Solving Continuous-Time Transition-Independent
DEC-MDP with Temporal Constraints

Zhengyu Yin', Kanna Rajan?, and Milind Tambe*
'University of Southern California, Los Angeles, CA 90089, USA

{zhengyuy, tambe}@usc.edu
*Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA

kanna.rajan@mbari.org

ABSTRACT

Despite the impact of DEC-MDPs over the past decade, scal-
ing to large problem domains has been difficult to achieve.
The scale-up problem is exacerbated in DEC-MDPs with
continuous states, which are critical in domains involving
time; the latest algorithm (M-DPFP) does not scale-up be-
yond two agents and a handful of unordered tasks per agent.

This paper is focused on meeting this challenge in contin-
uous resource DEC-MDPs with two predominant contribu-
tions. First, it introduces a novel continuous time model for
multi-agent planning problems that exploits transition in-
dependence in domains with graphical agent dependencies
and temporal constraints. More importantly, it presents a
new, iterative, locally optimal algorithm called SPAC that
is a combination of the following key ideas: (1) defining
a novel augmented CT-MDP such that solving this single-
agent continuous time MDP provably provides an automatic
best response to neighboring agents’ policies; (2) fast con-
volution to efficiently generate such augmented MDPs; (3)
new enhanced lazy approximation algorithm to solve these
augmented MDPs; (4) intelligent seeding of initial policies
in the iterative process; (5) exploiting graph structure of
reward dependencies to exploit local interactions for scala-
bility. Our experiments show SPAC not only finds solutions
substantially faster than M-DPFP with comparable quality,
but also scales well to large teams of agents.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Theory

Keywords

Multiagent systems, Decentralized Markov Decision Pro-
cess, Continuous Time

1. INTRODUCTION

Since the introduction of decentralized Markov Decision
Processes (DEC-MDPs) to the field of multiagent systems
over a decade ago, there has been significant progress in

The Sixth Annual Workshop on Multiagent Sequential
Decision-Making in Uncertain Domains (MSDM-2011), held
in conjunction with AAMAS-2011 on May 3, 2011 in Taipei, Taiwan.

improving their efficiency [1, 8, 16]. Yet given the NEXP-
complete complexity of DEC-MDPs [4] scale-up has been
difficult. This challenge is further exacerbated in many real-
world domains where we wish to apply DEC-MDPs: these
involve continuous resources such as time or energy, and ac-
tions may involve uncertainty in their resource consumption
(e.g. duration or energy consumption). And these domains
often require that we deploy teams of agents, e.g. large num-
bers of autonomous underwater vehicles for scientific obser-
vations in the ocean [6], unmanned aerial vehicles for surveil-
lance or large autonomous mobile sensor webs deployed for
disaster response.

The state-of-the-art in continuous time planning for DEC-
MDPs often fails to meet this challenge. One of the latest
algorithms, M-DPFP [12], is an attempt to find a global op-
timal for continuous time DEC-MDPs, where agents must
coordinate over an unordered set of tasks. Unfortunately M-
DPFP cannot scale-up beyond two agents and a handful of
tasks. Other attempts in planning with continuous time for
DEC-MDPs [5, 11] have successfully solved problems with
much larger number of tasks, but require that the task or-
dering be supplied ahead of time without a significant num-
ber of agents. There has been some success in scale-up in
discrete state planning, in models such as ND-POMDPs [13]
that exploit transition independence [1] and a network struc-
ture; for example ND-POMDPs have shown results for up
to a dozen agents. While we build on some of the key ideas
in ND-POMDPs, their discrete state approximation of con-
tinuous time domains can lead to significant degradation in
solution quality (coarse-grained discretization) or very large
inefficiencies (fine-grained discretization) [12].

This paper presents two key contributions, to meet the
challenges of continuous time DEC-MDPs. First, we in-
troduce a novel continuous time model (MCT-MDP) for
multiagent planning problems that exploits transition in-
dependence in domains with graphical agent dependencies
and temporal constraints. This model is motivated by do-
mains such as ones dicussed in Section 2. More impor-
tantly, we present a new iterative locally optimal algorithm
called SPAC that is a combination of the following key ideas:
(1) defining an augmented CT-MDP such that solving this
single-agent continuous time MDP provably provides a best
response to neighboring agents’ policies; (2) fast convolu-
tion to efficiently generate such augmented MDPs; (3) a
new enhanced Lazy Approximation algorithm to solve these
augmented MDPs; (4) intelligent seeding of initial policies
in the iterative process; (5) exploiting graph structure of
reward dependencies for scale-up. Our experiments show

SPAC not only finds solutions substantially faster than M-
DPFP with comparable quality, but also scales well to large
team of agents — it can solve a 1000-agent problem with 5
unordered tasks per agent in 8 minutes.

2. MOTIVATING PROBLEM

An important domain that motivates our work is with the
use of Autonomous Underwater and Surface Vehicles (AUVs
and ASVs). These are untethered mobile robots used for
collecting data and returning targeted water samples from
within dynamic and unstructured coastal features [14]. To
scale the existing on-board automated planning techniques
to observe and sample large scale spatio-temporal fields we
need to consider teams of robots working in a coordinated
fashion to sample both the spatial extent and rapid temporal
changes within different water columns.

For example, we consider a 6-agent scenario shown in Fig-
ure 1. A team of three pairs of AUV/ASV is assigned to
collect sensor data and water samples in pre-identified bio-
logical hotspots which characterize a Harmful Algal Bloom.
Depending on the size of the hotspot, multiple agent pairs
may be required to sample the area. For example, in Fig-
ure la, Hi, Ha, and H4 are three small hotspots that require
only one pair of AUV/ASV each, while Hs is a large area
that requires all three pairs to perform the sampling task
simultaneously. While the ASVs remain on the surface to
take surface samples, their corresponding AUVs travel be-
low the surface periodically taking underwater samples co-
temporally. Actions such as traveling between hotspots, per-
forming a sampling task, surfacing to get a GPS fix etc. may
have uncertain durations with known distributions. Note
that in this problem, one agent’s action will not affect other
agents’ physical states and possible actions. In DEC-MDP
research, this type of transition independence has been mo-
tivated earlier in many domains [1, 13].

Each single task has a reward associated with it; but the
reward obtained may be based on the joint actions of multi-
ple agents in the team. In particular, there are several types
of temporal constraints within different sets of tasks. For
example, we require the underwater samples to be taken si-
multaneously with the surface samples, which is modeled as
a joint reward function. An example function is shown in
Figure 1b, where the x and y axes represent the remaining
time when the two tasks are started and the z value rep-
resents the corresponding joint reward. Similarly, we have
temporal constraints between pairs of agents as well as for
large hotspots, which can also be modeled as joint reward
functions. We may also have precedence constraints that
require one water sample to be taken before another, etc.
While this scenario is illustrated with six agents, in general
we can imagine a much larger team.

Our goal in this domain is to compute an optimal plan
that maximizes the total expected reward for the potentially
large agent teams, taking into account the uncertainties in
the ocean domain (location and travel time) and potentially
the complex set of continuous temporal constraints. Since
a number of mobile sensors may be required for a large sci-
entific mission, it is particularly important to design an ef-
ficient planner that can scale to a large number of agents.

3. MCT-MDP

As our motivating domain illustrates, one agent’s rewards

Hotspots

=
N

.

%
4

7
77

NN

SN

S

S

S
S
%>

=
SRS
S55S
CSS
7

77

Figure 1: (a) AUV/ASV teams for ocean sampling; (b) An
example reward function for a pair of simultaneous tasks.

may be dependent on other agent’s state and actions, but its
transitions are not. In DEC-MDP research, these types of
transition-independent problems have been motivated ear-
lier in many domains with discrete states [2, 13]. To ef-
ficiently model time as part of an agent’s local state, we
formulate these types of planning problems as continuous-
time transition-independent DEC-MDPs with soft temporal
constraints. We first define a single-agent problem and then
a decentralized one.

DEFINITION 1. A single-agent continuous resource MDP
(CT-MDP) M is represented by a tuple (S,A, A, T,0, R),
where,

o S is a finite set of discrete states. s° denotes the initial
state.

e A =[0,t"] is a one-dimensional continuous state rep-
resenting the remaining time. The agent initially has
t* remaining time. S X A defines the hybrid state space
of the agent. We say the agent is at hybrid state (s,t),
if its discrete state is s and remaining time is t.

e A is a finite set of actions. In addition, the agent can
wait for an arbitrary amount of time. Wait action is
denoted by ¢ (Wait is critical in multiagent settings,
e.g. one agent may need to wait to perform its task
as it may be dependent on another agent finishing its
task).

e T :5%xAxS — R is the transition function of discrete
states. T'(s,a,s') is the probability of entering s’ when
action a s taken at state s.

e 0: AXSXxAXS — R is the relative transition density
function of the continuous states. o(t|s,a,s’) is the
probability density function (PDF) of the duration of
taking action a at s and reaching s’. We assume there
is a minimum duration for all non-wait actions.

e R: A xS x A~ R is the individual reward function.
R(t|s,a) is the immediate reward obtained when the
agent takes action a at hybrid state (s,t).

DEFINITION 2. The policy w is a mapping from (s,t) to
an action a. Denote such mapping by w(s,t) = a. We define
the policy function ax(t|s,a):

an(tls,a) = {1, if m(s,t) = a,

0, otherwise.

DEFINITION 3. An event e = (s, a), is a pair of a discrete
state and a non-wait action. The set of all events E = Sx A.
In this paper, we use e and (s,a) interchangeably.

DEFINITION 4. Given policy m, fx(t|e) is the PDF that
event e happens with remaining time t.

The value of a policy 7 is the non-discounted expected
reward of R: V(m) = cp f;o R(tle) f=(t|e)dt.

DEFINITION 5. An n-agent transition-independent multi-
agent CT-MDP (MCT-MDP) is defined by ({M;},Q,R).

° M,L = <S17Az = [07t2‘]7Ai7Ti70-i7Ri> is the individual
CT-MDP of agent i.

e () is a set of reward-dependent joint events. A joint
event is denoted by ec, where ¢ = {c1,...,¢q|} is a
sub-group of agents and ec = {ec,,...,ec } 15 a joint
event defined on c.

e For everyec € Q, R(tey,---, tepe, lec), defines the joint
reward received if for every agent c¢; € c, its event e,
happens at t.,.

Q) determines the graphical reward dependencies among agents,

i.e. two agents are reward dependent if and only if there
exists a joint event in 2 which comprises both agents’ in-
dividual events. R captures the temporal constraint on de-
pendent events by rewards. For example, R(t1,tz2|e1,ez2) is
the reward function between e; of agent 1 and ez of agent
2. The global value of a joint policy @ = {m1,...,7n} is the
sum of non-discounted expected reward of both individual
rewards R; and joint rewards R. Thus,

Z‘/z 7rz + Z JV 7rc|ec

eceN

V(ﬂc\ec)://.../ ”OV Rlter, - ter oc)
tci: ,Ve;€c

(H f”ci (te; |eci)dtci> .

c;EC

Here we = {me¢,, ..., e } denotes the policies on sub-group
c, where 7., is the policy for agent c;. In this paper, we
will represent R(t|e) by piecewise constant functions and
Rtey,.-- st lec) by piecewise hyper-rectangular constant
functions (values are constant in each hyperrectangles).

4. SPAC:LOCALLY OPTIMAL ALGORITHM

From an initial joint policy, SPAC (Scalable Planning for
Agent teams under Continuous temporal constraints) ob-
tains a locally optimal solution by iteratively finding the
best response of one agent to its neighboring agents’ poli-
cies. For finding a best response, a naive approach is to
enumerate and evaluate all policies of the best-responding
agent given fixed policies of its neighboring agents. However,
this is infeasible in an MCT-MDP because first, there are
infinite number of states given continuous remaining time;
second, there are infinite number of decision choices since
an agent can wait any amount of time. To address this
difficulty, we present a novel augmented CT-MDP (defined
below) to efficiently compute the best response of an agent.

SPAC optimizes the joint policy as follows: (1) create the
set of augmented CT-MDPs for each agent i with respect
to other agents’ policies m—;; (2) find new optimal policy 7
by solving the augmented CT-MDP, and update the gain
dVi = Vi(x}) — Vi(m); (3) terminate if the maximum gain
is smaller than a given threshold 7, otherwise find a set of
mutually reward independent agents with high overall gain
greedily, update their policies from 7; to 7}, and repeat the
process from the first step. The pseudo code is shown in
Algorithm 1. Next we will discuss the two sub-routines in
Algorithm 1: (1) quickly create the augmented CT-MDP
for an agent given its neighbors’ policies (line 4); (2) solve it
efficiently using piecewise constant approximations inspired
by [9] (line 5).

Algorithm 1: Pseudo code of SPAC

1 7 = Find Initial Policy();
2 while max; dV; > n do

3 forall the i in {1,...,n} do
4 M; = Create_Augmented_CTMDP(i, _;);
5 7f = Solve_Augmented_CTMDP(M,);
6 | | dvi=Vi(m) - Vilm);
7 end
8 AvailableSet = {1,...,n};
9 while AwailableSet not empty do
10 = arg maX;e AvailableSet dV;v
11 i = Tx, dVix = 0;
12 AvailableSet.remove(:* U Neighbors(i*));
13 end
14 end

4.1 Fast Creation of Augmented CT-MDP

DEFINITION 6. Given a MCT-MDP ({M;},Q,R}) and a
joint policy 7, M, the augmented CT-MDP of agent i, is
the same as M; except for the reward function, R;. R; (t les)
is the augmented reward function that sums up agent i’s in-
dividual reward and all related joint rewards of an event e;,

Ri(tiles) = Riltiles) + > // /t

ecEQAe; Ece c; =0,Ye;#i

Rltersostiseesteglee) | T fre, (teslec,)dte; |- (1)
cj#i

The following Proposition shows that the optimal policy of
the augmented CT-MDP for agent i given mw_; is also the
best response to mw_;, i.e. it maximizes the global value
function.

PROPOSITION 4.1. Let 7} be the optimal policy of the aug-
mented CT-MDP M; with respect to w—_;. Then for agent
i’s any policy m;, we have, GV (n] ,7w_;) > GV (m;, w—;).

Proof. Let ‘N/Z(m) be the expected value of M; with policy
m;. After expanding and rearranging terms, we have,

Vi(m): Z /tiORi(ti|ei)fﬂi(ti|€i)dti

eiEE,; i
Z/ Ritledfnledds+ > > [f
e, €EE; e, €EE; ecEQNe;Eec
k.
/ J Rlters s tey)lec) (H Fre, tp1|ep2)dtcl>
tc.jzo,VcJ'Ec c.€c

=Vi(m) + Z Z

e, €EE; ecEQNe;Ece

JV (i, Te_,lec).

Since for any m;, Vi(n) > Vi(m:), we have,
GV (), 7—;) — GV (mi, ;) = Vi(m]) — Vi(m:)
+ > > UV me i lec) = JV(mi, me_ [ec)]

e;€EE; ecEQNe;Eec
:‘72(71':) - ‘71(7?1) > 0.

Proposition 4.1 shows augmented CT-MDPs are useful,
however we still need fr(t|e) to obtain R via Equation (1).
To obtain fr(t|e) efficiently, we apply dynamic programming
on decision steps:

DEFINITION 7. If an agent takes a non-wait action, we
say it takes one decision step. An agent is initially at deci-
sion step 0 and is at decision step k after taking k non-wait
actions.

Considering the wait action as one decision step may result
in an infinite number of decision steps since the agent can
wait for an arbitrarily small amount of time. Hence in SPAC,
we exclude the wait action from a decision step and treat it
differently from any other actions (see below). Recall we as-
sume all non-wait actions have a minimum duration. Thus,
the maximum number of decision steps K can be bounded
by the maximum number of non-wait actions that can be
performed within the time limit ¢*.

Then we can define f<k)(t|e) as the PDF of the remaining
time when event e happens at decision step k. By definition
we have, fr(tle) = Zszo f,ﬁk)(t\e). In addition, we define

(k)(t|s) as the PDF of the remaining time when the agent
enters s at decision step k. As the basis, we know at deci-
sion step 0, the agent is at s° with remaining time t*, i
F9t]s) = 0 except 12 (¢]s°) = (¢t — t*), where §(t) is the
Dirac delta function. From decision step 0, f£k>(t|e) and
f£k>(t|s) must be obtained using PDF propagation. To ad-
dress the significant computational difficulties in this propa-
gation due to the continuous functions and the wait action,
our key ideas are to (a) approximate the continuous func-
tions f and o as piecewise constant (PWC) functions and
(b) use Dirac delta functions to represent infinite probability
density values due to the wait action. We first demonstrate
these ideas using an example, followed by our formal defini-
tion.

Suppose there are two actions a1 and a2 available at s,
both taking the agent to s’ with probability 1. (k)(t|s) is
given by Figure 2a, where the x-axis is the remaining time
and y-axis is the probability density (In SPAC, £ (t|s) is
always a PWC function as shown later). The policy for s

is to take ag if the remaining time ¢ € (0,0.25], wait if ¢ €
(0.25,0.75], and take a1 if ¢ € (0.75,1]. We will show the pro-

cedures to obtaln f<k)(t\s,a1), (k)(t|s az), and f(k'H)(t|s).
Getting £ (t|s, a1) is straightforward as shown by the black

line in Figure 2c. Getting f£k>(t|s, az) is more difficult be-
cause of the wait action. If the agent enters s with ¢ €
(0.25,0.75], it will wait until the remaining time drops to
0.25 and then perform az, implying that the non-wait ac-
tion (a2) at 0.25 will inherit the probability mass related to
the wait action. This exact point of remaining time (0.25)
will have an infinite value in terms of a probability density
function. To address this, we use Dirac delta functions in
addition to the PWC function to properly represent all the
infinite values, e.g. represented by a Dirac component at
0.25 in the corresponding PDF as shown in Figure 2b. The
PDF of performing as is the combination of a PWC function
and a Dirac delta function as shown by the grey line in Fig-
ure 2¢. Knowing the PDF of the durations of both a1 and
az, we can calculate the PDF of entering s’ at step k + 1.
The new PDF is a piecewise linear (PWL) function (dashed
line in Figure 2d), and has to be approximated by a PWC
function (solid line in Figure 2d) before the next iteration.

1 , 1 ®)
a, i e ia o¥is.a,)
' ! = 0.253(t-0.25)
! ! L N
05 ' ' 0.5 Tl
: Y
po—fhas)
o . . o 3 —
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

(a) Approximated PDF

(b) Compute 9" (t|s a)

1 A 15
[1
0.5 :
—ts.a,) 05 - 1)
—Ys.a) — D (gs)
C'0 0.25 0.5 0.75 1 o0 0.25 0.5 0.75 '1

(c) PDF of taking actions (d) New approximated PDF

Figure 2: Probability density function update.

Formally, knowing the f functions for decision step k, we
can apply the following equations to compute the f functions
for decision step k + 1.

I (t)s,a) = £ (ts)ax(t]s, a) +g<’“>

ZZTsas /

s€SacA =t
('), a) -

Equation (2) captures the two possibilities that the agent
will take action a at (s,t): (k)(t|s)ax(t|s,a) is the PDF
that the agent enters (s, t) and the policy of (s, t) is to take
action a; gV (t|s a) represents the PDF that the agent en-
ters (s,t) with remaining time ¢ > t and the policy indi-
cates the agent should wait until the remaining time drops

(ts,a), (2)
f(k+1)

o(t' —tls,a,s")dt’ (3)

to t. To formally define ggrk>(t|s, a), we suppose given policy
7 and discrete state s, the agent should wait at L intervals
{(tzl,tzl_;,_ﬂ} where to—1 < to; < tar+1 andl =0,...,L—1
(policy functions are always PWC when value functions are
PWC, more details in the next subsection). Then g,(rk)(ﬂs7 a)
can be written as the following,

L—-1
9 (t)s,a) =D Baad(t — tar)
=0

oy = LI O, (bl s, 0) = 1,
ol 0, if ax(tals,a) = 0.

Here (3, is the probability (not probability density) that the
agent enters s at interval (a1, t2;4+1] and takes the non-wait
action a at tg;. In PDF, this probability corresponds to a
Dirac delta function at t2; with a magnitude equal to Bq,;.

Since f£k>(t|s) is a PWC function, ff,k)(t|s,a) obtained
from Equation (2) is then the combination of a PWC func-
tion and a Dirac delta function. Equation (3) contains a
convolution step between f(t) and the duration functions
o(t). Since duration functions are approximated by PWC
functions, ff(rk+1>(t|s') computed by Equation (3) is a PWL
function. At this point, we need to approximate f(t) by a
PWC function f~(¢) so that it can be used in the next iter-
ation. Similar to [9], the approximated PDF f7(t) is chosen
such that the L™ distance ||f(¢)— f~ (t)||o can be controlled
by a given error bound €; > 0. In our experiments, we use
fixed ey = 0.01.

At this point, f(t|e) can be obtained from summing up
all f,(rk)(t|e) over 0 < k < K. Recall R(te,,. .. te, l€c)
are piecewise hyper-rectangular constant functions, then the
integral in Equation (1) returns a PWC function (see ap-
pendix). Since R;(t;|e;) are also PWC, then augmented re-
ward functions R, are guaranteed to be PWC and can be
directly used in solving the augmented CT-MDP as shown
below.

4.2 Post-Creation: Solving Augmented CT-MDPs

To solve an augmented CT-MDP, we enhance Lazy Ap-
proximation [9] to explicitly address the wait action. In
particular, since the agent with remaining time t can wait
until any #' < ¢ with no cost, the optimal value for (s,t) is
the maximum over the values of taking all possible actions
a € A at all possible continuous states t’ < t.

To first provide an intuitive explanation, we again demon-
strate the overall process in Figure 3. Again suppose there
are two actions a; and ag available at s, both taking the
agent to s’ with probability 1. The value function of s’ at
step k is as given by Figure 3a. Figure 3b shows the value
functions of taking a1 and a2 at s. The maximum of the
two functions at t is the optimal value of taking an imme-
diate action with ¢ remaining time. Since the agent can let
remaining time drop to any level ¢ < t, the actual opti-
mal value at ¢ is the maximum of all values for all ¢’ < t as
shown by the solid line in Figure 3c. The new value function
is however piecewise linear which then needs to be approx-
imated by a PWC function before the next iteration. The
solid line in Figure 3d shows the new value function after
approximation. Formally, we have the following modified

15 15

1 1

ey, o k1
0.5 0.5 wis” e V5,2,
—®s)
0 05 1 0 0.5 1

(b) VF of taking actions

= n V(s ,a)

(a) Approximated VF

2
15
1
05 cemax V¥sa) g5 v etk)
: Vs, : v Dgs)
—v&*s) —v&Ds)
0 05 1 0 05 1

(c) Compute new VF (d) New approximated VF

Figure 3: Enhanced Lazy Approximation.

Bellman update,

(k+1) — (k+1) 4
VT (ts) Jnax max V (t]s, a), (4)
t
VY (t]s,a) = R(t]s,a) + > T(s,a,s') / vE (H]s")
s’ t'=0
ot —t'|s,a,s")dt, (5)

where V) (#'|s) is the optimal value of s’ with remaining
time ¢’ and k more decision steps. We approximate the op-
timal value functions V' (¢) by PWC functions. In Equation
(5), f:,zo V(')o(t—t')dt' convolutes two PWC functions, V/
and o, and returns a PWL function. Recall from the pre-
vious subsection, the augmented reward functions R(t|s,a)
are PWC functions. Therefore V**1(t|s,a) obtained from
Equation (5) is a PWL function. Then maxaea V** (t]s, a)
is also a PWL function, and therefore V** 1 (t|s) obtained
by Equation (4) is a PWL function. Similar to the last step
in the previous subsection, we then approximate V'(t) by
a PWC function V7~ (¢) so that the L* distance ||V (t) —
V7 (t)||c can be controlled by a given error bound €, > 0.
€, is a key parameter our experiments test for efficiency
tradeoffs.

4.3 Finding Initial Policies

An appropriate initial policy is important in SPAC to
reach a high-quality solution. One solution to obtaining such
an initial policy is to just repeat the planning process many
times with different random initial policies and select the
best solution. The problem is that the algorithm will spend
an equal amount of time optimizing every random starting
policy, even though some of them might be dead-ends. Since
the number of pieces in value functions is inversely propor-
tional to €,, the runtime of SPAC is expected to be inversely
proportional to €,. Although a smaller €, may provide a
better final solution, our experiments show the difference is
diminishing as €, approaches 0. Based on such observations,
we can speed up SPAC by applying the following hybrid er-

Algorithm 2: Prune Initial Policy using Hybrid Error
Bounds

1 while not Terminate do
2 7 = Random_Policy();
3 7}, = Solve(mw, €);
4 if V(7}) + maz_gain > best_solution then
5 7} = Solve(w},, €));
6 if V(7]) > best_solution then
7 | best_solution = V (7}) ;
8 end
9 if V(w[) — V(=},) > maz_gain then
10 | max_gain = V() — V(x},) ;
11 end
12 end
13 end

ror bound heuristic. The key idea is to quickly prune initial
policies by solving it with a large error bound €”. Only when
the returned policy has a relatively high quality, do we refine
it with a lower error bound €, to get the final policy. The
details are described in Algorithm 2.

5. EMPIRICAL VALIDATION

We create a set of multiagent task allocation problems
motivated by the real world domain described in Section 2.
Each agent is assigned a disjoint set of tasks, corresponding
to a disjoint set of actions a;. Each task ¢ needs an uncertain
amount of time to complete, whose distribution is denoted
by o;. Completing task i before the deadline gains the team
a reward of ;. We assume all the agents start execution at
time 0 and share the same deadline of 1.0. For simplicity, we
assume all tasks can be started from the beginning and must
be completed before the deadline. An agent’s discrete state
can be represented by the set of tasks it has completed. We
consider three types of binary temporal constraints (we omit
the discrete state terms in R below for better readability).

e Precedence: The team gets a positive reward r;;

1f task j is started after task ¢ is completed. Let

ft, "Ydt' be the probability that task i can

be completed in t amount of time. Then the constraint

can be modeled by the corresponding joint component
reward function,

R(tistjlai, a;) = rij P (t;) Pi(ti — t;).

e Simultaneity: The team receives a positive reward
ri; > 0 if the starting times of task ¢ and task j are
close enough.

rig Pi(ti) Py (ty), if [t: — ;] <m,
0, otherwise.

R(ti7tj|ai7aj) = {

e Exclusivity: The team receives a negative reward r;;
if the execution intervals of task ¢ and task j overlap.

g (1= Pty —), ift; <tj,

Rt tj]ai,a;) = { (3t~ 1)) L

Tij (l—Pi(ti—tj)), if ¢; > tj.
We first compare SPAC with M-DPFP, the only existing
multiagent planner for unordered tasks and continuous re-
sources. We test 2-agent problems with task values chosen

uniformly randomly between 0 and 10. The task duration
is fixed to a normal distribution A/(0.3,0.01). A total of
two precedence constraints are added randomly. We vary
the number of tasks assigned to each agent. For each set-
ting, we create one problem instance and compare the run-
time and final solution quality of SPAC and M-DPFP. For
M-DPFP we use approximation parameter x = 0.25 and
k = 0.2 from [12]. For SPAC, we use ¢, = 1 and €, = 0.1
to allow tradeoffs between quality and runtime. Table 1
shows the total runtime of running SPAC 10 times with dif-
ferent random initial policies and the best solution among
them. The first number of an entry is the runtime in sec-
onds and the number in parentheses is the solution qual-
ity. NA indicates the algorithm fails to solve the problem
within an hour. SPAC is seen to run substantially faster
than M-DPFP and provides a comparable solution quality.
For example, in the problem where each agent has 4 tasks,
M-DPFP with x = 0.2 finds a solution with quality of 27.7
in 247.6 seconds while SPAC with €, = 0.1 finds a better so-
lution with quality of 34.7 in 0.6 seconds (412-fold speedup).

#Tks | SPAC SPAC | M-DPFP | M-DPFP
€ =1 eu—Ol k=025 k=02
3 [0.1(24.8) | 0.1(26.0) | 0.4 (147) | 2.7 (16.4)
4 |04 (34.5) | 0.6 (34.7) | 21.7 (24.9) | 247.6 (27.7)
5 |04 (34.6) | 0.7 (34.9) | 63.2 (36.2) NA
6 |06 (36.9) | 0.8(382) NA NA

Table 1: Runtime in seconds & (quality): SPAC vs M-DPFP

Next, we conduct experiments to show SPAC’s scalabil-
ity. We assign every agent in the team a disjoint set of
tasks with an equal size. The task durations are chosen
randomly from a set of pre-generated uniform distributions
with mean in [0,0.5] and variance of 0.01. Task values are
chosen uniformly randomly between 0 and 10. The temporal
constraints are randomly assigned between tasks, with joint
rewards chosen uniformly randomly between 0 and 20 (—20
for penalties).

First we fix the number of tasks per agent to 5, the number
of constraints per agent to 8, and vary the number of agents
from 5 to 1280 with different error bounds €, = 0.25,1,4.
For each setting we create 100 random problems and re-
port the average runtime results in Figure 4a. SPAC scales
almost linearly with respect to the number of agents for ev-
ery €, setting. Second, we fix the number of agents to 10,
the number of tasks per agent to 5, and vary the number
of constraints per agent. Again Figure 4b shows the aver-
age results over 100 random problems. As we can see, the
runtime is roughly linear to the number of constraints per
agent. Since we consider only soft constraints among agents,
adding constraints to a problem does not reduce the state
space but requires more computation in creating augmented
reward functions.

Next, we test on large scale problems where there are 1000
agents with 8 constraints per agent. We consider 4, 5, and 6
tasks per agent with varying €, from 0.125 to 16. Figure 4c
and Figure 4d show the runtime and solution quality results
of the average over 10 random problems respectively. The
x-axes in both figures are in log-scale. These figures show
that using smaller value of ¢, helps find better solutions
at the cost of increasing runtime (however, the benefit of

12

-e-g, = 0.25

600} =€, =1 _

s Y 8 ae =4

o © v

E 400 £

]]

o T 4

200
0
0 320 640 1280 0 10 20 30 40

Number of Agents Number of Constraints per agent

(a) Scale to large number of(b) Scale to large number of
agents. constraints.

—&-4 Tasks
2000 -85 Tasks >
— -6 Tasks = 3.
2 g
> 1500
£ g
< 1000 2
>
@ 325 -A&-4 Tasks
500 0 “¥| -85 Tasks
-6-6 Tasks
9/8 1/4 112 1 2 4 8 16 %/8 1/4 12 1 2 4 8 16
€ €
v v

(¢) Runtime of varying €, in(d) Solution quality of vary-
1000-agent problems. ing €, in 1000-agent prob-
lems.

w
©
o

2
z 'S 360
[}
E g
€ k]
g 2330 € =4
»n v
—Hybrid g,
5 10 3000 5 10 15
Number of Tasks per agent Runtime (s)

(e) Scale to large number of(f) Effectiveness of hybrid er-
tasks. ror bounds.

Figure 4: Results of SPAC.

decreasing ¢, < 0.5 is negligible). SPAC with €, = 0.5 is
seen to solve a 1000 agent problem with 5 tasks per agent
in 8 minutes — SPAC scales beyond capabilities of current
algorithms.

Third, Figure 4e shows that unfortunately SPAC does not
scale well with respect to the number of tasks per agent
— this is a result from a test of 10-agent problems with
8 constraints per agent and varying number of tasks per
agent from 1 to 10. Problems with unordered tasks cause
the state space to grow exponentially in the number of tasks
assigned to it, e.g. 1024 discrete states result if the agent
has 10 unordered tasks compared to only 11 if the 10 tasks
are fully ordered.

Finally, to study the tradeoff between solution quality and
runtime of SPAC, we let the algorithm solve for as many ini-
tial policies as possible within a given time limit and we plot
the solution quality over runtime, where the solution quality
at a particular runtime point is the best solution the algo-
rithm can find until that time. We compare three different
approaches on random generated 10-agent problems with 5
tasks and 8 constraints per agent. The first approach uses
€, = 0.25 all the time, the second one uses €, = 4 all the
time, and the last one uses hybrid error bounds described
in Section 4.3 with ¢ = 4 and €, = 0.25. As we can see
in Figure 4f, all three approaches converge quickly because

with more and more starting policies explored, finding a
better solution becomes significantly harder. Comparing to
€, = 0.25, ¢, = 4 tends to find a solution much quicker
but converges to a lower solution quality. The hybrid error
bound heuristic is clearly better than both, as it can find a
low quality solution as quick as ¢, = 4 and converges to a
better solution than e, = 0.25.

To test SPAC’s solution quality — in the absence of an ef-
ficient global optimal solver — we run SPAC with €, = 0.25
for 5, 10, and 20 seconds and compare with best solution
found in running SPAC with ¢, = 0.1 for 2 hours. As Ta-
ble 2 shows, we can find good solutions with quality of at
least 92% of the best by running SPAC for 5 seconds, and
of at least 95% of the best by running SPAC for 20 sec-
onds. Thus, SPAC can find reasonable solutions at a cheap
computational cost.

Id 1 2 3 4 5

5s | 92.9% | 92.0% | 96.2% | 92.4% | 96.8%
10s | 93.7% | 96.4% | 96.2% | 97.9% | 98.4%
20s | 95.6% | 96.4% | 96.2% | 97.9% | 99.2%

Table 2: SPAC: comparing to best solution found in 2 hours.

6. CONCLUSION AND RELATED WORK

To address the complexity of the general class of contin-
uous state DEC-MDPs, this paper presents two contribu-
tions. First, it introduces a novel model (MCT-MDP) for
multi-agent planning problems that exploits transition in-
dependence in domains with graphical agent dependencies
and continuous temporal constraints. More importantly, it
presents a new, iterative, locally optimal algorithm called
SPAC that is based on the following key ideas: (1) defining
an augmented CT-MDP such that solving this single-agent
continuous state MDP provably provides a best response
to neighboring agents’ policies; (2) fast convolution to effi-
ciently generate such augmented MDPs; (3) a new enhanced
Lazy Approximation algorithm to solve these augmented
MDPs; (4) exploiting graph structure of reward dependen-
cies for scalability. Our experiments show SPAC not only
finds solutions substantially faster than M-DPFP with com-
parable quality, but also scales well to large teams of agents
— it can solve a 1000-agent problem with 5 unordered tasks
per agent in 8 minutes.

As for related work, there have been many algorithms
proposed for solving discrete state DEC-MDPs and DEC-
POMDPs such as [1, 8]. However, these techniques usu-
ally cannot be easily applied to continuous state problems.
On the other hand, there are algorithms for solving hybrid
state MDPs such as [9, 10], which however, only solve for
single-agent problems. Algorithms such as [3, 5, 11, 12]
have been successful in solving multi-agent planning prob-
lems with continuous states. Unfortunately, [5, 11] consider
only a restricted problem where a fixed ordering of agent ac-
tions is given. The exponential complexity of M-DPFP [12]
limits its applicability to only small problems. The goal-
oriented joint reward structure in [3] cannot represent the
temporal constraints in our problems. Furthermore, none
have been shown to scale to large numbers of agents. The
MCT-MDP model introduced in this paper is a continuous
state generalization of the TI-DEC-MDP model introduced
by Becker et al. [1]. Unfortunately the coverage set algo-

rithm (CSA) introduced in [1] cannot directly solve the con-
tinuous state model given that there are an infinite number
of policies for an individual agent. We notice there exist ef-
ficient discrete state graphical models of agent interactions
including IDID [7] and IDMG [15]. Integrating such graphi-
cal representations to our model can be an interesting future
research topic.

7. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. V.

Goldman. Transition-independent decentralized
Markov Decision Processes. In AAMAS, 2003.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V.
Goldman. Solving transition independent
decentralized Markov Decision Processes. J. Artif. Int.
Res., 22:423-455, 2004.

[3] E. Benazera. Solving decentralized continuous Markov
decision problems with structured reward. In KI, 2007.

[4] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Math. Oper. Res.,
27:819-840, 2002.

[5] A. Beynier and A. Mouaddib. A polynomial algorithm
for decentralized Markov decision processes with
temporal constraints. In AAMAS, 2005.

[6] T. B. Curtin and J. G. Bellingham. Guest editorial -
autonomous ocean-sampling networks. Oceanic
Engineering, IEEE Journal of, 27, 2001.

[7] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for
interactive POMDPs: representations and solutions.
JAAMAS, 2009.

[8] A. Kumar and S. Zilberstein. Point-based backup for
decentralized POMDPs: Complexity and new
algorithms. In AAMAS, 2010.

[9] L. Li and M. Littman. Lazy approximation for solving
continuous finite-horizon MDPs. In AAAI, 2005.

[10] J. Marecki, S. Koenig, and M. Tambe. A fast
analytical algorithm for solving Markov decision
processes with continuous resources. In IJCAI 2007.

[11] J. Marecki and M. Tambe. On opportunistic
techniques for solving decentralized Markov decision
processes with temporal constraints. In AAMAS, 2007.

[12] J. Marecki and M. Tambe. Planning with continuous
resources for agent teams. In AAMAS, 2009.

[13] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of
distributed constraint optimization and POMDPs. In
AAAL 2005.

[14] F. Py, K. Rajan, and C. McGann. A systematic agent
framework for situated autonomous systems. In
AAMAS, Toronto, Canada, May 2010.

[15] M. T. J. Spaan and F. S. Melo. Interaction-driven
Markov games for decentralized multiagent planning
under uncertainty. In AAMAS, 2008.

[16] F. Wu, S. Zilberstein, and X. Chen. Point-based policy
generation for decentralized POMDPs. In AAMAS,
2010.

APPENDIX

DEFINITION 8. We define a k-dimensional hyper-rectangle
H = {(:rl,...,:ck) | a; < x; < @,Vz = 1,,]43} A k-
dimensional function f(z1,...,zk) defined on hyper-rectangle
Hy, is called piecewise hyper-rectangular constant if and only
if there are finite number of hyper-rectangles H,...,Hp
such that Hi N H; = 0 for any ¢ # j, U, Hi = Hy, and
f(x1,...,2) = ¢ is constant for any i and (x1,...,2%) €
H;.

PROPOSITION A.l. Suppose f(x1,...,xx) defined on hyper-
rectangle {(x1,...,2x) | v < x; < B3, Vi = 1,...,k} is
piecewise hyper-rectangular constant, then for anyi=1,...,k,
and for any j and any function g;j(x) defined on interval
laj, Bj), the following integral is a piecewise constant func-
tion,

fi(x)://.../jj @,y on) [g (o5)das.

=g,V #EL G
PRrROOF. Because f is piecewise hyper-rectangular con-
stant, for any dimension i = 1,...,k, there must exist a
finite number of intervals [a; = a1,a2), ..., [am-1,am = Bi),
such that for any point (z1,...,%i—1,Zit+1,...,Zk) where
z; € [ay,B;], the function of fixing all dimensions except
for 4, f(z1,...,Zi—1,%,Zit1,...,Tk) is constant within each

interval. For example, the number of those intervals should
never be greater than the total number of hyper-rectangles
that defines the piecewise hyper-rectangular function. Then
consider any two different points in the same interval, z,y €
lai, ai+1] and = # y, we have,

i\Y

filz) = fily)
_//.../jia',vj#[f(m,...,m,...,xk)

-
= flar, .y a)] | [] g(e)de;
it
=0.

This implies f;(z) is constant within each intervals, and
therefore is piecewise constant. []

A. PIECEWISE HYPER-RECTANGULAR CON-

STANT FUNCTIONS

