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Abstract

Entry control is an important security measure that prevents undesired persons from entering secure areas.
The advanced risk analysis presented in this paper makes it possible to distinguish between acceptable and
unacceptable entries, based on several entry sensors, such as fingerprint readers, and intelligent methods that
learn behavior from previous entries. We have extended the intelligent layer in two ways: first, by adding
a meta-learning layer that combines the output of specific intelligent modules, and second, by constructing
a Bayesian network to integrate the predictions of the learning and meta-learning modules. The obtained
results represent an important improvement in detecting security attacks.
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1. Introduction

The safety and integrity of buildings and systems
have become more important due to the increased
threat of terrorist attacks, system intrusions and frauds.
An important security requirement is to ensure effec-
tive entry controls that prevent unauthorized persons
from accessing specific areas.

The general approach is to combine a two-stage
security check: the identification stage, where the
user introduces his/her identity; and the verification
stage, based on a password and/or one or more sig-
nals derived from physical traits, such as fingerprint,
voice, iris or written signature. Although widely used,
entry control has certain weaknesses in the real world.
Classic security methods fail to recognize an unautho-
rized access if, for example, an identification card is
stolen, a fingerprint is faked or an employee is forced
to open the door to unauthorized persons. Further-
more, a human supervisor or guard is not able to ef-
fectively control a variety of access points for several
hours and can be fooled even by simple tricks. How-
ever, advanced, intelligent, access-control systems of-
fer the promise of improved performance at a reason-
able cost.
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A common practice in most reported studies is
to improve the two-stage security by (1) using ad-
vanced biometric methods (Wahyudi and Syazilawati,
2007; Wong and Ho, 2009; Sun and Tien, 2008), (2)
analyzing behavior (Zhang et al., 2007; Lin et al.,
2009; Quah and Sriganesh, 2008; Alexandre, 1997;
Wilson, 2006; Stephen and Petropoulakis, 2005; De-
pren et al., 2005) or (3) using multiple sensors in or-
der to combine them into a single, reliable estimation
(Lamborn and Williams, 2006; Bontempi and Borgne,
2005; Fierrez-Aguilar et al., 2005). In all the studies
referenced above, the methods successfully reduced
the risk of intrusion, although each approach was fo-
cused on one specific viewpoint. However, recent re-
search efforts have focused on meta-learning (Brazdil
et al., 2009; Vilalta and Drissi, 2002; Wang, 1997).
The basic objective is to take into consideration var-
ious aspects and hypothesis about an event and the
environment in order to construct a situational aware-
ness and then, on this basis, make a reliable risk es-
timation.

This paper presents a hierarchical framework for
an intelligent, probabilistic, risk analysis in access
control offering a real-time evaluation and explana-
tion. The framework upgrades classic access-control
systems with an arbitrary number of sensors, e.g.,
biometric or other sensors for identification, and in-
telligent verification based on user behavior. In the
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first stage an arbitrary number of intelligent modules
is utilized, where each module analyzes the user be-
havior from different viewpoints and performs its own
risk analysis. In the second stage of learning the mod-
ules are aggregated into meta-modules. The anal-
yses of the modules and the meta-modules are inte-
grated into the third stage and the overall event prob-
ability is evaluated. The basic assumptions of this
approach are that (1) user behavior rarely changes
significantly over time, and (2) combined methods
are much harder to bypass than a single sensor or
method.

The rest of this paper is structured as follows.
Related work is described in detail in Section 2. The
general structure of the proposed framework is pre-
sented in Section 3, while Section 4 describes the in-
dividual modules and the final integration in detail.
Section 5 presents the experimental evaluation and
results with an on-line adversary test. Finally, Sec-
tion 6 summarizes the work done and concludes the
paper with a discussion.

2. Related Work

Research efforts dedicated to enhanced security
in access control can be classified into a few large
groups. In this review we examine three selected ap-
proaches: advanced biometric methods (e.g., voice
and face recognition), behavior analysis, and combi-
nations of various sensors.

The first approach is based on advanced, biomet-
ric sensors. Wahyudi and Syazilawati (2007), for ex-
ample, presented a verification based on speech analy-
sis. They constructed voice-based models for autho-
rized persons and performed the identification with
an adaptive network-based fuzzy-inference system. In
a similar way, Wong and Ho (2009) and Sun and Tien
(2008) focused on face recognition. Various facial fea-
tures were extracted from video, saved in a database
and compared with a new entry. The authors report
an accuracy of over 90 %.

The second approach is focused on behavior anal-
yses of two kinds: analyzing video sequences (e.g.,
from a surveillance camera) and analyzing transac-
tions and logs. Zhang et al. (2007) proposed a system
for a visual analysis of human motion from a video
sequence, which recognizes unusual behavior based
on walking trajectories, namely treading tracks. Two
types of line shapes were studied: the closed curve
and the spiral line. If somebody’s treading track

takes on one of these shapes, this person wanders
around and is, therefore, suspicious. Lin et al. (2009)
described a video surveillance system based on color
features, distance features and a count feature, where
evolutionary techniques are used to measure the ob-
servation similarity. The system tracks each person
and classifies their behavior by analyzing their tra-
jectory patterns. This is performed with a hybrid
genetic algorithm that uses a Gaussian synapse.

In contrast to the video-based methods, analyzing
transactions and logs detects unwanted attempts at
accessing systems mainly through a network. Quah
and Sriganesh (2008), for example, presented an ap-
proach to online-banking fraud detection based on
users’ spending behaviors. Their approach makes use
of a self-organization map to learn users’ spending
patterns, while neural networks are used for filter-
ing any unusual events and analyzing the user be-
havior in order to detect fraud. In addition, Alexan-
dre (1997) proposed a system based on the behavior
recognition of a keyboard signature, which is more
difficult to copy or fake than a fingerprint or a smart
card. The presented technique implements a neural
network, which is evaluated in terms of efficiency and
performance.

In the third approach, the outputs of different sen-
sors can be combined using data-mining techniques.
Lamborn and Williams (2006) introduced an intel-
ligent system that consists of several heterogeneous
sensors. These sensors are divided into clusters ac-
cording to their GPS location using self-organizing
maps. The outputs from the sensors are classified
into each cluster and a voting algorithm is used for to
compute the final classification. Several data-mining
methods were tested for the cluster classification, e.g.,
k-nearest neighbors, neural networks and support vec-
tor machines. A similar system was presented by
Bontempi and Borgne (2005). In addition, Fierrez-
Aguilar et al. (2005) introduced the idea of exploit-
ing user-specific parameters in multimodal biomet-
rics. They proposed an adapted learning scheme that
consisted of local learning (user-dependent) and global
learning (user-independent), and both results were
fused with weighted voting. The authors reported
that the adapted learning outperformed the results
from single learning.

In summary, the described approaches use state-
of-the-art methods that successfully reduce the risk of
intrusion. They use additional biometric sensors and
behavior analyses as upgrades to classic access con-
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trol. Our approach is a further step in combining an
arbitrary number of methods in three stages. Simi-
lar to Lamborn and Williams (2006), our system con-
structs a situational awareness from different sensors,
but in contrast to their method, the outputs of the in-
telligent modules are assembled using meta-learning,
on top of which the final reasoning is performed with
a Bayesian network. In addition, the intelligent mod-
ules utilize both user-specific parameters and global
knowledge in a similar way to Fierrez-Aguilar et al.
(2005), but the last integration is fused proficiently.
Finally, the system is also able to explain the evalu-
ation results to a human operator and helps him/her
to understand the situation.

3. Hierarchal Mutimodal Framework

The aim of our system is to ensure increased secu-
rity in critical areas, for example, military headquar-
ters or political institutions, by detecting irregular ac-
cesses or unusual behavior at the access points, and
on this basis raising an alarm. In order to reduce the
risk of intrusion, we have designed a modular system
that relies heavily on intelligent methods.

3.1. Functional Description

The entry procedure is shown in Figure 1 and is
as follows. First, a user is identified. Next, if his/her
identity exists, the user becomes verified, which leads
to the door-lock being released in the case of a pos-
itive outcome. The verification process is performed
in two stages: the first stage is a classic biometric
verification, and the second stage is an intelligent
verification. Intelligent modules perform the entry
evaluation and suggest the proper action.

The development of our intelligent access-control
system was based on the following five requirements.
First, the system is required to monitor entries and
process evaluations in real time. Second, several ac-
cess points may need to be monitored at the same
time, taking into account a knowledge of the user’s
movement between them. Third, an arbitrary num-
ber of sensors and intelligent modules will be used,
depending on the equipment at specific access points
and the data availability. Fourth, the system is ex-
pected to be able to evaluate an entry and suggest
the proper action. Finally, the system should provide
an explanation of its evaluation in a user-friendly in-
teractive control panel. In short, the aim is to create
a system that will improve the security of the entry
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Figure 1: Entry and verification procedure.

control and help the operator to control numerous
access points effectively.

3.2. Architecture

The main architectural tasks are collecting the
data from the peripheral devices and sensors, process-
ing and analyzing this data, integrating the analyses
into a human-readable form, and displaying them to
a user with a suggestion for an appropriate action
(Figure 2).

The architecture of the system is designed in six
basic layers. In the first, hardware layer, the data
processing starts with gathering the data from vari-
ous sets of sensors at different access points, e.g., bio-
metric sensors, visual sensors or door sensors. The
sensors capture the data from the environment and
pass it on to the next layer through a controller. The
next layer stores the raw data in a database and sup-
ports the implementation of higher layers. The in-
telligent layer has three levels, consisting of various
numbers of intelligent modules and an ontology as
a special module for storing and presenting the ac-
quired knowledge. Each low-level module applies an
intelligent method to a specific data type, e.g., visual
data, temporal relations, etc. In the next level, some
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Figure 2: General architecture of the system. Our contribution
is in gray.

of the modules are gathered in meta-modules. The
final output is combined using the integration of mod-
ules and meta-modules. The last layer is the applica-
tion layer, which contains the human-readable tools,
e.g., the report generator, the decision support and
the explanation, which helps the operator to under-
stand the decisions and to manage the entry-control
points. The tools are collected in a user-friendly con-
trol panel. Our major contribution is in the intelli-
gent layer presented in Figure 2, in the gray boxes:
the modules, the meta-modules and the integration,
all the time manipulating the data in a single central
ontology.

3.3. Observing the User’s Behavior

Each human tends to perform activities in a spe-
cific way, be it on the micro or macro scale. However,
the behavior of the users in our system is actually
monitored from three different points of view. In the
first of these, denoted as the micro level, one typically
deals with behavior that changes in tenths of a sec-
ond or seconds. For example, one user always carries
his identity card in a wallet and puts the whole wallet
near the wireless identity-card reader, while another
user carries her card in a handbag and requires some
time to take it out, identify herself, and put the card
back. The user’s movement around the access point
depends on his/her habits and mental/physical state.
These facts determine the users’ patterns at the micro
level.

The second viewpoint, denoted as the macro level,
describes the users’ daily routines. The activities of
interest are the arrival times at access points, the
movements between various access points in the access-
control network, and even the connections between
users, e.g., user A often enters a short time after user
B. The time scale used at the macro level can vary
from seconds to months.

The third viewpoint, denoted as the visual level,
captures the users’ visual movement at an access point
using a camera. It is also focused on micro-level
movements, i.e., behavior that changes over a short
time interval, but in addition to micro-level features,
it obtains features from the visual characteristics of
the user and his/her movement, e.g., the user’s height
and the door-opening dynamics.

Several rules additionally control the regular en-
try procedure, the regular working time, and the ac-
cess permissions.

3.4. Experimental Environment

To design and test our intelligent modules for ac-
cess control, we set up the experimental environment
shown in Figure 3, which consists of a single access
point protecting an office in a building. The access
point is equipped with a camera (on the ceiling), a
card reader and a fingerprint reader (on the wall near
the door), an electronic lock, and an open/close sen-
sor on the door. The input signals are collected with
a multi-channel access controller, which can be con-
nected to various peripheral devices. Such controllers
can be dynamically combined in order to ensure the
centralized data management of sensors covering a
complete access-control network. However, for our
purpose, one controller was sufficient.

When a user passes the access point, four different
times are registered:

• tc – time of card-reader acceptance,

• tf – time of fingerprint-reader acceptance,

• tdo – time of door opening,

• tdc – time of door closing.

The data is collected and written into the ontology for
additional processing by six intelligent modules. The
first module, denoted as the expert rules, detects pro-
hibited and basic undesired behavior. It uses SWRL
rules to query the system ontology (see Section 4.1).
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Figure 3: Prototype access-point configuration (camera view).
The task is to detect suspicious entries of persons, e.g., under
the influence of drugs or under the threat of a gun that is
outside the camera’s field of view.

The second module, micro learning, learns the pat-
terns of user behavior during the entry at the micro
level. The learning is performed with a local outlier-
detection method (LOF) (described in more detail in
Section 4.2). The three macro-learning modules learn
the access patterns at the macro level and are then
combined at the meta-level (see Section 4.3). The
last module, visual learning, uses histograms of opti-
cal flow to detect the behavior at the visual level (see
Section 4.4).

Each module performs its own risk analysis of an
entry and then returns an evaluation with an expla-
nation. The meta-module uses basic weighted voting
based on the decisions of single modules, while the
integration module accepts the classifications of mod-
ules as observations and performs the reasoning with
a Bayesian network.

Based on the final probability, the entry is classi-
fied into one of the classes: OK, if the entry is regular,
and alarm, if the entry is irregular. The evaluations
and explanations of each module are stored in the
system ontology. The platform is presented in Fig-
ure 4.

3.5. Ontology

The modules and methods use the same or similar
data while processing, and therefore a comprehensible
presentation is required. Besides the basic relation-
ships between pieces of information, e.g., the sensor’s
value, complex representations are also required, for
example, a sensor belongs to an access point.

We have developed an ontology using the Web
Ontology Language (OWL) (Horrocks et al., 2003)
and the ontology editor Protégé (Protégé, 2009). The
ontology consists of a central part, including event
data and its classifications, and several local parts,
each of them storing the knowledge of a particular
module. The central part includes information about:

• Access points: position, security requirements
etc.

• Persons: personal details, position in a com-
pany, rooms of the building that a person has
permission to enter etc.

• Sensors: type, e.g., biometric sensor, access point
where the sensor is positioned.

• Events: person who produced the event, ac-
cess point where it was produced, sensors that
sensed the event, each module’s classification
and the final classification, and actions that can
be performed due to the evaluation.

The ontology structure ensures a knowledge of the
system and its setting in a flexible presentation. This
means that new sensors, modules and access points
can be easily added to the system.

4. Modules and Algorithms

This section describes the modules and algorithms
in more detail. In this particular implementation, we
prefer algorithms with the ability to provide as much
of an explanation as possible, but in general, it is
possible to select any learning algorithm.

4.1. Expert Rules

The first module consists of expert rules that are
defined by a security expert or a human operator.
These rules do not learn from past user behavior.
Each rule has its own adjustable parameters, enabling
the operator to create a new rule by specifying the
rule-parameter values. The rules are described in
the SWRL language (W3C, 2004) for querying data
stored in the OWL. A test over the events is per-
formed by the Jess rule engine (Friedman-Hill, 2009).

We have implemented two types of rules. If the
entry procedure is violated, the first type of rule trig-
gers an alarm independently of the other modules.
The second type of rules refers to the entry observa-
tion, e.g., “The user accessed this area more than 5
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Figure 4: Information flow in the implemented platform.

times in the past two minutes”. Instead of uncondi-
tionally triggering an alarm, each triggered rule Ri

returns a probability p(Ri) that the entry is regular.
If several second-type rules R1, . . . , Rn are triggered,
then min(p(R1), . . . , p(Rn)) is returned and the mod-
ule composes an explanation consisting of the vio-
lated rules and their parameters. Otherwise, if none
of the rules is violated, the entry is, according to the
rules, regular, and therefore the returned probability
p equals 1.

An example of the second-type SWRL rule is shown
in Figure 5. The rule queries events that occurred
between 6 PM and 7 AM and marks these events as
alarms, since events are not allowed at night.

4.2. Micro Learning

The micro-learning module learns short-term be-
havior. The attributes are calculated as three time
differences from four input times:

∆t1 = tf − tc (1)
∆t2 = tdo − tf (2)
∆t3 = tdc − tdo (3)

Each entry ei is thus represented by a triple ei =
(∆ti,1,∆ti,2, ∆ti,3). All the regular entries of a par-
ticular user form a learning set E = {e1, e2, . . . , en}.
When the user produces a new entry en+k, the mod-
ule compares it with the learning set E and returns
an outlier factor: if the new entry is similar to the

existing entries, en+k is a regular entry with a low
outlier factor, otherwise, it is an outlier with a high
outlier factor.

In our previous work (Tušar and Gams, 2006)
we examined various algorithms for outlier detection,
selected the LOF (Local Outlier Factor) (Breunig,
2001) and implemented it. The algorithm reportedly
achieves reliable performance where instances are not
uniformly distributed in the attribute space. The
LOF for a new entry ei is defined as

LOFk(ei) =
1

|ngbk(ei, E)| ∗
�

a∈ngbk(ei,E)

ldnsk(a)
ldnsk(ei)

(4)

where ngb(ei, E) is the set of k ∈ E nearest neighbors
of an instance ei, and ldnsk(a) is the local density of
an instance a and its k nearest neighbors. Intuitively,
LOFk(ei) ≤ 1 when the new instance is near an exist-
ing cluster E, and LOFk(ei) > 1 when the instance
is far from the cluster.

The final outputs of the module are the LOF
value, the probability that the entry is regular, and
a visual explanation. The probability is computed
from the LOF value using the following procedure.
Let tl < 1 denote the threshold value for regular en-
tries and let tu > 1 denote the threshold value for
irregular entries. Then, the probability p(e) that the
entry e is regular is computed as a linear combination
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event(?event_object) & swrl_end_of_testing(?event_object, ?event_swrl) &

swrlb:equal(?event_swrl, false) & card_time(?event_object, ?time_of_event) &

swrlb:greaterThan(?time_of_event, "18:00:00") &

swrlb:lessThan(?time_of_event, "7:00:00")

THEN

swrl_rules_result(?event_object, "0.0") &

swrl_rules_explanation(?event_object, ?event_swrl_explanation) &

swrlb:stringConcat(?event_swrl_explanation,

"Alarm: event time is between 18:00 and 7:00")

Figure 5: An expert-rule example written in SWRL.

of the threshold values:

p(e) =






1.0 if LOF (e) ≤ tl

0.0 if LOF (e) ≥ tu
tu−LOF (e)

tu−tl
otherwise

(5)

Since the module uses only three micro attributes,
its visualization can be presented in a 3-dimensional
space, with one dimension for each attribute. The
entries are thus presented as points, and the LOF
value of each point is represented by a color: from
red for outliers, through yellow for unclear entries,
and on to green for entries in the cluster. Figure 6
shows a cluster of entries in a learning set E (circles)
and a new entry ei (a plus).
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Figure 6: Regular entries of a particular person (circles) and a
new entry denoted as an outlier (’+’).

4.3. Macro Learning and Meta-learning

The data gathered at the macro level are used in
three modules. Two of them also exploit the data de-
rived from the micro level. The macro-level attributes
are divided into two groups describing a current en-
try and the relation between the current entry and

previous entries. The attributes from the first group
are, for example, the current time and date, the day
of the week, the date in relation to the month (i.e.,
the second Friday in the month). The second group
defines relations such as the number of previous en-
tries in the same day (for the current user), the user
who entered previously in a specific time interval, the
time of entry on the same day in the previous week,
etc. It is important to note that macro learning would
be more powerful if we had monitored more than one
access point.

The first macro module learns only from macro
attributes. The positive learning examples are the
regular entries of a user, while the negative learning
examples are the irregular entries of the user and the
entries of other users. Several machine-learning al-
gorithms were tested and, finally, decision trees were
selected – Weka’s J48 implementation of C4.5, in par-
ticular (Witten and Frank, 2005). The main benefit
of decision trees is their ability to explain a decision
after the classification occurs. The path leading from
the root to the chosen leaf is colored according to the
classification – green for regular entries and red for
alarms. The distribution of the target variable in the
chosen leaf is interpreted as the probability that the
entry is regular. The classification problem was intro-
duced as a verification, where each user has his/her
own decision tree with two possible outcomes: true,
if the claimed identity is valid, and false otherwise.

The second macro module applies the same algo-
rithm as the previous module, but uses both micro
and macro attributes. While the first macro mod-
ule considers only the behavior at the macro level
and discovers patterns, for example, “User X comes

to work on Mondays between 8.15 and 8.40 (93 %)”,
the second macro module refines these patterns by
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incorporating micro attributes.
In the third macro module, the macro and micro

attributes are used for learning with the LOF algo-
rithm. In contrast to the micro module, where the
visualization was intuitive, the large number of at-
tributes requires a different representation. For this
purpose we implemented visualization with parallel
coordinates. Each attribute is presented on one verti-
cal axis, ranging from the minimum to the maximum
normalized value. Each entry is thus represented as
a broken line intersecting the coordinates at its at-
tribute value. The line is colored according to the
entry’s LOF value: green for regular entries, yellow
for unclear entries and red otherwise. Figure 7 shows
a cluster of entries in the learning set and the new
entry as a dotted line.
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Figure 7: Multi-dimensional representation of regular entries
(thin lines) and a new entry (dotted line) classified as an alarm.
There are nine attributes with values normalized between the
min and max values.

Finally, the macro meta-module combines the clas-
sifications of all three macro modules. Then, all the
results and visualizations are written into the ontol-
ogy. In the tested prototype, only weighted voting
was implemented; however, several meta-level learn-
ing algorithms were applied later. Also, in the tested
implementation, only the macro meta-learning was
applied, but in principle, an arbitrary subgroup of
modules could be connected using meta-learners.

4.4. Visual Learning

The visual-learning module learns patterns of a
user’s movement in front of an access point from video
and classifies a new entry as either regular or not.
For this purpose a web camera with a 1.3 Mpixel
resolution and 30-fps rate was used.

When a new entry occurs, the last 30 seconds of
video are analyzed in the following steps. First, the
histograms of optical flow are computed and divided
into six segments, representing an approximation of
the body parts. Next, in each segment the prevail-
ing movement is estimated and transferred into a se-
quence of symbols. This sequence defines the digital
signature of the movement and is used for the verifi-
cation. Each user has a learning set of valid regular
entries, which are used for comparison with the new
entry signatures. Finally, the module outputs the
classification and probability that the entry is regu-
lar as a normalized result from the comparison. More
about this method can be found in Perš et al. (2007).

It should be noted that other sensor analyses such
as speech or walking patterns could be added as well.

4.5. Integration

After the expert rules, micro, macro, visual and
meta-learning have made their assessments, their re-
sults are integrated into a joint risk analysis of the
current entry. It estimates the probability of the
event E = entry is regular given the observations
of the modules. If the estimated probability does not
exceed a threshold value, an alarm is triggered. Note
that an alarm can also be triggered by expert rules
when there is sufficient certainty (type 1 rules).

The reasoning in the prototype system is per-
formed with a Bayesian network, structured as shown
in Figure 8. Four modules have a direct impact on
the event E, i.e., expert rules, micro learning and
visual learning, and a macro meta-learning module,
while the macro meta-learning module depends only
on the three macro modules. The probabilities in
the network are computed from the test data, using
the m-estimate for conditional probabilities and the
Laplace estimate for a-priori probabilities.
















Figure 8: Bayesian network used for the reasoning.
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The integration proceeds in three steps. Firstly,
the output from each module is converted to inter-
val the [0, 1] representing the a-posterior probability
pMi that the entry is regular. Secondly, given the
Bayesian network N and the probabilities pMi , the
estimated probability of an event E is computed from
the network.

Finally, the integration module outputs the joint
analysis as a probability that the entry is regular and
provides an explanation. According to the threshold
values, the integration module triggers alarm or OK

and stores the results in the ontology. In high-security
areas, the cost of a false alarm is negligible compared
to the cost of an unrecognized intruder; therefore, the
system is set to minimize the latter.

5. Experimental Results

An experimental verification was performed in the
prototype environment as described in Section 3.4.
It consisted of a learning and an evaluation phase.
In this paper we report on one learning and three
evaluation experiments.

5.1. Learning Phase

In the learning phase, four people were recorded
accessing the system. Each individual completed 40
regular entries that were used as positive learning ex-
amples. The negative learning examples for one in-
dividual were the entries of the other three people.
We built decision trees for the macro modules, con-
structed learning sets for the LOF algorithm in the
micro and macro module and a comparison set for
the visual learning module, and adjusted the system
parameters. After the learning was completed, the
system was ready to operate.

5.2. Evaluation Phase

In the evaluation phase, we performed three ex-
periments: two with simulated entries and one real-
time experiment with security experts.

The first two experiments were performed off-line
with simulated tests. The focus was on a fake-identity

scenario, where an adversary has stolen an employee’s
identity. We recorded the regular entries of four peo-
ple in the role of an employee (the system already
knew them) and three people in the role of an intruder
(new to the system). Each user made 31 regular en-
tries, serving as the testing examples. Both experi-
ments were tested without the visual learning since

it did not allow testing in the off-line mode. Conse-
quently, the Bayesian network for the integration was
slightly changed, omitting the visual-learning mod-
ule. The experiments were run on already-learned
and tuned modules from the first phase, while the
probabilities in the Bayesian network were obtained
with a 10-fold-cross validation.

In the first experiment the identities of the em-
ployees were swapped. We took four employees that
were known to the system and shuffled their identi-
ties in order to simulate a scenario where an employee
hands over his/her identity. The dataset contained
496 examples with a distribution of 75.00 % negative
examples (fake identity).

The performance of the system and the modules
in the first experiment is presented in Table 1. The
first two columns represent irregular entries, where
the identity of the employees was swapped, and regu-
lar entries with the correct identity of the employees.
Each number denotes an accuracy, e.g., the left-most
number represents the percentage of irregular entries
that were predicted as regular by the expert rules.
The last column presents the overall accuracy of a
module. The system achieved an overall accuracy of
95.77 %. The expert rules always predicted OK, be-
cause all the entries were formally regular according
to the entry procedure. The micro learning performed
well in detecting both irregular and regular entries,
while the macro learning had 10.08 % more mistakes.
The high accuracy of the micro module was expected
because it is relatively easy to distinguish the move-
ment of a couple of people given sufficient learning
examples.

In the second experiment we used the entries of
the intruders, which were unknown to the system,
and assigned them the identities of the employees.
In this way we simulated a stolen-identity scenario.
The dataset had 496 examples with a distribution of
75.00 % negative examples.

The measurements on the second dataset are shown
in Table 2. The system achieved an overall accuracy
of 96.57 %. In contrast to the results in Table 1, where
macro learning classified 16.13 % false positives, the
number of false positives in Table 2 is only 1.88 %.
However, the trend in the micro learning is just the
opposite; the overall accuracy is comparable in both
datasets. The decline in the micro-learning perfor-
mance was to be expected, since it is more difficult
to classify new, unseen behavior than to distinguish
between the known cases.
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Scenarios
Modules Irregular entries Regular entries Overall

OK alarm OK alarm Accuracy
Expert rules 100.00 % 0.00 % 100.00 % 0.00 % 25.00 %

Micro learning 5.91 % 94.09 % 92.74 % 7.26 % 93.75 %
Macro learning 16.13 % 83.87 % 83.06 % 16.94 % 83.67 %

Integration 1.08 % 98.92 % 86.29 % 13.71 % 95.77 %

Table 1: System and module performance in the off-line swapped-identity experiment with four employees only.

Scenarios
Modules Irregular entries Regular entries Overall

OK alarm OK alarm Accuracy
Expert rules 100.00 % 0.00 % 100.00 % 0.00 % 25.00 %

Micro learning 22.04 % 77.96 % 92.74 % 7.26 % 81.65 %
Macro learning 1.88 % 98.12 % 82.26 % 17.74 % 94.15 %

Integration 0.00 % 100.00 % 86.29 % 13.71 % 96.57 %

Table 2: System and module performance in the off-line stolen-identity experiment with four employees and three intruders.

Scenarios
Modules Irregular entries Regular entries Overall

OK alarm failed OK alarm Accuracy
Expert rules 84.44 % 15.56 % 0.00 % 100.00 % 0.00 % 36.67 %

Micro learning 0.00 % 88.89 % 11.11 % 93.33 % 6.67 % 90.00 %
Macro learning 0.00 % 88.89 % 11.11 % 86.67 % 13.33 % 88.33 %
Visual learning 8.89 % 88.89 % 4.44 % 73.33 % 26.67 % 85.00 %

Integration 0.00 % 100.00 % 0.00 % 86.67 % 13.33 % 96.67 %

Table 3: System and module performance in the experiments with four employees and four security experts in a role of intruder.

In the third, most relevant, experiment, we in-
vited security experts from the Slovenian Ministry of
Defense to test the system with an on-line simula-
tion of various security attacks. For the purpose of
scientific experimentation, the following eight scenar-
ios were proposed, tested and executed on-line by the
experts:

1. regular entry: a user enters normally;
2. unusual time: the time of access is out of normal

working hours or on a non-working day;
3. multiple entries: a user regularly accesses a se-

cure room several times in a short period of
time;

4. unusual behavior: a user is under threat or in
a strange state of mind;

5. tailgating: two persons access a secure room
using a single identity;

6. burglary: an attacker disables the hardware pro-
tection by force;

7. fake identity: an attacker accesses a secure room
with a stolen identity card and a forged finger-
print;

8. kidnapping: an attacker forces an employee to
enable access to a secure room.

Each scenario was imitated several times by different
users and in a different order, as requested by the
security experts. In total, 45 irregular entries and 15
regular entries were performed. The video learning
module was active.

The results described in Table 3 are separated into
two groups: regular entries (scenario 1) and irregular
entries (scenarios 2-8). The numbers show the per-
centage of test examples that were classified as OK,
alarm or failed by the corresponding module. The
classification may fail due to the disabling of sensors
(e.g., the burglary scenario).

The system achieved an overall accuracy of 96.67 %,
identifying all the irregular entries and being too sus-
picious of two regular entries. Once again, the expert
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rules classified with a low accuracy (36.67 %), but
when an entry was classified as an alarm, it was in-
deed so. The rules were also more robust compared to
the other modules, which, for example, failed to rec-
ognize the burglary scenario. The micro- and macro-
learning modules recognized the irregular entries with
the same accuracy, but macro learning made more
mistakes when classifying the regular entries. It should
be noted that all the tests were performed within two
hours, which is not well suited to macro learning.
The visual learning was slightly more robust than the
learning modules, but achieved a lower accuracy.

6. Discussion and Conclusion

We have designed a modular, intelligent system
for analyzing the risk at access points. The system, in
principle, combines an arbitrary number of intelligent
modules on top of an arbitrary number of physical
devices. The emphasis is on modeling the behavior
of the regular user and estimating the risk that a
new entry is not regular, based on meta-learning and
integration.

In a practical evaluation1 we presented three ex-
periments, which demonstrated encouraging results.
It was clear that each module has its own strong and
weak points. However, an advanced combination and
integration overcomes the individual weaknesses and
combines different aspects into a reliable risk eval-
uation. For example, if we had used only the best
module (micro learning) in the third experiment, the
achieved accuracy would be 90.00 %, while the default
accuracy (which is rather meaningless) was 75.00 %.
The accuracy of the integrated system was 96.67 %.

In each system there is a fine line between being
too sensitive and not being sensitive enough to small
changes in behavior. Although some of the meth-
ods, e.g., the Bayesian network, are quite robust, any
practical application needs some fine tuning of the
system parameters. One of the first major bench-
marks painfully reminded us of the difference between
a laboratory test and a field test, i.e., one of the early
versions of the system was able to successfully dis-
tinguish between normal users, but security experts
found a way to trick the intelligent modules. Only af-
ter incorporating some modifications, the system was

1A short video of the third experiment is available online:
http://www.youtube.com/watch?v=BNDgfFRQkU4.

able to cope with human expertise, as presented in
Table 3.

One of the drawbacks of the system is that it re-
quires a learning procedure: the system can be used
only after a certain amount of regular accesses have
been made. Furthermore, if a person changes behav-
ior, e.g., due to an injury, the learning must start
anew. Further work on the system must include a
mechanism for continuous learning and adaptation to
the user over time.

The complex methods implemented seem to be
excessive for a simple commercial application. In its
current form the system is more appropriate for high-
security areas. Namely, the joint-verification meth-
ods turned out to be very hard to bypass. A single
method can be fooled relatively easily, but deceiving
different methods within a normal time interval is a
much harder task.

In summary, intelligent risk analysis at an access
point represents an improvement in terms of risk anal-
ysis and has the potential to demonstrate this in real-
time applications.
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