
Robust Execution-time Coordination in DEC-POMDPs
Under Model Uncertainty

Jun-young Kwak, Rong Yang, Zhengyu Yin, Matthew E. Taylor∗, Milind Tambe
University of Southern California, Los Angeles, CA, 90089

∗Lafayette College, Easton, PA 18042
{junyounk,yangrong,zhengyuy,tambe}@usc.edu, ∗taylorm@lafayette.edu

ABSTRACT
Despite their worst-case NEXP-complete planning complexity,
DEC-POMDPs remain a popular framework for multiagent team-
work. This paper introduces effective teamwork under model
uncertainty (i.e., potentially inaccurate transition and observa-
tion functions) as a novel challenge for DEC-POMDPs and
presents MODERN, the first execution-centric framework for
DEC-POMDPs explicitly motivated by addressing such model
uncertainty. MODERN’s shift of coordination reasoning from
planning-time to execution-time avoids the high cost of comput-
ing optimal plans whose promised quality may not be realized in
practice. There are three key ideas in MODERN: (i) it maintains
an exponentially smaller model of other agents’ beliefs and actions
than in previous work and then further reduces the computation-
time and space expense of this model via bounded pruning; (ii)
it reduces execution-time computation by exploiting BDI theories
of teamwork, and limits communication to key trigger points; and
(iii) it limits its decision-theoretic reasoning about communication
to trigger points and uses a systematic markup to encourage extra
communication at these points – thus reducing uncertainty among
team members at trigger points. We empirically show that MOD-
ERN is substantially faster than existing DEC-POMDP execution-
centric methods while achieving significantly higher reward.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence

General Terms
Algorithms

Keywords
Distributed POMDPs, Model Uncertainty, Teamwork

1. INTRODUCTION
Despite their NEXP-complete policy generation complexity [1],

Distributed Partially Observable Markov Decision Problems
(DEC-POMDPs) have become a popular paradigm for multiagent
teamwork [2, 7, 8, 10]. DEC-POMDPs are able to quantitatively
express observational and action uncertainty, and yet optimally
plan communications and domain actions.

The Sixth Annual Workshop on Multiagent Sequential Decision-
Making in Uncertain Domains (MSDM-2011), held in conjunction
with AAMAS-2011 on May 3, 2011 in Taipei, Taiwan.

This paper focuses on teamwork under model uncertainty (i.e.,
potentially inaccurate transition and observation functions) in
DEC-POMDPs. In many domains, we only have an approximate
model of agent observation or transition functions. To address this
challenge we rely on execution-centric frameworks [9, 13, 14],
which simplify planning in DEC-POMDPs (e.g., by assuming cost-
free communication at plan-time), and shift coordination reason-
ing to execution time. Execution-centric frameworks appear better-
suited to address model uncertainty as they (i) lead to provably ex-
ponential improvement in worst-case complexity [8, 9]; (ii) avoid
paying a high planning cost for a “high-quality” DEC-POMDP pol-
icy that cannot be realized in practice; and (iii) allow for coordina-
tion reasoning at execution-time to mitigate model uncertainty.

Unfortunately, past work in execution-centric approaches [9, 13,
14] also assumes a correct world model, and the presence of model
uncertainty exposes three key weaknesses in that work. First, they
maintain the entire set of the team’s joint belief states for execution-
time reasoning, a costly undertaking that is not well-justified given
model uncertainty. Second, they reason at execution-time about the
right action and communication before each decision step, leading
to inefficient computation. Third, their detailed and expensive rea-
soning about communication and action is based on the assumption
of an accurate model — again, given model uncertainty, such pre-
cise computation is wasteful due to its inaccuracy.

This paper provides two sets of contributions. The first is a
new execution-centric framework for DEC-POMDPs called MOD-
ERN (MOdel uncertainty in Dec-pomdp Execution-time ReasoN-
ing). MODERN’s key insight is that given model uncertainty, it is
wasteful to maintain a very detailed model of other agents or the
team’s belief states (it will be inaccurate anyway) and reason in
depth with such a detailed model — the inferences will also be in-
accurate. Instead, model uncertainty drives MODERN to simplify
modeling and reasoning of other agents and boost communication
at key junctures instead.

MODERN is the first execution-centric framework for DEC-
POMDPs explicitly motivated by model uncertainty. It is based
on three key ideas. First, MODERN reasons with an exponentially
smaller model of other agents’ beliefs and actions than the entire
set of joint beliefs as done in previous work [9, 13, 14]; then it fur-
ther reduces the computation time and space expense of this model
via bounded pruning. Second, MODERN reduces execution-time
computation by: (i) engaging in decision-theoretic reasoning about
communication only at Trigger Points — instead of every agent
reasoning about communication at every step, only agents encoun-
tering trigger points perform such reasoning; and (ii) utilizing a pre-
planned policy for actions that do not involve interactions, avoiding
on-line planning at every step. Our approach has significant advan-
tages in domains with interaction-sparseness. Third, MODERN

increases communication at trigger points by doing a markup of
the expected utility gain under the assumption that communication
has significant value in reducing uncertainty. We justify our design
decisions in MODERN through a systematic empirical evaluation.
As our evaluation shows, MODERN outperforms competing algo-
rithms in terms of its run-time performance while finding higher
quality solutions.

This paper’s second set of contributions are in opening up model
uncertainty as a new research direction for DEC-POMDPs and
emphasizing the similarity of this problem to the Belief-Desire-
Intention (BDI) model for teamwork [3, 6, 11]. In particular, BDI
teamwork models also assume inaccurate mapping between real-
world problems and domain models. As a result, they emphasize
robustness via execution-time reasoning about coordination [11].
Given some of the successes of prior BDI research in teamwork,
we leverage insights from BDI in designing MODERN.

2. PROBLEM STATEMENT
DEC-POMDPs have been used to tackle real-world multi-

agent collaborative planning problems under transition and
observation uncertainty, which are described by a tuple
〈I, S, {Ai}, {Ωi}, T,R,O,b0〉. I = {1, ..., n} is a finite set of
agents, and S = {s1, ..., sk} is a finite set of joint states. Ai is
the finite set of actions of agent i, A =

∏
i∈I Ai is the set of

joint actions, where a = 〈a1, ..., an〉 is a particular joint action
(one individual action per agent). Ωi is the set of observations
of agent i, Ω =

∏
i∈I Ωi is the set of joint observations, where

o = 〈o1, ..., on〉 is a joint observation. T : S × A × S 7→ R is
the transition function, where T (s′|s,a) is the transition probabil-
ity from s to s′ if joint action a is executed. O : S×A×Ω 7→ R is
the observation function, where O(o|s′,a) is the probability of re-
ceiving the joint observation o if the end state is s′ after a is taken.
R(s,a, s′) is the reward that agents get by taking a from s and
reaching s′, and b0 is the initial joint belief state.

We denote the joint observation history at time step t with
ht = {o1,o2, . . . ,ot} and the set of ht with Ht. H =

⋃
tH

t

is the set of all possible joint observation histories at all time steps.
A joint policy π : H 7→ A is a mapping from joint observation
history to joint action. Let hti = {o1i , o2i , . . . , oti} be the individual
observation history of agent i at time step t. The set of all possible
hti is denoted by Ht

i . Let Hi =
⋃
tH

t
i be the set of all possible

individual observation histories at all time steps for agent i. The
individual policy for agent i, πi : Hi 7→ Ai, is a mapping from
agent i’s individual observation history to its individual action. We
use ht−i to denote an observation history of all agents except i and
Ht
−i to denote the set of all possible ht−i. Similarly we use π−i to

represent the policy for all agents except i.
Here, we assume the presence of model uncertainty, which is

modeled with a Dirichlet distribution [4]. A separate Dirichlet dis-
tribution for the observation and transition function is used for each
joint state, action, and observation. An L-dimensional Dirichlet
distribution is a multinomial distribution parameterized by positive
hyper-parameters β = 〈β1, . . . , βL〉 that represents the degree of
model uncertainty. The probability density function is

f(x1, ..., xL;β) =

∏L
i=1 x

βi−1
i

B(β)
, B(β) =

∏L
i=1 Γ(βi)

Γ(
∑L
i=1 βi)

,

and Γ(z) =
∫∞
0
tz−1e−tdt is the standard gamma function. The

maximum likelihood point can be easily computed: x∗i = βi∑L
j=1 βj

,

for i = 1, ..., L. Let Ts,a be the vector of transition probabilities
from s to other states when a is taken and Os′,a be the vector of
observation probabilities when a is taken and s′ is reached. Then

Ts,a ∼ Dir(β) and Os′,a ∼ Dir(β′), where β and β′ are two
different hyper-parameters.

We assume that the planner is not provided the precise amount of
model uncertainty (i.e., the precise amount of uncertainty over tran-
sition or observation uncertainty). Our goal is effective teamwork,
i.e., achieving high reward in practice, at execution time.

3. RELATED WORK

3.1 DEC-POMDPs
Related work includes DEC-POMDP planning that specifically

focuses on optimal communication [2, 8]. In addition to its lack of
emphasis on execution-time reasoning, this research has not tack-
led the challenge of model uncertainty. Furthermore, given gen-
eral communication costs, the policy generation problem remains
NEXP-complete. Although execution-centric approaches [9, 12,
13, 14] lead to a provably exponential improvement in worst-case
complexity over optimal DEC-POMDP planners, they have also
assumed model correctness.

Xuan and Lesser [14] studied the trade-offs between central-
ized and decentralized policies in terms of communication require-
ments, as well as provided a method to transform centralized poli-
cies to distributed ones. This research differs from our own given
its focus on distributed MDPs rather than DEC-POMDPs (and thus
does not face the challenges of modeling other agents’ belief dis-
tributions), and its assumption of model correctness.

ACE-PJB-COMM (APC), one of the first execution-centric sys-
tem [9] assumes free communication when planning and collapses
the multi-agent problem to a single-agent POMDP. At execution
time, agents execute the plan in a decentralized fashion, communi-
cating to avoid miscoordination. If the expected utility gain from
communication is greater than communication cost, an agent will
communicate its history to the rest of the team. Similarly, MAOP-
COMM (MAOP) [13] communicates whenever it detects a history
inconsistency that might cause miscoordination. APC and MAOP
respectively use GrowTree and JointHistoryPool, the set of possible
belief nodes to reason about the team’s belief space when an agent
does not know its teammate’s actions or observations.

Our work differs from these works as we assume model uncer-
tainty, leading to several major differences. First, MODERN main-
tains an exponentially smaller set of beliefs than GrowTree and
JointHistoryPool mentioned above. It further reduces the computa-
tion time and space via bounded pruning, which allows it to signifi-
cantly improve the scalability compared to APC with particle filter-
ing and MAOP with belief merging. Second, MODERN provides
selective reasoning about communication, reducing the computa-
tion burden, while APC and MAOP reason about action and com-
munication at every time step in an online-manner. Third, assuming
model uncertainty, MODERN boosts communication, while APC
and MAOP assume model correctness, and thus they rely on precise
local computation over joint beliefs. Fourth, MODERN explicitly
considers two-way communication to synchronize beliefs, while
APC only considers one-way broadcasts. Although APC pays less
in communication cost than MODERN, relying on reasoning over
uncertain belief states causes more conservative action selection,
leading to lower reward. An additional difference with MAOP is
that it does not consider communication cost, while MODERN rea-
sons about communication based on cost-utility analysis, which al-
lows us to show significantly superior results as communication
cost increases.

3.2 BDI Teamwork

While BDI is unable to quantitatively reason about costs and un-
certainties, nevertheless, there have been some successes in prior
BDI work [3, 6, 11]. Here, we draw upon three key ideas from
BDI teamwork in MODERN. First, BDI approaches focus on exe-
cution and thus emphasize the execution-time teamwork reasoning
rather than plan-time reasoning, as a pre-planned team coordina-
tion may lead to dramatic failures when unanticipated events oc-
cur. BDI teamwork frameworks simplify planning by focusing on
team-oriented programs that abstract away from “low-level coordi-
nation,” instead shifting coordination reasoning (i.e., communica-
tion) to execution time. This in essence is similar to the execution-
centric DEC-POMDP framework. Second, agents differentiate be-
tween individual actions and actions that require interaction with
others; in many teamwork domains agents are seen to act individu-
ally for significant portions of the task performance and then occa-
sionally perform a tightly coupled action. Third, agents only rea-
son about communication when the plan requires interactions with
others; agents do not reason about communication at every step.
For example, key teamwork execution systems have been based on
joint commitments [6]. A joint commitment between two agents to
a joint goal P leads to two types of communication:

• In order to form a joint commitment, an agent requests others to
commit to its goal, P . We refer to this as “asking,” and here an
agent’s action changes based on response from the other agent.

• Once jointly committed to P , if an agent privately comes to be-
lieve that P is achieved, unachievable, or irrelevant, it commu-
nicates this to its teammates. We refer to this as “telling.” The
other agent’s action changes due to the communication.

4. DESIGN DECISIONS
During planning, MODERN has a standard single-agent

POMDP planner [5] plan a policy for the team of agents by as-
suming zero-cost communication. Then, at execution-time, agents
model other agents’ beliefs and actions, reason about when to com-
municate with teammates, reason about what action to take if not
communicating, etc.

MODERN’s design is driven by the model uncertainty, leading
to three major novel ideas. MODERN (i) maintains a very small
set of beliefs to reason about other agents because a complete set
of joint beliefs (which may be erroneous under model uncertainty)
is not well-justified, (ii) selectively reasons about communication
to reduce execution-time computational burden because precise
reasoning at every step does not provide additional benefits, but
rather exacerbates the computational problems, and (iii) simplifies
its decision-theoretic reasoning and marks up the expected utility
gain to overcome model uncertainty by boosting communication at
trigger points.

Thus, it is precisely due to model uncertainty that MODERN
simplifies modeling and reasoning about other agents by maintain-
ing a bounded approximate model (compared to previous work [9,
13] which maintains a very detailed model). Instead, MODERN
boosts communication at trigger points. As shown in our exper-
imental results, it is precisely due to this aggressive reliance on
communication rather than detailed reasoning that MODERN out-
performs its competitors who are much more reliant on their mod-
els of other agents. We describe these ideas in the following.

4.1 Modeling Other Agents
In contrast with the complete tree of joint beliefs in [9, 13],

MODERN maintains an approximate and exponentially smaller set
of beliefs to model other agents via (i) Individual estimate of joint
Beliefs (IB) and (ii) Bounded Pruning.

IB is a concept used in MODERN to decide whether or not com-
munication would be beneficial and to choose a joint action when
not communicating. IB can be conceptualized as a subset of team
beliefs that depends on an agent’s local history, leading to an expo-
nential reduction in belief space compared to GrowTree mentioned
earlier. In particular, for two agents, GrowTree has (|o1||o2|)t num-
ber of nodes for the team while IB maintains only |o1|t or |o2|t
number of nodes, where |oi| is the number of agent i’s local ob-
servations, and t is a time step. IBt describe the set of nodes of
the possible belief trees of depth t. Each node θ in IBt has a tuple
consisting of 〈b(θ),h(θ),a(θ), p(θ)〉, where b(θ) is the joint be-
lief given that h(θ), h(θ) is the joint observation history, a(θ) is
the joint action obtained from a given policy tree, and p(θ) is the
likelihood of observing h(θ).

For example, consider a 2×3 grid world with two agents (see
Figure 1). The agents can wait (W) or move in 4 directions. The
team’s goal is to perform a joint task (Pj , e.g., defusing a bomb)
or individual task (Pi, e.g., charging the battery) at pre-specified
locations to achieve a high reward. There are three observations
per agent: location-of-joint-task (o), not-location-of-any-task (ō),
and location-of-individual-task (ô). We will describe the domain
in detail later in Section 6. An agent’s IB in this domain can be
represented as a tree shown in Figure 2. The initial distribution
of possible joint beliefs is composed of a single leaf at belief b0,
the starting belief of the team, with probability 1 and an empty
observation history. Suppose that the team chooses to execute the
action 〈Moveeast,Movewest〉. The IB of each agent only maintains
nodes that are consistent with its local observation history. Thus, IB
for agent 1 has 3 nodes in total, 〈o, o〉, 〈o, ō〉, 〈o, ô〉 assuming that
agent 1’s local observation is o, while a joint team belief such as
GrowTree maintains a full tree consisting of 9 nodes at time horizon
1. This shows how our individual model can be much smaller than
the joint team belief. However, the number of possible beliefs in IB
grows rapidly, particularly when agents choose not to communicate
for long time periods.

Hence, we propose a new pruning algorithm that provides fur-
ther savings. In particular, it keeps a fixed number of most likely
beliefs per time step in IB. Our pruning method first expands be-
liefs using the Bayes update rule and then selects the most likely
belief at each time step until the selected number of beliefs reaches
a pre-defined upper-limit. This reduced belief set is used to detect
trigger points and reason about communication in MODERN. Note
that MODERN uses a sync action in communication (discussed be-
low) that is useful to ensure that all agents create an identical belief.
This provides a way to ascertain the team’s joint status and avoid
miscoordination.

Figure 1: Illustrative Domain

4.2 When to Reason: Trigger Points
The policy provided to each agent from MODERN’s planning

maps the agent team’s joint observation to joint actions of the team.
Unlike APC or MAOP, MODERN does not require agents to rea-
son from scratch about what action or communication to execute at

Figure 2: Example of an individual belief maintained by agent1

every time step. Instead, agents follow the provided policy, map-
ping their own observation in the policy to their own action, except
at trigger points inspired by joint commitments. Note that trig-
ger points include any situation involving ambiguity in mapping
an agent’s observation to its action in the joint policy. The key
idea is that in sparse interaction domains, agents will not have to
reason about coordination at every time step and only infrequently
encounter trigger points, thus significantly reducing the burden of
execution-time reasoning. First, we define trigger points inspired
by BDI teamwork:

Definition Time step t is a trigger point for agent i if either of the
following conditions are satisfied.
Asking Let hti be the actual individual observation history of agent
i. Time step t is an Asking trigger point for agent i if there exist
two different ht−i, h̃

t
−i ∈ Ht

−i such that πi(ht) 6= πi(h̃
t), where

ht = hti ⊗ ht−i and h̃t = hti ⊗ h̃t−i.
Telling Time step t is a Telling trigger point for agent i if there
exists at least one ht−i ∈ Ht

−i, and two different hti, h̃
t
i ∈ Ht

i , such
that π−i(ht) 6= π−i(h̃

t), where ht = hti⊗ht−i and h̃t = h̃ti⊗ht−i.

Let us consider the example discussed in Section 4.1. As shown
in Figure 2, there is no ambiguity when selecting a joint action
at t=0. Thus, no trigger point is detected and the agents select a
joint action, 〈Moveeast,Movewest〉, from the given policy. At t=1,
agent 1 detects a trigger point by the asking condition because agent
1’s action choice is affected by agent 2’s local observation: either
Pj if agent 2 observes o or W if agent 2 observes ō or ô. Thus,
agents start reasoning about communication.

4.3 Reasoning at Trigger Points
MODERN’s reasoning about communication is governed by the

following formula: f(κ, t) · (UC(i) − UNC(i)) > σ, where κ is a
markup rate, t is a time step, UC(i) is the expected utility of agent
i if agents were to communicate, UNC(i) is the expected utility of
agent i when it does not communicate, and σ is a given communi-
cation cost. The two novelties in MODERN’s reasoning are how it
computes UC(i) and UNC(i), and how it uses the markup function
f(κ, t). Both of these are motivated by model uncertainty.

In MODERN, agents reason about whether or not communica-
tion would be beneficial. If they do communicate, all agents syn-
chronize by sending all local observation histories to others. Thus,
all the agents reach a specific belief node, θ, and can choose a joint
action for the team. Otherwise, if no agent chooses to communi-
cate, each agent chooses the best locally optimal action based on
estimated most likely actions of the other agents. Computation of
UC(i)− UNC(i) is performed as following:

UC(i) =
∑
θ∈IBi

p(θ) · V (b(θ),a(θ)) ,

UNC(i) = max
ai∈Ai

UIBi(〈ai, a
∗
−i〉),

Table 1: Markup values: experimental observations
HHH

HHσ
Sparse-interaction Highly-coupled

Low κ=1.0 κ=1.0
Medium 1.0< κ <2.0 (∗) κ=1.0

High 1.0< κ <1.5 (∗) 1.0< κ <1.5 (∗)

a∗−i = a−i(θ
∗) s.t. θ∗ ∈ Θ,

UIBi(a) =
∑
θ∈IBi

p(θ) · V (b(θ),a),

where V (b,a) is the expected utility when an action a is taken at
belief state b. a∗−i is agent i’s estimate of the most likely action of
all other agents. This is greedily selected using the most likely se-
quence, Θ, at every time step, where agent i optimistically assumes
that all other agents obtain the most likely observations. UC(i) is
calculated by considering two-way synchronization, which empha-
sizes the benefits from communication. UNC(i) is computed based
on the individual evaluation of heuristically estimated actions of
other agents.

The markup function, f(κ, t), helps agents to reduce uncertainty
among team members by marking up the expected utility gain from
communication rather than perform precise local computation over
erroneous models. In this work, we use an exponential markup
rate, f(κ, t) = κt. Because uncertainty among team members in-
creases as time passes, the markup rate should increase according
to the time step. An optimal markup function, f(κ, t), can lead
to substantial improvements. While we do not have a theoretical
method of computing κ, our extensive experimental results illus-
trate some potential guidelines for setting κ. In Table 1, (∗) indi-
cates where κ significantly impacts the overall performance. In par-
ticular, when communication cost (σ) is low, marking up appears to
have little impact on total expected reward, hence we suggest κ=1.0
(row 2, columns 2 and 3). In a sparse-interaction domain, when σ
is medium, κ significantly impacts the overall performance, thus
1.0< κ <2.0 appears to be beneficial (row 3, column 2). When σ
is high, overestimating κ can degrade performance, thus κ between
1.0 and 1.5 is suggested (row 4, columns 2 and 3). We empirically
justify this heuristic in Section 6.

5. THE MODERN ALGORITHM
The MODERN algorithm first takes a provided single joint pol-

icy from the offline planning as means for the underlying decision
making. Each node in IB is expanded using possible observations
and joint actions from the given policy, and then MODERN detects
trigger points based on the belief tree. Once the agents detect a trig-
ger point, they reason about whether or not communication would
be beneficial, as discussed in the previous section. If agents do not
detect trigger points, this implies there is little chance of miscoor-
dination, and they take individual actions as per the given policy.

MODERN is presented in detail in Algorithm 1. The joint pol-
icy π is provided as an input to MODERN. On line 1, the initial
distribution of possible beliefs, IB0, is composed of a single node
at belief b0 (the starting belief of the team), which has probabil-
ity 1, an empty observation history, and a joint action, a0, which
is described by the root of π. In line 6, IB is updated by the stan-
dard Bayes update rule. Then, MODERN decides whether or not a
trigger point exists on the current time step (line 7). If a trigger
point is detected, MODERN reasons whether the expected util-
ity gain caused by communication justifies communication cost
(lines 9–19). Specifically, when a trigger point is detected, agent
i communicates when the expected utility gain by communication
is higher than a given communication cost. Otherwise, the agent

simply selects and executes its action from π. When agents decide
to communicate, they share their local histories (i.e., synchronize
their histories). Agents can then know the actual joint observation
histories and execute the joint action given by the policy (line 17).
Otherwise, they execute the estimated best joint action (line 19). If
the trigger point is not detected, agents take their individual actions
from π (line 21).

As an example, again consider the 2×3 grid domain from Fig-
ure 1. MODERN first initializes IB with a single node that has
the initial belief, b0, with likelihood p0 = 1.0 (line 1). The ini-
tial joint action a0 = 〈Me,Mw〉 is obtained from the provided
policy (line 2). Then the two agents execute their local actions
respectively: agent 1 moves east and agent 2 moves west to ap-
proach the task location. As illustrated in Figure 2, agent 1 ob-
serves o, i.e., it is at the joint task location. It expands IB1 con-
sidering all possible joint observations that are consistent with o:
〈o, o〉, 〈o, ō〉, and 〈o, ô〉. At the same time, agent 2 also updates
IB2 based on its local observation (line 6). At t = 1, agent
1 checks whether the current situation meets any of the trigger
point conditions (line 7). According to IB1, we see that agent
1’s local action is affected by agent 2’s observation, and thus a
trigger point is detected by the asking condition. Because a trig-
ger point is detected at t = 1, agent 1 reasons whether com-
munication would be beneficial to improve team performance.
First, it computes UC(1) = 0.8V (b1

0,a
1
0) + 0.15V (b1

1,a
1
1) +

0.05V (b1
2,a

1
2) (line 9). Then, agent 1 considers possible individ-

ual actions given by the policy: {Pj ,W} (line 10), and estimates
the most likely action of agent 2 assuming agent 2 keeps obtain-
ing the most likely observation (line 11). Let us assume agent
2’s most likely action is Pj (i.e., performing a joint task). Then,
UNC(1) = max{0.8V (b1

0, 〈Pj , Pj〉) + 0.15V (b1
1, 〈Pj , Pj〉) +

0.05V (b1
2, 〈Pj , Pj〉), 0.8V (b1

0, 〈W,Pj〉)+0.15V (b1
1, 〈W,Pj〉)+

0.05V (b1
2, 〈W,Pj〉)} (line 13). Agent 1 then checks whether the

utility gain, f(κ, 1)·(UC(1)−UNC(1)), is greater than the commu-
nication cost σ (line 14). If so, it communicates (line 15), otherwise
it selects the estimated best action based on UNC(1) (line 19). If
no trigger point is detected, agents execute their local actions from
the given policy tree (line 21).

Algorithm 1 MODERN(JOINTPOLICY π, AGENTINDEX i)
1:
{
Initialize individual estimate IB0

i ; τ ← false
}

2:
{
a0 ← π(IB0

i); Execute a local action a0i
}

3: for t = 1, . . . , T − 1 do
4: oti ← Get the observation from the environment
5: hti ← Update agent i’s own local history with oti
6: IBti ← EXPAND(IBt−1

i , oti)
7: τ ← DETECTTRIGGERPOINT(π, IBti)
8: if τ = true then
9: UC ←

∑
θ∈IBt

i
p(θ) · V (b(θ),a(θ))

10: Ati ← {πi(ht(θ))|θ ∈ IBti}
11: a∗−i = a−i(θ∗)

12: a∗i ← argmaxai∈At
i

∑
θ∈IBt

i
p(θ)V

(
b(θ), 〈ai, a∗−i〉

)
13: UNC ←

∑
θ∈IBt

i
p(θ) · V (b(θ), 〈a∗i , a∗−i〉)

14: if f(κ, t) · (UC − UNC) > σ then
15: Sync hti with other agents
16: IBti ← Update via communicated joint history ht

17:
{
ati ← πi(IB

t
i); τ ← false

}
18: else
19: ati ← a∗i
20: else
21: ati ← πi(IB

t
i)

22: Execute the action ati

6. EMPIRICAL VALIDATION
We evaluate the performance of MODERN on several domains

and compare it with two previous techniques: APC [9] and
MAOP [13]. Since APC and MAOP have only limited abilities to
scale up to large domains, we first show results in small domains.
Then, we scale up MODERN and show results for larger domains.
The planning time for all algorithms is identical and thus we only
measure the average execution-reasoning time per agent.

Noise in transition matrix and observation matrix follow a
Dirichlet distribution (which is not known by the planner or the
agents). The level of model error is represented by a parameter α
(
∑L
i βi) in Dirichlet distribution: error increases as α decreases.

We evaluate the performance of MODERN under four different
amounts of error by varying α from 10 to 10000. The experiments
were run on Intel Core2 Quadcore 2.4GHz CPU with 3GB main
memory. All techniques were evaluated for 600 independent trials
throughout this section. We report the average rewards.

6.1 Domain Descriptions
Small Grid Domains: 1×5 and 2×3 domains were used for eval-
uation. In both domains, there are two agents trying to perform one
joint task. In the 1×5 grid domain, each agent has three actions:
move east, move west and perform joint task. Each agent can ob-
tain two observations: whether or not it is at a joint location. In this
domain, we have 50 joint states, 9 joint actions and 4 joint observa-
tions. In the 2×3 grid, each agent has two additional actions: move
north and move south. There are 72 joint states, 25 joint actions
and 4 joint observations in this configuration. In both configura-
tions, each movement action incurs a small penalty of -0.2. The
joint task requires that both agents perform the task together at the
joint location. If the joint task is successfully performed, a reward
of +10 is obtained. If only one agent performs the joint task or the
joint task action is performed at the wrong location (i.e., miscoor-
dination), a penalty of -5 or -2 is given to the team, respectively.
Large Grid Domain: In Sections 6.3–6.5, we consider a scale-up
of the 2×3 grid domain since we can quickly solve the small grid
domains. As shown in Figure 1, two individual tasks are added to
the grid, which require only one agent to perform. In this new do-
main, each agent has one additional observation regarding an indi-
vidual task location and two additional actions: perform individual
task and wait. The number of joint states is 288, the number of
joint actions is 49, and the number of joint observations is 9. If
any agent performs the individual task action at the correct loca-
tion, the team receives a reward of +5. If both agents try to perform
the same individual task, the team reward will be unchanged (+5).
On the other hand, if an agent attempts to perform the individual
task at any incorrect location, a penalty of -1 will be assessed. If an
agent chooses the action wait, there will be no penalty or reward.
Dec-Tiger Domain: The fourth domain used for our evaluation is
the Dec-Tiger domain [7]. It has 2 joint states, 4 joint observations,
and 9 joint actions. In this domain, miscoordination happens when
both agents open the door with the tiger or when each agent opens
a different door. We included this domain because APC was built
specifically for this domain. While MODERN focuses on domains
where interactions among agents are sparse, the tiger domain has
highly coupled actions among agents.

6.2 Comparison: Solution Quality
We compared the average rewards achieved by all algorithms for

three different communication costs in two small grid domains and
the tiger domain. The communication costs are selected propor-
tional to the expected value of the policies: 5%, 20%, and 50%.
The time horizon was set to 3 in this set of experiments.

Table 2: Comparison MODERN (MD) with APC and MAOP: Average Performance in Small Domains

1×5 Grid 2×3 Grid Dec-Tiger
σ α MD(κ1) MD(κ2) APC MAOP MD(κ1) MD(κ2) APC MAOP MD(κ1) MD(κ2) APC MAOP

5%

10 5.36 5.38 -1.20 1.52 5.28 5.30 -2.25 -0.36 11.45 11.36 12.56 -3.09
50 5.24 5.11 -1.20 1.49 5.28 5.33 -2.04 -0.68 10.95 10.94 11.92 -3.44

100 5.16 5.20 -1.20 1.47 5.02 5.03 -1.85 -0.63 11.18 11.23 12.33 -3.37
10000 4.46 4.38 -1.20 1.13 4.62 4.61 -1.80 -0.78 10.92 10.96 11.92 -3.51

20%

10 4.70 4.65 -1.20 0.38 4.62 4.68 -1.20 -1.47 8.35 8.41 10.70 -5.69
50 4.58 4.71 -1.20 0.28 4.62 4.66 -1.20 -1.72 7.59 7.56 10.64 -6.13

100 4.50 4.46 -1.20 0.28 4.36 4.40 -1.20 -1.68 8.09 8.11 10.55 -6.04
10000 3.80 3.71 -1.20 -0.12 3.96 3.91 -1.20 -1.86 7.77 7.73 10.31 -6.21

50%

10 3.38 3.39 -1.20 -1.90 3.30 3.29 -1.20 -3.69 0.24 0.17 -6.0 -11.78
50 3.26 3.25 -1.20 -2.15 3.30 3.34 -1.20 -3.80 -0.81 -0.80 -6.0 -12.40

100 3.18 3.16 -1.20 -2.12 3.04 3.06 -1.20 -3.79 -1.42 -1.39 -6.0 -12.27
10000 2.48 2.52 -1.20 -2.61 2.64 2.62 -1.20 -4.01 -1.18 -1.26 -6.0 -12.51

Table 3: Average Number of Messages in Small Domains (α=10, κ=1.0)
1×5 Grid 2×3 Grid Dec-Tiger

HHH
HHσ

MODERN APC MAOP MODERN APC MAOP MODERN APC MAOP

5% 1.95 0.05 1.72 1.99 0.53 1.68 3.22 1.86 0.87
20% 1.87 0.05 1.72 1.90 0.03 1.68 2.44 1.86 0.87
50% 1.80 0.03 1.72 1.81 0.02 1.68 2.38 0.0 0.87

In Table 2, σ in column 1 displays the different communication
cost andα in column 2 represents the level of model error. Columns
3–6 display the average reward achieved by each algorithm in the
1×5 grid domain. Columns 7–10 show the results in the 2×3 grid
domain. Columns 11–14 are for the multi-agent tiger domain. For
the markup function in MODERN (MD in Table 2), κ1=1.0 and
κ2=1.25 were used. We performed experiments with a belief bound
of 10 nodes per time-step for our algorithm.

Table 2 shows that MODERN (columns 3–4, and 7–8) signifi-
cantly outperformed APC (columns 5 and 9) and MAOP (columns
6 and 10) in the grid domains that have sparse interactions. MOD-
ERN received statistically significant improvements (via t-tests,
p<0.01), relative to other algorithms.

In the highly-coupled tiger domain, APC (column 13) had
slightly higher reward than MODERN (columns 11–12) when com-
munication cost was low (5%, rows 3–6) or medium (20%, rows
7–10), but the difference was only about 10% in reward. However,
when communication cost was high (50%, rows 11–14), MODERN
outperformed APC. In particular, even at this high communication
cost, MODERN selectively utilized communication to successfully
perform a joint task, and thus it achieved higher reward. MAOP
(column 14) showed the worst results regardless of α and σ. We
discuss more in detail below.

Table 2 also shows that as communication cost increases, the re-
ward obtained by all three algorithms decreases since agents have
to pay more to avoid miscoordination or face higher chance of mis-
coordination with less communication, both leading to lower solu-
tion quality. For instance, when model uncertainty was high (i.e.,
α=10), the average reward decreased as communication cost in-
creased from 5% (row 3) to 50% (row 11). The average reward
of MAOP is directly affected by communication cost since it does
not consider this communication cost during reasoning. As shown
in Table 3, MAOP triggered the same number of communications
regardless of communication cost.

Another trend in Table 2 is that the solution quality generally in-
creases with a lower α. For example, when communication cost
was low (5%), as model uncertainty increased (i.e., α decreased
from 10000 (row 6) to 10 (row 3)), the average reward increased.

Inclusion of model uncertainty into communication reasoning al-
lows for better use of communication to reduce miscoordination.
Thus, when model uncertainty increases, execution-centric algo-
rithms get better results. Specifically, when model uncertainty is
high, the true transition and observation probabilities in the world
have larger differences from the values in the given model; more
model uncertainty means more models with higher probabilities of
success or failure. When the true probabilities are lower than given
model values, agents recover in models with high failure probabil-
ity using communication and thus avoid huge penalties. When the
true values are higher, agents exploit gains in models with high suc-
cess probability by successfully performing joint actions leading to
a higher solution quality. This results in higher average reward.

For instance, consider a 1×5 grid world with two agents. An
agent continues to move as long as it believes that it is not at the
target location and performs the joint action when it believes that it
is at the target location. There are the following four possibilities:
(1) both agents believe that they are at the target location, are at the
target location, and they thus successfully perform the joint action
and achieve a reward of +9.2; (2) both agents do not believe that
they are at the target location, and they thus do not attempt the joint
action and achieve a reward of -1.2; (3) both agents believe that they
are at the target location but one or both of them are not at the target
location, and they thus fail to perform the joint action and achieve a
reward of -2.8; and (4) exactly one agent believes that it is at the tar-
get location, and it thus attempts the joint action alone and achieve
a reward of -6.0. In this case, more model uncertainty results in
more models with higher probabilities of success or failure (i.e.,
not case #2). MODERN, by using a better strategy for reasoning
about communication at execution time, improves the probability
of achieving success (case #1) and exploits gains from them. Ad-
ditionally, communication decreases the likelihood that the agents
fall into cases #3 and #4, which have large negative rewards, and
instead fall into case #2, which has a smaller negative reward by ex-
changing the observation history at the right moment. On the other
hand, when model uncertainty is low, it will have lower occurrences
of cases #1, #3, or #4 than higher model uncertainty. Thus, the ben-
efits obtained by either higher success probabilities (case #1) or by

avoiding miscoordination by execution-time communication (case
#3 or #4) decrease. As a result, MODERN can lead to a higher
average team reward with higher model uncertainty.

By exploiting better use of communication, MODERN is more
robust to model uncertainty than other methods. In Table 2, MOD-
ERN’s gain with more model uncertainty is higher than gains of
MAOP and APC in most cases. For instance, when communica-
tion cost was small (σ=5%) in the 1×5 grid domain, MODERN
gained 0.9–1.0 reward with model uncertainty (columns 3–4) while
MAOP only gained 0.39 (column 6). APC showed no reward gain
with model uncertainty as shown in the table (column 5).

In these small domains, the average reward in MODERN was
similar regardless of the markup rate (columns 3–4, 7–8, and 11–
12). Indeed, without carefully tuning κ (e.g., κ=1.0), MODERN’s
rewards were still statistically significantly higher than others.

The results in Table 2 show that even though MODERN uses ex-
ponentially smaller models, it achieves significantly higher reward,
and Table 3 reveals why. Rows show different communication cost
and columns display the number of messages for each algorithm in
different domains. For example, in the 1×5 grid domain, MOD-
ERN (column 2) used more communications than other algorithms
(columns 3 and 4). Comparing MODERN and APC, MODERN
communicates significantly more messages, paying the high com-
munication cost but achieving higher returns. However, APC very
rarely communicates, relying on its full GrowTree to perform a co-
ordinated joint action. MODERN communicates more because it
anticipates higher expected reward after performing a sync; with
more conservative communications APC fails to anticipate them.
As a result, agents in APC are fully coordinated, but are only able
to perform the least harmful joint action (e.g., move). On the other
hand, agents in MODERN can realize that they are at the joint lo-
cation via communication and then achieve higher reward by per-
forming the joint task.

6.3 Comparison: Runtime

Figure 3: Scale-up: T

Here, we compare the
average (execution) run-
time per agent of the
algorithms. MODERN
used 10 belief nodes for
the bounded pruning (for
small domains, this limit
was never reached). Com-
munication cost was 5% of
the expected utility. The
maximum runtime per trial
was set to 1,800 seconds.
As shown in Table 4, all
algorithms showed similar
results in the tiger domain. In small 1×5 and 2×3 grid domains,
MODERN and APC took similar amounts of time. The runtime of
MAOP was 1.39–1.89 times that of MODERN’s runtime in both
domains, where this difference was statistically significant (via t-
tests, p<0.01). We also tested the algorithms in a scaled-up 2×3
grid domain with longer time horizon (T=5). MAOP was not able
to finish running within the time limit. APC uses a particle filtering
technique to improve speed, but even with only one particle, APC
took about more than half hour to finish a trial, exceeding the time
limit, whereas MODERN took less than 125 seconds.

We then ran experiments in the larger grid domain with increased
time horizons. Figure 3 shows the runtime on the y-axis and the
time horizon on the x-axis. We tested the algorithm under two dif-
ferent communication costs: 5% (low) and 50% (high). MAOP

(a) Scaled-up Grid domain (b) Dec-Tiger domain
Figure 4: Benefit of the markup function: three communication
costs are tested per domain.

Table 4: Runtime Comparison in Different Domains (sec)
MODERN APC MAOP

Dec-Tiger (T=3) 0.0012 0.0018 0.0014
1×5 Grid (T=3) 12.02 11.68 22.76
2×3 Grid (T=3) 20.02 21.54 27.77

Scaled-up 2×3 Grid (T=5) 124.14 - -

and APC (with 1 particle) could not solve the problem within the
given time limit for even the shortest time horizon — while MOD-
ERN took significantly less time than other algorithms. As the time
horizon increased, MODERN obtained higher rewards (from 9.8 to
15.7), since there was more time for agents to recover from any
failed actions. With σ=50%, MODERN took more time than with
σ=5%, although still scaling linearly with time horizon.

6.4 Evaluating the Impact of Markup
We now show how the markup function, f(κ, t), impacts the

performance with respect to the markup rate, κ. This allows us
to provide guidelines on selecting an appropriate κ. To that end,
we answer the following three questions, which explain important
properties of f(κ, t).

First, does the markup function help? In this set of experiments,
time horizon was set to 5 in the grid domain and 6 in the tiger
domain. f(κ, t) = κt was used for the markup function. In Fig-
ure 4, κ=1.0 represents the result without the markup function. As
shown in the figure, when communication cost was low (5%), the
markup function did not impact the performance in both domains.
Thus, even though we varied κ value (x-axis in Figure 4), the so-
lution quality (y-axis) was roughly same. However, as communi-
cation cost increased (≥ 20%), the grid domain started showing
noticeable differences according to κ (Figure 4(a)). Specifically,
there was up to two-fold improvement in expected reward with the
markup function when communication cost was 20% in the grid do-
main, and the markup function improved the performance by about
50% when communication cost was 50%. The solution quality in
the tiger domain was not affected by the markup function — the
benefit by the mark up function in reward was less than 1% (Fig-
ure 4(b)). Thus, when communication cost is high, if the frequency
of trigger points is low (i.e., a sparse-interaction domain as in the
grid domain), there is significant benefit to marking up as compared
to the results in a tightly coupled domain that has high frequency
of trigger points.

Second, what markup value, κ, would be reasonable? As shown
in Figure 4(a), when κ=1.25, MODERN performed best. This oc-
curs because the markup function with different κ values results
in different number of messages (y-axis in Figure 5(a)). In other
words, when κ=1.25, it caused the right amount of communication
for coordination. Note that 1.0<κ<1.5 other than 1.25 does not de-

(a) Number of messages (b) Scale-up: T
Figure 5: Effects by different markup functions

grade the overall performance, and even if κ is randomly selected
between 1.0 and 1.5, it outperforms existing methods.

To justify the guideline in Table 1, we analyze the results shown
in Figure 4. Figure 4 shows that marking up did not impact
the overall performance when communication cost was low (5%),
regardless of the domain properties. However, in the grid do-
main (Figure 4(a)), when communication cost increased (≥ 20%),
the markup function with 1.0<κ<1.5 improved the overall perfor-
mance. κ can increase up to 2.0 when σ is medium (20%), but
overestimating (κ ≥2.0) can degrade the performance when σ is
not low (≥ 20%). In the tiger domain (Figure 4(b)), when σ was
medium (20%), the markup function did not impact the overall per-
formance. When σ was high (50%) and 1.0<κ<1.5, the markup
function did not impact the performance, but when κ ≥1.5, it
caused slight degradation in total reward. These experimental re-
sults support our heuristic selection of κ in Table 1.

Lastly, we now ask how the markup function works as we scale
up the time horizon. This set of experiments were tested at σ=50%
with κ=1.25 and the exponential markup function. As shown in
Figure 5(b), average reward difference with and without the markup
function (y-axis) increased as time horizon was scaled up (x-axis).
This is because when communication cost is high, there are more
chances not to communicate for longer time steps as the time hori-
zon increases, which increases uncertainty among team members.

6.5 Evaluating Trigger Points
Figure 6(a) shows the runtime of MODERN with and without

selective reasoning: the x-axis is the time horizon and the y-axis is
runtime in seconds. As shown in the result, MODERN can speedup
runtime by over 300% using trigger points. In particular, the av-
erage number of trigger points for T=8 was about 2.6 (see Fig-
ure 6(b)). This means MODERN only reasons about communica-
tion for about 1/3 of the total time steps, which leads to roughly
three-fold improvement in runtime.

(a) (b)
Figure 6: Runtime improvement by selective reasoning

7. CONCLUSION
This paper aims to open a new area of research for DEC-

POMDPs: in many real-world domains, we will not have a per-
fect model of the world, and hence DEC-POMDPs must address
such model uncertainty. To combat such model uncertainty, we
presented a new framework called MODERN that simplifies DEC-
POMDP planning (significantly reducing its complexity) and in-
stead relies on agents’ execution-time reasoning. There are three
major new ideas in MODERN’s execution time reasoning. MOD-
ERN: (i) avoids excessive reliance on a complete model by main-
taining an approximate model of other agents by bounded prun-
ing, resulting in exponentially smaller beliefs, (ii) reduces compu-
tational burden by exploiting BDI teamwork and sparse interactions
between agents to limit reasoning about communication, and (iii)
marks up the expected gain in utility to reduce uncertainty among
team members by boosting communication. We justified our design
decisions in MODERN through an empirical evaluation that con-
siders several factors including communication costs and markup
rates in different domains. We showed that MODERN can provide
solutions much faster than existing algorithms while achieving sig-
nificantly superior solution quality.

8. REFERENCES
[1] D. S. Bernstein, S. Zilberstein, and N. Immerman. The

complexity of decentralized control of markov decision
processes. In UAI, 2000.

[2] C. V. Goldman and S. Zilberstein. Optimizing information
exchange in cooperative multi-agent systems. In AAMAS,
2003.

[3] B. Grosz and S. Kraus. Collaborative plans for complex
group actions. Artificial lntelligence, 86:269–358, 1996.

[4] R. Jaulmes, J. Pineau, and D. Precup. A formal framework
for robot learning and control under model uncertainty. In
ICRA, 2007.

[5] L. Kaelbling, M. Littman, and A. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial
Intelligence, 101:99–134, 1998.

[6] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting
together. In AAAI, 1990.

[7] R. Nair, M. Yokoo, M. Roth, and M. Tambe. Communication
for improving policy computation in distributed POMDPs. In
AAMAS, 2004.

[8] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing teamwork
theories and models. JAIR, 16:389–423, 2002.

[9] M. Roth, R. Simmons, and M. Veloso. Reasoning about joint
beliefs for execution-time communication decisions. In
AAMAS, 2005.

[10] S. Seuken and S. Zilberstein. Formal models and algorithms
for decentralized decision making under uncertainty. In
AAMAS, 2008.

[11] M. Tambe. Towards flexible teamwork. JAIR, 7:83–124,
1997.

[12] S. A. Williamson, E. H. Gerding, and N. R. Jennings.
Reward shaping for valuing communications during
multi-agent coordination. In AAMAS, 2009.

[13] F. Wu, S. Zilberstein, and X. Chen. Multi-agent online
planning with communication. In ICAPS, 2009.

[14] P. Xuan and V. Lesser. Multi-agent policies: from centralized
ones to decentralized ones. In AAMAS, 2002.

