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A significant body of work exists on effectively allowing multiple agents to coordi-
nate to achieve a shared goal. In particular, a growing body of work in the Distributed
Constraint Optimization (DCOP) framework enables such coordination with different
amounts of teamwork. Such algorithms can implicitly or explicitly trade-off improved
solution quality with increased communication and computation requirements. How-
ever, the DCOP framework is limited to planning problems; DCOP agents must have
complete and accurate knowledge about the reward function at plan time.

We extend the DCOP framework, defining the Distributed Coordination of Explo-
ration and Exploitation (DCEE) problem class to address real-world problems, such as
ad-hoc wireless network optimization, via multiple novel algorithms. DCEE algorithms
differ from DCOP algorithms in that they (1) are limited to a finite number of actions
in a single trial, (2) attempt to maximize the on-line, rather than final, reward, (3) are
unable to exhaustively explore all possible actions, and (4) may have knowledge about
the distribution of rewards in the environment, but not the rewards themselves. Thus, a
DCEE problem is not a type of planning problem, as DCEE algorithms must carefully
balance and coordinate multiple agents’ exploration and exploitation.

Two classes of algorithms are introduced: static estimation algorithms perform sim-
ple calculations that allow agents to either stay or explore, and balanced exploration
algorithms use knowledge about the distribution of the rewards and the time remaining
in an experiment to decide whether to stay, explore, or (in some algorithms) backtrack to
a previous location. These two classes of DCEE algorithms are compared in simulation
and on physical robots in a complex mobile ad-hoc wireless network setting. Contrary
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to our expectations, we found that increasing teamwork in DCEE algorithms may lower
team performance. In contrast, agents running DCOP algorithms improve their reward

as teamwork increases. We term this previously unknown phenomenon the team uncer-
tainty penalty, analyze it in both simulation and on robots, and present techniques to
ameliorate the penalty.

Keywords: Cooperative multi-agent systems, Exploration, Optimization, Distributed
Constraint Optimization (DCOP), Distributed Coordination of Exploration and Ex-
ploitation (DCEE)

1. Introduction

As physical and virtual agent technology gains in popularity, robust teamwork rea-

soning becomes increasingly important. Consider, for instance, a team of robots that

must collaborate to achieve some goal. At one extreme, all agents could pool their

observations on every timestep and the leader could calculate and communicate an

action for each agent. At the other extreme, every agent could act independently,

taking only its own observations and action into account, ignoring other agents’

knowledge. This article investigates an intermediate solution: agents reason in a

distributed, rather than centralized, manner and agents make decisions based on a

subset of the team’s observations.

One currently popular approach to addressing such distributed problems is

to frame tasks within the Distributed Constraint Optimization Problem (DCOP)

framework [52, 26, 30, 15, 54, 5]. In a DCOP, cooperative agents coordinate to

maximize a team reward. Examples include multiagent plan coordination [8], sen-

sor networks [23], and directing autonomous vehicles to survey underwater struc-

tures [53]. Because the utility of an agent’s action depends on the actions of others,

agents must coordinate their individual actions to achieve joint goals and differ-

ent algorithms may use different levels of teamwork.a One potentially significant

shortcoming of the DCOP framework is that it assumes the team’s reward function

is fully and perfectly known – DCOP agents plan off-line what actions to take.

However, in many real-world multi-agent domains, a full model of the system is

not known a priori and must instead be learned (e.g., any time the full model is

unknown, such as when using ad-hoc teams for disaster response [39, 44], in multi-

agent exploration scenarios [28, 46], or for multi-agent security [38, 1] against an

unknown adversary).

This article presents the Distributed Coordination of Exploration and Exploita-

tion (DCEE) framework, significantly extending the DCOP framework, so that

agents can balance exploration with exploitation in a cooperative multi-agent sys-

aThis paper focuses on cooperative multi-agent problems where all agents may be considered
part of a single team as they share a common reward function. However, we use the term “level of
teamwork” to refer to the amount of coordination among agents, reflected in how much information
they share, how they coordinate actions, and how many agents may simultaneously perform a joint
action. More precisely, higher level of teamwork will refer to higher values of k in the k-optimal
and k-movement algorithm frameworks, as discussed in Sections 2.1 and 2.2.
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tem. Unlike DCOPs, in a DCEE,

(1) there is a fixed number of actions agents can execute within a single trial,

(2) the agents attempt to maximize the on-line, cumulative reward within this fixed

number of actions,

(3) the cross product of all of its possible actions cannot be fully explored within a

given trial (in fact, a single agent may not even be able to explore all possible

actions, such as when the action space is continuous), and

(4) agents may have prior knowledge about the distribution of possible rewards,

but must explore the environment to sample the reward function.

These challenges disallow direct application of current DCOP algorithms as they

implicitly assume knowledge of the full payoff matrix. Furthermore, time constraints

disallow using a globally optimal algorithm as agents cannot fully explore their

environment. This paper introduces and analyzes a family of novel DCEE algorithms

to address these challenges, based on both decision theoretic exploration strategies

and simpler “static estimation” strategies. These algorithms are based on two key

ideas: (1) exploration and exploitation are interleaved and (2) different settings may

require different exploration strategies.

A significant body of work in multiagent systems over more than two decades

has focused on teamwork [16, 24, 43]. If cooperative agents can efficiently make

joint decisions, so the common wisdom goes, the team as a whole will only ben-

efit [48] — provided the increased coordination and communication overheads do

not overwhelm the agents. This has been shown multiple times in the DCOP frame-

work [25, 34]: as agents share more information and collaboratively calculate joint

actions, the team reward increases at the cost of higher communication and com-

putation. In the DCEE framework, we have discovered that this is not always the

case; in some algorithms and in some situations, increasing the amount of team-

work can actually decrease the reward obtained by the team. Investigations in both

simulation and on robots show the presence of the team uncertainty penalty, where

joint decisions by a team of agents acting under uncertain conditions can lead to

a significant degradation in team performance, relative to agents acting with less

coordination. Contrary to popular wisdom, the problem is not the cost of increased

communication or computation in service of the joint decision; the problem stems

from the joint decision itself in the presence of uncertainty.

This article has several contributions,b including:

bThis article summarizes and extends a pair of papers presented at the IJCAI [18] and AAMAS [45]
conferences. The most significant additions and extensions are (1) a more detailed explanations of
the DCEE algorithms, (2) additional robotic experiments, (3) a comparison to the DSA algorithm,
(4) the release of our simulator and robotic source code, (5) a significantly expanded investigation
of the team uncertainty penalty, (6) additional discussion of algorithms that reduce the team
uncertainty penalty, including the novel SE-i-1 and BE-i-1 algorithms, and (7) expanded related
and future work sections.
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• formulating the DCEE problem,

• introducing two classes of algorithms designed to maximize the team reward

under different amounts of domain knowledge and agent capabilities,

• incorporating different levels of teamwork into these algorithms,

• empirically analyzing the trade-offs of these algorithms in both simulation and

on physical robots,

• presenting empirical investigations of the team uncertainty penalty, and

• introducing and empirically evaluating additional algorithms designed to ame-

liorate the penalty.

The remainder of the article is organized as follows. Section 2 provides background

information on DCOP algorithms, presents the DCEE formulation, and introduces

the motivating domain for this article in both a simulated and physical environment.

Section 3 presents an artificial “omniscient” algorithm and two sets of algorithms

for DCEE agents. Both the static estimation and balanced exploration algorithms

are designed to be compatible with different amounts of teamwork (i.e., amounts

of partial centralization). Results in the simulated and physical domains are de-

tailed in Sections 4 and 5, including those that clearly demonstrate the team un-

certainty penalty. Section 6 introduces two algorithmic modifications to ameliorate

the penalty in static estimation and balanced exploration algorithms. Related work

is discussed in Section 7. Section 8 discusses future work and concludes the article.

2. Problem Description

This section of the article first presents background on DCOPs and then Section 2.2

details the DCEE problem formulation. Section 2.3 defines the mobile ad-hoc wire-

less network optimization task in both simulation and for physical robots, which is

used as a testbed for DCEE algorithms.

2.1. DCOP

In DCOP problems, cooperative agents attempt to maximize a global reward func-

tion by changing local variables to optimize constraints, which may be considered an

extension of the older distributed constraint satisfaction problem [49, 50]. Variable

settings are only observable by the agent that controls the variable and constraints

are only observed by the agents sharing the constraint.

More formally, a DCOP consists of a set V of n variables, {x1, x2, . . . , xn},

assigned to a set of agents. We assume that each agent controls one variable’s

assignment for simplicity of exposition, but an agent may control more than one

variable in the general case. Variable xi can take on any value from the discrete finite

domain Di. The goal is to choose values for the variables such that the sum over a

set of constraintsc and associated payoff or reward functions, fij : Di ×Dj → ℜ, is

cFor exposition purposes, we will assume that the constraints are binary, but n-ary constraints are
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maximized. Specifically the goal is for the team to find an assignment of variables,

A, such that F (A) is maximized.

F (A) =
∑

xi,xj∈V

fij(di, dj), where di ∈ Di, dj ∈ Dj , and (xi ← di, xj ← dj) ∈ A.

For example, in Figure 1, x1, x2, and x3 are variables, each with a domain of

{0,1}, and the reward function is as shown. If agents 2 and 3 choose the value 1,

the agent pair receives a reward of 9. If agent 1 chooses value 1 as well, the total

solution quality of this assignment is 12, which is locally optimal as no single agent

can change its value to improve its own reward (and that of the entire DCOP).

F ((x1 ← 0), (x2 ← 0), (x3 ← 0)) = 22 and is globally optimal.

x 2

x 1
1

0 1
0

3
7 2
2

x 2

x 3

0
1

0 1

9
2

2
15

2 31

R2,3R1,2

Fig. 1: This figure depicts a three-agent DCOP. Each agent can select a value for its
variable and the instantaneous global reward depends on pairs of agents’ selected values.

Significant progress has been made in the design and analysis of globally optimal

DCOP algorithms [26, 30, 35, 27]. However, given that DCOPs are NP-Hard [30],

“complete” algorithms that find optimal solutions require significant communication

and computation overhead, motivating the need for “incomplete” algorithms that

find locally optimal configurations. Such locally optimal solutions enable DCOPs

to scale to significantly larger tasks [52, 33].

While there are multiple classes of incomplete algorithms (c.f., Vinyals et

al. [47]), we focus on the class termed k-optimal [25, 34]. k-optimal algorithms

allow k agents to coordinate variable changes at any given time. k-optimal algo-

rithms have proven solution quality guarantees and they discover solutions where k

or fewer agents cannot change values together to improve performance. For exam-

ple, k=2 corresponds to pairs of agents taking joint actions in a DCOP, eventually

reaching a 2-optimal solution. In Figure 1, F ((x1 ← 1), (x2 ← 1), (x3 ← 1)) = 12

is a 1-optimal solution because no one agent can change its value and improve the

team reward. However, it is not a 2-optimal solution because two agents can change

their values and improve the total team reward to F ((x1 ← 1), (x2 ← 0), (x3 ← 0))

= 17.

Algorithms that use higher values of k, increasing the amount of partial central-

ization, have been proven to improve the bound on the minimum possible solution.

also possible.
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In practice, increasing k has been shown to effectively increase the team reward.

In the extreme case when k is set equal to the number of agents in the DCOP, the

algorithm essentially becomes centralized and will find the global optimum. How-

ever, increasing teamwork does require additional computation and communication

resources [25, 34].

2.2. DCEE

This section describes the Distributed Coordination of Exploration and Exploitation

(DCEE) framework, extending DCOPs along multiple dimensions. Specific DCEE

algorithms will be discussed later in Section 3.

DCEE algorithms must differ from DCOP algorithms in three novel ways as

DCEE agents:

• do not know their reward functions,

• are unable to exhaustively explore the environment (which is very large or even

infinite), and

• seek to maximize their on-line (total) reward within a fixed amount of time.

These challenges disallow direct application of current DCOP algorithms as they im-

plicitly assume knowledge of the full payoff matrix. Furthermore, time constraints

disallow using a globally optimal algorithm as agents cannot fully explore their

environment. Examples of real world problems which may have the above charac-

teristics include multi-agent exploration scenarios [28, 46], disaster response [39,

44], multi-agent security [38, 1] against an unknown adversary, network routing

optimization [51], and sensor network optimization [41].

A DCEE consists of a set V of n variables, {x1, x2, . . . , xn}, assigned to a set

of agents, where each agent controls one (or, in the general case, more) variable’s

assignment. Agents have at most T rounds to modify their variables xi, which

can take on any value from the domain Di. The goal of such a problem is for

agents to choose values for the variables such that the cumulative sum over a set of

binary constraints and associated payoff or reward functions, fij : Di ×Dj → ℜ, is

maximized over time horizon T ∈ N. The agents attempt to pick a set of assignments

(one per time step: A0, . . . , AT ) such that the total reward (i.e., the return) is

maximized:

R =
T
∑

t=0

∑

xi,xj∈V

fi,j(di,t, dj,t),where di,t ∈ Di, dj,t ∈ Dj , and (xi ← di,t, xj ← dj,t) ∈ At.

An agent knows its own action, but only knows the actions of its neighbors through

communication. Once an has explored a particular setting, it knows the reward for

each of its reward functions for the current setting (assuming its neighbors have

communicated their previous actions). Additionally, we assume that the team re-

ward is easily measurable, although individual agents do not need this information.
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Take the constraints in Figure 2 as an example. x1, x2, and x3 are variables,

each with a domain and global reward function as shown (which has been partially

explored). If all agents choose the value 0, the total solution quality of this complete

assignment on the time step it is chosen is 7 + 15 = 22. Unexplored rewards are

denoted with question marks.

2 31
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Fig. 2: This figure depicts a three-agent DCEE. As in a DCOP, each agent can select
a value for its variable and the instantaneous global reward depends on pairs of agents’
selected values. In contrast, constraint rewards in a DCEE are only known once they have
been sampled (i.e., explored).

The previous section defined the concept of k-optimal DCOP algorithms. How-

ever, such a concept does not directly translate to DCEE algorithms because there

will always be additional configurations that are unexplored (by definition). There-

fore, agents would never know if they were in a locally optimal configuration because

they could potentially explore and find a higher reward. Furthermore, the goal of

the algorithm is not to maximize the final reward, as in a DCOP, but to maximize

the on-line reward (i.e., the total cumulative team reward). Rather than discard this

idea of teamwork, we classify DCEE algorithms that perform partial centralization

in terms of k-movement, where at most k agents per neighborhood can perform

joint moves. For instance, if agent x2 in Figure 2 changes its value in a 1-movement

algorithm, neither x1 or x3 could also change values. However, in a 2-movement

algorithm, if x2 changes its value, x1 or x3 (but not both), could also change their

values. A 2-movement algorithm has no guarantee about final (or on-line) optimal-

ity, but if agents converge to a fixed configuration, it is because no single agent, nor

pairs of agents, wish to explore. Thus, the primary expected benefit of increasing

k is that larger joint moves can be performed, potentially improving the team’s

reward.

One may assume, as the authors first did, that k-movement algorithms would

behave similarly to k-optimal algorithms. Specifically, we had expected that as

teamwork increased (i.e., higher values of k were used), the total reward would

increase. Surprisingly, as shown in Section 4, sometimes increasing the amount of

teamwork in k-movement algorithms decreases the total reward accrued by the

team.
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2.3. Motivating Domain

This section introduces the mobile wireless ad-hoc network domain, used as a

testbed throughout this article. There is one agent per network node and each

agent has some movement capability. For the purposes of this article, we consider

the goal of maximizing the signal strength between all pairs of communicating

nodes, but many other complimentary goals are possible.d We assume agents have

limited movement abilities such that they may attempt to optimize the wireless

signal strengths but not modify the topology of the network. Even though agent

movements are small, the time taken for movement is much less than the time needed

for communication in our DCEE algorithms. Each agent knows its neighbors, i.e.,

the agents with whom it can directly communicate. During natural disasters, res-

cue personnel may quickly form such a network by placing mobile agents around a

disaster site to relay information about endangered victims, fires, etc. In such situ-

ations, agents would need to optimize the network to ensure reliable and effective

communication for the duration of the task.

In general, wireless radio communication has a predictable signal strength loss

inversely proportional to the square of the distance between transmitter and re-

ceiver. However, such regularity disappears in urban or indoor settings because

scattering, reflection, and diffraction create a multi-path setting. Such radio wave

interference, termed small scale fading, results in significant signal strength dif-

ferences over small distances, and modeling or predicting these signal strengths is

overwhelmingly difficult [31]. This article assumes that small scale fading domi-

nates: if a wireless agent moves at least half a wavelength, it will measure a new

(uncorrelated) signal strength from each neighbor. Such signals can be modeled

as an independent random number drawn from some distribution [22]. In initial

experiments on physical robots, we found that the distribution of signal strengths

could be approximated by a Normal distribution. Our experiments assume a Nor-

mal distribution, but our algorithms are distribution-independent — other reward

distributions can be easily substituted.

Given a network of agents and the trial duration (i.e., an experiment length),

the team’s goal is to maximize the sum of signal strengths on all network links

over this time. Each experiment is discretized into synchronized rounds. A round

ends after all agents perform the required computation, finish communication, and

execute an action. An agent’s action can be to either explore or stay.

Robot experiments in this article use a set of Creates (mobile agents from iRobot,

shown in Figure 3), and a custom simulator modeled after the Creates, which we

dFor instance, the team’s reward could depend on the minimum signal strength in the network,
the throughput between some source and sink in the network, the average bandwidth between
nodes, or the latency between a subset of important nodes. More generally, the agents could work
to minimize energy usage while optimizing network communication, or they could form a sensor
network that attempts to maximize coverage while maintaining connectivity.
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have made publicly available.e Robots rely on odometry to localize and the Creates

used have an odometry error of approximately 5%. All agents have the ability to

execute the stay or the explore action on a given round. Depending on the specifica-

tions of the agent/robot, it may also be able to backtrack (returning to a previous

location). In our physical implementation, robots are able to backtrack (ignoring

odometry errors), but we also run experiments assuming they cannot.

Fig. 3: Three iRobot Creates with on-board computers

Modeling a problem as a DCEE is warranted when a set of agents need to

coordinate to maximize their shared reward, but are unable to fully explore the

entire space of their possible assignments. Such a setting will most likely occur

when there are many agents, a large number of agent actions (i.e., agent locations in

this domain), and there is a limited amount of time. We explicitly do not consider

fully centralized approaches in order to reduce communication and computation

requirements, as well as to improve robustness and scalability.

In the context of the mobile ad-hoc wireless network domain, each robot in the

network is a DCEE agent. Direct communication links between robots represent

constraints between agents. The reward is based on signal strength measurements

between robots. The different physical positions of a robot constitute the domain

of values possible for agents. An agent can accurately measure the signal strength

between its current location and the current location of each of its neighbors only

when they explore that particular physical configuration.

3. Solution Techniques

This section describes our novel DCEE algorithms. Our algorithms belong to two

classes: (1) static estimation (SE) algorithms, which assign a constant estimate to

ehttp://teamcore.usc.edu/dcop/
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all unexplored constraints, and (2) balanced exploration (BE) algorithms, which

use decision theoretic reasoning to compute the expected utility of each action.

As discussed later with experimental results, the SE and BE classes, and specific

algorithms within each class, may be preferred depending on:

• what is known about the distribution of possible rewards,

• the agents’ action capabilities,

• the desired amount of teamwork, and/or

• the topology of the network.

Given the inapplicability of globally optimal algorithms to very large systems

(because complete algorithms are NP-Hard), we extend locally optimal DCOP al-

gorithms to the DCEE framework. The Maximal Gain Messaging (MGM) algo-

rithm [33] and the distributed stochastic search algorithm (DSA) [13, 52] are natu-

ral candidates, but DSA has an additional probability parameter that must be set

which has a significant impact on its performance [25], as shown in Section Ap-

pendix C. While all the algorithms presented below are in the framework of MGM,

the key ideas can be embedded in any locally optimal DCOP framework. With the

exception of Section Appendix C, results in this article use the MGM framework to

ensure fair comparisons.

In addition to the distinction between static estimation and balanced exploration

techniques, our algorithms can be classified by the amount of teamwork allowed.

As discussed in the previous section, different numbers of agents can form teams to

execute joint actions. In k=1 algorithms, only a single agent can change variables per

neighborhood, and our k=1 algorithms are described using the MGM framework

(see Algorithm 1). k=2 and k=3 algorithms (described in Algorithms 2 and 3,

respectively), use the framework of MGM-2 and MGM-3 [34], allowing additional

teamwork. The k=2 and k=3 algorithms may be considered “natural extensions”

to the k=1 DCEE algorithms. Each algorithm will be introduced first with the 1-

movement variant, and in most cases, an explanation of the 2-movement extension

will follow. We further extend two of the algorithms to a 3-movement variation as

a proof-of-concept.

Table 1 summarizes the DCEE algorithms by agent ability, what reward infor-

mation is required, and whether the number of rounds is needed by the algorithm

in question. If the rewards are assumed to follow a normal distribution, the PDF

and the CDF (f(x, n) and F (x, n), respectively) can be directly calculated from

the mean, µ, and standard deviation, σ, of the Gaussian describing the reward

distribution.

3.1. k=1 Algorithms

After first defining an “omniscient” algorithm, we describe the SE algorithms in

section 3.1.2 and the BE algorithms in section 3.1.3. The omniscient algorithm

operates within the DCOP framework, and “k” represents the value of k-optimality.
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Table 1: The DCEE algorithms discussed in this section have different abilities and knowl-
edge requirements, as discussed in the text.

Method Agents Can Reward # Rounds Variants Tested
Name Backtrack Information Remaining k=1 k=2 k=3

Omniscient all rewards X X X

SE-Optimistic maximum reward X X X

SE-Mean average reward X X

BE-Backtrack X PDF and CDF X X

BE-Rebid X PDF and CDF X X X

BE-Stay PDF and CDF X X X

The remaining DCEE algorithms overload k to mean the number of agents that can

execute joint moves in k-movement algorithms.

3.1.1. Omniscient Algorithms

We first implement MGM and artificially provide agents with the reward for each

possible value, converting the DCEE problem into a DCOP. Provided such a ma-

trix, Omniscient algorithms will find a locally optimal assignment of values for all

agents, providing an (unrealistic) upper bound on algorithmic performance for in-

complete algorithms on a given DCEE problem. Additionally, we assume that the

DCEE algorithms cannot explore all value settings — an Omniscient algorithm may

select an assignment that no DCEE algorithm could discover without exhaustive

exploration (which is impossible within a time-limited trial, by definition).

Consider the MGM-1 framework in Algorithm 1. Omniscient-1 defines a round

as a period in which every agent:

(1) communicates its current assignment to all its neighbors, (Algorithm 1, lines

1–3),f

(2) calculates and communicates its bid (i.e., the expected gain in its local reward

if it is allowed to change values) to all its neighbors (line 4), and

(3) if it has the maximum gain of its neighbors (line 9), change its value (line 13).

Ties for winning the bid to move are split randomly.

At quiescence, no agents will bid to change variables because they have reached a

locally optimal team reward; no one agent can deviate from the (1-optimal) equi-

librium assignment without decreasing the team’s reward.

The computational complexity of Omniscient-1 is primarily in the getMax-

GainAndAssignment() procedure. On each round, each agent computes what its

total reward would be if it changed its variable setting to each of the variable’s

f If warranted, extra bookkeeping can eliminate the communication on lines 1-3 in the algorithm
for all but the first round, reducing the communication overhead.
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Algorithm 1 Pseudocode for agents using k=1 algorithms

1: for each neighbor i do

2: Send variable assignment and reward matrices to i

3: Receive variable assignment and reward matrices from i

4: Find max gain and preferred assignment: g, a← getMaxGainAndAssignment()

5: Send Bid g to all neighbors

6: Receive Bids from all n neighbors

7: G← maxn Bidsn

8: if g > G then

9: bChanging← True

10: else

11: bChanging← False

12: if bChanging then

13: UpdateAssignment(a)

possible settings, assuming that its neighbors did not change their variable settings.

The agent would then submit a bid equal to the difference between this maximum

reward and its current reward.

3.1.2. Static Estimation (SE) Algorithms

Unlike Omniscient algorithms, SE algorithms operate on the full DCEE problem

and must explicitly reason about exploration and exploitation. In particular, on

every round, an agent may stay with its current variable setting, or explore a new

variable setting. Although each agent has many possible variable settings, it has

no reason to prefer to explore one particular setting over another, as we assume

there is no prior knowledge about individual unexplored variable settings. Without

loss of generality, we can assume that an agent has only two choices: stay with

its current variable setting, or explore the next variable setting (according to an

arbitrary ordering of variables).

SE-Optimistic-1 agents estimate their gain for exploration, if allowed to

change variables, by assuming that they will receive the maximum reward on the

next unexplored constraint. For instance, in the mobile ad-hoc network domain,

this equates to assuming that if an agent moves to an unexplored location, it will

maximize the signal between itself and all neighbors. On every round, each agent

bids its expected gain:g

NumberLinks ×MaximumReward −Rc,

gAn agent’s expected gain is what it expects to receive from a variable change. When an agent
explores, it may expect to increase reward (a positive gain), but in fact receive a decreased reward
(a “negative gain”).
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where Rc is the current reward. The algorithm then proceeds as in Omniscient-1.

This is similar to a 1-step greedy approach where agents with the lowest rewards

have the highest bid. Throughout the experiment, at least one agent will typically

explore per round and the agents’ variables never stabilize to a fixed setting.h

SE-Mean-1 differs from SE-Optimistic-1 by assuming that visiting an unex-

plored value will result in the average reward on all constraints (denoted µ) instead

of the maximum reward. Agents have an expected gain of

NumberLinks × µ−Rc,

causing the agents to explore until their average constraint reward is at least µ.

This allows agents to eventually converge to a fixed configuration, unlike in SE-

Optimistic-1. Although the DCEE problem is an optimization problem (by defini-

tion), the SE-Mean algorithms are satisficing: agents only optimize until reaching a

per-constraint average of µ. SE-Mean assumes that the mean of the distribution is

known, or can be estimated. In contrast, SE-Optimistic only needs to have the value

of a reward that cannot be exceeded. (SE-Optimistic can also use an unrealistically

high value, rather than the actual maximum reward, without affecting behavior.)

3.1.3. Balanced Exploration (BE) Algorithms

Balanced Exploration algorithms allow agents to more accurately estimate the ex-

pected utility of exploration given a time horizon, as well as precisely when to stop

exploring within this time horizon. Each agent compares the expected gain from

exploring new variable settings or exploiting known variable setting rewards. This

gain from exploration depends on: (1) the number of rounds remaining in the trial,

(2) the distribution of rewards, and (3) the current reward of the agent, or the

best explored reward if the agent can return to a previously explored setting. Such

decision theoretic calculations require knowledge about the distribution of rewards

(specifically, the probability density function and/or the cumulative density func-

tion) and require significantly more computation than the SE algorithms. As in the

previous algorithms, the agent with the highest bid per neighborhood is allowed to

change variable settings.

In addition to executing the stay or explore actions, agents may also be able to

backtrack to a previous variable location. Such backtracking allows the agents to

better exploit past knowledge and to explore more aggressively, knowing that they

may return later to a previous variable assignment. In some settings, agents will

be able to easily return to previous assignments, while in others they will not (for

instance, a robot may or may not have sensors accurate enough to precisely return

to a previous physical location). The BE-Backtrack and BE-Rebid algorithms allow

backtracking, while the BE-Stay algorithm does not. As the reader may suspect,

hThis due to our selection of Gaussian rewards — if the maximum value had a non-trivial proba-
bility of being reached, an optimistic algorithm would eventually stabilize.



March 19, 2011 10:31 WSPC/INSTRUCTION FILE
11ACS˙Taylor˙revision

14 Taylor, Jain, Tandon, Yokoo, and Tambe

empirical results in Section 4 show that the ability to backtrack can significantly

improve DCEE agents’ performance.

BE-Backtrack-1 differs from all other algorithms discussed in this article be-

cause it makes commitments to explore for multiple timesteps. No other algorithms

make such commitments, but reason about the value of different actions on every

round. As we discuss later, this commitment actually reduces the team’s overall re-

ward, but we present this BE algorithm first for expository purposes. BE-Backtrack-

1 calculates the value for backtracking to the best known variable setting, Vback,

and the value for exploring a new variable setting, Vexplore.

Vback is the expected utility of backtracking to the best known variable setting

(which the agent can reach in a single round) and then not changing the setting

for the remainder of the trial, t rounds. Throughout the trial, each BE-Backtrack-1

agent keeps track of the value with the highest total received reward (Rb). At any

point, the agent may return to this value (e.g., a location in the mobile ad-hoc

wireless network domain) if its neighbors have not changed their values. The state

of the agent can thus be defined as (Rb, T ); this notion of the agent’s state differs

from the actual value of the agent’s assignment. The utility of backtracking is:

Vback(Rb, t) = Rbt.

The utility of exploring is based on the reward of the best expected value found

during exploration. Let the number of rounds for which the agent explores be te.

An exploration policy would be in the form “explore for te rounds, backtrack to the

best value found on round te + 1, and then stay with that value for the remainder

of the experiment for ts rounds,” where t = te + ts.

Vexplore(Rb, t) can be calculated by summing three separate components:

(1) the expected utility accrued while exploring for te steps,

(2) the utility accrued after exploration multiplied by the probability of finding a

reward better than Rb, and

(3) the utility accrued after exploration multiplied by the probability of failing to

find a reward better than Rb.

The first component, the expected utility accrued while exploring, is te × µ ×

n, where µ is the average reward and n is again the number of neighbors (i.e.,

constraints) for the agent. The second component depends on the probability of

finding values with a total reward higher than Rb, multiplied by the number of

steps left in the trial. The expected best reward in this case is described by the

distribution:
∫

x>Rb

x ·Q(x, n, te)dx

where Q(x, n, te) gives the probability of x being the maximum sample among the

te samples drawn and is defined as:

Q(x, n, te) = te × f(x, n)× F (x, n)te−1.
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This nth order statistics equation calculates the probability that x will be the max-

imum reward found in te values. n is the number of neighbors, f(x, n) is the prob-

ability of drawing x as a sample given that the agent has n neighbors (the PDF),

and F (x, n) is the cumulative probability of drawing a sample less than or equal to

x (the CDF) given n neighbors, defined as
∫

y≤x

f(y, n)dy.

Informally,Q(x, n, te) is calculated by drawing a sample x from any of the te samples

with a probability f(x, n), and drawing the rest of the te − 1 samples, such that

their values are less than x, with a probability of F (x, n)te−1.

The third component will depend on how likely it is that we fail to discover a

reward greater than Rb, times the number of steps left in the trial. After the agent

explores, it will backtrack and receive Rb for the remaining ts rounds. Again, the

cumulative probability of drawing a sample less than or equal to Rb in te samples

is defined as F (Rb, n)
te , where F (x, n) is defined as before. Thus, Vexplore(Rb, t) =

max
0≤te≤t

{

teµ(n) + ts

∫

x>Rb

xQ(x, n, te)dx+ tsRbF (Rb, n)
te

}

. (1)

The value of te that maximizes Vexplore gives the number of exploration steps. The

expected reward of state (Rb, t) for BE-Backtrack-1 is:

V (Rb, t) = max

{

Vback(Rb, t), Vexplore(Rb, t)

}

.

The bid of the agent is V (Rb, t) − Rct and the agent with the highest bid per

neighborhood will immediately backtrack, or explore for te rounds and then backtrack

to the value of the highest reward found thus far. Agents that do not win the bid to

change variables execute the stay action. BE-Backtrack-1 assumes that agents will

not change values after backtracking in the (te+1)th round. However, if the agent’s

neighbors later change their value, Rc (the agent’s current reward) may change, and

the agent may subsequently choose to explore rather than staying at its backtracked

value setting.

Notice that when an agent’s neighbors explore and then backtrack, they could

not have reduced the instantaneous team reward. In particular, the reward of an

agent that has backtracked after exploring cannot be lower than its reward at the

time it started exploring (although it may be lower during exploration). This is

because only this agent was allowed to change values in its neighborhood and the

agent could have backtracked to its initial value (and, thus initial reward) if it were

unable to find a better configuration. However, an agent that explores is preventing

others from exploring, which may reduce the total on-line reward (relative to a

different agent acting or to no agents changing values). As we will show in Section 4,

the BE-Backtrack-1 algorithm is dominated by BE-Rebid-1, discussed next.
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BE-Rebid-1 agents calculate their gain using the BE-Backtrack equations but

all agents re-calculate and rebid on every timestep. Prior work in different decision

making contexts has shown that such reevaluation at each timestep can lead to

better performance in practice [32]. Equation 1 again calculates the expected gain

of exploring for te steps, but now the agent may execute fewer than te exploratory

steps. If this happens, it will be due to rewards received after moving: either the

moving agent has found itself in a favorable position and no more exploration is

needed, or the cumulative reward has decreased significantly and one or more of its

neighbors has now won the bid to change values.

BE-Stay-1 may be used by agents that are unable to backtrack. Based on

experiments showing that BE-Rebid-1 dominated BE-Backtrack-1, BE-Stay was

designed as another approach where agents make a decision every round. In this

algorithm, every agent considers its current total reward and compares the expected

reward it would receive if it kept the same variable assignment (Vstay) with the

expected reward of exploring (Vexplore). The reward of exploring, given the current

reward Rc, is calculated recursively as:

V (Rc, t) =

{

Vstay(Rc, 0) = Vexplore(Rc, 0) = 0 for t = 0

max(Vstay(Rc, t), Vexplore(Rc, t)) for t > 0.

The expected reward from stay will be the current reward multiplied by the time

left in the trial:

Vstay(Rc, t) = Rct.

The expected reward of exploring will depend on the probability of achieving a

given reward in the next state, the reward received for that one timestep, and the

expected reward of the rest of the trial:

Vexplore(Rc, t) =

∫ ∞

−∞

f(x, n)(V (x, t− 1) + x)dx

where f(x, n) is the probability of receiving the total reward x in an unexplored

location (i.e., the PDF).

Therefore, the expected value of having a current signal strength of Rc with t

timesteps remaining is:

V (Rc, t) =







0 if t = 0,

max

(

Rct,
∫∞

−∞
f(x, n)(V (x, t− 1) + x)dx

)

otherwise.

In each round, agents calculate Vstay and Vexplore. If explore has the higher

expected reward, an agent will bid to change its value. If the value of stay is higher

than the value of explore, the agent will execute the stay action and will not bid

to act. BE-Stay-1 differs from BE-Rebid-1 even when the backtrack state is the

current state: BE-Rebid-1 assumes the agent may backtrack to this state in the

future, which BE-Stay-1 does not.
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3.2. k=2 Algorithms

This section discusses increasing the amount of teamwork to k=2, with the excep-

tion of BE-Backtrack-1, which was dominated by BE-Rebid-1 (as shown later in

Section 4.1).

Omniscient-2 extends Omniscient-1 so that two agents may change value per

neighborhood. This algorithm is again artificially provided the full reward ma-

trix; it may be considered a re-implementation of MGM-2. Given sufficient time,

Omniscient-2 will always discover a 2-optimal solution where no combination of

one or two neighboring agents can improve the global reward. This algorithm rep-

resents an upper bound for k=2 algorithms in that it is very unlikely that any

algorithm which requires exploration would be able to surpass the performance of

an Omniscient algorithm. (It is not impossible for an algorithm that must explore

to outperform an Omniscient algorithm, as the latter algorithm finds a locally, not

globally, optimal solution.) On each round, an agent:

(1) selects the neighbor (Algorithm 2, line 4) that will provide the highest joint

gain and sends an Offer message for a joint variable change (line 5),

(2) sends an Accept message if its selected neighbor offers to pair with it (line 9),

(3) calculates its individual gain if the pairing failed (line 14),

(4) finds out if it is part of a pair that has a higher gain than its neighbors, or is

unpaired and has a higher gain than its neighbors (line 18), and

(5) changes its value (line 29), unless it does not have the highest gain in the

neighborhood (line 21) or it is part of a pair and its neighbor cannot change

variables (line 27).

Like Omniscient-1, Omniscient-2 monotonically increases its solution quality [25].

Omniscient-2 also requires more communication than Omniscient-1, but generally

reaches higher or similar solution quality [34]. As with other k=2 algorithms, single

agents may act alone.

The getMaxGainAndAssignment() procedure in Omniscient-2 is unchanged from

Omniscient-1. The new procedure, getMaxGainAndAssignmentForPair() is more

computationally complex. Every agent must consider every neighbor as a possible

pair. Then, for each pair, it considers all possible variable assignments for the two

agents, assuming all neighbors of the pair do not change variable settings. Having

found the maximum reward for each pair, it finds the pair with the highest reward,

and will offer to pair with this agent.

Algorithm 2 describes code executed by each agent on every round when exe-

cuting any k=2 DCEE algorithm. The only variation in different algorithms comes

in the functions getMaxGainAndAssignmentForPair() and getMaxGainAndAssign-

ment(), which depend on the particular estimation technique used.

SE-Optimistic-2 makes the same assumption as SE-Optimistic-1; any unex-

plored reward is assumed to be optimal. This algorithm (and those that follow) dif-

fer in how getMaxGainAndAssignmentForPair() and getMaxGainAndAssignment()
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Algorithm 2 Pseudocode for k=2 algorithms

1: for each neighbor i do

2: Send variable assignment and reward matrices to i

3: Receive variable assignment and reward matrices from i

4: Find maximum gain, g, the corresponding neighbor to pair with, p, and the

variable assignment, a:

g, p, a← getMaxGainAndAssignmentForPair()

5: Send OfferPair to agent p

6: doPair ← False

7: for all OfferPair messages received do

8: if agent requesting to pair is p then

9: Send Accept to agent p

10: doPair ← True

11: Receive Accept message, if any

12: if (Did not received Accept from p) or (not doPair) then

13: p← ∅

14: Find max gain and preferred assignment (individual update):

g, a← getMaxGainAndAssignment()

15: Send Bid (g, p) to all neighbors

16: Receive n Bids from all neighbors, ignoring message from p

17: G← maxn Bidsn

18: if g > G then

19: bChanging← True

20: else

21: bChanging← False

22: if p 6= ∅ then

23: Send ProhibitVariableChange to agent p

24: Receive any messages sent by neighbors

25: if (bChanging) and (p 6= ∅) then

26: if Received ProhibitVariableChange from agent p then

27: bChanging← False

28: if bChanging then

29: UpdateAssignment(a)

calculate utilities for possible assignments. Agents individually expect to gain re-

ward equal to NumberLinks×MaximumReward −Rc. Agents that successfully pair

with their selected neighbor (Algorithm 2, line 10) bid their joint gain. The joint

gain is equal to the sum of their individual gains, not double-counting the shared

constraint.

SE-Mean-2 is similar to SE-Optimistic-2, but modifies its utilities so that un-

explored variables are assumed to return the average reward. As in SE-Mean-1,

individual agents expect to gain NumberLinks ×µ − Rc and compute the gain for
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pairs by considering all links connected to the pair of agents.

BE-Rebid-2 extends the BE-Rebid-1 algorithm by allowing pairs of agents

to select coordinated explore, stay, and backtrack actions. We consider four actions:

explore-explore, explore-stay, backtrack-stay, and coordinated backtrack. An agent may

not change its value if a neighbor executes backtrack: explore-backtrack is an invalid

joint action because if one agent explores, the constraint shared with the other

agent would take on the value of a new variable, and that other agent would not be

able to backtrack by definition. The coordinated backtrack action is unique to this

algorithm; it allows two agents to simultaneously backtrack to a previous setting.i

BE-Rebid-2, follows Algorithm 2 and calculates the gain of explore and backtrack

actions as was done for the BE-Backtrack-1 algorithm. The gain of an action is

based on the difference between the expected reward of the action and Rct. As

in Omniscient-2, agents calculate gains over joint actions with their neighbors and

then agents attempt to pair with the neighbor which offers the maximum gain. The

reward of joint exploration by agents i and j, as calculated by agent j, is:

Vexplore−explore = Vexplore:i(Rb:i, t, ni) + Vexplore:j(Rb:j , t, nj − 1)

which calculates the sum of two gains (not double counting the shared constraint).

Vexplore:i is the value of exploration by agent i and Rb:i is the best reward found

for agent i. This estimate, in effect, is the sum of agent i and agent j explor-

ing independently, while not double-counting the shared constraint. The joint gain

of explore-stay is determined by the exploring agent. Similarly, the joint gain of

backtrack-stay is calculated by the backtracking agent. Lastly, the gain of coordi-

nated backtrack is the difference between the best joint reward experienced by the

two agents and their current reward.

BE-Stay-2 is similar to BE-Stay-1, but now a combination of Vstay and Vexplore

is used to calculate the joint gains. As in BE-Rebid-2, the gain of joint exploration

is calculated as the sum of individual exploration utilities, not double counting the

common constraint. The gain of explore-stay is given by the gain of the exploring

agent and the gain of stay-stay is 0, by definition. Again, bidding proceeds as in

Omniscient-2 and an agent may act individually if it fails to pair but still wins the

bid.

Section 4.2 discusses the relative performance of k=1 and k=2 algorithms. Two

k=3 algorithms are used to bolster the claim that the trends observed continue to

higher values of k. An explanation of Omniscient-3 and SE-Optimistic-3 can be

found in Appendix A.

iNote that a joint backtrack of k agents would require coordination between all k agents — full
centralization would be required if all agents were to return to a previous configuration, which is
out of scope for this article.
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4. Experimental Results

Experiments in this section compare the performance of our DCEE algorithms in

multiple settings. In our domain, the number of variable settings is always more

than can be fully explored. Signal strengths are drawn from a normal distribution

defined by N (100, 16).j To allow for better comparisons, the random seeds were pre-

generated and kept consistent across the different algorithms. Throughout, error

bars denote the standard error.

In our simulator experiments we set the number of possible variable settings to

be one more than the number of rounds (i.e., in a 100 round experiment, there are

101 possible variable settings per agent), so that no agent could possibly explore all

of its variable settings. We simulate signal strength values as non-negative integers,

allowing our implementations to use summations rather than integrations.

The questions this section addresses are:

(1) Can DCEE algorithms effectively improve the on-line team reward?

(2) How does the performance of DCEE algorithms compare to the performance of

the Omnisicient algorithm?

(3) What are the highest performing DCEE algorithms and why?

(4) What factors change the relative performance of different DCEE algorithms?

(5) How does the performance of 1-movement algorithms compare to 2-movement

algorithms?

(6) Can results found in simulation be replicated on a multi-robot platform?

4.1. Simulation Results for k=1

This section presents three sets of results, each of which varies a different component

of the problem domain: the number of agents, the time horizon, or the network

topology. However, we first graph the performance of different algorithms on a chain

of agents. Figure 4 shows learning curves for 5 DCEE algorithms, compared to the

DCOP Omniscient-1 algorithm and no optimization (i.e., no agents move during

the trial). The x-axis shows the round number and the y-axis shows the total signal

strength. We say that the team “learns” if it is able to improve reward over time and

an algorithm’s performance is measured by the total area under the curve. 40 agents

run for 100 rounds, and curves are averaged over 30 independent trials. For each

algorithm, the total cumulative signal strength is the area under the curve and the

gain is the area between the curve and the NoMovement line. SE-Mean-1 converges

quickly to a comparatively low value while SE-Optimistic-1 explores continually,

attempting to achieve the maximal signal strength. BE-Stay-1 cannot backtrack

and must be cautious; it converges the fastest of all three BE methods. BE-Rebid-1

performed the best, leveraging its ability to backtrack to a previous location and

jNormal functions are infinite; we constrained signals to the range [0,200], covering 99.999% of the
probability mass of this distribution.
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Fig. 4: A learning curve for 40 agents in a chain topology where T = 100, averaged over
30 trials. Averages are plotted every 3 rounds for clarity.

to use knowledge about the reward distribution. BE-Backtrack-1, which commits

to explore for some number of rounds without re-evaluating, is dominated by BE-

Rebid-1.

Having considered how different algorithms improve their reward over time, we

now focus on the total reward gained, which is the quantity we aim to maximize.

Results are reported as a scaled gain, where 0 corresponds to no optimization and

1 corresponds to the improvement of BE-Rebid-1 (as BE-Rebid-1 was the highest

performing 1-movement DCEE algorithm). Any gain greater than zero represents

an improvement directly due to the algorithm. Such a metric helps isolate the

improvement due to agent movement and scales across tasks with different numbers

of links, agents, and time lengths.

Figure 5(a) shows the algorithms’ relative performance over different experiment

lengths. The y-axis measures the scaled gain. The x-axis shows the five values of

T , the total number of rounds in a trial. All trials use random sparse graphs with

15–20 links and 10 agents. Each result is averaged over 30 independent trials. The

difference between scaled gain for each pair of algorithms is statistically significant

within a single value of T (paired Student’s t-tests calculate p < 0.05), except

for T = 5. When the time horizon is very small, all but SE-Optimistic-1 perform

roughly the same because all four algorithms explore very little. As the number
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Fig. 5: The performance of different algorithms is shown where the y-axis is the scaled
gain (0 represents No-Movement and 1 represents the gain of BE-Rebid-1) and results are
averaged over 30 independent trials. In (a), 10 agents are run on random graphs where 1

3
of the possible constraints are active (corresponding to a DCEE graph with 15–20 edges),
and the x-axis reports the number of rounds in the experiment. (b) shows the performance
for different numbers of agents on the same random graphs run for 100 rounds. (c) shows
the performance of 20 agents run for 100 rounds on four different topologies, including
random graphs with 1

3 and 2
3 of the possible links added.
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of rounds per experiment increases, BE algorithms outperform SE algorithms, and

BE-Rebid-1 consistently achieves the highest scaled gain.

The second set of results, shown in Figure 5(b), varies the number of agents

and again uses random sparse graphs. The time horizon is 100 rounds. The x-axis

shows the number of agents, varied from 5 to 50. Paired Student’s t-tests determine

all results to be statistically significantly different (p < 0.05), confirming that BE-

Rebid-1 outperforms all other algorithms.

The third set of results shown in Figure 5(c) compares the performance on

different graph topologies: a chain structure, random structures (with 1
3
or 2

3
of all

possible links enabled), and a fully connected topology. Each test uses 20 agents

and 100 rounds. All results within a single topology are again statistically different

(p < 0.05).

Three trends in Figure 5(c) are worth noting. First, BE-Rebid-1 statistically

significantly (p < 0.05) outperforms all other algorithms in all topologies tested,

except in the fully connected graph (where it is similar to SE-Optimistic-1 as only

one agent can move per round and both algorithms generally select the agent with

the lowest reward to optimize its value). Fully connected graphs are thus one setting

where the static estimation algorithms can perform just as well as the more complex

BE algorithms.

Second, as the link density of the graph is increased, the relative performance

of BE-Backtrack-1 decreases, with statistical significance (p < 0.05), due to the

aggressive nature of the algorithm. A BE-Backtrack-1 agent will explore for te steps,

preventing all neighbors from moving during this time. Thus, as the link density

increases, higher numbers of agents are not allowed to move until after te steps.

Third, SE-Mean-1 outperforms SE-Optimistic-1 in randomly generated graphs,

but not in chain and fully connected graphs. Unlike in chain and fully connected

graphs, agents in random graphs can have a high variance in their degrees of network

connectivity. We analyze the number of agents that were able to optimize their

rewards. While 40% of the agents moved when running SE-Mean-1, only 18.5%

agents could do so when running SE-Optimistic-1 in random graphs with density
1
3
. SE-Optimistic-1 agents with a high degree of connectivity monopolize movement

opportunities because they bid unrealistically high rewards. Their bid is relatively

large when compared to the bids of agents with lower degrees. There exists a large

correlation (Pearson’s coefficient of ρ > 0.5) between the degree of the agent and

the number of moves made by the agent in SE-Optimistic-1. In contrast, SE-Mean-1

agents allow others to win bids once the reward of an agent reaches µ × n, where

n is the number of neighbors for the agent. There exists only a weak correlation

with a Pearson’s coefficient of ρ < 0.05 between the degree of the agent and the

number of moves made by the agent for SE-Mean-1, explaining this difference in

performance.

The results also show that BE-Stay-1 is statistically significantly dominated by

BE-Rebid-1, demonstrating that the ability to backtrack can lead to significantly

better performance. In random graphs, SE-Optimistic-1 has the worst performance,
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Omniscient Performance

Topology k=1 k=2

Chain 136,409 160,098

Random 1/3 363,876 386,189

Random 2/3 509,008 534,400

Full 600,465 655,545

Table 2: Gains of Omniscient Algorithms
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Fig. 6: In chain graphs, SE-Optimistic-1 outperforms SE-Optimistic-2, which in turn out-
performs SE-Optimistic-3. Increasing values of k improves performance in SE-Optimistic
on full graphs, and in SE-Omniscient in both chain and full graphs.

but in chain and full graphs it dominates SE-Mean-1. SE-Optimistic-1 performs

similar to BE-Rebid-1 in full graphs.

4.2. Simulation Results, k=2

The results in Table 2 list the total gains for Omniscient-1 and Omniscient-2 algo-

rithms on graphs with four different topologies. Experiments run 40 agents for 100

rounds over 30 independent trials. Recall that the Omniscient algorithms artificially

provide reward matrices to the agents; this result shows that increased teamwork is

beneficial, as expected from previous DCOP work. Additionally, these results help

confirm that our k=2 implementation is correct.

Figure 6 shows the results from experiments where 10 agents are run for 50

rounds. In a chain graph, the k=1 version of SE-Optimistic performs better than

k=2, which performs better than k=3. In the full graph, SE-Optimistic-3 is bet-

ter than SE-Optimistic-2, which is better than SE-Optimistic-1. All differences



March 19, 2011 10:31 WSPC/INSTRUCTION FILE
11ACS˙Taylor˙revision

Distributed On-line Multi-Agent Optimization Under Uncertainty) 25

in the chain graphs are statistically significant (p < 0.05), and k=2 algorithms

outperform their k=1 counterparts in the full graphs with statistical significance

(p < 0.05). The Omniscient-3 algorithm follows the trend seen earlier in Table 2

by dominating Omniscient-2, which in turn dominates Omniscient-1 (p < 0.05 for

the Omniscient gains). These results confirm that higher amounts of teamwork im-

prove agent performance in Omniscient algorithms, but may decrease performance

in non-Omniscient algorithms.
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Fig. 7: Figures (a) and (b) report the scaled gain of the static estimation and balanced
exploration algorithms, respectively. SE-Optimistic-2 and BE-Rebid-2 are outperformed
by SE-Optimistic-1 and BE-Rebid-1 on low density graphs. SE-Mean-2 and BE-Stay-2
always outperform their k=1 counterparts, but typically have lower performance than the
SE-Optimistic and BE-Rebid algorithms.
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Next, consider Figures 7(a) and 7(b), which shows the performance of DCEE

algorithms on the same graph topologies. Lower and upper bounds were determined

by disallowing all agent variable changes and using BE-Rebid-1 (the highest per-

forming 1-movement DCEE algorithm). The k=2 algorithms outperform the k=1

algorithms in the majority of situations, except for SE-Optimistic-1 and BE-Rebid-

1 on sparse graphs. For instance, SE-Optimistic-1 and BE-Rebid-1 outperform their

k=2 counterparts on chain graphs (paired t-tests, p < 0.05), and BE-Rebid-1 out-

performs BE-Rebid-2 on Random graphs with 1
3
of their links (although the differ-

ence is not statistically significant). The results of SE-Optimistic-3 in Figure 6 serve

to further confirm this phenomenon: increasing values of k reduce performance on

chain graphs, but improve performance on full graphs.

However, the BE-Rebid and SE-Optimistic are the best performing algorithms,

making this behavior particularly troubling. That k=2 does not dominate other

approaches is a particularly surprising result precisely because previous DCOP work

showed that k=2 algorithms reached higher final rewards [25, 34]. We term this

phenomenon the team uncertainty penalty. This penalty strictly affects total reward:

it does not consider any penalty from increased communication or computational

complexity. To investigate this phenomenon, we next considered a set of sparse

graphs with random topologies.

Figure 8 compares the relative performance of the k=1 and k=2 variants of

SE-Optimistic and BE-Rebid on random topologies. The first trend to notice in

Figure 8 is that BE-Rebid-1 outperforms BE-Rebid-2 on sparse graphs. The lower

the average numbers of neighbors agents have in a graph, the better the k=1 variant

will perform. Again, this is in contrast to Omniscient algorithms, where k=2 always

outperforms k=1. The second trend to notice is that both SE-Optimistic algorithms

perform quite poorly on random graphs, as shown before in Figures 5(c) & 7(a). In

SE-Optimistic algorithms, an agent’s bid is going to be proportional to the number

of neighbors it has; agents with high numbers of neighbors will consistently win

bids, blocking others in the neighborhood, as discussed earlier.

Comment 1. Fig 8 poor quality

To better understand why SE-Optimistic algorithms perform poorly on random

graphs, we considered a series of graphs with regular topology. All agents in such

graphs have the same number of neighbors, allowing for clearer analysis of algorith-

mic performance. Figure 9 shows the scaled gain of the two SE-Optimistic and the

two BE-Rebid algorithms for different regular graph structures: the x-axis varies

the number of neighbors in a regular graph structure; y-axis is the agents’ scaled

gain. In Figure 8, the performance of BE-Rebid-2 improved relative to the k=1

version as the density was increased. Figure 9 shows that this trend holds for both

BE-Rebid and SE-Optimistic in regular graphs. In particular, k=1 outperforms k=2

for both SE-Optimistic and BE-Rebid in graphs with three and five neighbors per

agent (p < 0.05). SE-Optimistic-2 outperforms SE-Optimistic-1 on regular graphs

with twenty neighbors (p < 0.05) while the two BE-Rebid algorithms do not have
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Fig. 8: Six types of random graph topologies are considered, where 1
9 to 6

9 of the number
of constraints in a fully connected graph is added. BE-Rebid-2 outperforms BE-Rebid-1
as the density in randomly connected graphs increases.
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Fig. 9: This graph shows the relative performance of k=1 and k=2 change with the number
of neighbors where the labels on the y-axis show the number of neighbors each agent has
in the regular graph topology.

statistically significant gain differences.

Most previous work in teamwork and joint actions, including previous results

in k-optimal algorithms, led us to expect that increasing the level of teamwork

in decision making would lead to improved total reward in our results. In direct

contradiction with these previous expectations, we have shown that in DCEE prob-

lems, blindly increasing the number of agents that can execute a joint action may

actually decrease the final solution quality. (Recall that k-movement was defined in

Section 2.2, where k refers to the maximum number of agents that can perform a

joint action.) We have been able to isolate situations where this phenomenon oc-
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curs — in graphs with low density, k=2 algorithms can perform worse than k=1

algorithms. Section 5 explains the origin of this team uncertainty penalty with the

ultimate goal of improving our algorithms so that increasing teamwork does not

decrease performance.

4.3. Physical Robots Results

To test our DCEE algorithms we produce two implementations, both for the Create

robot. The first used a wireless network card by CenGen and a proprietary API,

whereas the second used a small computer with a mini PCI card.k

In the mobile ad-hoc wireless network domain, each variable setting corresponds

to a different physical location. In order to ensure signal strengths in different

locations are uncorrelated, agents explore by moving forward to a location that is

at least 1
2
of a wavelength (i.e., ≥ 2.5 cm.) away from the current location.

The length of a round in this distributed setting is dominated by agent move-

ment, which takes longer than either the computation or communication for the

algorithms presented. This is true both because of how slowly robots move (relative

to communication signals) and because the robots must take several readings of sig-

nal strength after moving to calculate a reliable average signal strength. If agents

converge upon a final configuration before the test ends, no agents will move within

a round. However, the length of the round does not vary: the length of a round

determines how continuous time is discretized to measure signal strength in exper-

iments but the discretization is not critical for measuring the relative performance

of algorithms.

The first set of experiments tested three different topologies: chain, random, and

fully connected. In the random topology tests, the robots were randomly placed

and the CenGen API automatically defined the neighbors, whereas the robots had

a fixed set of neighbors over all trials in the chain and fully connected tests. Each

of the three experiments used four robots and was repeated five times for 20 rounds

each.

Figure 10(a) shows the results of running BE-Rebid-1 and SE-Mean-1 on the

robots. The gain on the y-axis has not been normalized. RSSI (received signal

strength indication) values are reported in decibels (dB). BE-Rebid-1 performs bet-

ter than SE-Mean-1 in the chain and random graphs, but loses in the fully connected

graph. While too few trials were conducted for statistical significance, it is impor-

tant to note that in all cases there is an improvement over the initial configuration

of the robots. Additionally, because decibels are a log-scale metric, the gains are

even more significant than one may think on first glance.

The second set of tests corroborates the team uncertainty penalty found in simu-

lation. These experiments used five Create robots with mini PCI cards. Figure 10(b)

kDetails of the hardware setup may be found at http://enl.usc.edu/projects/peg/platform.

html and source code for running DCEE algorithms on the Create robot is at http:/teamcore.

usc.edu/dcop.
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(a) (b)

Fig. 10: (a) shows the total gain received by agents in the first set of experiments.
Both SE-Mean and BE-Rebid successfully improve the team’s reward. In figure (b), SE-
Optimistic-1 is compared to SE-Optimistic-2 on chain and full graphs. In the chain graph,
SE-Optimistic-1 outperforms SE-Optimistic-2, and the reverse is true for full graphs.

shows the average gain per round SE-Optimistic-1 and SE-Optimistic-2 on chain

and full graphs, with 20 rounds each. Reward for this setup is again measured in

terms of RSSI in decibels. However, results are not directly comparable because dif-

ferent numbers of robots are used in the different sets of experiments and different

wireless vendors have different implementations of RSSI measurement utilities. The

plots average ten trials and error bars show the standard error. In all cases, the

algorithms improve the reward of the team, although SE-Optimistic-1 on the com-

plete graph improves much more slowly. One possible reason for this discrepancy is

that the gain achieved by the agents is dependent on the starting configuration —

the worse the starting configuration, the more latitude exists for achievement. Un-

fortunately, the physical agents cannot be returned to exactly the same start state,

and thus different trials have different initial signal strengths. The average team

initial reward for the complete graphs when run using SE-Optimistic-1 was 574 ±

55, whereas the average for SE-Optimistic-2 was 506 ± 31, thus SE-Optimistic-1

has a relatively harder time improving the team’s reward.

Figure 10(b) displays the total gain of robots in the second experiment, and

Figure 11 shows the gain per round (the total gain is the area under the curve in

Figure 11). We again see that SE-Optimistic-1 on a complete graph performs worse

than all other algorithms. Most important is that these results confirm the team

uncertainty penalty. In a chain graph, k=1 outperforms k=2, and in a complete

graph, k=2 outperforms k=1. As such, these experiments on five robots confirm

trends predicted in simulations of 10–50 virtual agents.

5. Understanding the Team Uncertainty Penalty

This section presents empirical justification for the team uncertainty penalty as well

as motivating how DCEE algorithms may be enhanced to decrease such a penalty.
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Fig. 11: Both SE-Mean-1 and BE-Rebid-1 successfully improve the team’s performance
over their initial configurations. Error bars, shown only on SE-Optimistic-1 for readability,
display the standard error.

5.1. Relative Performance of k=1 and k=2

As discussed earlier, the primary deciding factor in the performance of SE-

Optimistic-2 and BE-Rebid-2, relative to their k=1 counterparts, is the average

number of neighbors. We expected that k=2 algorithms would allow more con-

straints to change (i.e., change associated variable assignments) and therefore

achieve higher performance. To better understand the team uncertainty penalty, we

first hypothesized that our k=2 algorithms may fail to optimize more constraints

than the k=1 algorithms. Figure 12(a) shows the performance of four algorithms

on different regular graphs. The x-axis displays the graph density (i.e., number of

neighbors) and the y-axis shows the average number of constraints changed per

round. Data was averaged over 10 trials and each trial used 40 agents running for

100 rounds. This graph shows that k=2 does perform as expected, consistently

changing more constraints than k=1.

Given that k=2 changes more constraints, we next considered that k=2 changes

could be less “valuable.” Figure 12(b) displays data from the same trials, but now

the y-axis shows the average immediate reward improvement for an agent that

changes variables during the experiment, normalized by the number of constraints.

For example, agents using the SE-Optimistic-1 algorithm on density three graphs

improved their reward by 0.41 per constraint. This equates to an improvement in

reward of 0.41× 3 = 1.23 per agent when an agent changes its variable setting.

Figures 12(a) and 12(b) combine to explain the relative algorithmic performance

of k=1 and k=2 algorithms. k=1 algorithms consistently receive a higher improve-

ment per constraint, relative to k=2. However, k=1 algorithms change fewer con-
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Fig. 12: The average number of constraints changed by an agent in a single round in
(a) show that in regular graphs, k=2 algorithms always change more constraints. (b)
shows average per-constraint improvement for different regular graphs: k=1 algorithms
have higher improvement.

straints than k=2, on average. As the graph density increases, the ratio between the

number of constraints changing in k=1 and k=2 increases (Figure 12(a), which we

will refer to as Trend #1). In contrast, the ratio in the per-constraint improvement

in k=1 and k=2 decreases as graph density increases (Figure 12(b), Trend #2).

Thus, as the graph density increases, k=2 changes relatively more constraints than

k=1 and the k=2 changes are relatively more effective than k=1. The following

section further investigates these graphs and trends to provide additional insight.

However, these two plots summarize the fundamental cause of the team uncertainty

penalty.

Trend # 1

• In a regular graph of density three, SE-Optimistic-2 changes 30% more con-

straints per round then SE-Optimistic-1.

• In the regular graph with density twenty, SE-Optimistic-2 improves relative

to SE-Optimistic-1, as now SE-Optimistic-2 changes 55% more constraints per

round then SE-Optimistic-1.

Trend # 2

• In a regular graph of density three, SE-Optimistic-2 achieves an average gain

per constraint that is 59% of the gain per constraint for SE-Optimistic-1.

• In the regular graph with density twenty, SE-Optimistic-2 improves relative

to SE-Optimistic-1, as now SE-Optimistic-2 achieves 71% of the gain per con-

straint that SE-Optimistic-1 achieves.

5.2. SE-Optimistic-1 vs. SE-Optimistic-2

This section provides additional empirical analysis, providing insight to Fig-

ures 12(a) and 12(b). In particular, we address the following questions for SE-
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Optimistic:

(1) In Figure 12(a), why does the average number of constraints changed increase

as density increases for both SE-Optimistic-1 and SE-Optimistic-2?

(2) In Figure 12(a), why does the ratio between the number of constraints changed

in k=1 and k=2 increase as the density increases (Trend #1)?

(3) In Figure 12(b), why does the average gain per variable of both SE-Optimistic-1

and SE-Optimistic-2 increase as graph density increases?

(4) In Figure 12(b), why does the ratio between the per-constraint improvement in

k=1 and k=2 decrease as density increases (Trend #2)?

In Section 5.3, the performance of SE-Optimistic-1 and SE-Optimistic-2 will be

contrasted with the performance of SE-Mean-1 and SE-Mean-2, as the SE-Mean

algorithms do not suffer from the team uncertainty penalty.

5.2.1. Number Constraints Changed Increases as Density Increases:

Figure 12(a)

Consider that there are two separate effects as graph density increases. (1) as the

graph density increases, an agent that changes its variable will change more con-

straints, but (2) it will prevent more neighbors from changing their constraints

(unless part of a joint move). To understand the interplay of these two effects, con-

sider Table 3. The table reports experimental results on regular graphs with density

3, 20 and 39. An agent that changes its variable setting will change 3, 20, and 39

constraints, respectively. As the graph density increases, the fifth column shows

that the number of agents moving decreases, but the eighth column shows that the

total number of constraints increases. The net result is that as the graph density

increases, the number of constraints changed will increase for both SE-Optimistic-1

and SE-Optimistic-2. In all cases, SE-Optimistic-2 allows more constraints to be

changed than SE-Optimistic-1.

5.2.2. k=2 Changes an Increasing Number of Constraints, Relative to k=1,

as Density Increases: Figure 12(a)

Trend #1 shown in Figure 12(a) can be understood by considering how the perfor-

mance of SE-Optimistic-1 and SE-Optimistic-2 change in Table 3. In SE-Optimistic-

2, roughly twice the number of agents move as in SE-Optimistic-1 for a given graph

type (column 5). However, moving twice the number of agents does not equate to

changing twice the number of constraints. For instance, in a regular 3 graph, mov-

ing one agent results in 3 constraints changing, but moving a pair of agents results

in 5 constraints changing because the shared constraint is not double-counted. In

the regular-39 graph, a single agent changes 39 constraints while a pair of agents

changes 79 constraints.

As discussed above, as the graph density increases, both algorithms change more
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Number of Agents and Constraints Changing per Round
Algorithm Density Single Pairs of Total # Single Agent Pairs of Agents Total

Agents Agents Agents Constraints Constraints Constraints

SE-Optimistic-1 3 8.4 0 8.4 25.2 0 25.2

SE-Optimistic-2 3 0.7 7.0 14.7 2.1 35 37.1

SE-Optimistic-1 20 1.7 0 1.7 34 0 34

SE-Optimistic-2 20 0.1 1.5 3.1 2.0 58.5 60.5

SE-Optimistic-1 39 (full) 1 0 1 39 0 39

SE-Optimistic-2 39 (full) 0 1 2 0 79 79

Table 3: Columns 3–6 of this table shows the average number of single agents, pairs of
agents, the total number of agents that change variable settings per round. Columns 7–9
show the number of constraints that are changed by single agents, pairs of agents, and
in total. All numbers are averaged over 150 trials with 40 agents. Recall that in k=2
algorithms, agents that do not form a pair may bid to change values on their own, which
is why some single agents optimize in SE-Optimistic-2.

constraints. However, in low density graphs, SE-Optimistic-2 changes fewer con-

straints relative to SE-Optimistic-1 than in high density graphs. For instance, in

regular-3 graphs, when a pair of agents acts, they change 5 constraints, whereas a

single agent changes 3 constraints — the pair changes 5
3
times as many constraints.

In a full (regular-39) graph, a moving pair changes 79 constraints, while a single

agent changes 39 — the pair now changes 79
39

times as many constraints.

In summary, on different density graphs, SE-Optimistic-2 allows roughly twice as

many agents to move as SE-Optimistic-1. However, as the graph density increases,

moving pairs of agents changes relatively more constraints than moving single agents

(i.e., from 5
3
to 79

39
in our example).

5.2.3. Average Gain per Constraint Increases as Graph Density Increases:

Figure 12(b)

To explain why the average gain per variable change in both SE-Optimistic-1 and

SE-Optimistic-2 increase as graph density increases, we first note that it is most

instructive to consider the earliest rounds of a trial. As the number of rounds in-

creases, the average bid approaches the mean and the average gain approaches zero.

As seen earlier in Figure 4, Optimistic algorithms never stabilize, but will approach

a constant team reward.

Figures 13(a) and 13(b) show histograms for the first round.l The x-axis shows

the average bid (per constraint) of agents that are allowed to change variables, and

the y-axis shows the percentage of constraints that have such a bid.

lIf one instead considers such a histogram averaged over all rounds, as the total number of rounds
in a trial increases, the distribution of bids shifts so that it approaches a Gaussian distribution
around the mean of the per-constraint reward, which is 100 (not shown).
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Fig. 13: These two histograms show the percentage of constraints that were changed on
the first round in regular graphs of density 3 and 20, using algorithms SE-Optimistic-1 and
SE-Optimistic-2. The results are averaged over 150 independent trials. In higher density
graphs, no agents won the bid to move if their average per-constraint bid was less than
100 (i.e., the agent had a reward less than the average).

In the higher density graph, both SE-Optimistic-1 and SE-Optimistic-2 have a

narrower distribution of bids (relative to the lower density graph), and all successful

bids will result in a positive gain, on average. In higher density graphs there is more

connectivity between agents and in order to win the bid to change variables and

agent must “beat out” many competitors. In higher density graphs, agents must

thus have a relatively high bid to change variables. Put differently, in higher density

graphs, more information is shared between agents and the team is better able to

select the best agent to change variables (i.e., the agent with the lowest reward).

Figure 14 shows the average bid (per constraint) on the x-axis and the average

resulting gain (per constraint) on the y-axis for SE-Optimistic-1 and SE-Optimistic-

2 agents. The linear relationship between the two shows that a high bid corresponds

to a high gain in both algorithms. As graph density increases, both optimistic

algorithms increase their average gain per constraint change as they are able to

better limit movement to agents which have the most to gain.

5.2.4. Average gain per k=2 constraint increases relative to k=1 as graph

density increases: Figure 12(b)

Finally, this section explains Trend #2, where the average gain per constraint for

SE-Optimistic-2 increases relative to SE-Optimistic-1 as the graph density increases.

As discussed above, both algorithms receive higher gain per constraint as the den-

sity increases. However, SE-Optimistic-2 improves more, as it has more room for

improvement.

An alternate way of evaluating the algorithms is to consider the number of

agents that make a “poor” move on the first round. For instance, consider the

number of agents that change their variable when their average reward is greater
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Fig. 14: This figure shows the average per constraint bid and corresponding per constraint
gains for Optimistic algorithms. In all cases, the gain received is proportional to the bid,
where a bid of 100 (the mean) will result in an average immediate improvement of zero.
On average, a high bid will result in a high gain.

Algorithm Density # Agents changing when r ≥ µ

SE-Optimistic-1 3 0.82 ± 0.08

SE-Optimistic-2 3 2.57 ± 0.12

SE-Optimistic-1 10 0 ± 0

SE-Optimistic-2 10 0.04 ± 0.02

SE-Optimistic-1 20 0 ± 0

SE-Optimistic-2 20 0 ± 0

Table 4: This table reports the number of agents that move when their reward per con-
straint is not below the mean times the number of constraints (i.e., the agent does not
have a positive expected value for moving). Data was collected from the first round of 150
trials using 40 agents each; reported errors are the standard error of averages.

than the mean per constraint (i.e., the agent does not have a positive expected gain).

Table 4 shows that in density 3 graphs, both SE-Optimistic-1 and SE-Optimistic-2

allow agents to change variables when they do not have a positive expected gain

(column 3). SE-Optimistic-2 allows many more agents to move than SE-Optimistic-

1 in density 3 graphs. However, in density 10 graphs, SE-Optimistic-2 allows very

few such moves, and in density 20 graphs, it allows none. Thus, at higher densities

(where the agents receive information from their many neighbors), although SE-

Optimistic-2 does not receive as high a gain as SE-Optimistic-1, it does not cause

“poor” agents to move, which does happen at lower densities (where agents receive

relatively little information from their neighbors).
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Fig. 15: (a) shows the number of constraints changed by SE-Optimistic algorithms on dif-
ferent graph densities. Results are averaged over 150 trials and each trial uses 40 agents.
Recall that SE-Optimistic algorithms continually optimize, and thus the number of con-
straints changing is roughly constant throughout the trial. (b) shows the average change
in reward per constraint, for every constraint that was changed, on each round in a trial.
A 5-round sliding window is used to make the trends more apparent. On average, SE-
Optimistic-1 has a higher reward improvement per constraint than SE-Optimistic-2 for
both types of regular graph. (c) shows the average gain per round for the two SE-Optimistic
algorithms on regular graphs of density 3 and 20. (d) shows the total gain per round for
the same trials. Although the difference in gains between algorithms may be small, they
compound over time to produce significantly different cumulative gains (and, thus, total
rewards).

5.2.5. Summary

As discussed at the end of Section 5.1, two trends in Figures 12(a) and 12(b) com-

bine to produce the team uncertainty penalty in SE-Optimistic: as graph density

increases, the difference between the number of constraints changing in k=1 and

k=2 increases while the difference in the per-constraint improvement in k=1 and

k=2 decreases. The previous sections have discussed these two trends, as well as

other underlying behavior. In particular,

• Moving twice the number of agents does not equate to changing twice the
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number of constraints — it approaches a factor of two in high density graphs,

but it is lower for lower density graphs. This helps explain why k=2 changes an

increasing number of constraints, relative to k=1.

• In higher density graphs, more information in shared between agents and the

team is better able to select the best agent to change variables. Agents in low

density graphs are less knowledgeable and there should be extra restrictions on

their movement.

Figures 15(a)–15(d) summarize the performance of SE-Optimistic-1 and SE-

Optimistic-2. Figure 15(a) reports the number of constraints changed per round.

Figure 15(b) shows the gain per constraint change, smoothed with a 5-round sliding

window. Figure 15(c) reports the average gain per round, again with a 5-round

sliding window. Finally, Figure 15(d) reports the total gain per round. Recall that

the goal of DCEE algorithms is to maximize the on-line reward, corresponding to

maximizing the area under this curve.

In the following section, we discuss SE-Mean using figures analogous to Fig-

ures 15(a)–15(d) and highlight the differences which allow SE-Mean-2 to always

outperform SE-Mean-1, avoiding the team uncertainty penalty.

5.3. In Contrast: SE-Mean

Recall that in Figure 7(a) SE-Mean-2 always outperforms SE-Mean-1 — it does not

exhibit the team uncertainty penalty. The primary reason is that the algorithm is

very conservative in its bidding. SE-Mean agents assume that a changed variable will

only return the mean link value, causing it to drastically lower its bids relative to SE-

Optimistic. However, avoiding the penalty comes at a cost: recall that in Figure 7(a)

both SE-Mean algorithms underperform the SE-Optimistic algorithms (with the

exception of graphs with random topology, which the SE-Optimistic algorithms do

not handle well).

Figure 16(a) demonstrates the “conservative” nature of SE-Mean-1 and SE-

Mean-2 on density 3 and density 20 graphs: the number of constraints changed

quickly converges to zero. In contrast, recall that SE-Optimistic continues to op-

timize throughout the trial (Figure 15(a)). Similar to SE-Optimistic, SE-Mean-1

generally has a higher per-constraint gain then SE-Mean-2 (Figure 16(b)). Unlike

SE-Optimistic-1 and SE-Optimistic-2, SE-Mean-1 and SE-Mean-2 have relatively

high gains per constraint in density three graphs. In low density graphs, both SE-

Mean algorithms quickly stop allowing most agents to move and only the agents

with very low rewards (and thus very high gains) are allowed to move. This be-

havior also explains why the lines in Figure 16(b) are truncated as the number

of agents moving reaches zero. Although SE-Mean receives higher reward per con-

straint change than SE-Optimistic, it changes many fewer constraints per round,

and the algorithm quickly converges. Thus the total gain from the SE-Mean algo-

rithms is lower than that of the SE-Optimistic algorithms (compare Figures 15(d)

and 16(d)).
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Fig. 16: These figures report the number of constraints changed, the gain per constraint
change, the gain per round, and the cumulative gain for SE-Mean-1 and SE-Mean-2 on
regular three and regular twenty graphs. Each line averages 150 independent trials.

Most relevant to the team uncertainty penalty, the average gain per round of

SE-Mean-2 does not decrease faster than SE-Mean-1 in the density 3 graph, result-

ing in SE-Mean-2 outperforming SE-Mean-1 in terms of both the gain per round

(Figure 16(c)) and the cumulative reward improvement (Figure 16(d)), while the

reverse is true for SE-Optimistic-1 and SE-Optimistic-2 (Figures 15(c) and 15(d)).

Recall that the goal of the algorithms is to maximize the on-line reward, which

equates to maximizing the area under the cumulative gain curve. SE-Mean-2 does

not suffer from the team uncertainty penalty because it changes many fewer con-

straints, focusing on those agents which have the highest expected gain from moving.

Agents never move if their average per-constraint reward is already greater than the

mean (a table showing the number of agents that changed variables when r ≥ µ,

as in Table 4, would always show zero agents changing), which avoids the team

uncertainty penalty at the cost of overall performance.



March 19, 2011 10:31 WSPC/INSTRUCTION FILE
11ACS˙Taylor˙revision

Distributed On-line Multi-Agent Optimization Under Uncertainty) 39

5.4. BE-Rebid-1 vs. BE-Rebid-2

Similar to the SE-Optimistic-2 algorithm, BE-Rebid-2 can underperform BE-Rebid-

1 on sparse graphs (see Figure 7(b)). As discussed in Section 5.1, the two trends

in Figures 12(a) and 12(b) combine to explain the team uncertainty penalty. Sec-

tions 5.2.1–5.2.4 explain these trends and graphs for both the SE-Optimistic and

SE-Rebid algorithms, with one exception, described next.

In Figure 12(b), both SE-Optimistic-1 and SE-Optimistic-2 receive increased

benefit to changing constraints as the graph density increases. BE-Rebid-2 follows

this pattern, but BE-Rebid-1 does not — the gain from changing a constraint is

roughly constant in BE-Rebid-1 over different graph topologies. However, Trend

#2 (the average gain per constraint for SE-Optimistic-2 increases relative to SE-

Optimistic-1 as the graph density increases) holds because BE-Rebid-2’s improve-

ment per-constraint change increases with increasing graph density.

The main change in behavior of the BE-Rebid algorithms from the SE-

Optimistic algorithms can be seen by comparing Figures 15(a) and 15(b) with

Figures 17(a) and 17(b). SE-Optimistic-1 and SE-Optimistic-2 greedily attempt to

improve the team reward over time and thus the number of constraints changed

remains roughly constant, whereas BE-Rebid-1 and BE-Rebid-2 are both aware of

the number of rounds remaining. This extra knowledge allows them to calculate the

value of exploration and exploitation, resulting in fewer agents changing values over

time, except when there is a very high chance of a large improvement (e.g., very few

agents move near the end of a trial, but those that do receive very high gains on

average). Despite these differences, the gain per round of BE-Rebid-2 quickly drops

below that of BE-Rebid-1 on the density three graph, as seen in Figures 17(c) and

17(d), leading to BE-Rebid-1 outperforming BE-Rebid-2 on low density graphs.

5.5. BE-Stay-1 and BE-Stay-2

As was the case with SE-Mean relative to SE-Optimistic, BE-Stay is more conser-

vative than BE-Rebid. BE-Stay agents cannot backtrack and therefore down-weight

exploration because they are unable to exploit previously discovered constraint

settings. When comparing the performance BE-Stay (Figures 17(e)–17(h)) to SE-

Rebid (Figures 17(a)–17(d)), one can see that BE-Stay changes relatively fewer

constraints. BE-Stay-2 always outperforms BE-Stay-1, as in the case of SE-Mean.

Again similar to SE-Optimistic and SE-Mean, the BE-Rebid algorithms change

almost an order of magnitude more constraints than do the BE-Stay algorithms

(i.e., the area under the curve in Figure 17(a) is roughly ten times that under

the curve in Figure 17(e)). Thus, even in low density graphs, agents only change

values when there is a very good chance of increasing the team’s reward, resulting

in a higher gain per constraint change in the first half of the trial of the BE-Stay

algorithms (Figure 17(f)) compared to the BE-Rebid algorithms (Figure 17(b)).

Because relatively few agents move in BE-Stay algorithms, relative to BE-Rebid,

the gain per round (Figure 17(g)) and total gain (Figure 17(h)) are lower than in
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Fig. 17: (a)–(d) summarize the behavior of BE-Rebid-1 and BE-Rebid-2 over time and
can be contrasted with BE-Stay-1 and BE-Stay-2 in (e)–(h).
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BE-Rebid. Although BE-Stay does not suffer from the team uncertainty penalty, one

or both of BE-Rebid-1 and BE-Rebid-2 will outperform BE-Stay-1 and BE-Stay-2

(Figure 7(b)).

6. DCEE Algorithm Extensions: Avoiding the Team Uncertainty

Penalty

This section revisits the SE-Optimistic-2 and BE-Rebid-2 algorithms and proposes

two extensions that help ameliorate the team uncertainty penalty. In principle, one

could evaluate a graph and decide whether a k=1 or k=2 is likely to be superior,

based on the graph density. A more robust solution is to design a k=2 algorithm

which can also perform well at low densities, potentially even outperforming the

existing k=2 algorithms. The algorithms introduced here empirically demonstrate

the soundness of the arguments in the previous section and show that the utility of

teamwork can be improved by accounting for the team uncertainty penalty. The first

method uses a threshold to determine when joint actions are allowed. The second

method discounts actions in unknown parts of the reward matrix; teamwork is

always useful when rewards are known, but may be harmful to agents when exploring.

6.1. Discouraging Joint Actions

The first approach taken to decrease the team uncertainty penalty is to discourage

agents from executing joint actions with low bids. In DCEE algorithms, pairs of

agents that have relatively high rewards will make relatively low bids. As one may

expect (c.f., Figure 14), agents with low bids (which won the right to change vari-

ables) were much more likely to receive negative gains than those that made high

bids. In this section, we consider using a threshold parameter: if a pair of agents do

not bid to improve by at least τ units of reward per constraint in the next round,

the algorithm disallows the joint action and reverts to k=1. Said differently, this

method parameterizes the decision of when to use teamwork, allowing agents to

form a team only if they expect to receive a high reward improvement (and thus

are less likely to receive a low, or negative, change in reward).

SE-Threshold-2 is identical to SE-Optimistic-2 except that agents are allowed

to form a pair only if their bid will be at least τ×(number of agents that neighbor the

pair). BE-Threshold-2 is similar: pairs may form only if the pair has a bid above

τ×(number of agents that neighbor the pair). This change is enacted by adding an

extra conditional to Algorithm 2, line 9. Agents only execute joint actions when

there should be a significant advantage to the joint move and otherwise “play it

safe” with k=1.

Figures 18(a) and 18(b) shows the performance of SE-Threshold-2 and BE-

Threshold-2, respectively. In these two graphs, both algorithms use a single value of

τ for all trials, confirming that performance can be improved by discouraging team-

work. SE-Threshold-2 outperforms SE-Optimistic-2 on very low density graphs (for
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instance, SE-Threshold-2 outperforms SE-Optimistic-2, p < 0.05, but underper-

forms SE-Optimistic-1, p < 0.05), and dominates SE-Optimistic-1 on high density

graphs. Likewise, BE-Threshold-2 outperforms BE-Rebid-2 on low density graphs

and outperforms BE-Rebid-1 on high density graphs. Using a threshold reduces the

team uncertainty penalty in both cases.
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(b) Comparing BE-Rebid-1 and BE-Rebid-2 with BE-Threshold-2, BE-i-1, and BE-i-2

Fig. 18: (a) shows the scaled gain for SE-Threshold-2 with τ = 100, SE-i-1 and SE-i-2
with i = 110, and compares it to SE-Optimistic-1 and SE-Optimistic-2. Similarly, (b)
shows the performance of BE-Threshold-2 using τ = 15, BE-i-1 and BE-i-2 using i = 4,
and compares to BE-Rebid-1 and BE-Rebid-2.

A second set of results tested how the algorithms performed on a single graph

type with different parameter settings. Figure 19(a) shows the results of BE-

Threshold-2 on regular graphs of varying densities. To tune our algorithms, we

tested roughly ten different values of τ for both SE-Threshold-2 and BE-Rebid-2,
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and selected the best parameter value, per graph type, for each algorithm. Tuning

the threshold parameter for SE-Threshold-2 produces qualitatively similar behav-

ior. The y-axis shows the net gain on different graph types. The points at the far

left represent the performance of BE-Rebid-1, the points at the far right BE-Rebid-

2, and the points connected by lines show the performance of BE-Threshold-2 for

different values of τ (shown on the x-axis). As expected, different thresholds maxi-

mize performance for different graphs. An important open question is whether these

parameters can be automatically tuned. A fixed threshold setting shows substantial

improvements, but even higher gains could be achieved if the algorithmic parame-

ters can be set automatically per graph, or even per agent.

6.2. Discounting All Bids Under Uncertainty

The second approach taken to decrease the team uncertainty penalty is to discount

all bids. Both SE-Optimistic-2 and BE-Rebid-2 receive negative average reward

when they have low bids. Reducing all exploration bids via a per-constraint dis-

count discourages agents from changing variables when they have low bids, result-

ing in algorithms that are less aggressive. Put differently, our results show that

joint actions are more likely to make mistakes than single agent actions in the pres-

ence of uncertainty — this parameter reduces the value of exploration, encouraging

exploitation.m

SE-i-1 and SE-i-2 are similar to SE-Mean-1 and SE-Mean-2 in that all unex-

plored variable assignments are assumed to receive a reward per link of i (where i=µ

for SE-Mean), effectively determining the calculated utility of exploration. While

SE-Optimistic agents change their values throughout all trials, SE-i agents will stop

optimizing once all agents have a reward of at least i×NumberLinks. BE-i-1 and

BE-i-2 generalize the BE-Rebid algorithms so that all utilities for the explore action

are discounted, proportional to the number of constraints that would be changed:

the value of exploration is discounted by i×NumberLinks. This shift in utility dis-

courages agents from being overly optimistic with their bids and encourages agents

to exploit (i.e., backtrack), rather than explore.

Figure 18(a) demonstrates that SE-i-2 generally outperforms all other algo-

rithms, regardless of density. Particularly impressive is the performance on chain

and random graphs, substantially outperforming the other static estimation meth-

ods. The discount factor i allows agents with many neighbors to more easily decline

to move so that they do not dominate their neighbors (unlike SE-Optimistic, as

discussed earlier in Section 4.2). SE-i-2 is the highest performing static estimation

algorithm. Additionally, SE-i-2 also outperforms SE-i-1 — SE-i-2 does not suffer

mAlthough BE-Rebid-2 calculates the value of exploration using decision-theoretic reasoning, our
results have shown that this estimate can be incorrect, and is more incorrect for k=2 in low density
graphs. Were the decision-theoretic calculations flawless, such a correction would not be needed.
However, the gain calculations in all algorithms are only approximations, although the BE-Rebid
calculations are substantially more sophisticated than in SE-Optimistic.
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Fig. 19: The performance of (a) BE-Threshold-2 and (b) SE-i-2 changes as their parame-
ters are tuned. In (a), the x-axis show the value of τ , the threshold parameter, and τ=0 is
equivalent to BE-Rebid-2. In (b), the x-axis show the value of i, and i=100 is equivalent
to SE-Mean-2 (SE-Optimistic-2 would be equivalent to i=200, which is not shown).

from the team uncertainty penalty. SE-i-2 is the highest performing static estima-

tion algorithm, given a reasonable value of i.

The performance of BE-i-2 in Figure 18(b) demonstrates BE-i-2 is similar to BE-

Threshold-2 in that it outperforms BE-Rebid-2 on sparse graphs and outperforms

BE-Rebid-1 on dense graphs. These results suggest that BE-Threshold-2 is the best

k=2 balanced exploration algorithm, in that it more often outperforms BE-i-2 than

not, and reduces the team uncertainty penalty (relative to BE-Rebid-2). BE-Rebid-2

outperforms both BE-Threshold-2 and BE-i-2 on the full graph; it is not surprising

that the most aggressive algorithm (BE-Rebid-2) does well on this high density

graph when 40 agents are fully connected.

Figure 19(b) is analogous to Figure 19(a): it shows how the performance of SE-

i-2 changes on a single graph type as the parameter i is varied (tuning BE-i-2 over

a range of parameters produces qualitatively similar results). As before with BE-

Threshold-2, the parameter value that produces maximal in SE-i-2 gain depends on

the graph type. If a single parameter is used, SE-i-2 is a significant improvement

over SE-Optimistic-2. If multiple parameters may be tuned, or set automatically,

performance can be increased still further.

This section has presented novel algorithms that explicitly account for the team

uncertainty penalty. In particular, the SE-i-2 algorithm worked surprisingly well,

dominating all other SE algorithms. These algorithms show that both reducing the

calculated utility of joint moves and reducing the utility of acting under uncertainty

improve performance. This represents an important confirmation that the team

uncertainty penalty can be reduced, if not avoided, by explicit consideration during

an algorithm’s design.
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6.3. Analysis: Reducing the Team Uncertainty Penalty

SE-Threshold-2 does perform better than the worst of SE-Optimistic-1 and SE-

Optimistic-2, and sometimes outperforms both. Put differently, if one does not

know the topology of the DCEE in advance, SE-Threshold-2 may be a safer choice

than either of the SE-Optimistic algorithms because its performance does not suffer

on low density graphs (like SE-Optimistic-2) and still performs well on high density

graphs. SE-Threshold-2 also outperforms SE-Mean-1 and SE-Mean-2 on all graphs

except random topologies (see Section 4.2 for a discussion of why SE-Optimistic,

and by extension SE-Threshold-2, suffers on random graphs).

SE-Threshold-2 is able to successfully avoid the team uncertainty penalty by

only allowing agents to execute joint moves when their expected gain is above

some threshold. This behavior is evidenced by SE-Threshold-2 changing more vari-

ables over the course of a trial than SE-Mean-2 (compare Figures 20(a) and 16(a)),

but fewer variables than SE-Optimistic-2 (compare Figures 20(a) and 15(a)). The

remainder of the SE-Threshold-2 figures (Figures 20(b)–20(d)) follow from the SE-

Threshold-2 algorithm being more conservative than SE-Optimistic-2, but more

aggressive than SE-Mean-2.

Similar to SE-Threshold-2, BE-Threshold-2 does at least as well as the worst of

BE-Rebid-1 and BE-Rebid-2. BE-Threshold-2 also outperforms BE-Stay-1 and BE-

Stay-2, with the exception of full graphs. BE-Threshold-2 changes more constraints

per trial than BE-Stay-2 (compare Figure 20(a) with 17(e)), but fewer variables

than BE-Rebid-2 (compare Figures 20(a) and 17(a)). The remainder of the BE-

Threshold-2 graphs follow from this change in behavior.

SE-i-2 is the most successful static estimation algorithm and should generally be

preferred — it performs at least as well as the best SE-Optimistic algorithm, except

for regular twenty graphs, and thus is a very safe choice. SE-i-2 also outperforms

SE-i-1 on all tested DCEE topologies. SE-i-2 does not suffer from the team uncer-

tainty penalty. SE-i-2 always performs better than SE-Mean-1 and SE-Mean-2. The

performance of SE-i-1 and SE-i-2 is summarized in Figures 21(a)–21(d). Similar to

SE-Threshold-2, SE-i-2 changes more variables per trial than SE-Mean-2 but fewer

variables per trial than SE-Optimistic-2 (see Figure 21(a)). Most important, be-

cause the gain per round of SE-i-2 is higher than SE-i-1, even for density 3 graphs

(see Figure 21(c)), SE-i-2 does not suffer from the team uncertainty penalty.

BE-i-2 is not as successful as SE-i-2, but it does perform at least as well as the

worst of BE-Rebid-1 and BE-Rebid-2, making it a safe choice if the DCEE topology

is unknown. The analysis of BE-i-1 and BE-i-2 is summarized in Figures 21(e)–21(h).

BE-i-2 does suffer from the team uncertainty penalty — BE-i-1 outperforms BE-i-2

on low density graphs (see Figure 21(g)). BE-i-2 outperforms BE-Stay-1 and BE-

Stay-2, with the exception of a fully connected graph. As in SE-i-2, BE-i-2 changes

more constraints (Figure 21(e)) than BE-Stay-2 but fewer than BE-Rebid-2.

Taken together, the results in this section present encouraging results — the

team uncertainty penalty can be reduced or even avoided. However, both types of
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Fig. 20: These figures show the behavior of SE-Threshold-2 and BE-Threshold-2 over
time. All results are averaged over 150 trials.

algorithm introduced in this section require tuning an extra parameter.

7. Related Work

This article focuses on a class of problems that traditional DCOP algorithms could

not address. We show that such real world domains raise new challenges: (1) agents

do not know the initial payoff matrices, (2) the goal is to maximize the total reward

instead of the final reward, and (3) agents have insufficient time to fully explore the

environment. These challenges open up a new area for DCOP research, as current

DCOP algorithms cannot be directly applied. This section discusses related work

and approaches to such distributed problems.

Related work in DCOPs has been discussed in earlier sections. While there has

been significant previous work in sensor networks [12, 23, 52, 41], none of it uses

distributed constraint reasoning and handle unknown rewards.

A number of other works on mobile ad-hoc networks for communications (c.f.,

Cheng et al. [6], Marden et al. [29], and Correll et al. [7]) are based on other

techniques (e.g., swarm intelligence, potential games, or other robotic approaches).
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Fig. 21: These figures show the behavior of SE-i-1, SE-i-2, BE-i-1, and BE-i-2 over time.
All results are averaged over 150 trials.
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Instead, we extended DCOPs as they can scale to large tasks using local inter-

actions. Other researchers have examined lower-level concerns in mobile wireless

networks (c.f., the LANdroids,n GUARDIANS,o and Space-Time Processing for

Tactical Mobile Ad-Hoc Networks projectsp) rather than explicit multi-agent co-

ordination issues. Farinelli et al. [11] also perform decentralized coordination on

physical hardware using factor graphs, however, rewards are known and cumulative

reward is not considered.

In multi-agent work, teamwork is typically considered beneficial, although if too

much information is shared, computational requirements will explode [9]. To our

knowledge, this is the first work to show that increasing the amount of teamwork

may actually be harmful, without counting communication or computation cost. For

example, previous work [19] has focused on “level of cooperativeness” in distributed

constraint satisfaction problems (DisCSPs), as well as on the size of a mediation

group to select asynchronous partial overlay DisCSP algorithms [2]. While these

results show that increased cooperativeness may not always improve performance,

the focus of that research was run-time performance rather than solution quality,

which is the exclusive focus of our work.

Zhang et al. [53] analyze the distributed stochastic search algorithm (DSA) and

show that it often performs better than the distributed breakout algorithm (DBA)

along multiple dimensions, encouraging many researchers to extend the DSA frame-

work (c.f., Zivan [54]). Because MGM is similar to DBA, we also investigated using

DSA as a base for algorithms in the DCEE problems, although DSA requires tun-

ing of a real-valued parameter that affects its probabilistic update rule. However,

our results in Section Appendix C showed that our MGM-based algorithms sub-

stantially outperformed DSA algorithms if DSA’s free parameter was not carefully

tuned.

While the majority of DCOP and DisCSP work has assumed all rewards are

known, a few works have addressed uncertainty in the environment in settings

different from DCEE. For instance, Lass et al. [36] consider the case where a DCOP’s

reward matrix can change over time in an unknown way. Their solution focuses on

solving the new problem instance quickly without accounting for any exploration.

Brito et al. [5] consider that an agent may only know part of the environment, e.g.,

the agents are self-interested and do not share all their knowledge. Lastly, open

constraint programming [10] explicitly reasons about exploration. In their work,

centralized algorithms try to solve the satisfaction problem, and if no solution exists,

agents explore — there is no notion of trading off exploration with exploitation to

maximize the on-line reward.

Optimal stopping problems are a well-studied class of problems where one must

decide when to cease drawing random numbers in order to maximize some objective.

nhttp://www.darpa.mil/ipto/programs/ld/ld.asp
ohttp://vision.eng.shu.ac.uk/mmvlwiki/index.php/GUARDIANS
phttp://zeidler.ucsd.edu/muri/pages/index.php
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One popular instance of such problems is the secretary problem [14]. While many

different formulations of the original problem exist, to the best of our knowledge,

all solved problems of this type focus on the final rank of the selected instance

rather than any on-line metrics. Furthermore, the mobile ad-hoc network problem

is multiagent, while the optimal stopping problems are all single agent.

An alternate way of describing the DCEE problem is to think of it as an extension

to the multi-armed bandit [37] problem. In this single agent problem, an agent has a

number of possible actions available and it does not know the payoff of each action.

The goal of such algorithms is typically to balance exploration with exploitation so

that the agent’s on-line reward approaches the optimal reward (i.e., minimizes the

agent’s regret relative to always choosing the best action). A DCEE is significantly

harder because it is a distributed multi-agent multi-armed bandit. Not only does

the team’s reward depend on the combination of actions that are executed by the

different agents, but we assume there are (in effect) an infinite number of actions.

Reinforcement learning (RL) [42] is a popular approach to multiagent learning

for sequential decision tasks with limited feedback that use a Markov Decision

Process (MDP) formulation. When using RL in multiagent domains, there are three

common approaches:

(1) Every agent learns separately and treats other agents as part of the (non-

stationary) environment (c.f., Stone et al. [40]). While this approach enables

agents to use unmodified single-agent RL algorithms, learning is likely to con-

verge with poor performance, or fail to converge to a stable policy.

(2) Agents collaborate to find optimal behaviors using a construct like a coordi-

nation graph [17] (which applies to factored MDPs). For instance, Kok and

Vlassis [21] use a reinforcement learning approach that applies to multi-agent

tasks with coordination graphs. Their model allows agents to learn a value for

each variable setting but uses only a single state, where agents take actions to

select a particular variable setting and then return to the same state (similar

to learning Q(,̇a) values). Additionally, they do not explicitly reason about the

length of the experiment, while our analysis of the BE algorithms have shown

that changing the exploration/exploitation trade-off based on the amount of

time remaining in an experiment can be beneficial.

(3) If the task is fully observable, a centralized approach like MMDP [4], can suc-

cessfully treat the entire system as a single agent and reason over the entire joint

action space. While this approach is P-complete, in many real-world domains

every agent cannot observe the entire state space. If the task is fully observ-

able only if agents pool their state information, a DEC-MDP approach [3] may

be used. However, this approach is NEXP-complete and the computational re-

quirements balloon with the number of agents in the system. While the MMDP

and DEC-MDP formulations allow for stochastic transitions, DCEE focuses on

problems with deterministic transitions.
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8. Conclusion and Future Work

This article focuses on a class of problems that DCOPs could not address before.

This is the first application of DCEE that demonstrates improvement in perfor-

mance in a physical problem with uncertainty. We show that such real world do-

mains raise new challenges: (1) agents do not know the initial payoff matrices, (2)

the goal is to maximize the total reward instead of the final reward, and (3) agents

have insufficient time to fully explore the environment. These challenges open up

a new area for DCOP research, as current DCOP algorithms cannot be directly

applied. We present and empirically compare two classes of novel DCEE algorithms

addressing these challenges. We also present results from the DCEE algorithms

implemented on physical robots. Our results show significant improvement in the

reward function in mobile ad-hoc networks. Our experiments demonstrate the su-

periority of decision theoretic approaches, but static estimation strategies perform

well on fully connected graphs or when task time horizon is small.

An additional contribution of this article is establishing that increased teamwork

under uncertainty may sometimes degrade performance. We have presented and em-

pirically tested a set of k=2 algorithms, investigated the team uncertainty penalty

in the context of DCEE problems, and presented a second set of improved algo-

rithms that reduce the penalty’s impact. The two types of algorithmic solutions,

disallowing low valued joint actions and discounting the utility of actions under

uncertainty, are very general. While both approaches help alleviate this penalty

in static estimation algorithms, they are less effective in the balanced exploration

algorithms. Additional research is needed before we know how often the team un-

certainty penalty appears in practice, or if it is possible to use our knowledge of the

penalty to design algorithms which do not experience the team uncertainty penalty.

The DCEE framework and algorithms presented in this article lead to a number

of open questions. In the future, we are interested in exploring problems where

there is more prior knowledge available to agents about the reward distribution. For

instance, when deploying agents in a mobile ad-hoc network, an engineer may have

some idea about what would be good positions for the agents. In this case, the agents

should be able to robustly use this prior information, allowing them to improve

their reward much faster, while limiting the penalty to the team’s performance if

the prior information is incorrect. Other exciting directions include applying DCEE

algorithms to different problems, such as channel allocation, and examining more

topologies, such as scale-free networks.

We are also interested in making the DCEE framework more flexible. For in-

stance, there may be problems in which

• Reward distributions may be different for different agents or constraints.

• Reward distributions may be time dependent.

• The topology may change over time.

• The experiment runs infinitely long.

• etc.
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We believe that DCEE algorithms could be adapted to address such scenarios, but

these explorations are left for future work.

An important open question is whether the parameters i and τ in the SE-i/BE-i

and SE-Threshold-2/BE-Threshold-2 can be automatically tuned. A fixed threshold

setting shows substantial improvements, but even higher gains could be achieved if

the algorithmic parameters can be set automatically per graph, or even per agent.

The investigation of the team uncertainty penalty in this article does not make

it clear which reward distributions or domains will suffer from the penalty. The

experiments that compare DCEE algorithms to the Omniscient algorithms suggest

that uncertainty in the reward function is necessary for the penalty to manifest, but

it is unclear what conditions are sufficient for the penalty to affect team reward.

Our suspicion is that there will be many other settings where such a penalty exists,

such as in multi-agent learning.

Finally, additional experiments on robots would be necessary before DCEE could

be deployed on a fully autonomous mobile ad-hoc network. For instance, tests with

many different robots interacting simultaneously would be useful to verify the sim-

ulator results with large numbers of agents. In principle, other reward metrics like

maximizing throughput or battery life, and other distributions of rewards (e.g., uni-

form) should be easy to incorporate into the DCEE framework, but it is possible

that additional unexpected and interesting phenomena will be discovered.

Appendix A. k=3 Algorithms

The DCEE algorithms presented in this article could be extended to arbitrary levels

of k, but our code base currently requires each algorithm to be re-implemented for

every value of k desired.q This section explains the two k=3 algorithms used in

experiments.

Omniscient-3 is similar to Omniscient-2, but now up to three agents can make

a joint move. The primary change is that agents first attempt to form a triple (Algo-

rithm 3, lines 8–14). If that fails, it attempts to form a pairs (lines 18–24). Finally,

if it is unable to form a pair, agents will attempt to change variables alone (line 28).

Because of the number of possible teams considered, this algorithm requires a sig-

nificant increase in the number of messages compared to Omniscient-2, particularly

when the agents have many neighbors, as getMaxGainAndAssignmentForTriple()

must consider all possible groups three neighboring agents (that include itself). For

each group of three agents, it computes the optimal assignment for each of the three

agents, assuming none of the neighbors of the three agents change their variables.

This added complexity guarantees 3-optimal solutions, which generally outperform

2-optimal solutions.

SE-Optimistic-3 extends SE-Optimistic-2 so that sets of three agents can make

joint moves. It differs from Omniscient-3 in how the functions getMaxGainAndAs-

qA general-k-optimal DCOP algorithm has only been recently introduced [20] but such an algo-
rithm could be used to create a general-k-movement DCEE algorithm in the future.
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Algorithm 3 Pseudocode for k=3 Algorithms

1: for each neighbor i do

2: Send variable assignment and reward matrices to i

3: Receive variable assignment and reward matrices from i

4: Aggregate all information
5: for each neighbor i do

6: Send all aggregated information to i

7: Receive aggregate information from i

8: Find the triple with the maximum gain, g, with agents p and p′, and in which my variable
assignment is a:
g, p, p′, a← getMaxGainAndAssignmentForTriple()

9: AcceptCount ← 0
10: Send OfferTriple to form triple to agents p and p′

11: for all OfferTriple messages received do

12: if agent requesting to form triplet ∈ {p, p′} then
13: Send Accept to offering agent
14: AcceptCount ← AcceptCount + 1
15: Receive responses from neighbors, if any
16: if (Did not receive Accept messages from both from agent p and agent p′) or (AcceptCount
6= 2) then

17: p, p′ ← ∅, ∅
18: Find maximum gain, neighbor to pair with, and variable assignment:

g, p, a← getMaxGainAndAssignmentForPair()
19: Send OfferPair to p

20: AcceptCount ← 0
21: for all OfferPair messages received do

22: if agent requesting to form pair is p then

23: Send Accept to p

24: AcceptCount ← AcceptCount + 1
25: Receive responses from neighbors, if any
26: if (Did not receive Accept from agent p) or (AcceptCount 6= 1) then

27: p← ∅
28: Find max gain and preferred assignment (individual update):

g, a← getMaxGainAndAssignment()
29: Send Bid (g) to all neighbors
30: Receive n Bids from all neighbors, ignoring message from p

31: G← maxn Bidsn
32: if g > G then

33: bChanging← True
34: else

35: bChanging← False
36: if p′ 6= ∅ then
37: Send ProhibitVariableChange to agent p′

38: if p 6= ∅ then
39: Send ProhibitVariableChange to agent p

40: Receive any messages sent by neighbors
41: if (bChanging) and (p 6= ∅) then

42: if Received ProhibitVariableChange from agent p then

43: bChanging← False
44: if (bChanging) and (p′ 6= ∅) then

45: if Received ProhibitVariableChange from agent p′ then

46: bChanging← False
47: if bChanging then

48: UpdateAssignment(a)
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Fig. 22: This graph shows how agents can automatically recover after a failure of 2 agents
after every 25 rounds.

signmentForTriple(), getMaxGainAndAssignmentForPair(), and getMaxGainAn-

dAssignment() calculate utilities. SE-Optimistic-3 requires significantly more mes-

sages when compared to SE-Optimistic-2, similar to how Omniscient-3 requires

more than Omniscient-2.

Appendix B. Dynamic Changes in Graph Topology

Although this article does not focus on the robustness of DCEE algorithms, this

section presents a result suggesting that DCEE algorithms are indeed robust to

agent failures. The agents calculate their gains with the current set of neighbors

on every round and act accordingly. Even if the algorithm has converged, it will

begin optimizing again if needed. DCEE algorithms automatically handle situations

where agents and/or constraints are added/removed from the system. While there

are likely enhancements that could be made to the algorithms to increase their

resilience, such investigations are left to future work.

Figure 22 shows a representative learning curves for two k=1 DCEE algorithms

and compares to the Omniscient-1 algorithm. The x-axis shows the round number

(from 1–100) and the y-axis shows the team’s performance. There are 20 agents

forming a chain topology. Every 25 rounds, two agents are disabled at random.

Disabled agents are removed from the DCEE: all constraints connected to disabled

agents are removed from the graph and the disable agents cannot contribute to the

team reward. The graph shows that agents resume their optimization after such

failures, and that BE-Rebid-1 outperforms SE-Optimistic-1.
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Appendix C. DSA Results

This section presents results from using algorithms based on DSA [13], while all

other results presented in this paper use MGM as a framework for the DCEE

algorithms. The distributed stochastic search algorithm (DSA) is popular both for

its simplicity and numerous successes (c.f., Zhang et al. [52] and Zivan [54]). In the

DSA algorithm for DCOPs, every agent draws a random number. If the agent’s

number exceeds some pre-defined threshold, then it has the ability to move on the

current round.

We define a DSA-Omniscient algorithm, where an agent that wins the ability

to move will change its value to maximize its reward, assuming all neighbors do

not move. In DSA-Optimistic, an agent that wins the ability to move will always

move, as it assumes that executing the explore action will return the maximum

reward. In DSA-Mean, an agent that wins the ability to move will only do so if its

current reward is less than the mean reward multiplied by its number of neighbors.

Figure 23 shows that DSA-based algorithms can outperform MGM-based algo-

rithms. DSA-Omniscient and DSA-Mean outperform their counterparts. However,

DSA-Optimistic significantly underperforms SE-Optimistic. These results report

the average of thirty trials each on the four topologies. It is worth noting, however,

that the DSA algorithms were each tuned separately, as an appropriate value of

p, the parameterized threshold, was critical to obtaining high performance. Fig-

ures 24(a) and 24(b) show how the performance of DSA is affected by its parameter

setting. Results show the average total gain of 10 trials, each using 20 agents run-

ning for 50 rounds. The best value of p, per DSA algorithm, was used to produce

the values in Figure 23.
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