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Abstract. Recently there has been significant interest in applications of game-
theoretic analysis to analyze security resource allocation decisions. Two examples
of deployed systems based on this line of research are the ARMOR system in use
at the Los Angeles International Airport [20], and the IRIS system used by the
Federal Air Marshals Service [25]. Game analysis always begins by developing
a model of the domain, often based on inputs from domain experts or historical
data. These models inevitably contain significant uncertainty—especially in se-
curity domains where intelligence about adversary capabilities and preferences is
very difficult to gather. In this work we focus on developing new models and algo-
rithms that capture this uncertainty using continuous payoff distributions. These
models are richer and more powerful than previous approaches that are limited to
small finite Bayesian game models. We present the first algorithms for approxi-
mating equilibrium solutions in these games, and study these algorithms empiri-
cally. Our results show dramatic improvements over existing techniques, even in
cases where there is very limited uncertainty about an adversaries’ payoffs.
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1 Introduction

Game theory offers a powerful framework for modeling security decisions, both for
protecting critical infrastructure [22, 6] and computer networks [3, 16, 18]. In two re-
cent real-world applications game theory is used to make security resource allocation
decisions at the Los Angeles International Airport (LAX) [20] and for the Federal Air
Marshals Service (FAMS) [25]. The game models at the heart of these systems capture
the capabilities of both the police and the adversaries, as well as information about the
potential consequences of different outcomes. An important consideration in these do-
mains is that the security policy should be unpredictable, which comes naturally from
the game analysis assuming a rational and adaptive adversary.
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Specifying an accurate game model to represent the domain is a crucial first step
in any application of game theory. These models are typically based on input from
domain experts, including the ones developed for the LAX and FAMS applications.
Even though the models are based on the best available information they are inher-
ently uncertain. In security games in particular it is very problematic to provide precise
and accurate information about the preferences and capabilities of possible attackers.
Our goal in this work is to develop new models and algorithms that explicitly reason
about this uncertainty in the context of security games. Most game-theoretic models
and solution algorithms make strong assumptions about perfect information and com-
mon knowledge. Bayesian games [11] are commonly used to represent uncertainty in
games, but unfortunately the available algorithms for solving Bayesian games are lim-
ited. The best available algorithm for Bayesian security games is DOBSS [19] which
applies to games with a finite number of attacker types. Unfortunately, this method does
not scale well with the number of types and in practice can only solve relatively small
games with few types.

We define a model for Bayesian Stackelberg Security Games with continuous payoff
distributions for the attacker, leading to a infinite Bayesian game. For example, in this
model we can represent the uncertainty that security forces have about the attacker’s
payoffs using normal distributions, or uniform distributions over an interval. Solving
these game to find equilibrium solutions presents significant challenges; even for the
finite case the problem is NP-hard [9], no exact method is known for the infinite case.
We explore methods for approximating equilibrium solutions for these problems, and
test these approaches experimentally. Specifically, we describe two different methods
for computing the defender’s optimal strategy. The first applies DOBSS to a find opti-
mal solutions for games with a finite number of sample attacker types. The second uses
replicator dynamics to approximate an optimal strategy using the Monte-Carlo sam-
pling for approximating the attacker response. In this shortened version of the paper we
present only an abbreviated summary of the main results; in a longer version we will
present a full detailed experimental evaluation.

2 Related Work

Recent interest in applying game theory to security decision includes fielded applica-
tions at the Los Angeles International Airport [20] and the Federal Air Marshals Ser-
vice [25], work on patrolling strategies for robots and unmanned vehicles [10, 2, 5],
policy recommendations for protecting critical infrastructure [22, 6], and applications
in computer networks [3, 16, 18]. Bayesian games [11] are the dominant paradigm for
modeling uncertainty in game theory, and there are many examples of specific games
that have been solved analytically, including many types of auctions [14]. Unfortu-
nately, algorithms for finding equilibria of Bayesian games are quite limited, and no
general algorithms exist for infinite Bayesian games. Recent research efforts have fo-
cused primarily on developing approximation techniques [21, 4, 8]. Monte-Carlo sam-
pling approaches similar to those we consider in our work have been applied to some
kinds of auctions [7]. In addition, the literature on stochastic choice [15, 17] studies
problems that are simplified versions of the choices that attackers face in our model.
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Finally, the literature on robust optimization has also inspired distribution-free alterna-
tives to Bayes-Nash equilibrium [1].

3 Bayesian Security Games

We define a new class of Bayesian Security Games, extending the model in Kiekintveld
et. al. [12] to include uncertainty about the attacker’s payoffs. The key difference be-
tween our model and existing approaches (such as in Paruchuri et. al [19]) is that we
allow the defender to have a continuous distribution over the possible payoffs of the
attacker. Previous models have restricted this uncertainty to a small, finite number of
possible attacker types, limiting the kinds of uncertainty that can be modeled.

A security game has two players, a defender, Θ, and an attacker, Ψ , a set of targets
T = {t1, . . . , tn} that the defender wants to protect (the attacker wants to attack) and a
set of resources R = {r1, . . . , rm} (e.g., police officers) that the defender may deploy
to protect the targets. Resources are identical in that any resource can be deployed to
protect any target, and any resource provides equivalent protection. A defender’s pure
strategy, denoted σΘ, is a subset of targets from T with size less than or equal to m
An attacker’s pure strategy, σΨ , is exactly one target from T . ΣΘ denotes the set of all
defender’s pure strategies and ΣΨ is the set of all attacker’s pure strategies.

We model the game as a Stackelberg game [23] which unfolds as follows: (1) the
defender commits to a mixed strategy δΘ that is a probability distribution over the pure
strategies from ΣΘ, (2) nature chooses a random attacker type ω ∈ Ω with probability
Pb(ω), (3) the attacker observes the defender’s mixed strategy δΘ, and (4) the attacker
responds to δΘ with a best-response strategy from ΣΨ that provides the attacker (of
type ω) with the highest expected payoff given δΘ.

The payoffs for the defender depend on which target is attacked and whether the
target is protected (covered) or not. Specifically, for an attack on target t, the defender
receives a payoffUuΘ(t) if the target is uncovered, andU cΘ(t) if the target is covered. The
payoffs for an attacker of type ω ∈ Ω is UuΨ (t, ω) for an attack on an uncovered target,
and U cΨ (t, ω) for an attack on a covered target.We assume that both the defender and
the attacker know the above payoff structure exactly. However, the defender is uncertain
about the attacker’s type, and can only estimate the expected payoffs for the attacker. We
choose not to model uncertainty that the attacker may have over the defender’s payoffs
because the attacker already observes the defender’s strategy perfectly.

3.1 Bayesian Stackelberg Equilibrium

A Bayesian Stackelberg Equilibrium (BSE) for a security game consists of a strategy
profile where every attacker type is playing a best-response to the defender strategy,
and the defender is playing a best-response to the distribution of actions chosen by the
attacker types. We first define the equilibrium condition for the attacker and then the
equilibrium condition for the defender. We conveniently represent the defender’s mixed
strategy δΘ by the compact coverage vector C = (ct)t∈T that gives the probabilities
ct that each target t ∈ T is covered by at least one resource. Note that

∑
t∈T ct ≤ m
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because there are m resources at the defender’s disposal. In equilibrium each attacker
type ω must best respond to the coverage C with a pure strategy σ∗Ψ (C,ω) given by:

σ∗Ψ (C,ω) = arg max
t∈T

(ct · U cΨ (t, ω) + (1− ct) · UuΨ (t, ω)) (1)

To define the equilibrium condition for the defender we first define the attacker
response function A(C) = (at(C))t∈T that returns the probabilities at(C) that each
target t ∈ T will be attacked, given the distribution of attacker types and a coverage
vector C. Specifically:

at(C) =
∫
ω∈Ω

Pb(ω)1t(σ∗Ψ (C,ω))dω (2)

where 1t(σ∗Ψ (C,ω)) is the indicator function that returns 0 if t = σ∗Ψ (C,ω) and 0
otherwise. Given the attacker response function A(·) and a set of all possible defender
coverage vectors C, the equilibrium condition for the defender is to execute its best-
response mixed strategy δ∗Θ ≡ C∗ given by:

δ∗Θ = arg max
C

∑
t∈T

at(C)(ct · U cΘ(t) + (1− ct) · UuΘ(t)). (3)

When the set of attacker types is infinite, calculating the attacker response function
from Equation (2) is impractical. For this case we instead replace each payoff in the
original model with a continuous distribution over possible payoffs. Formally, for each
target t ∈ T we replace values U cΨ (t, ω), U cΨ (t, ω) over all ω ∈ Ω with two continuous
probability density functions:

f cΨ (t, r) =
∫
ω∈Ω

Pb(ω)U cΨ (t, ω)dω (4)

fuΨ (t, r) =
∫
ω∈Ω

Pb(ω)UuΨ (t, ω)dω (5)

that represent the defender’s beliefs about the attacker payoffs. For example, the de-
fender expects with probability f cΨ (t, r) that the attacker receives payoff r for attacking
target t when it is covered. This provides a convenient and general way for domain ex-
perts to express uncertainty about payoffs in the game model, whether due to their own
beliefs or based on uncertain evidence from intelligence reports.

4 Solution Methods

To solve the model described in the previous section we need to find a Bayesian Stack-
elberg equilibrium, describing an optimal coverage strategy for the defender and the
optimal response for every attacker type. If the space of possible attacker types is finite,
an optimal defender strategy can be found using DOBSS [19]. Unfortunately, there are
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no known methods for finding exact equilibrium solutions for infinite Bayesian Stackel-
berg games, and DOBSS only scales to small numbers of types. Here we focus on meth-
ods for approximating solutions for infinite Bayesian Stackelberg games. The problem
can be broken down into two parts:

1. Computing or estimating the attacker response function (Equation 2)
2. Optimizing over the space of defender strategies, given the attacker response func-

tion

Similarly to the previous work [13] we compute the attacker response function us-
ing Monte-Carlo sampling from the space of possible attacker types. In addition, we
consider both optimal and approximate methods for optimizing the defender’s strategy
given the attacker response calculations. We now briefly describe these two methods for
solving infinite Bayesian Stackelberg security games.

4.1 Sampled Bayesian ERASER

The first method we describe combines Monte-Carlo sampling from the space of at-
tacker types with an exact optimization over the space of defender strategies. This
approach is based on the DOBSS solver [19] for finite Bayesian Stackelberg games.
However, we also incorporate several improvements from the ERASER solver [12] that
offer faster solutions for the restricted class of security games. The resulting method can
be encoded as a mixed-integer linear program (MIP), which we call Bayesian ERASER
(not presented here due to space constraints).

To use Bayesian ERASER to approximate a solution for an infinite game we can
draw a finite number of sample attacker types from the type distribution, assuming
that each occurs with equal probability. The payoffs for each type are determined by
drawing from the payoff distributions specified in Equations 4 and 5. This results in a
constrained, finite version of the infinite game that can be solved using the Bayesian
ERASER MIP. We refer to this method as Sampled Bayesian ERASER (SBE) and
use SBE-x to denote this methods with x sample attacker types. Armantier et al. [4]
develop an approach for approximated general infinite Bayesian games that relies on
solving constrained versions of the original game. Given certain technical conditions,
a sequence of equilibria of constrained games will converge to the equilibrium of the
original game. Here, increasing the number of sample types corresponds to such a se-
quence of constrained games, so in the limit as the number of samples goes to infinity
the equilibrium of SBE-∞ will converge to the true Bayes-Nash equilibrium.

4.2 Sampled Replicator Dynamics

The second approach we consider uses a local search method (replicator dynamics)
to approximate the defender’s optimal strategy, given the attacker response function.
Given that we are already using sampling techniques to estimate the attacker response,
it makes a great deal of sense to explore approximation methods for the defender opti-
mization as well. This allows us to trade off whether additional computational resources
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should be devoted to improving the attacker response estimate, or improving the de-
fender strategy. In our experimental results we show that this is key to scaling to large
problem instances.

We implemented an approximation algorithm based on replicator dynamics [24],
which we call Sampled Replicator Dynamics (SRD). Since this method is a form of
local search, all we require is a black-box method to estimate the attacker response
function, such as Monte-Carlo sampling. As above, we use SRD-x to denote the Monte-
Carlo version of SRD with x sample attacker types. SRD proceeds in a sequence of
iterations. At each step the current coverage strategy Cn = (cnt )t∈T is used to estimate
the attacker response function, which in turn is used to estimate the expected payoffs
for both players. A new coverage strategy Cn+1 = (cn+1

t )t∈T is computed according
to the replicator equation:

cn+1
t ∝ cnt · (Et(C) − Umin

Θ ), (6)

where UminΘ represents the minimum possible payoff for the defender, and Et(C)
is the expected payoff the defender gets for covering target t with probability 1 and all
other targets with probability 0, given the estimated attacker response toCn. The search
runs for a fixed number of iterations, and returns the coverage vector with the highest
expected payoff. We introduce a learning rate parameter α that interpolates betweenCn

and Cn+1, with Cn+1 receiving weight α in the next population and Cn having weight
1 − α. Finally, we introduce random restarts to avoid becoming stuck in local optima.
After initial experiments, we settled on a learning rate of α = 0.8 and random restarts
every 15 iterations, which generally yielded good results (though the solution quality
was not highly sensitive to these settings).

5 Evaluation

We omit the majority of our evaluation due to space constraints, but present one re-
sult demonstrating the importance of modeling uncertainty rather than using a perfect-
information approximation. We generate 500 random game instances with 5 targets
and 1 defender resource. The defender’s payoffs for a covered target are drawn from
U [0, 100], and the uncovered payoffs from U [−100, 0]. The attacker’s payoffs are rep-
resented by Gaussian distributions, with mean values drawn from U [−100, 0] for cov-
ered targets and U [0, 100] for uncovered targets; we vary the standard deviation. A
sample attacker type is defined by drawing one value from each of these distributions
(two values for each target).

The baseline algorithm uses a single point to estimate each payoff, rather than a
distribution. This is motivated by the standard methodology for eliciting game models
from domain experts, where no information about the uncertainty of the parameters
is included in the model. We model this with a perfect-information model where the
attacker has only one type, corresponding to the mean value for each payoff distribution.
This can be solved exactly using the SBE algorithm with a single attacker type, which
we refer to as ”SBE-Mean.”

Figure 1 presents results for the solution quality for SBE-Mean, SBE, and SRD.
We vary payoff uncertainty along the x-axis, measured by the standard deviation of the
Gaussian distributions for the attacker payoffs (in the same units as the payoffs). We
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run each algorithm to generate a coverage strategy for the defender, and evaluate this
coverage strategy against the true distribution of attacker types. Since we do not have
a closed-from solution to compute this exactly, we rely on a very close approximation
generated by sampling 10000 attacker types to evaluate the payoffs for each algorithm.
The expected payoffs are shown on the vertical axis. We run SBE with up to 7 sample
types and SRD with up to 1000 due to large differences in the computational scalability
of the algorithms. With only 7 types, SBE takes roughly 2 seconds to run, while SRD
runs in less than half a second with 1000 types and 5000 search iterations.
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Fig. 1. Expected payoffs for SBE-Mean, SBE, and SRD with varying numbers of sample attacker
types.

In Figure 1 we see that the solution quality for both SBE and SRD is dramatically
higher than the SBE-Mean baseline when there is payoff uncertainty, even if the un-
certainty is relatively small. SBE and SRD show improvements over the baseline even
with very small numbers of sample attacker types, with diminishing returns as the num-
ber of types increases. This is a strong indication that the perfect-information approach
is not a good approximation for security games with uncertainty about the attacker’s
payoffs. SBE and SRD represent the first steps towards more robust methods that give
high-quality solutions even when there is payoff uncertainty.

6 Conclusion

Stackelberg games are increasingly important in the analysis of a broad range of security
domains, including deployed applications. The existing method to model uncertainty in
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these games are restricted to simple games with small, finite numbers of attacker types.
We develop a class of infinite Bayesian Stackelberg security games in which attacker
payoffs are provided as distributions, rather than point estimates of the payoffs. These
games are able to more accurately capture the real payoff uncertainties in security do-
mains, but present new computational challenges. We develop methods for approximat-
ing equilibrium solutions for these games using sampling and local search techniques.
The SBE method exploits existing techniques for finite Bayesian Stackelberg games to
solve constrained version of the infinite games. The SRD method combines replicator
dynamics for searching the space of defender strategies with Monte-Carlo sampling
techniques to estimate the attacker response function.

Our first important finding is that the baseline method that ignores uncertainty yields
very poor results. Modeling payoff uncertainty is critical in security games. Both SBE
and SRD give solutions with dramatically higher quality than the mean-approximation
benchmark, even with just a few sample attacker types. The second major finding is that
approximating the defender strategy enables scaling to much larger games and improves
overall solution quality by enabling better approximations of the attacker response func-
tion. SRB is able to scale to very large problems (hundreds of targets) while using many
more sample types than SBE. These results have immediate implications for the use of
game theory in security domains, and open an exciting new research area in developing
better approximation methods for Bayesian security games.
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