
and for each edge e = (u, v), d∗v ≤ d∗u + x∗e , by the Union Bound.
The attacker will choose the path to maximize his own payoff R∗

A.
Because the game is zero-sum,

R∗ = −R∗
A = −max

t
{(1− d∗t ) · −D(t) + d∗t · −c}

= min
t
{(1− d∗t ) ·D(t) + d∗t · c}.

Thus, for any target t, R∗ ≤ (1− d∗t ) ·D(t) + d∗t · c. Thus, the
values R∗, ~d∗ and ~x∗ are feasible for the LP; because RANGER
finds the optimum feasible solution, we obtain that R∗

D ≥ R∗.

RANGER is an exponentially more compact representation of
both the attacker and defender strategy spaces. This can be seen
by noticing that RANGER has a polynomial number of variables
with respect to n and m. Any straightforward application of prior
formulations would have Θ(mr) variables for the defender and ex-
ponentially many (|B|) constraints for the attacker.

5. CREATING JOINT DISTRIBUTIONS
To deploy security resources, we require joint schedules, drawn

from a joint distribution over L. We develop sampling procedures
that use the ~x computed by RANGER to generate a distribution
over joint schedules. The principle behind these methods is to
bring the actual capture probability for a target t up to the value dt.

One way to ensure this would be if no deployment ever placed two
checkpoints on any s-t path to any target. More generally (and in-
formally), it is sufficient if this “checkpoint disjointness” is ensured
for “critical” s-t paths: those whose sum of marginal probabilities
are close to the minimal (dt).

Notice that placing checkpoints by independently sampling from
~x violates this approach with increasing frequency as r increases,
and yields very suboptimal solutions. Instead, we introduce two
novel sampling procedures that achieve a certain “checkpoint dis-
jointness”, under some assumptions, and are therefore optimal.

5.1 Radius Sampling
Radius Sampling (RS) interprets the marginal probabilities as

“distances”, and places a security ring around the source. In this
way, it avoids sampling multiple times on “critical paths”, in a way
we make precise now. For any h ≥ 0, we define the ring of radius
h around s as Rh := {e = (u, v)|du ≤ h < dv}, i.e., the set of
edges from a node with probability of capture at most h from s to
a node with probability of capture more than h from s.

We define α :=
∫∞
0
|Rh|dh (a normalization constant), and the

density function φ(h) := |Rh|
α

. Notice that

α =
∑

e=(u,v)(dv − du) ≤
∑

e xe ≤ r. (8)

Our algorithm works as follows: Choose a radius h from [0,∞]
according to the density function φ. Now, choose r of the edges in
Rh uniformly at random (or all edges in Rh if |Rh| ≤ r). Place
checkpoints on these edges. We call the resulting set LR. Notice
that both h and LR are random variables, and LR is a set of at most
r edges.

THEOREM 3. If for all h, |Rh| ≥ r or |Rh| = 0, then RS
produces an optimal distribution for the defender.

Theorem 3 follows from Lemma 4 and Theorem 2 as follows: By
Lemma 4, the capture probability for any s-t path is at least dt,
i.e., RANGER’s value. Therefore, the defender’s payoff is at least
RANGER’s, which by Theorem 2 is at least the payoff with the
optimum mixed strategy.

LEMMA 4. Under the assumptions of Theorem 3, let P be any
s-v path and w the node maximizing dw among all nodes on P .
The capture probability along P is at least dw.

PROOF. We prove the lemma by induction on |P |, the number
of edges on path P . In the base case |P | = 0, the only node v with
a path from s is s itself, and the statement holds.

For the inductive step, let P be a path of length ` + 1 and e =
(v′, v) the last edge of P . Let P ′ = P \ {e} be the path of length `
from s to v′, and w′ the node on P ′ maximizing dw′ . By Induction
Hypothesis, Prob[LR ∩ P ′ 6= ∅] ≥ dw′ .

We distinguish two cases. If dw′ ≥ dv , then

Prob[LR ∩ P 6= ∅] ≥ Prob[LR ∩ P ′ 6= ∅]
≥ dw′ ≥ dv,

implying the claim.
If dv > dw′ , then consider the event E = [h > dw′ and e ∈

LR]. E is the event when we include e in LR and h is sufficiently
large that no edge from P ′ can also be sampled. The probability of
E is ∫ dv

dw′
Prob[e ∈ LR | h = x]φ(x)dx

=
∫ dv

dw′
r

|Rx| ·
|Rx|

α
dx =

∫ dv

dw′
r
α

dx ≥ dv − dw′ .



Here, we substituted the definitions of the sampling process, then
used that r

α
≥ 1 from Equation (8), and that Prob[e ∈ LR | h =

x] = r
|Rx| using the assumption of Theorem 3.

Whenever LR intersects P ′, by definition, we must have that
h ≤ dw′ (because no edge e′ ∈ P ′ is in Rh for h > dw′ ). Thus,
the events E and [Rh ∩ P ′ 6= ∅] are disjoint, and

Prob[Rh ∩ P 6= ∅] ≥ Prob[[Rh ∩ P ′ 6= ∅] ∪ E ]
= Prob[Rh ∩ P ′ 6= ∅] + Prob[E ]
≥ dw′ + (dv − dw′)
= dv.

The penultimate step used the induction hypothesis as well as the
inequality Prob[E ] ≥ dv − dw′ derived above.

To implement RS, we need to find dv values to each node, deter-
mine the edges and weights for each Rh, and sample according to
the above procedure. Each step takes time polynomial in n. Thus,
we have a polynomial-time procedure that optimally solves a graph-
based security game under the conditions of Theorem 3. Previously
known techniques either required time exponential in the graph size
or can not provide quality guarantees. However, since we cannot
guarantee performance when Radius Sampling’s condition is not
met, we also explore another sampling algorithm.

5.2 Comb Sampling
Now, we consider a somewhat simpler case for the defender: the

attacker only observes marginal distributions and approximates the
capture probability on any path by adding the probabilities. This
may occur because observing the full joint probability distribu-
tion is much more time- and resource-intensive than observing the
marginals. When only able to observe marginals, adding probabili-
ties is a reasonable and conservative approximation for the attacker.

Comb Sampling (CS) is based on two ideas: (1) If the marginals
of the joint distribution match RANGER’s xe values, then an at-
tacker summing probabilities will choose the target t and a path P
that is the best path for the attacker to use to reach t as calculated by
RANGER. (2) If the edges on P are chosen mutually exclusively,
then the capture probability on P matches that of RANGER.

Let e1, . . . , e|P | be the edges on the path P (in arbitrary order),
and e|P |+1, . . . , em the remaining edges, in arbitrary order. For
each 1 ≤ j ≤ m, let Xj =

∑
i<j xi, and define the interval

Ij = [Xj , Xj + xj). Because
∑

i xi = r (w.l.o.g.), the Ij form a
disjoint cover of the interval [0, r). We now generate a deployment,
LC , as follows: Pick a number y ∈ [0, 1) uniformly at random, and
include in LC all edges ej such that y + k ∈ Ij for some integer k.
In other words, include exactly the edges which “own” the intervals
containing the points y, y + 1, y + 2, . . . , y + r− 1. This samples
exactly r edges.

LEMMA 5. Given a marginal distribution ~x, CS will exactly
meet all marginal probabilities, xe.

PROOF. Consider any edge ej , and two cases. If Ij ⊆ [k, k+1)
for some k (i.e., Ij contains no integer point), then ej is included if
and only if k + y ∈ Ij , which happens with probability |Ij | = xj .
On the other hand, if Ij = [Xj , k) ∪ [k, Xj + xj), then ej is
included if and only if y+k−1 ∈ [Xj , k) or y+k ∈ [k, Xj +xj);
because xk ≤ 1, this happens with probability (k −Xj) + (Xj +
xj − k) = xj .

Lemma 5 ensures that the attacker will follow the path predicted
by RANGER. Now consider P . If

∑
e∈P xe ≥ 1, then for any y,

some edge e ∈ P will be included, so the attacker is always cap-
tured. This correctly matches the dt value produced by RANGER,

which would also be 1 by Constraint 5. Otherwise, an edge from
P is included if and only if y <

∑
e∈P xe, which happens with

probability
∑

e∈P xe, i.e., the sum of marginals on P . Combined
with Lemma 5, this guarantees that RANGER’s reward is achiev-
able using CS if the defender faces an approximating attacker. The
sampling time is clearly polynomial in the graph size. Thus, we
have a polynomial-time procedure to optimally defend against an
approximating attacker.

6. EXPERIMENTS

6.1 Quality Comparison
Our first evaluation studies the quality of solutions generated by

Radius and Comb Sampling in the general case, against both exact
and approximating attackers, as defined in the introduction. Neither
method is guaranteed to achieve the optimal value against an exact
attacker in all cases, so we are interested in whether these meth-
ods give good approximations. We compare them against DOBSS,
which computes the optimal solution against an exact attacker. DOBSS
may not be optimal against an approximating attacker, so we also
report the quality of DOBSS against approximating attackers, la-
beled DOBSS Marginal. As a benchmark, we include a simple
Independent Sampling (IS) strategy, wherein for each checkpoint,
edge e is selected independently with probability xe

r
.

We generate random graphs that are representative of the do-
mains where our methods are most relevant. First, we test on ran-
dom geometric graphs to estimate performance for road network
domains. Then we test on scale-free graphs as an analogy for sub-
way networks. For each graph type, we generate 500 instances each
of 4, 5, and 6 nodes, zero-sum games and report results in Table 1.
Every graph has one source, between 1 and |V | − 1 targets with
values from -1 to -10 for the defender when successfully attacked,
and 1 to 3 checkpoints. The payoffs for capture are all 0. Graphs
were kept simple so DOBSS could solve them within a reasonable
time limit.

For each graph, we run each sampling method on the marginals
produced by RANGER and calculate the actual capture probabili-
ties for the joint distribution generated. Using the true capture prob-
abilities, we select an optimal target for the attacker and compute
expected payoffs based on this choice. We compare these rewards
against DOBSS to evaluate the quality of our methodology.

For DOBSS Marginal, we calculate the marginal probabilities
from the joint distribution given and calculate the path to each tar-
get with the least (approximate) probability of capture by summing
the marginals along each path. Taking the (approximate) expected
reward for attacking each target, we can determine an approximat-
ing attacker’s optimal action and the corresponding reward for the
defender.

For Independent Sampling, the actual probability of capture is
1− (1− p/r)r , where p is the sum of RANGER’s marginal prob-
abilities on the edges on the path P . To see this, recall that since r
checkpoints are placed independently, and the probability that the
jth checkpoint is not on P is 1 −

∑
e∈P xe/r = 1 − p/r, the

probability that there is no checkpoint on P is (1 − p/r)r . Thus,
the probability for capture is 1− (1− p/r)r .

For Radius Sampling, we find all rings Rh and the probability
for selecting each. Then, we calculate the probability of selecting
edges within each ring. From these probabilities, we then obtain
the marginal probabilities for each edge; when the conditions of
Theorem 3 are violated, these marginal probabilities might be less
than RANGER’s values. Finally, we add the marginal probabilities
on any path to find the actual probability of capture.

For Comb Sampling, recall that we have a joint probability dis-



tribution. For each path, we determine which joint actions place a
checkpoint on the path and sum the probabilities associated with
these actions. In general, this would be an exponential procedure,
since there are exponentially many possible joint actions and ex-
ponentially many paths that must be calculated. However, Comb
Sampling produces a joint distribution using only O(m) joint ac-
tions, making experiments relatively efficient. In practice, we could
randomize the order in which the xe’s are processed to create a
more complex joint distribution, but experimental evaluation would
become computationally infeasible.

For each of the sampling methods, we report the expected de-
fender reward based on the exact attacker’s action as determined
by the procedures outlined previously. The DOBSS value is sim-
ply the expected defender reward calculated by the corresponding
MILP.

Table 1 shows the number of cases where a difference in quality
of more than 0.001 exists between methods. Empirically, RANGER
computes very good estimates of the optimal reward value, never
differing from DOBSS for more than 5% of cases. Unsurprisingly,
Independent Sampling frequently results in suboptimal distribu-
tions (44%–78%). Remarkably, CS attains the optimal expected
reward in every single one of the 3,000 graphs tested. RS also
performs very well, never differing from DOBSS for more than
11% of the games. DOBSS Marginal never differs from DOBSS
or RANGER, indicating that DOBSS remains optimal against an
approximating attacker (not shown). However, as runtime experi-
ments will show, DOBSS is completely incapable of solving rea-
sonable game sizes.

Random Geo. Scale-Free
Nodes 4 5 6 4 5 6

RG > DOBSS 12 8 5 0 4 22
IS < DOBSS 220 283 280 389 347 247

CS < DOBSS 0 0 0 0 0 0
RS < DOBSS 0 0 3 0 29 53

Table 1: Results by number of cases (RG - RANGER).

6.2 Mumbai
As a real-world trial, we use our algorithms to create security

policies for the southern tip of Mumbai, shown in Figure 1, which
was an area of heavy terrorist activity in 2008. The region is mod-
eled as a graph with 35 nodes and 58 edges. Attackers can poten-
tially enter from any entry node, chosen based on historical and
likely entry points. A total of four target nodes are chosen based
on historical attacks, marked with black circles in Figure 1. These
are held constant throughout testing. Payoffs are decided as in the
Quality Comparison experiments.

Figure 2(a) shows the averaged defender rewards obtained across
eight configurations, each with their own setup of target values and
sources, with each configuration being run with checkpoints vary-
ing from 2 to 10. Figure 2(b) shows results averaged across a differ-
ent set of eight configurations, each with their own setup of target
values and 4 checkpoints, with each configuration being run with
the number of sources increasing from 1 to 7.

DOBSS is unable to solve even the simplest case within the 20-
minute limit; thus, we include only Comb Sampling and Radius
Sampling’s expected reward, Minimum Cut, as well as three natural
defense strategies, Uniform Random, Entry-Incident and Weighted-
Target-Incident. Minimum Cut, as introduced by [16], contracts all
sources into a super-source and all targets into a super-target and
finds the minimum cut on the resulting graph, uniformly random-

Figure 1: Target layout for southern Mumbai.

izing resources across it. This effectively ignores target value vari-
ation, but is extremely efficient. Uniform Random places check-
points uniformly randomly across all edges in the graph. Entry-
Incident places checkpoints on edges incident to entry nodes with
equal probability. Weighted-Target-Incident places checkpoints on
edges incident to target nodes, weighted according to their payoff.
The y-axis shows the expected reward in Figure 2(a) and 2(b). The
x-axis of Figure 2(a) shows the number of checkpoints allowed and
the number of sources in Figure 2(b). RANGER ran in ≈ 0.2 sec-
onds in all trials.

Throughout the tests, the two sampling methods developed here
outperformed all others, with RS performing worse than CS when
its optimality condition was violated more severely. Minimum Cut,
which does not prioritize higher value targets, performs worse than
the Uniform Random strategy in some situations, which sometimes
happens to place more coverage on higher value targets simply be-
cause there are more roads to them.

RANGER actually exploits resources differently and to better
effect, which we explore in Figure 3(a) and 3(b). Data was used
from the games in Figure 2(b). Figure 3(a) shows the average num-
ber of edges with non-zero marginal probability in Entry-Incident
and RANGER strategies as the number of sources increases (other
methods would be a constant value). As can be seen, RANGER ac-
tually uses fewer edges than Entry-Incident as the number of entry
points increases, but uses them to much better effect.

Figure 3(b) shows the standard deviation of marginal probabil-
ities of edges. As expected, Entry-Incident remains constant at
0. RANGER’s results vary from 0 (with only one source) to 0.2,
which is actually a standard deviation of 20% in marginal probabil-
ity on edges. Although we cannot provide guarantees on the per-
formance of Radius or Comb Sampling against an exact attacker
in general, the techniques yield non-trivial mixed strategies of high
quality in practice that outperform the sensible alternatives explored
here.

6.3 Runtime Comparison
We have discussed the exponentially smaller solution space RANGER,

RS, and CS operate in; we now show runtime comparisons to ver-
ify our conclusions empirically. Specifically, we evaluate the run-
time performance of RANGER against the fastest-known exact al-
gorithm for solving general Bayesian Stackelberg games, DOBSS
[13], as well as a faster solver for security games, ERASER [10].
DOBSS serves as a benchmark, since it provides the optimal so-
lution against exact attackers. ERASER exploits structural proper-



(a) Avg reward by checkpoints.

(b) Avg reward by sources.

Figure 2: Rewards in Mumbai domain.

ties that exist in many security domains to create a compact game
representation. However, in order for the solution to be correct, it
also requires that defender actions be independent from each other,
which is not the case in our domain, since placing two checkpoints
on one path will violate this assumption. Nevertheless, ERASER
serves as another approximation algorithm that runs much more ef-
ficiently than DOBSS, so we compare RANGER’s runtime against
it.

Experiments were run on quad-core Intel 3.0GHz processors with
3GB of RAM. Each approach was run 100 times on each problem,
and we report the average time. All algorithms were given a maxi-
mum time of 20 minutes.

Figure 4 shows the scaling of each method’s runtime with re-
spect to n. In these experiments, we use complete graphs (3 to 8
vertices) and random geometric graphs (4 to 12 vertices), each with
one source, one target (value -1 to -10 for defender), and two check-
points. The x-axis shows the number of vertices in the graph, and
the y-axis shows runtime in seconds. Each result is an average of
10 trials. Unsurprisingly, DOBSS and ERASER scale poorly and
are only able to solve the problem with up to 7 vertices for com-
plete graphs and 8 (DOBSS) and 11 (ERASER) vertices on random
geometric graphs. RANGER is capable of solving games with 400
vertices within the time limit (not shown).

7. CONCLUSIONS
In this work, we provide three primary contributions. First, we

develop a linear program, RANGER, to efficiently create optimal
marginal distributions for placing checkpoints on the edges of a
graph. We prove that the reward found by RANGER is an over-

(a) No. edges used.

(b) Standard dev. of Prob.

Figure 3: RANGER strategies in Mumbai domain.

estimate of the true optimal reward. Second, we introduce Radius
Sampling, which we show produces optimal joint distributions un-
der specific conditions. Third, we develop Comb Sampling, which
we prove guarantees optimality against an approximating attacker.
We complete the discussion by providing experimental verification
of the high quality of our techniques on random graphs as well as a
real-world domain.

The techniques introduced here can be put into direct use by city
officials such as those in Mumbai, where terrorist attacks of the
form we model here are very real and occur with tragic regular-
ity. We show that RANGER strategies implemented using either
Radius or Comb Sampling far outperform the simpler alternatives
explored. Although we cannot know the current method used by
Mumbai police, we offer an efficient, high-quality solution tech-
nique based on game-theoretic foundations and hope to transition

(a) Complete graphs. (b) Random geometric graphs.

Figure 4: Runtimes for RANGER, ERASER, and DOBSS.



this theory into practice in the near future.

8. FUTURE RESEARCH
While RANGER and Comb/Radius Sampling can be used im-

mediately, we see a series of open research questions that could
potentially improve upon these results for real-world deployment.
One direction would be the generalization to general-sum domains,
since it is a subject of debate whether real-world scenarios are al-
ways best modeled as zero-sum games.

Also, perhaps one can prove NP-hardness of the problem of find-
ing optimal defender strategies in either our restricted games or
in the general-sum cases. Assuming that no efficient algorithm
can handle all inputs, it would then be desirable to identify condi-
tions under which either optimality or approximation factors can be
guaranteed. Even without guarantees, other practical and efficient
heuristics may be of interest to warrant deployment in practice.

Another highly pertinent extension would be to introduce a “prob-
ability of capture” for each checkpoint, instead of assuming that a
checkpoint will always capturing an attacker using the edge, as we
do in our work. This would require major alterations in sampling,
since our sampling techniques have focused on never placing two
checkpoints along a single s-t path, which may no longer be desir-
able. All of these directions are critical in effectively implementing
game-theoretic methods in real-world security domains such as the
Mumbai example presented here and we hope to pursue them to
further improve existing security practices.
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