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ABSTRACT

Algorithms to solve security games, an important class of Stackel-
berg games, have seen successful real-world deployment by LAX
police and the Federal Air Marshal Service. These algorithms pro-
vide randomized schedules to optimally allocate limited security
resources for infrastructure protection. Unfortunately, these state-
of-the-art algorithms fail to scale-up or to provide a correct so-
lution for massive security games with arbitrary scheduling con-
straints. This paper provides ASPEN, a branch-and-price algo-
rithm to overcome this limitation based on two key contributions:
(1) A column-generation approach that exploits an innovative com-
pact network flow representation, avoiding a combinatorial explo-
sion of schedule allocations; (ii) A branch-and-bound approach
with novel upper-bound generation via a fast algorithm for solv-
ing under-constrained security games. ASPEN is the first known
method for efficiently solving real-world-sized security games with
arbitrary schedules. This work contributes to a very new area of
work that applies techniques used in large-scale optimization to
game-theoretic problems—an exciting new avenue with the poten-
tial to greatly expand the reach of game theory.
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1.2.11 [Computing Methodologies]: Artificial Intelligence — Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms

Algorithms, Security, Arbitrary Scheduling Problem, Performance

Keywords

Game Theory, Stackelberg Games, Algorithms, Uncertainty, Secu-
rity, Randomization, Column Generation, Branch and Price, AS-
PEN, SPARS

1. INTRODUCTION

Algorithms for attacker-defender Stackelberg games, resulting
in randomized schedules for deploying limited security resources
at airports, subways, ports, and other critical infrastructure have
garnered significant research interest [13, 9]. Indeed, two impor-
tant deployed security applications are using such algorithms: AR-
MOR and IRIS. ARMOR has been in use for over two years by
Los Angeles International Airport police to generate canine-patrol
and vehicle-checkpoint schedules [15, 14]. IRIS was recently de-
ployed by the Federal Air Marshals Service (FAMS) to create flight
schedules for air marshals [16]'. These applications are fueled by

"FAMS deploys armed air marshals on US commercial aircraft to

efficient algorithms that enable scale-up [13, 5, 2, 7] in the input
games, with the latest significant scale-up achieved in ERASER-C,
the algorithm used in IRIS [9].

Unfortunately, current state of the art algorithms for Stackel-
berg games are inadequate for larger security scheduling applica-
tions [14]. For example, given that US carriers fly over 27,000
domestic and 2,000 international flights daily, generating random-
ized flight schedules for the limited air marshals resources is a mas-
sive scheduling challenge. IRIS addresses an important part of this
space — the international sector — but only considers schedules
of size two (one departure and one return flight). However, algo-
rithms like ERASER-C in IRIS fail to scale-up and/or to provide a
correct solution when air marshals are allowed to fly tours of more
than two flights (common in the domestic sector) [9]. The cul-
prit is the exponential explosion in the defender’s strategy space in
such games caused by the arbitrary size and structure of possible
security schedules, and the concomitant combinatorial allocations
of security resources to schedules. Indeed, as shown by Korzhyk et
al. [10], the problem can be solved in polynomial time only if the
schedules are of size 0 or 1, or if there is exactly one resource type
for a schedule size of 2, and is NP-hard in general.

Motivated by FAMS and other applications with complex schedul-
ing constraints, including transportation networks and border pa-
trols, this paper presents algorithms for SPARS (Security Problems
with ARDbitrary Schedules) — where there are no special restric-
tions on the possible schedules. Our main contribution is ASPEN
(Accelerated SPars ENgine), a new algorithm for SPARS solving
massive Stackelberg security games with arbitrary scheduling con-
straints. ASPEN is based on the branch and price framework used
to solve very large mixed-integer programs, and provides two novel
contributions. First, ASPEN uses column generation to avoid rep-
resenting the full (exponential) strategy space for the defender. To
this end, we provide a novel decomposition of the security schedul-
ing problem (SPARS) into a master problem and a network flow
subproblem that can be used to generate feasible defender strategies
as needed. Second, ASPEN uses a novel branch-and-bound method
for searching the space of attacker strategies, achieving significant
performance improvements by integrating branching criteria and
bounds using the ORIGAMI algorithm [9]. Additionally, we apply
column generation to improve the scope of correct application of
previous methods such as ERASER-C. We evaluate ASPEN em-
pirically on problems motivated by the FAMS domain, illustrating
that this is the first known method for efficiently solving real-world-
sized security games with arbitrary schedules.

2. SPARS

deter and defeat terrorist/criminal attempts to gain control of the
aircraft.




1. The leader (defender) plays a best-response:

We adopt the model of security games from Kiekintveld et. al. [9], Ua(c, g(c)) > Ua(c’, g(c")), forall c'.
though our work here will focus on the most general type of schedul-
ing problem allowed in this framework. A security game is a two-
player game between a defender and an attacker. The attacker’s

2. The follower (attacker) plays a best-response:
Ua(c, g(c)) > Ua(c,g'(c)), forallc,g'.

pure strategy space A is the set of targets 7" that could be attacked, 3. The follower breaks ties optimally for the leader:
T = {t1,t2,...,tn}. The corresponding mixed strategy a = (a;) Ua(c,g(c)) > Ua(c,7(c)), for all c, where 7(c) is the set
is a vector where a; represents the probability of the adversary of follower best-responses to c.

attacking ¢;. The defender allocates resources of different types ) i .

A € A to protect targets, with the number of available resources Example: Consider a FAMS game with 5 targets (flights), 7" =
givenby R = {r1,7s,...,7(x|}. Bach resource can be assigned to {t1,..., t?}, and three marshals of the same type, 71 = 3. Let the
a schedule covering multiple targets, s C T, so the set of all legal set of feasible schedules be as follows:

schedules S C P(T'), where P(T") represents the power set of 7. Sy = {{t1,ta}, {ta, ts}, {ts, ta}, {ta, ts}, {t1,t5}}

There is a set of legal schedules for each A\, Sy C S.

The defender’s pure strategies are the set of joint schedules that Thus, in this example, the set of targets can be thought of as being

assign each resource to at most one schedule. Additionally, we as- arranged in a pentagon, where each of the five links corresponds
sume that a target may be covered by at most 1 resource in a joint to a schedule. The set of feasible joint schedules is shown below,
schedule (though this can be generalized). A joint schedule j can Wwhere cglumn J1 represents the joint schedule {{t1, %2}, {ts,ta}}.
be represented by the vector Pj = (P;j;) € {0,1}" where P;; rep- Thus,.smce targets ¢1, 'Ifz,tg apd t4 are covered by Ji, Py, has
resents whether or not target ¢ is covered in joint schedule j. We de- one’s in the corresponding entries and 0 corresponding to ¢5.

fine a mapping M from j to P; as: M) = (Pjt), where Pj; =1 Ji Jo I3 34 Js

ift € Usej s; Pj; = 0 otherwise. The set of all feasible joint iy : 1 11 1 0

schedules is denoted by J. The defender’s mixed strategy x speci- to : 1 1 1 1

fies the probabilities of playing each j € J, where each individual P = ts: 110 1 1

probability is denoted by x;. Let ¢ = (c¢) be the vector of cover- ta: |1 01 1 1

age probabilities corresponding to x, where ¢; = ZJ.GJ Pjizx; is ts: 0 1 1 1 1

the marginal probability of covering t.

Payoffs depend on the target attacked and whether or not a de- Each J:oint schedule in J assigns iny 2 air marshals iq this exam-
fender resource is covering the target. US(¢) denotes the defender’s ple, since no more than 1 FAM is allowed on any flight. Thus,
utility if ¢ is attacked when it is covered by a resource of any type. If the third aﬁr ma}rshal will remain unused. Suppose all of the tar-
t is not covered, the defender gets Uy (t). Likewise, the attacker’s gets have identical payoffs Ui (t) =1, Uf (t) = =5, Us(t) =
utilities are denoted by U (¢) and U, (t). We assume adding cov- —1 and U (1) =5 In this case, the opFerlal strategy for the
erage to target ¢ is strictly better for the defender and worse for the defender randomizes uplfomly across the joint schedules, x =
attacker: US(t) > U4 (t) and US(t) < U (t), however, not neces- (.2,.2,.2, .2, .2), resulting in coverage ¢ = (.8, .8, 8,8, 8) All
sarily zero-sum. For a strategy profile (c, a), the expected utilities pure strategies have equal payoffs for the attacker, given this cov-
for the defender and attacker are given by: erage vector.

Uie,a) = Sa(elUst)+(1—e)Usw) 1) 3. ASPENSOLUTION APPROACH AND RE-
¢eT LATED WORK

Ua(c,a) = Z as (c:Ug () + (1 — cr)Ug (t)) ) The ERASER-C mixed-integer linear program [9] is the most
teT recent algorithm developed for larger and more complex Stackel-

berg security games [5]. Whereas previous work has focused on
patrolling arbitrary topologies using Stackelberg games [2, 13],
it has typically focused on a single defender. In contrast, AS-
PEN and ERASER-C focus on games with large numbers of de-
fenders of different types, handling the combinatorial explosion
in the defender’s joint schedules. Unfortunately, as the authors
note, ERASER-C may fail to generate a correct solution in cases
where arbitrary schedules with more than two flights (i.e., multi-
city tours) are allowed in the input, or when the set of flights can-
not be partitioned into distinct sets for departure and arrival flights.
For instance, ERASER-C incorrectly outputs the coverage vector
c = (1,1,1,1,1) for the example above (no legal joint sched-
ule can cover more than 4 targets, so it is not possible to cover all
targets with probability 1). ERASER-C avoids enumerating joint
schedules to gain efficiency, but loses the ability to correctly model
arbitrary schedules. Furthermore, ERASER-C only outputs a cov-
erage vector ¢ and not the distribution x over joint schedules J
necessary to implement the coverage in practice (though for some
restricted cases it is possible to construct x from c in polynomial
This tie-breaking rule is counter-intuitive, but the defender can time using the Birkhoff-von Neumann Theorem [10]). New algo-
make this response strictly optimal for the attacker by playing a rithms are needed to solve general SPARS problems that ERASER-
strategy an infinitesimal € away from the SSE strategy. C cannot handle.

We adopt a Stackelberg model in which the defender acts first and
the attacker chooses a strategy after observing the defender’s mixed
strategy. Stackelberg games are common in security domains where
attackers can surveil the defender strategy [13]. The standard so-
lution concept is Strong Stackelberg Equilibrium (SSE) [11, 4, 17,
9], in which the leader selects an optimal mixed strategy based on
the assumption that the follower will choose an optimal response,
breaking ties in favor of the leader.” There always exists an optimal
pure-strategy response for the attacker, so we restrict our attention
to this set in the rest of the paper. The formal definition of a Stack-
elberg equilibrium is given in Definition 1. The problem of finding
Stackelberg equilibria in security games has been shown to be in
polynomial time only if the schedule size is O or 1, or if the sched-
ule size is 2 and there is exactly one resource type; it is NP-hard in
all other settings [10].

DEFINITION 1. A pair of strategies (C, g) forms a Strong Stack-
elberg Equilibrium (SSE) if they satisfy the following:




SPARS problems can be formulated as mixed-integer programs
in which adversary strategies are represented by integer variables a
with a; = 1 if target ¢ is attacked and O otherwise. Two key com-
putational challenges arise in this formulation. First, the space of
possible strategies (joint schedules) for the defender suffers from
combinatorial explosion: a FAMS problem with 100 flights, sched-
ules with 3 flights, and 10 air marshals has up to 100,000 sched-
ules and (10(1)800) joint schedules. Second, integer variables are a
well-known challenge for optimization. Branch and Price [1] is a
framework for solving very large optimization problems that com-
bines branch and bound search with column generation to mitigate
both of these problems. Column generation [6] can be viewed as a
“double oracle" algorithm [12], and is used to avoid explicitly enu-
merating all the variables in a large problem (in our problem, these
variables represent the joint schedules). This method operates on
joint schedules (and not marginal probabilities, like ERASER-C),
so it is able to handle arbitrary scheduling constraints directly.
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Figure 1: Working of Branch and Price

An example of branch and price for our problem is shown in Fig-
ure 1, with the root representing the original problem. Branches to
the left (gray nodes) set exactly one variable ¢; in a to 1 and the
rest to zero, resulting in a linear program that gives a lower bound
on the overall solution quality. Branches to the right fix variable
t; to zero, leaving the remaining variables unconstrained. An up-
per bound on solution quality computed for each white node can
be used to terminate execution without exploring all of the possible
integer assignments. Solving the linear programs in each gray node
normally requires enumerating all joint schedules for the defender.
Column generation (i.e., pricing) is a technique that avoids this by
iteratively solving a restricted master problem, which includes only
a small subset of the variables, and a slave problem, that identifies
new variables to include in the master problem to improve the so-
lution.

Unfortunately, branch and price and column generation are not
“out of the box approaches” and have only recently begun to be ap-
plied in game-theoretic settings [8]. We introduce a novel master-
slave decomposition to facilitate column generation for SPARS, in-
cluding a network flow formulation of the slave problem. We also
show experimentally that conventional linear programming relax-
ations used for branch and bound perform poorly in this domain,
and we replace them with novel techniques based on fast algorithms

for security games without scheduling constraints.

4. ASPEN COLUMN GENERATION

The linear programs at each leaf in Figure 1 are decomposed
into into master and slave problems for column generation (see
Algorithm 1). The master solves for the defender strategy x, given
a restricted set of columns (i.e., joint schedules) P. The objective
function for the slave is updated based on the solution of the master,
and the slave is solved to identify the best new column to add to the
master problem, using reduced costs (explained later). If no column
can improve the solution the algorithm terminates.

Algorithm 1 Column generation employed at each leaf

1. Initialize P
2. Solve Master Problem
3. Calculate reduced cost coefficients from solution
4. Update objective of slave problem with coefficients
5. Solve Slave Problem
if Optimal solution obtained then
6. Return (x, P)
else
7. Extract new column and add to P
8. Repeat from Step 2

4.1 Master Problem

The master problem (Equations 3 to 8) solves for the probabil-
ity vector x that maximizes the defender reward (Table 1 describes
the notation). This master problem operates directly on columns
of P, and the coverage vector c is computed from these columns
as Px. Constraints 4-6 enforce the SSE conditions that the play-
ers choose mutual best-responses defined in Definition 1, mirror-
ing similar constraints in ERASER-C. The defender expected pay-
off (Equation 1) for target ¢ is given by the t'* component of the
column vector DPx + Uj and denoted (DPx + Uy):. Thus,
Equation 4 coupled with Equation 3 corresponds to condition 1,
the leader’s best response, of Definition 1. Similarly, the attacker
payoff for target ¢ is given by (APx + Uy ):. Constraints 4 and 5
are active only for the single target ¢* attacked (at= = 1). This tar-
get must be the adversary’s best-response, due to Constraint 6, thus
corresponding to condition 2, in Definition 1. The follower will
break ties optimally for the leader in this formulation of the master
problem, since the formulation will choose that target t* which is
the follower’s best response and maximizes the defender payoff.

max d (3)
st. d— DPx-U4<(1-aM )
k- APx-U'<(1-a)M (5)
APx + U <k 6)
ij =1 @)

JjeJ
x,a>0 ®)

4.2 Slave Problem

The purpose of the slave problem is to find the best column to
add to the current columns in P. This is done using reduced cost,
which captures the total change in the defender payoff if a candi-
date column is added to P. The candidate column with minimum
reduced cost improves the objective value the most [3]. The re-
duced cost ¢; of variable x;, associated with column Pj, is given



Table 1: Notation

Variable Definition Dimension
J Joint Schedules [J]
T Targets |T|
P Mapping between T and J |T| x |J]
x Probability Distribution over J |J] x 1
a Attack vector |T| x 1
d Defender Reward -
k Adversary Reward -
d Column vector of d |T| x 1
k Column vector of k |T| x 1
D Diag. matrix of U5(t) — UZ(t) | |T| x |T|
A Diag. matrix of Ug(t) — Uz (t) | |T| x |T|
Uy Vector of values U (t) |T| x 1
@ Vector of values U (¢) T x 1
M Huge Positive constant -

in Equation 9, where w,y,z and h are dual variables of master
constraints 4, 5, 6 and 7 respectively. The dual variable measures
the influence of the associated constraint on the objective, defender
payoff, and can be calculated using standard techniques [3].

¢;= w'(DP;)+y”"(AP;) —z" (AP;) — h Q)

An inefficient approach would be to iterate through all of the
columns and calculate each reduced cost to identify the best col-
umn to add. Instead, we formulate a minimum cost network flow
(MCNF) problem that efficiently finds the optimal column. Fea-
sible flows in the network map to feasible joint schedules in the
SPARS problem, so the scheduling constraints are captured by this
formulation. For a SPARS instance we construct the MCNF graph
G as follows.

A source node sourcey with supply 7, is created for each de-
fender type A € A. A single sink node has demand ) _, _ , 7. Tar-
gets in schedule s for resource A are represented by pairs of nodes
(as, ¢, bsy ,¢) with a connecting link (so each target corresponds to
many nodes in the graph). For every schedule s, € S, we add the
following path from the source to the sink:

sourcey, s.¢ sink
b )

b&,ii,l 1 Asytig v s bSatq‘,L )

i1
The capacities on all links are set to 1, and the default costs to 0. A
dummy flow with infinite capacity is added to represent the possi-
bility that some resources are unassigned. The number of resources

assigned to ¢ in a column Pj is computed as follows:

assigned(t) = Z flow[link(as,¢, bs,t)]
s€S

Constraints are added to G so that the number of scheduled re-
sources on each target is not greater than 1. Therefore, the added
constraints can be written down as follows:

assigned(t) <1 VteT.

A partial graph G for our earlier example is shown in Figure 2,
showing paths for 3 of the 5 schedules. The paths correspond
to schedules {t1,t2}, {t2,t3} and {t1,t5}. The supply and de-
mand are both 3, corresponding to the number of available FAMS.

Double-bordered boxes mark the flows used to compute assigned (1)

and assigned(t¢2). Every joint schedule corresponds to a feasible
flow in G. For example, the joint schedule {{¢2, s}, {t1,¢5}} has
a flow of 1 unit each through the paths corresponding to schedules

{t2,ts} and {¢1,¢5}, and a flow of 1 through the dummy. Simi-
larly, any feasible flow through the graph G corresponds to a feasi-
ble joint schedule, since all resource constraints are satisfied.

| targett, || ftargett, |

demand =3

source, ” sink

supply r,=3

dummy target and path
prozeeeneseee . Flow = 1

L0
PV cap=inf VT e

Figure 2: Example Network Graph

It remains to define link costs such that the cost of a flow is the
reduced cost for the joint schedule. We decompose ¢; into a sum
of cost coefficients per target, ¢¢, so that ¢; can be placed on links
(as,t, bs,¢) for all targets t. ¢; is defined as follows:

ét = wt.Dt + yt~At — Zt.At (10)
Dy = Ug(t)—Uq(t) (11
Ay = US(t)— U1 (12)

where wy, y;: and z; are tth components of w, y and z. The overall
objective given below for the MCNF problem sums the contribu-
tions of the reduced cost from each individual flow and subtracts
the dual variable h. If this is non-negative, no column can improve
the master solution, otherwise the optimal column (identified by
the flow) is added to the master and the process iterates.

Iﬂnolvlvl( Zb )ég.ﬂOW[(as’t,bs,t)] —h
as,t;bs,t

To recap, the entire column generation algorithm employed at
each node of the branch and bound tree shown in Figure 1 is given
by Algorithm 1 and was described in this section. If the mini-
mum reduced cost obtained at an iteration is non-negative, it in-
dicates that the optimal solution for the current leaf in the tree has
been achieved. Otherwise, a new column P is obtained by set-
ting Pj; = assigned(t) for all ¢ € T, and the master problem is
re-solved.

S. IMPROVING BRANCHING AND BOUNDS

ASPEN uses branch and bound to search over the space of pos-
sible attacker strategies. A standard technique in branch and price
is to use LP relaxation, i.e. allow the integer variables to take on
arbitrary values, to give an optimistic bound on the objective value
of the original MIP for each internal node. Unfortunately, our ex-
perimental results show that this generic method is ineffective in
our domain. We introduce ORIGAMI-S, a novel branch and bound
heuristic for SPARS based on ORIGAMI [9], which is an effi-
cient solution method for security games without scheduling con-
straints and heterogeneous resources. We use ORIGAMI-S to solve
a relaxed version of SPARS, and integrate this in ASPEN to give



bounds and select branches.

min k (13)
Uq.(c) = Ac+Ug (14)
0< k-—TU,(c) (15)
k—Uie) < (1-q)- M (16)
= Yiglts VEET (17)
Z CTy (s),s < T YAeA (18)
SESy
Yoa< LY (19)
teT
c< a (20)
qc {0,1} 21
C,Ct,s € [0,1] vteT,se S (22)

The ORIGAMI-S model is given in Equations 13-22. It min-
imizes the attacker’s maximum payoff (Equations 13-16). The
vector q represents the attack set, and is 1 for every target that
gives the attacker maximal expected payoff (Equation 16). The
remaining nontrivial constraints restrict the coverage probabilities.
ORIGAMI-S defines a set of probabilities ¢; s that represent the
coverage of each target ¢ in each schedule s € S,. The total cov-
erage c; of target ¢ is the sum of coverage on ¢ across individual
schedules (Equation 17). We define a set 7 which contains one
target from each schedule s € S». The total coverage assigned by
resource type A\ is upper-bounded by r» (Equation 18), analogous
to the constraint that the total flow from a source in a network flow
graph cannot be greater than the available supply. Total coverage is
also bounded by multiplying the number of resources by the max-
imum size of any schedule (L) in Equation 19. The defender can
never benefit by assigning coverage to nodes outside of the attack
set, so these are constrained to 0 (Equation 20).

ORIGAMI-S is solved once at the beginning of ASPEN, and tar-
gets in the attack set are sorted by expected defender reward. The
maximum value is an initial upper bound on the defender reward.
The first leaf node that ASPEN evaluates corresponds to this max-
imum valued target (i.e, setting its attack value to 1), and a solu-
tion is found using column generation. This solution is a lower
bound of the optimal solution, and the algorithm stops if this lower
bound meets the ORIGAMI-S upper bound. Otherwise, a new up-
per bound from the ORIGAMI-S solution is obtained by choosing
the second-highest defender payoff from targets in the attack set,
and ASPEN evaluates the corresponding leaf node. This process
continues until the upper bound is met, or the available nodes in
the search tree are exhausted.

THEOREM 1. The defender payoff, computed by ORIGAMI-S,
is an upper bound on the defender’s payoff for the corresponding
SPARS problem. For any target not in the attack set of ORIGAMI-
S, the restricted SPARS problem in which this target is attacked is
infeasible.

Proof Sketch: ORIGAMI and ORIGAMI-S both minimize the
maximum attacker payoff over a set of feasible coverage vectors.
If there are no scheduling constraints, minimizing the maximum
attacker payoff also maximizes the defender’s reward [9]. Briefly,
the objective of both ORIGAMI and ORIGAMI-S is to maximize
the size of the attack set, such that the coverage probability of each
target in the attack set is also maximal. Both of these weakly im-
prove the defender’s payoff because adding coverage to a target is
strictly better for the defender and worse for the adversary.

ORIGAMI-S makes optimistic assumptions about the amount of
coverage probability the defender can allocate by taking the maxi-
mum that could be achieved by any legal joint schedule and allow-
ing it to be distributed arbitrarily across the targets, ignoring the
scheduling constraints. To see this, consider the marginal probabil-
ities ¢* of any legal defender strategy for SPARS. There is at least
one feasible coverage strategy for ORIGAMI that gives the same
payoft for the defender. Constraints 17 and 22 are satisfied by c*,
because they are also constraints of SPARS. Each variable ¢r, (4),s
in the set defined for Constraint 18 belongs to a single schedule
associated with resource type A, and at most 7 of these can be
selected in any feasible joint schedule, so this constraint must also
hold for ¢*. Constraint 19 must be satisfied because it assumes that
each available resource covers the largest possible schedule, so it
generally allows excess coverage probability to be assigned. Fi-
nally, constraint 20 may be violated by ¢* for some target t. How-
ever, the coverage vector with coverage identical to ¢* for all tar-
gets in the ORIGAMI-S attack set and 0 coverage outside the attack
set has identical payoffs (since these targets are never attacked).

6. COLUMN GENERATION ON MARGINALS

FOR JOINT PATROLLING SCHEDULES

ERASER-C [9] is the algorithm that is used in IRIS and ad-
dresses the FAMS security game. However, it only generates the
vector ¢ (marginals), which specify the probability of each flight
being covered by a federal air marshal. Joint schedules P and
the distribution of over joint schedules x assigning every federal
air marshal to a flight schedule is not provided. While the use of
marginals in ERASER-C did provide an exponential scale-up over
DOBSS [13], the best prior algorithm, the actual joint schedules
still need to be generated from these marginals. In the section, we
propose the use of the same column generation approach described
in Section 4 to generate these joint schedules from the marginals
output by ERASER-C. Thus, the objective of this section is to find
joint schedules P and probability distribution x such that the ob-
tained coverage vector is given by the output of ERASER-C, and
can be formulated as:

min; ||[Px—c||:
>,z =1 (23)
Zj Z 0

Here, ||Px — c||1 refers to the L1 norm of ||Px — c||1, or the sum
of the absolute differences between each corresponding term of Px
and c. L; is chosen so as to keep the objective function linear.

The formulation of the associated master problem in this case
is given from Equation 24 to Equation 28. The absolute distance
between corresponding terms of Px and c is calculated in Equa-
tions 25 and 26, and is minimized in the objective as given in Equa-
tion 24.

min Z o 24
" ter

st. Px—vy<c (25)
Px+~v>c (26)
da=1 27
teT
x>0 (28)

The slave problem in this case is the same as the one used before,
where the reduced cost of a joint schedule is:

c; = 7(W1 + WQ)TPj -0 (29)
(30)



where w1, Wa, o are the optimal dual variables of the current mas-
ter problem associated constraints 25, 26, and 27. Again, the re-
duced cost ¢; can be decomposed into reduced cost coefficients per
target ¢;, which can be computed using Equation 31.

& = —(wir + wa) (€29

7. EXPERIMENTAL RESULTS

We evaluate our algorithms on randomly generated instances of
the scheduling problem, and provide two sets of results. We first
compare the runtime results for ASPEN with regular Branch and
Prices and column generation on the output of ERASER-C. We
then provide runtime results for ASPEN when the problem size is
scaled.

7.1 Comparison on FAMS domain

We compare the runtime performance of ASPEN, branch and
price without the ORIGAMI-S heuristic (BnP) and ERASER-C.
For this experiment we generate random instances of FAMS prob-
lems [9] with schedules of size two, with one departure flight and
one arrival flight drawn from disjoint sets, so the set of feasible
schedules form a bipartite graph with nodes as flights (for correct
operation of ERASER-C). We vary the number of targets, defender
resources, and schedules.

Comparison (200 Targets, 600 schedules)

@ 1000 - = = =
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Figure 3: Runtime Comparison Changing Number of Re-
sources

As mentioned earlier, ERASER-C outputs only the coverage vec-
tor c. Obtaining the probability distribution x over joint sched-
ules J from ERASER-C, specifically when the problem contains
heterogeneous resources is a non-trivial challenge given the large
numbers of joint schedules. This distribution over joint schedules
was obtained using column generation on marginals as described
in Section 6. In the following, when we refer to ERASER-C run-
times, they include the time for this column generation in order to
allow a head-to-head comparison with ASPEN.

All experiments were based on 15 sample games, and problem
instances that took longer than 30 minutes to run were terminated.
Results varying the number of defender resources are shown in Fig-
ure 3. The y-axis shows the runtime in seconds on the logarithmic
scale. The x-axis shows the number of resources. ASPEN is the
fastest of the three algorithms. The effectiveness of the ORIGAMI-
S bounds and branching are clear in the comparison with standard

Table 2: Number of columns: 200 targets, 600 schedules

Resources | ASPEN | ERASER-C | BnP (max. 30 mins)
10 126 204 1532
20 214 308 1679
30 263 314 1976
40 227 508 1510
50 327 426 1393

BnP method. The improvement over ERASER-C was an unex-
pected trend, and can be attributed to the number of columns gen-
erated by the two approaches, as shown in Table 2. In fact, ASPEN
was 6 times faster than ERASER-C in some instances. Yet it is
not the precise amount of speedup, but the fact that ASPEN is ex-
tremely competitive with ERASER-C in this specialized domain
that is key; for ASPEN can correctly solve a far more general set of
security games (SPARS) as we report next.

We observe similar results in the second and third data sets pre-
sented in Figures 4 and 5. Figure 4 shows the results when the
number of schedules is changed, where as Figure 5 shows the re-
sults when the number of targets is varied. The y-axis in both fig-
ures shows the runtime in seconds in a logarithmic scale. The x-
axis shows the number of schedules and targets respectively. For
example, the average runtime required by ERASER-C when there
are 1000 schedules, 200 targets and 10 resources is 29.26 seconds
for ERASER-C, 5.34 seconds for ASPEN and the simulation was
terminated after 30 minutes for Branch and Price.
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Figure 4: Runtime Comparison Changing Resources and
Schedules

7.2 ASPEN on Large SPARS Instances

We also evaluate the performance of ASPEN on arbitrary schedul-
ing problems as the size of the problem is varied to include very
large instances. No comparisons could be made because ERASER-
C does not handle arbitrary schedules and the only correct algo-
rithms known, DOBSS [13] and BnP, do not scale to these prob-
lem sizes. Since ERASER-C does not handle arbitrary schedules,
Branch and Price does not scale to these problem sizes (as shown in
the previous section) and the only known algorithm ( DOBSS [13])
that correctly solves this class of games requires an exponential rep-
resentation size, ASPEN is the only algorithm capable of solving
these instances. We vary the number of resources, schedules, and
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Figure 5: Runtime Comparison Changing Number of Targets

targets as before. In addition, we vary the number of targets per
schedule for each of the three cases to test more complex schedul-
ing problems.

Table 3: Number of columns: 200 targets, 1000 schedules

Resources | 3 Tar. /sch. | 4 Tar. /sch. | 5 Tar. /sch.
5 456 518 658
10 510 733 941
15 649 920 1092
20 937 1114 1124

Figure 6(a) shows the runtime results with 1000 feasible sched-
ules and 200 targets, averaged over 10 samples. The x-axis shows
the number of resources, and the y-axis shows the runtime in sec-
onds. Each line represents a different number of schedules per tar-
get. The number of joint schedules in these instances can be as
large as 10% ((')0°) ~ 2.6 x 10*). Interestingly, the runtime
does not increase much when the number of resources is increased
from 10 to 20 when there are 5 targets per schedules. Column 4 of

Table 3 illustrates that the key reason for constant runtime is that
the average number of generated columns remains similar.

The graph also shows that increasing the complexity of sched-
ules (i.e., the number of targets per schedule) increases the run-
time. This happens because the complexity of the slave problem in-
creases when the complexity of schedules is increased, in turn lead-
ing to the generation of more columns before the optimal solution
is attained. This leads to the increase in runtime with the increase
in complexity of schedules. This can also be seen in Table 3 when
looking across a row. For example, the average number of columns
required when the number of resources is 5 is 157,456, 518 and
658 when there are 2, 3, 4 and 5 targets per schedule.

Similar trends are obtained in the other two sets of experiments
as well. Figure 6(b) shows the runtime results when the number
of schedules is increased, whereas Figure 7 shows the results when
the number of targets is varied. The y-axes in both the cases shows
the runtime in seconds, whereas the x-axis shows the number of
schedules and targets respectively.
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8. CONCLUSIONS

We present a branch and price method, ASPEN, for solving large-
scale Stackelberg security games with arbitrary constraints, includ-
ing important real-world applications such as FAMS scheduling.
ASPEN incorporates several novel contributions, including a de-
composition of SPARS to enable column generation and the inte-
gration of ORIGAMI-S to substantially speed up the branch and
bound search. Experimental results show that ASPEN is com-
petitive with ERASER-C for the restricted class of games where
ERASER-C is applicable. More importantly, ASPEN solves far
more general instances of scheduling problems where ERASER-
C and other existing techniques fail. ASPEN is also substantially
faster than a standard implementation of branch and price for this
domain. This work contributes to a very new area of work that ap-
plies techniques used in large-scale optimization to game-theoretic
problems—an exciting new avenue with the potential to greatly ex-
pand the reach of game theory.
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