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ABSTRACT
Each year, cancer is responsible for 13% of all deaths worldwide.
In the United States, that percentage increases to 25%, translating
to an estimated 569,490 deaths in 2010 [1]. Despite significant
advances in the fight against cancer, these statistics make clear the
need for additional research into new treatments. As such, there has
been growing interest in the use of computer simulations as a tool
to aid cancer researchers. We propose an innovative multi-agent
approach in which healthy cells and cancerous cells are modeled
as opposing teams of agents using a decentralized Markov decision
process (DEC-MDP). We then describe changes made to traditional
DEC-MDP algorithms in order to better handle the complexity and
scale of our domain. We conclude by presenting and analyzing
preliminary simulation results. This paper is intended to introduce
the cancer modeling domain to the multi-agent community with
the hope of fostering a discussion about the opportunities and chal-
lenges it presents. Given the complexity of the domain, we do not
claim our approach to be a definitive solution but rather a first step
toward the larger goal of creating realistic simulations of cancer.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence

General Terms
Algorithms

Keywords
Agent-based Simulations, Computational Cancer Modeling, Dis-
tributed MDPs

1. INTRODUCTION
The National Institutes of Health estimates the overall damage

of cancer within the U.S. for 2010 at $263 billion, covering direct
medical, indirect morbidity, and indirect mortality costs [2]. It is
hoped that computer models of cancer, and the way in which it
spreads, will allow for greater understanding of the complex cel-
lular biology taking place as well as provide an efficient, low-cost
method for evaluating the efficacy of various treatments. In order
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to model cancer convincingly, the challenges presented by the com-
plexity as well as the scale of the domain must be addressed.

Among the previous approaches in this domain, which include
evolutionary game-theoretic models [3] and cellular automata mod-
els [7], our work is most similar to the agent-based model found in
[10]. In both cases, individual cells are modeled as agents. How-
ever, there is a fundamental difference in how the actions of agents
are determined. In [10], the actions of agents are implicitly derived
from a complex set of biophysically-inspired rules and differential
equations. However, these rules and equations must be generated
by hand and all computation must be done at execution-time.

In order to assess the potential of multi-agent techniques for the
purposes of cancer modeling, we have framed the problem as a de-
centralized Markov decision process (DEC-MDP) [11]. Our pair-
ing of domain and approach is innovative from the perspective of
both the fields of cancer modeling and multi-agent systems. DEC-
MDPs represent an entirely new approach to cancer modeling in
which cells are viewed as autonomous agents working as a team.
At the same time, cancer modeling is a new domain for DEC-MDPs
which presents several research challenges. Our hypothesis is that
by modeling healthy cells and cancerous cells as opposing teams,
and having policies generated automatically rather than generated
by hand as done in previous work, we may gain a more fundamen-
tal understanding of cell behavior. By adopting a well-established
multi-agent formalism, we have access to algorithms that can pro-
vide teams of agents with policies even for environments that fea-
ture a high degree of uncertainty.

The complexity of our cancer modeling domain presents two
main technical challenges that must be addressed. First, we must
deal with the issue of scalability with respect to both planning and
execution. The richness of our domain necessitates a detailed state
space, while the scale of our domain necessitates the modeling of a
large number of agents. The combination of these two factors cre-
ates a prohibitively high computational cost when employing tra-
ditional DEC-MDPs algorithms. Thus, we need to modify existing
techniques in order to provide the scalability our domain demands.
Second, our cancer modeling domain requires a new formulation
of agent communication. Typical communication in DEC-MDPs
is done point-to-point between agents. However, cells communi-
cate through a complex system of biological and chemical signaling
which relies on concepts such as diffusion and reception. There-
fore, we must develop a new method of message and information
passing that incorporates the unique aspects of cell signaling.

This paper is intended to introduce the readers to a useful do-
main for the techniques developed by the MSDM community as



well as to suggest ways in which those techniques can be applied.
By presenting our initial approach, we will highlight the issues and
challenges related to this domain that future research must address.
Given the complexity of this real-world challenge of modeling can-
cer cells, we do not claim to have all the answers or even most of
the answers. However, we believe this paper will raise some key
questions which we hope will initiate a discussion within the com-
munity. Indeed, cancer modeling is a significant challenge, which
requires a significant team effort, on a large collaborative interdis-
ciplinary scale. By assembling an interdisciplinary team, we have
made a beginning, and would invite others to join in this challenge.

At present, we are evaluating our model by running a large num-
ber of simulations and performing statistical analysis in search of
patterns and emerging trends. By manipulating various parameters,
we have started to gain an understanding of how they interact and
influence our model. In the near future, we hope to validate our
results against experiments conducted by the Center for Applied
Molecular Medicine at the University of Southern California.

2. DOMAIN
Recently, whole-cell and whole-organism analyses have been

widely applied to study biological processes and disease states.
These techniques have permitted the examination of cellular pro-
cesses and their relationship to physiologic effects in a greater de-
tail than previously possible, enabling better characterizations of
pathologic states, such as cancer. The biological community has ac-
cordingly begun to emphasize the importance of studying the inter-
actions among cells across the wide length scales of biology. In par-
ticular, the multi-scale nature of diseases, like cancer, have recently
become highlighted. For example, it has been clearly demonstrated
that subtle alterations in a single gene (e.g. Ras, EGFR, p53) can
lead to a significant cellular disruption, leading ultimately to a can-
cer that has a physiologic impact on the whole organism. Conse-
quently, organismic states, such as “healthy” and “diseased”, are
now hypothesized to arise from cellular defects that upset a cell-
system’s normal behavior through a combination of endogenous
genetic modifications and exogenous environmental perturbations.

As our understanding of cellular processes has developed, so
has our understanding that cancer, even in a single patient, is not
one disease, but instead hundreds of heterogeneous diseases (some-
times even within the same tumor), unified by the single common
gross phenotype of deregulation of cell growth.

Cell growth in normal human cells is typically a tightly regulated
process wherein a cell’s behavior is modulated through mechanical
and chemical signals. Some of these signals are generated by the
cell itself, others can come from neighboring cells. Cell growth is
regulated when the signals each cell receives are sane and when a
cell’s reaction to those signals is sane. For example, it has been
shown that a normal cell can increase or decrease its growth rate in
response to sensing the presence of a chemical growth factor. If, for
example, each cell secretes a constant amount of a particular chem-
ical, an excess of that chemical may suggest an excess of cells in
the neighborhood, thus signaling a cell to decrease its growth rate,
or possibly even to commit suicide through a process called apop-
tosis. Cells may also alter their growth rate in response to contact
with adjacent cells, or in response to changes in external pressure,
as may arise from over-packing of cells. Despite the importance of
understanding intercellular communication and how cells respond
to receiving disparate messages, these interactions are only now
being fully appreciated in the investigation of tumor biology.

Cancer cells are distinguished from normal cells by un-regulated,
malignant growth. This aberrant growth may arise from unexpected
environmental signals, such as the extended presence of inflam-

mation or immune cells. Alternately, aberrant growth may arise
from an incorrect response to environmental signals. For example,
despite receiving signals suggesting overpopulation, cancer cells
may continue to proliferate. The so-called “hallmarks” of can-
cer can be summarized into five cellular dysfunctions: 1) hyper-
responsiveness to internally-generated growth signals, 2) insensi-
tivity to external growth-inhibitory (antigrowth) signals, 3) evasion
of programmed cell death (apoptosis), 4) limitless replicative po-
tential, and 5) tissue invasion and metastasis [8].

A number of cell types contribute to a tumor including those
that are considered “normal” such as inflammatory, stromal fibrob-
last, and vascular endothelial cells alongside “cancerous” epithelial
cells. Tumorigenicity is controlled by the reciprocal interactions
between these different populations of cells and gaining a better
understanding of the consequences these interactions have on tu-
mor progression and therapeutic response is critical to the field of
tumor biology. For example, fibroblasts are responsible for the syn-
thesis of the extracellular matrix as well as the production of solu-
ble growth factors that can regulate cell proliferation and death and
can have a functional role in promoting tumorigenesis. There is
also in vitro and in vivo evidence showing that fibroblasts found in
the vicinity of tumor cells can alter their production of soluble fac-
tors as well as display changes in phenotype that are characteristic
of uncontrolled growth and disorganized patterns [12].

Many treatment strategies attack one or more of these dysfunc-
tions to abrogate un-regulated growth or induce cell death. How-
ever, cancer cells with different underlying dysfunctions will typ-
ically respond to different therapies. As tumors are tremendously
heterogeneous, containing multiple cell types in a range of envi-
ronments, most therapeutic regimes are only effective in a small
percentage of the population. Even those therapies that initially ap-
pear to be effective often lose effectiveness over time, presumably
through changes in the composition of the tumor.

Extensive studies have attempted to enumerate factors that dis-
tinguish cancer cells from healthy cells. However, qualitative mod-
els describing the relationships between factors such as intercellu-
lar communication, cellular response to signals, therapeutic inter-
vention and tumor demographics are still poorly elucidated. By
developing quantitative models, it may become possible to both
test biological hypotheses about cellular behavior as well as to ul-
timately develop more successful treatment regimes.

We hypothesize that accurate methods for simulating cancer may
lead to dramatic improvements in cancer management. These sim-
ulations could be used to predict and characterize response and
outcome, which in turn could “handicap the odds” of a therapy
succeeding. By helping us ask and answer fundamental questions
about the mechanisms, complexity, and evolution of cancer, com-
putational models may enable a new paradigm in treatment. A
small number of measurements could be taken from a patient, input
as parameters into a model, and used to simulate the response of the
patient to a particular therapy. Our understanding of the disease, its
progression, and its response to therapy could be encapsulated in
computational models which help determine the course of treat-
ment that is most likely to produce a favorable outcome. We will
be able to try out hundreds of therapeutic regimes virtually, before
ever having to inflict likely unsuccessful treatments on a patient. In
addition, we will be able to identify the signals (e.g. changes in a
tumor) that indicate a patient is truly responding to therapy, leading
to a radical improvement in the standard of care.

3. RELATED WORK
The previous work in this domain has consisted of three main ap-

proaches: evolutionary game-theoretic models [3, 6], lattice-based



models [7], and agent-based models [10]. In a game-theoretic model,
the interaction between two cells is represented as a normal form
game in which both players move simultaneously. A payoff matrix
is constructed in which every pairing of player strategies is assigned
a reward for each player. While classical game theory would ana-
lyze this payoff matrix for strategy equilibria, evolutionary game
theory focuses more on the dynamics of strategy change.

In lattice-based models, cells exist in a lattice structure repre-
senting a discretized environment. At each time step, a cell tran-
sitions to a new state based upon its current state and the states of
the neighboring cells, in accordance with physical and biological
constraints. The most common lattice-based approach for cancer
modeling is cellular automata (CA). In CA models, each location
within the lattice has a uniform size and can be occupied by only a
single cell. This simplified spatial arrangement makes CA models
computationally efficient but imposes artificial limitations on the
alignment and interaction of cells. Additionally, it is difficult for
CA to model a high degree of heterogeneity in terms of the types
of cells and the ways in which they interact.

Agent-based models attempt to address these problems by re-
moving as many artificial constraints as possible. Cells are ca-
pable of moving freely through a continuous environment and ar-
ranging themselves in nonuniform alignments. Their actions are
determined by a set of differential questions representing the bio-
physically inspired forces which act upon cells. By applying a free-
body force diagram, a sophisticated model for cell behavior can be
achieved. An agent-based model provides flexibility to design cells
with an arbitrary amount of complexity which can be adjusted to fit
the needs of a particular simulation. Agent-based techniques have
been widely adopted for the purposes of modeling the behavior and
interaction of cells [14]. For example, agents have been used to
model brain tumors [17], breast cancer [10], and lung cancer [15].

However, the models used in current agent-based simulations are
not like the fully-fledged BDI or MDP systems typically seen in the
multi-agent community. Rather, the agents are modeled as a finite
state machine (FSM), with transitions between states dictated by
random variables and Poisson processes. These FSMs are coded
by hand, where the goal-orientedness of the behaviors is implicit
rather than explicit. Behaviors are not generated by the agents
themselves but by a programmer. Additionally, the sophistication
and flexibility of agent-based models can result in a steep computa-
tional cost which limits the number of cells which can be simulated.

4. APPROACH
We are complementing the previous approaches mentioned in

Section 3 by adopting a new approach that allows agents them-
selves to generate rules of behavior from the rewards associated
with performing different actions in different states. We are ex-
ploring to see if algorithms and techniques developed by the multi-
agent systems community can potentially provide insights which
will advance the state of the art in cancer modeling. One of the
benefits of using DEC-MDPs is the ability to test two biological
hypotheses: (i) that cells are not purely reactive or greedy but rather
have evolved to perform actions beneficial to the organism even at
their own expense; (ii) that cells are able to coordinate their actions
and function collectively as teams.

The actions of a cell can be viewed as a series of sequential de-
cisions. Cells do not exist in a vacuum and thus must consider the
environment and the presence of other cells in their decision mak-
ing. From a multi-agent perspective, sequential decision problems
involving multiple agents are often modeled using DEC-MDPs.
However, from a cancer modeling perspective, our choice of DEC-
MDPs is, perhaps, unintuitive. Cells are not usually considered

to be rational or capable of planning their actions. While cells do
not explicitly plan, we view the planning phase of DEC-MDPs as
reproducing the evolutionary process cells and tumors have under-
gone over millions of years. Evolution has trained cells to respond
to both internal and external stimuli in the way that best ensures
survival of the organism. Given this preference for actions that are
globally “optimal”, it can be argued that healthy cells are acting ra-
tionally. Additionally, cells have evolved to coordinate their actions
with other cells to produce complex team behaviors. Cancerous
cells pose a threat because mutations have caused them to deviate
from this sense of rationality. The interests of cancerous cells are
no longer inherently aligned with the interests of the organism.

An example of healthy cells making collective decisions occurs
when a subpopulation is faced with resource limitation, in terms
of either physical space or access to nutrients. The individual cells
either adapt and/or acquire genetic changes that increase their fit-
ness or they sacrifice their life to provide space and resources to
their neighbors that are better suited to handle the current selective
pressures being applied. Additionally, there is evidence of cooper-
ation among subpopulations of cancerous cells as seen in a hypoxic
environment when cells undergo anaerobic glycolysis, which leads
to acidification as a byproduct. The acidity that is produced causes
cell death among normal cells as well as cancerous cells that are not
resistant to high acid content. Being able to control the microen-
vironment and prevent normal cells from co-habitating is a team
goal. These cells made a choice to increase their rate of glucose
uptake by increasing their glucose membrane transporters in order
to proliferate in this low oxygen environment. This ultimately leads
to toxicity and cell cycle arrest for cells not adapted to the low pH
environment that was generated.

DEC-MDPs provide a unique framework for capturing the im-
plicit coordination and teamwork exhibited by cells. While DEC-
MDPs are an entirely new approach to cancer modeling, it can be
viewed as a hybrid of lattice-based and agent-based approaches.
For the time being, we have simplified our spatial representation by
adopting a geometry similar to that found in lattice-based models.
As one of the main limitations of lattice-based models is its rigid
geometry, we will pursue a more flexible topology in the future
while avoiding the fully continuous spatial representation of current
agent-based models. Thus, DEC-MDPs may be able to provide a
better balance between model fidelity and computational complex-
ity than previous approaches. However, a significant amount of re-
search must be done to improve DEC-MDP techniques before that
point can be reached.

Traditionally, DEC-MDPs have featured a planning-centric frame-
work, meaning all computation is performed during the planning
phase to generate an optimal joint policy. During execution, agents
enact their policies without the need of any additional reasoning.
However, finding the optimal joint policy for general DEC-MDPs
has been shown to be NEXP-complete [5]. Approaches have been
developed for finding the optimal joint policy but are restricted to
DEC-MDPs with loosely coupled agents [4, 16]. Reasoning about
coordination during planning-time would require evaluating every
interaction between every cell for every possible global state. Given
that our domain features a large number of agents and a high level
of coupling between them, planning a joint policy is infeasible us-
ing a planning-centric framework.

By using an execution-centric framework [9], we are able to re-
duce planning-time computation by shifting some of the burden to
execution-time reasoning. To simplify planning, the DEC-MDP is
reduced to a single-agent MDP with a modified reward function
for the planning phase . This approach is similar to the TREMOR
approach [13], in which the reward and transition functions are



shaped and then the DEC-POMDP problem is reduced to a single-
agent POMDP. However, TREMOR does not have additional co-
ordination at execution time which will eventually be a part of our
work as discussed in Section 5. The result is a policy that has been
generated for an individual agent but is team-oriented.

To avoid the worst-case computational complexities of DEC-
MDPs, no explicit coordination reasoning occurs during the plan-
ning phase. Instead all coordination reasoning is done explicitly at
execution time as in [9]. This simplification of the planning step
increases the scalability of our system as agents reason about what
and when to communicate in real time. In order to achieve this
execution-time reasoning, the sequential decision making of each
agent is modeled as a MDP defined by the tuple 〈S,A,T,R〉.

Another reason for adopting the execution-centric approach is
that, unlike other DEC-MDP work, our goal is to simulate the exe-
cution of policies and understand the results of this execution. Just
obtaining an expected value of a policy is insufficient; we wish to
gain a fundamental understanding of the behavior and interactions
of cells. We are seeking to exploit the execution-centric framework
to its full potential. It is possible that, in the future, we will need to
scale back and allow for some planning-centered coordination.

5. MODEL
In this section, we provide an in-depth description of our model

as well as the reasoning behind some of our design decisions. We
feel it is important to provide this detailed information so that it can
serve as the starting point for future discussion and research.

Our model consists of an environment and two teams of agents.
The environment is a 3-D lattice structure which represents a dis-
cretized section of tissue. Each location within the lattice has a
nutrient level which remains static over time. This level combines
the availability of various nutrients that cells need to be prosperous
(oxygen, glucose, etc.) into a single integer value. Represented as
an agent, each cell has an age, a team affiliation, and a location
within the environment. The age of a cell indicates the number of
time steps a cell has existed in the simulation. The team affiliation
of a cell indicates whether a cell is a member of the team of healthy
cells or the team of cancerous cells and what policy to execute.

In reality, a cell cannot directly sense the exact number of cells
in the immediate vicinity. However, by communicating through
chemical signaling a cell can get a noisy approximation of the num-
ber of neighboring cells. For the sake of simplicity, we have not yet
implemented communication but rather two models for simulating
communication. In the first model, cells are able to engage in per-
fect communication and thus the exact number of cohabitating cells
is known perfectly. In the second model, communication is noisy
which creates the possibility of a cell incorrectly perceiving the
number of cohabitating cells. In Section 7.2, we examine the effect
of noisy communication on the overall behavior of the system.

Using our single-agent MDP, we could generate a policy for a
particular environment (a specific mapping of lattice locations to
nutrient level). However, this policy would only be useful if our
agents encountered that exact environment. Thus, we want to gen-
erate a policy that is general enough to be applicable to any envi-
ronment. We can achieve this generalization but in the process we
lose any guarantees on the optimality of our policies.

5.1 State Space
The initial representation of our state space, S, was defined by the

tuple, 〈X,Y, Z,A,N,C〉. X , Y , and Z are the spacial coordinates
that comprise the physical location of the cell within the environ-
ment. A is the age of the cell represented as an integer value. N is
the nutrient level of the location occupied by the cell within the en-

Figure 1: State Space Representation

vironment. C is the number of other cells who are cohabitating in
the same location in the environment. In the following sections, we
will refer to the cell age, nutrient level, and number of cohabitating
cells for state s as sa, sn, sc.

To apply our MDP algorithms, we need a finite state space. Thus,
we define the maximum value for each variable which establishes a
range of possible values. In doing so, we create a state space of size
(Xmax+1)×(Ymax+1)×(Zmax+1)×(Amax+1)×(Nmax+
1)× (Cmax+1). This representation suffers from two main draw-
backs. First, the size of the state space scales so quickly that com-
puting policies for any large environment would be impractical.
Second, the policy generated for such a state space would contain
a significant amount of redundant information. Our cells would be
required to learn the same lessons over and over again for each lo-
cation in the environment. We desired a more generalized model
which reduces the scale and redundancy of our state space. Thus,
we chose a more compact state representation, S = 〈A,N,C〉,
which reduces the size of the state space to (Amax+1)×(Nmax+
1) × (Cmax + 1). This allows us to capture the most salient fea-
tures of the environment while creating a state space whose size is
independent of the physical dimensions of our environment.

Additionally, there are two terminal states φ1 and φ2 which rep-
resent, respectively, a cell dying in a controlled, beneficial manner
and a cell dying in a uncontrolled, harmful manner. Transitioning
into either φ1 or φ2 results in the cell being removed from the sim-
ulation during the following time step. An explanation as to how a
cell transitions into a terminal state can be found in Section 5.3.

Figure 1 shows a visual representation of the state space in which
Am, Nm, and Cm are equivalent to the values Amax, Nmax, and
Cmax described above. For each age level, there are (Nmax+1)×
(Cmax+1) states. Each of these states can transition to any state in
the next age level as well as the terminal states. This holds until the
age of the cell reaches Amax at which point it can only transition
to the terminal states. For the sake of clarity, we have removed all
transition edges to the terminal states except for those emanating
for the Amax age level. It should be noted that the age of a cell
increases with each time step, so all transition edges are directed.

5.2 Action Space
At each time step, each agent selects an action to perform from

the action space A = {Q,M,P,A}. Q represents a cell becom-
ing quiescent and remaining in its current location in the environ-
ment. M represents a cell becoming motile and migrating to a
neighboring location in the environment. P represents a cell pro-
liferating, a process by which a cell divides into two daughter cells.
A represents a cell undergoing apoptosis, a process of programmed
cell death in which a cell chooses to commit suicide in a controlled



manner in order to promote the overall health of the organism. With
one exception, a cell can perform any action from any non-terminal
state. This exception is when a cell reaches the age of Amax and
must perform either P or A.

5.3 Transition Function
Creating a sophisticated transition function is one way in which

the complexity and uncertainty of our domain can be encoded into
our model. The transition function, T, is defined as:

• T(φ2|s, a) = ε

• T(s′|s,Q) = 1− ε, {s′|s′a = sa + 1, s′n = sn, s
′
c = sc}

• T(s′|s,M) = 1−ε
(Nmax+1)×(Cmax+1)

, {s′|s′a = sa + 1}

• T(φ1|s,P) = 1− ε

• T(φ1|s,A) = 1− ε

T(s′|s, a), defines the probability of an agent transitioning to
state s′ after performing action a in state s. While performing any
action, it is possible for a cell to become necrotic (transitioning to
state φ2) with probability ε, resulting in an uncontrolled, premature
death due to factors external to the cell. Quiescence (Q) causes a
cell to transition, with probability 1− ε, to a state similar to its pre-
vious state except with an increased age. Both proliferation (P) and
apoptosis (A) result in a cell transitioning to terminal state φ1 with
probability 1 − ε. A generalized environment causes one signifi-
cant complication in the transition function. It is no longer possible
to definitively know which states can be transitioned into from a
given state when a cell is migrating (M). We have no choice but
to assume that s can transition, with uniform probability, into any
state s′ in which s′a = sa + 1.

5.4 Reward Function
By decomposing a team reward function into carefully constructed

individual reward functions, we can recreate the propensity cells
have for working together as a team. The reward function, R, is
defined as:

• R(φ2|s, a) = −20

• R(s′|s,Q) = 0

• R(s′|s,M) = α1(s
′
n − n0) + α2(c0 − s′c)

• R(φ1|s,P) = α3(sn − n0) + α4(c0 − (sc + 1))

• R(φ1|s,A) = α5(sa − a0) + α6(n0 − sn) + α7(sc − c0)

R(s′|s, a) defines the reward an agent receives by transitioning
from state s to state s′ by performing action a. a0, n0, and c0
are the nominal values for cell age, nutrient level, and number of
cohabitating cells. These values must be specified and represent the
normal or expected values of these variables. These nominal values
can then be compared to the actual values to determine, in part,
the reward received for the tuple 〈s, a, s′〉. The reward function
has been generalized with a parameterized vector α = {α1...α7}.
This general form allows for the same reward function structure to
be used by both healthy cells and cancerous cells as well as the fine
tuning of cell behavior.

We constructed the reward function to reflect basic biologicial
principles in a such way that, for healthy cells, all α parameters
should be positive. The method of comparison between the nom-
inal and actual values is thus of great importance. For (actual −

nominal), it is beneficial to be above the nominal value, whereas
with (nominal − actual), it is harmful to be above the nominal
value. This is useful for establishing the preferences of our cells.

Quiescence (Q) is the default action for cells which is why it
yields a reward of zero. A cell will only perform another action if
it results in a higher reward than Q. A cell is rewarded for migrat-
ing (M) to or proliferating (P) in a state with a high nutrient level
and a low number of cohabitating cells. Conversely, a cell is re-
warded for inducing apoptosis (A) when it has a high age and is in
a state with a low nutrient level and a high number of cohabitating
cells. Despite being removed from the simulation in the process,
performing P and A can yield a positive reward because they are
vital biological processes which benefit the organism. In contrast,
a cell receives a constant reward of -20 for becoming necrotic be-
cause it can result in the formation of microcalcifications which are
detrimental to surrounding cells.

Manipulating the α vector allows us to generate a different pol-
icy for the team of cancerous cells. For example, cancerous cells
have been shown to ignore the signals that cause healthy cells to
regulate their proliferation. This phenomena can be modeled by
decreasing the value of α4, resulting in a smaller negative reward
for proliferating in a location with a large number of cohabitating
cells. Cancer cells are also less likely to respond to the signals
that cause healthy cells to induce apoptosis. This behavior can be
achieved by decreasing the values for α5, α6, and α7.

5.5 Planning
Once our single-agent MDPs have been defined, we can use

value iteration to automatically generate two policies, one for healthy
cells and one for cancerous cells. Value iteration takes as input a
discount factor, γ, where 0 < γ < 1, which controls the time hori-
zon over which the agent plans. When γ is small, the agent places
greater value on immediate rewards rather than future rewards. As a
result, the agent does little to no planning, instead always choosing
the action which results in the highest reward. Whereas when γ is
large, the agent values future rewards over immediate rewards. This
provides incentive for the agent to maximize the expected reward
over an entire sequence of actions rather than for each individual
action. For example, consider a cell in a state with a low nutri-
ent level and a high number of cohabitating cells. A greedy agent
would perform action A and receive a positive reward. However, a
planning agent would be able to determine if it was advantageous
to instead performQ for multiple time steps, risking necrosis in the
process, until it’s age reaches Amax at which point A would yield
an even higher reward. In order to simulate the learning and adap-
tation resulting from evolution in our cells, we set γ = .99. The
policies generated by value iteration are optimal only for the gener-
alized model of the state space. Thus, when this policy is executed
in a specific environment it is no longer guaranteed to be optimal.

6. SIMULATION AND VISUALIZATION
The interactive aspect of our system consists of our simulation

and visualization environment. Given a policy for healthy and can-
cerous cells, our simulation environment can model the interactions
of cells over time. That model is then delivered to our visualization
environment where it is displayed to the user. This visualization
environment features a graphical user interface which displays a 3-
D wireframe lattice representing a section of tissue. The tissue is
populated by both healthy and cancerous cells, whose type and age
can be determined by color. Healthy cells appear red, cancerous
cells appear blue, and as a cell ages, its color begins to darken. In
order to allow for better viewing of our simulations, we added the
ability to rotate the lattice as well as zoom in and out. Figure 2
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Figure 3: Homogeneous Cell Population Phenomena

shows a series of screenshots from our visualization environment.
Users are able to control the initial configuration of the system

including the number of healthy cells and cancerous cells. Addi-
tionally, users will have the ability to select the policies executed
by the cells from a list of policies that have been precomputed with
different reward function parameter settings. Given that our model
is discrete with respect to time, users step through a simulation by
providing keyboard input. At each time step, the system will transi-
tion from one state to another and information about the actions of
individual agents will be displayed. By trying out different config-
urations, users can see how changing the parameters of our model
can affect the behavior of the overall system.

7. EVALUATION
We conducted preliminary testing to evaluate the capabilities of

our model. We constructed a state space in which Amax = 9,
Nmax = 9, and Cmax = 9, resulting in 1,002 states when φ1

and φ2 are included. In our reward function, we set a0 = 4.5,
n0 = 4.5, and c0 = 4.5. Our environment consists of a 5 × 5 ×
5 cube with randomly distributed nutrient levels. An initial popu-
lation of both healthy and cancerous cells was specified and these
cells were assigned random ages and locations within the environ-
ment. All the results shown in this section have been averaged over
30 independent simulations which ran for 100 time steps.

7.1 Homogeneous Agents
An initial round of simulations was conducted with homoge-

neous populations of cells. For these simulations, we were inter-
ested in observing how the size of the cell population varied over
time. Additionally, we tested to see if the size of the starting pop-
ulation had any effect on the system. The baseline cell population
was defined by α = [1, 1, 1, 1, 1, 1, 1], i.e. all components of the
reward function are weighted equally. Figure 3(a) shows the results
from our baseline simulations with starting populations of 100, 500,
and 1,000 cells. Here the y-axis represents the total number of cells
and the x-axis represents the number of simulation time steps that
have elapsed. We can see that for each starting population, the total
population converges to a steady population of approximately 600
cells. This suggests that the structure of our reward function natu-
rally lends itself to a balance between the desire to proliferate and
the desire to avoid overcrowding.

However, by parametrizing our reward function with theα vector
we are able to adjust this balance as well as deviate from it com-
pletely. For example, in Figure 3(b), we observe an unstable popu-
lation of cells defined by α = [1, 1, 2, 1, 1, 1, 1]. For each starting
population, the total population increases exponentially with each

time step. After only 12 times steps, the simulations were stopped
as the population had exceeded 100,000 cells. Setting α3 = 2
increases the importance of nutrient level in determining when to
proliferate so much that cells are willing to ignore the overcrowd-
ing taking place. By increasing α3, these cells will begin to prefer
proliferation at lower nutrient levels than the baseline population.
Thus, the number of states where proliferation represents the opti-
mal action increases. Another example of an unstable population
is shown in Figure 3(c). At each time step, the cell population de-
fined by α = [1, 1, 1, 1, 3, 3, 1] decreases until eventually the entire
population has died out. When compared to the baseline popula-
tion, increasing α5 encourages cells to induce apoptosis at younger
ages, whereas α6 prompts cells to become apoptotic at higher nu-
trient levels. The combination of these two factors results in the
exponential die-off that we observed.

Some α vectors generate a steady population, while others lead
to unstable populations that experience exponential proliferation or
die-off. Fine tuning of the α vectors can influence the size of a
steady population or the rate of proliferation and die-off. We have
shown that the α vector is capable of capturing a variety of cell be-
haviors and has significant impact on the population dynamics of
cells. The next step is to calibrate our α vector and reward function
to match the real world phenomena observed in lab experiments
to be conducted by the Center for Applied Molecular Medicine at
the University of Southern California. These experiments will fo-
cus on analyzing the growth, death, and migratory capabilities of
population admixtures under varying nutrient and cell confluency
conditions.

7.2 Noise
The results in Section 7.1 assume cells have perfect knowledge

about the environment. This was meant to simulate the ability
of cells to engage in perfect communication. In reality, commu-
nication between cells occurs through a series of chemical sig-
nals which are inherently noisy. Thus, we wanted to approximate
this noise and investigate its effect on our simulations. We im-
plemented noise in the following manner; with probability 1 − p,
a cell perceives the exact number of cohabitating cells and with
probability p perceives a random number uniformly distributed be-
tween 0 and Cmax. The effect of varying the amount of noise
on a starting population of 1,000 cells is shown in Figure 4. We
can see that when there is no noise, the cell population defined
by α = [1, 1, 1, 1, 2.5, 2.5, 1] converges to a steady population of
approximately 250 cells. As the level of noise is increased, we ob-
serve that the steady population decreases. It is also worthwhile to
note that this α vector has similar properties to the vector presented
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Figure 4: Effect of Noise on Homogeneous Cell Populations

in Section 7.1 which resulted in exponential die-off, but results in
fundamentally different behavior.

In this case, the steady population is small, and thus the average
number of cells in each location is low. Therefore, when a cell re-
ceives a noisy approximation of the number of cohabitating cells,
there is a high probability it will be an overestimation. Falsely
thinking it is in an overcrowded location, the cell induces apopto-
sis resulting in a lower steady population. These results show the
impact noise can have on the behavior of cells and makes clear the
need to implement realistic cell communication in the future.

7.3 Heterogeneous Agents
While simulating homogeneous cell populations is an impor-

tant first step, in order to convincingly model cancer we need to
able to model heterogeneous cell populations. We have started
by modeling two groups of cells and observing how they inter-
act. Group A consists of cells defined by α = [1, 1, 1, 1, 1, 1, 1],
which were shown in Section 7.1 to converge to a steady popula-
tion of approximately 600 cells. Group B consists of cells defined
by α = [1, 1, 1, 1, 2.5, 2.5, 1], which were shown in Section 7.2 to
converge to a steady population of approximately 250 cells.

Figure 5 shows the results of simulations in which each group
had a starting population of 500 cells. With an initial total popula-
tion of 1,000, both groups are above their steady populations and
feel the need to induce apoptosis. This continues until the total
population approaches 600, as cells in A are now content to be qui-
escent. B is still above its steady population and so its cell continue
to be apoptotic. However, any decrease resulting from the apopto-
sis of B cells is soon matched by the proliferation of A cells trying
to push the population back to 600. Still feeling overcrowded, B
continues to apoptose until all B cells have died out.

In our current model, the most "stable" cell type is the one that
proliferates the most. Forcing a cell type to remain above its steady
population will always cause it to die out, as apoptosis is the only
recourse to improve the situation. Thus, one cell type will domi-
nate the other unless they converge to the same stable population.
While this may be effective for modeling certain types of cancer,
we would like to be able to model a wider variety of interactions.
To do so, we will need to increase the sophistication of our envi-
ronment. Currently, there is no punishment mechanism for greedy
cell types that proliferate regardless of the number of cohabitating
cells. There are two potential solutions that we will look at go-



Figure 5: Heterogeneous Cell Populations

ing forward. First, implementing dynamic nutrient levels which
are depleted or replenished based on the number cells in a location.
Second, making the probability of experiencing of necrosis, ε, a
function of the current state rather than being constant. Not only
will these changes improve the fidelity of our environment but they
will also increase the sophistication of our MDP model, forcing our
agents to reason about a more complex and dynamic state space.

8. DISCUSSION AND CONCLUSION
Cancer places a significant social and economic burden on so-

ciety. Annually claiming hundreds of thousands of lives, cancer
poses one of the greatest health risks not only in the U.S., but
around the world as well. Computer models have been suggested
as a method for gaining a more fundamental understanding of can-
cer. It is hoped that these models could eventually help expedite
new treatments that will improve the survival rate for cancer pa-
tients. Numerous models have been presented using game theo-
retic, latticed-based, agent-based approaches. We have set out to
assess the potential of applying multi-agent techniques to model
cancer. In doing so, we have proposed an innovative model using
DEC-MDPs, in which healthy cells and cancerous cells are mod-
eled as opposing teams of agents. As this is our initial effort in
the domain, we have attempted to abstract away much of the in-
herent complexity while retaining the salient aspects. In the future,
we will increase the sophistication and complexity of our model
so that we will be able to more accurately simulate the processes
and interactions that occur in nature. The goal is to develop an
integrated framework that relies on both the model simulations as
well as validation from the experimental data to make an accurate
assessments of cancer progression. While there is still significant
work to be done, we feel we have take a successful first step toward
our larger goal. Our current focus is on DEC-MDPs, but future
developments may lead us to explore other multi-agent approaches
such as partial observable stochastic games (POSG). In this paper,
we set out to introduce the cancer modeling domain to MSDM and
the multi-agent techniques as a whole. We invite others to join us
in applying DEC-MDPs and other multi-agent approaches to can-
cer modeling. Continued effort in this area has the potential to save
lives and lead to innovations in both the multi-agent and biomedical
communities.
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