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Abstract
Continuous state DEC-MDPs are critical for agent
teams in domains involving resources such as time,
but scaling them up is a significant challenge. To
meet this challenge, we first introduce a novel
continuous-time DEC-MDP model that exploits
transition independence in domains with temporal
constraints. More importantly, we present a new lo-
cally optimal algorithm called SPAC. Compared to
the best previous algorithm, SPAC finds solutions
of comparable quality substantially faster; SPAC
also scales to larger teams of agents.

1 Introduction
Since the introduction of decentralized Markov Decision Pro-
cesses (DEC-MDPs) to the field of multiagent systems over
a decade ago, there has been significant progress in improv-
ing their efficiency [Becker et al., 2003; Kumar and Zilber-
stein, 2010; Wu et al., 2010]. Yet given the NEXP-complete
complexity of DEC-MDPs [Bernstein et al., 2002] scale-
up has been difficult. This challenge is further exacerbated
in many real-world domains where we wish to apply DEC-
MDPs: these involve continuous resources such as time or
energy, and actions may involve uncertainty in their resource
consumption (e.g. duration or energy consumption). And
these domains often require that we deploy teams of agents,
e.g. large numbers of autonomous underwater vehicles for
scientific observations in the ocean [Curtin and Bellingham,
2001], unmanned aerial vehicles for surveillance or large au-
tonomous mobile sensor webs deployed for disaster response.

The state-of-the-art in continuous time planning for DEC-
MDPs often fails to meet this challenge. One of the latest al-
gorithms, M-DPFP [Marecki and Tambe, 2009], is an attempt
to find a global optimal for continuous time DEC-MDPs,
where agents must coordinate over an unordered set of tasks.
Unfortunately M-DPFP cannot scale-up beyond two agents
and a handful of tasks. Other attempts in planning with con-
tinuous time for DEC-MDPs [Beynier and Mouaddib, 2005;
Marecki and Tambe, 2007] have successfully solved prob-
lems with much larger number of tasks, but require that the
task ordering be supplied ahead of time without a significant
number of agents. There has been some success in scale-up in
discrete state planning, in models such as ND-POMDPs [Nair

et al., 2005] that exploit transition independence [Becker et
al., 2003] and a network structure; for example ND-POMDPs
have shown results for up to a dozen agents. While we build
on some of the key ideas in ND-POMDPs, their discrete
state approximation of continuous time domains can lead
to significant degradation in solution quality (coarse-grained
discretization) or very large inefficiencies (fine-grained dis-
cretization) [Marecki and Tambe, 2009].

This paper presents three key contributions. First, mo-
tivated by domains discussed in Section 2, we introduce a
novel continuous-time DEC-MDP model (MCT-MDP) that
exploits transition independence in domains with graphical
agent dependencies and temporal constraints. Solving MCT-
MDP optimally remains difficult however, given that solving
transition-independent DEC-MDPs with even discrete states
is NP-Complete [Becker et al., 2004]. Our second con-
tribution therefore presents a new iterative locally optimal
algorithm called SPAC. The key idea in SPAC is a novel
single-agent continuous-time MDP, called augmented CT-
MDP, such that solving it efficiently finds the best response
of an agent to other agents’ policies. SPAC’s key novelties
include: (i) fast convolution for creating an augmented CT-
MDP – creating this MDP itself is computationally challeng-
ing; (ii) enhancement of a previous single-agent continuous-
time MDP algorithm [Li and Littman, 2005] to solve aug-
mented CT-MDPs; (iii) exploiting graph structure of reward
dependencies in MCT-MDP for scale-up. Finally, we empir-
ically show that SPAC not only finds solutions substantially
faster than M-DPFP with comparable quality, but also scales
well to significantly larger team of agents.

2 Motivating Problem
Our work is motivated by teams of robots, specifically
Autonomous Underwater and Surface Vehicles (AUVs and
ASVs) that coordinate to collect data from a coastal re-
gion [Py et al., 2010]. For example, Figure 1 shows a scenario
where a team of three pairs of AUV/ASV is to collect sensor
data and water samples in key biological hotspots. In Fig-
ure 1(a), H1, H2 and H4 are three small hotspots that require
one pair of AUV/ASV each, while H3 is a large area that
requires all three pairs to perform the sampling task simul-
taneously. While the ASVs take surface samples, their cor-
responding AUVs take underwater samples simultaneously.
Actions such as traveling between hotspots, taking a sam-



ple, etc. may have uncertain durations. In this problem, one
agent’s action will not affect other agents’ physical states.

Each single task has a reward associated with it; but the
reward obtained may be based on the joint actions of multi-
ple agents in the team. In particular, there are several types
of temporal constraints within different sets of tasks. For ex-
ample, we require the underwater samples to be taken simul-
taneously with the surface samples, which is modeled as a
joint reward function. An example function is shown in Fig-
ure 1(b), where the ti and tj represent the remaining time
when the two tasks are started and theR(ti, tj) represents the
corresponding joint reward. We may also have precedence
constraints that require one water sample to be taken before
another, etc. Our goal in this and similar domains (with po-
tentially much larger teams) is to compute an optimal plan
that maximizes the team’s total expected reward.
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Figure 1: (a) AUV/ASV teams for ocean sampling; (b) An
example reward function for a pair of simultaneous tasks.

3 MCT-MDP
As our motivating domain illustrates, one agent’s rewards
may be dependent on other agent’s state and actions, but its
transitions are not. In DEC-MDP research, these types of
transition-independent problems have been motivated earlier
in many domains with discrete states [Becker et al., 2004;
Nair et al., 2005]. To efficiently model time as part of an
agent’s local state, we formulate these types of planning prob-
lems as continuous-time transition-independent DEC-MDPs
with soft temporal constraints. We first define a single-agent
problem and then a decentralized one.

Definition 1. A single-agent continuous-time MDP (CT-
MDP)M is represented by a tuple 〈S,∆, A, T, σ,R〉, where,

• S is a finite set of discrete states. s0 denotes the initial
state.

• ∆ = [0, t∗] is a one-dimensional continuous state rep-
resenting the remaining time. The agent initially has t∗
remaining time. S ×∆ defines the hybrid state space of
the agent. We say the agent is at hybrid state 〈s, t〉, if its
discrete state is s and remaining time is t.

• A is a finite set of actions. In addition, the agent can wait
for an arbitrary amount of time. Wait action is denoted
by φ (Wait is critical in multiagent settings, e.g. one
agent may need to wait to perform its task as it may be
dependent on another agent finishing its task).

• T : S×A×S 7→ R is the transition function of discrete
states. T (s, a, s′) is the probability of entering s′ when
action a is taken at state s.

• σ : ∆ × S × A × S 7→ R is the relative transition
density function of the continuous states. σ(t|s, a, s′) is
the probability density function (PDF) of the duration of
taking action a at s and reaching s′. We assume there is
a minimum duration for all non-wait actions.

• R : ∆ × S × A 7→ R is the individual reward func-
tion. R(t|s, a) is the immediate reward obtained when
the agent takes action a at hybrid state 〈s, t〉.

Definition 2. The policy π is a mapping from 〈s, t〉 to an
action a. Denote such mapping by π(s, t) = a. We define the
policy function απ(t|s, a):

απ(t|s, a) =

{
1, if π(s, t) = a,

0, otherwise.

Definition 3. An event e = 〈s, a〉, is a pair of a discrete state
and a non-wait action. The set of all events E = S × A. In
this paper, we use e and 〈s, a〉 interchangeably.

Definition 4. Given policy π, fπ(t|e) is the PDF that event e
happens with remaining time t.

The value of a policy π is the non-discounted expected re-
ward of R: V (π) =

∑
e∈E

∫ t∗
t=0

R(t|e)fπ(t|e)dt.
Definition 5. An n-agent transition-independent multiagent
CT-MDP (MCT-MDP) is defined by 〈{Mi},Ω,R〉.
• Mi = 〈Si,∆i = [0, t∗i ], Ai, Ti, σi, Ri〉 is the individual

CT-MDP of agent i.

• Ω is a set of reward-dependent joint events. A joint event
is denoted by ec, where c = {c1, . . . , c|c|} is a sub-
group of agents and ec = {ec1 , . . . , ec|c|} is a joint event
defined on c.

• For every ec ∈ Ω, R(tc1 , . . . , tc|c| |ec), defines the joint
reward received if for every agent ci ∈ c, its event eci
happens at tci .

Ω determines the graphical reward dependencies among
agents, i.e. two agents are reward dependent if and only if
there exists a joint event in Ω which comprises both agents’
individual events. R captures the temporal constraint on de-
pendent events by rewards. For example, R(t1, t2|e1, e2) is
the reward function between e1 of agent 1 and e2 of agent
2. The global value of a joint policy π = {π1, . . . , πn} is the
sum of non-discounted expected reward of both individual re-
wards Ri and joint rewardsR. Thus,

GV (π) =

n∑
i=1

Vi(πi) +
∑
ec∈Ω

JV (πc|ec),

JV (πc|ec) =

∫ ∫
. . .

∫ t∗ci

tci=0,∀ci∈c
R(tc1 , . . . , tc|c| |ec)(∏

ci∈c
fπci

(tci |eci)dtci

)
.



Here πc = {πc1 , . . . , πc|c|} denotes the policies on sub-
group c, where πci is the policy for agent ci. In this paper,
we will represent R(t|e) by piecewise constant functions and
R(tc1 , . . . , tc|c| |ec) by piecewise hyper-rectangular constant
functions (values are constant in each hyperrectangles).

4 SPAC: Locally Optimal Algorithm
From an initial joint policy, SPAC (Scalable Planning for
Agent teams under Continuous temporal constraints) obtains
a locally optimal solution by iteratively finding the best re-
sponse of one agent to its neighboring agents’ policies. For
finding a best response, a naive approach is to enumerate and
evaluate all policies of the best-responding agent given fixed
policies of its neighboring agents. However, this is infeasible
in an MCT-MDP because first, there are infinite number of
states given continuous remaining time; second, there are in-
finite number of decision choices since an agent can wait any
amount of time. To address this difficulty, we present a novel
augmented CT-MDP (defined below) to efficiently compute
the best response of an agent. SPAC optimizes the joint pol-
icy as follows: (1) create the set of augmented CT-MDPs for
each agent i with respect to other agents’ policies π−i; (2)
find new optimal policy π∗i by solving the augmented CT-
MDP, and update the gain dVi = Ṽi(π

∗
i ) − Ṽi(πi); (3) ter-

minate if the maximum gain is smaller than a given thresh-
old η, otherwise find a set of mutually reward independent
agents with high overall gain greedily, update their policies
from πi to π∗i , and repeat the process from the first step. The
pseudo code is shown in Algorithm 1. Next we will discuss
the two sub-routines in Algorithm 1: (1) quickly create the
augmented CT-MDP for an agent given its neighbors’ poli-
cies (line 4); (2) solve it efficiently using piecewise constant
approximations inspired by [Li and Littman, 2005] (line 5).

Algorithm 1: Pseudo code of SPAC
1 π = Find Initial Policy();
2 while maxi dVi > η do
3 forall the i in {1, . . . , n} do
4 M̃i = Create Augmented CTMDP(i, π−i);
5 π∗i = Solve Augmented CTMDP(M̃i);
6 dVi = Ṽi(π

∗
i )− Ṽi(πi);

7 end
8 AvailableSet = {1, . . . , n};
9 while AvailableSet not empty do

10 i∗ = arg maxi∈AvailableSet dVi;
11 πi∗ = π∗i∗ , dVi∗ = 0;
12 AvailableSet.remove(i∗ ∪ Neighbors(i∗));
13 end
14 end

4.1 Fast Creation of Augmented CT-MDP
Definition 6. Given a MCT-MDP 〈{Mi},Ω,R}〉 and a joint
policy π, M̃i, the augmented CT-MDP of agent i, is the same
as Mi except for the reward function, R̃i. R̃i(ti|ei) is the

augmented reward function that sums up agent i’s individual
reward and all related joint rewards of an event ei,

R̃i(ti|ei) = Ri(ti|ei) +
∑

ec∈Ω∧ei∈cc

∫ ∫
. . .

∫ t∗cj

tcj =0,∀cj 6=i

R(tc1 , . . . , ti, . . . , tc|c| |ec)

∏
cj 6=i

fπcj
(tcj |ecj )dtcj

 . (1)

The following Proposition shows that the optimal policy of
the augmented CT-MDP for agent i given π−i is also the best
response to π−i, i.e. it maximizes the global value function.
Proposition 4.1. Let π∗i be the optimal policy of the aug-
mented CT-MDP M̃i with respect to π−i. Then for agent i’s
any policy πi, we have, GV (π∗i ,π−i) ≥ GV (πi,π−i).

Proof. Let Ṽi(πi) be the expected value of M̃i with policy
πi. After expanding and rearranging terms, we have,

Ṽi(πi) =
∑
ei∈Ei

∫ t∗i

ti=0

R̃i(ti|ei)fπi
(ti|ei)dti

=
∑
ei∈Ei

∫ t∗i

ti=0

Ri(ti|ei)fπi(ti|ei)dti +
∑
ei∈Ei

∑
ec∈Ω∧ei∈ec

∫ ∫

. . .

∫ t∗cj

tcj =0,∀cj∈c
R(tc1 , . . . , tc|c|)|ec)

(∏
ci∈c

fπci
(tci |eci)dtci

)
=Vi(πi) +

∑
ei∈Ei

∑
ec∈Ω∧ei∈cc

JV (πi,πc−i |ec).

Since for any πi, Ṽi(π∗i ) ≥ Ṽi(πi), we have,

GV (π∗i ,π−i)−GV (πi,π−i) = Vi(π
∗
i )− Vi(πi)

+
∑
ei∈Ei

∑
ec∈Ω∧ei∈ec

[JV (π∗i ,πc−i
|ec)− JV (πi,πc−i

|ec)]

=Ṽi(π
∗
i )− Ṽi(πi) ≥ 0.

Proposition 4.1 shows augmented CT-MDPs are useful,
however we still need fπ(t|e) to obtain R̃ via Equation (1).
To obtain fπ(t|e) efficiently, we apply dynamic programming
on decision steps:
Definition 7. If an agent takes a non-wait action, we say it
takes one decision step. An agent is initially at decision step
0 and is at decision step k after taking k non-wait actions.

Considering the wait action as one decision step may re-
sult in an infinite number of decision steps since the agent can
wait for an arbitrarily small amount of time. Hence in SPAC,
we exclude the wait action from a decision step and treat it
differently from any other actions (see below). Recall we as-
sume all non-wait actions have a minimum duration. Thus,
the maximum number of decision steps K can be bounded
by the maximum number of non-wait actions that can be per-
formed within the time limit t∗.

Then we can define f (k)
π (t|e) as the PDF of the remain-

ing time when event e happens at decision step k. By defi-
nition we have, fπ(t|e) =

∑K
k=0 f

(k)
π (t|e). In addition, we



define f (k)
π (t|s) as the PDF of the remaining time when the

agent enters s at decision step k. As the basis, we know at
decision step 0, the agent is at s0 with remaining time t∗,
i.e. f (0)

π (t|s) = 0 except f (0)
π (t|s0) = δ(t − t∗), where δ(t)

is the Dirac delta function. From decision step 0, f (k)
π (t|e)

and f (k)
π (t|s) must be obtained using PDF propagation. To

address the significant computational difficulties in this prop-
agation due to the continuous functions and the wait action,
our key ideas are to (a) approximate the continuous functions
f and σ as piecewise constant (PWC) functions and (b) use
Dirac delta functions to represent infinite probability density
values due to the wait action. We first demonstrate these ideas
using an example, followed by our formal definition.

Suppose there are two actions a1 and a2 available at s, both
taking the agent to s′ with probability 1. f (k)

π (t|s) is given by
Figure 2(a), where the x-axis is the remaining time and y-
axis is the probability density (In SPAC, f (k)

π (t|s) is always a
PWC function as shown later). The policy for s is to take a2

if the remaining time t ∈ (0, 0.25], wait if t ∈ (0.25, 0.75],
and take a1 if t ∈ (0.75, 1]. We will show the procedures to
obtain f (k)

π (t|s, a1), f (k)
π (t|s, a2), and f (k+1)

π (t|s′). Getting
f

(k)
π (t|s, a1) is straightforward as shown by the black line in

Figure 2(c). Getting f (k)
π (t|s, a2) is more difficult because of

the wait action. If the agent enters s with t ∈ (0.25, 0.75], it
will wait until the remaining time drops to 0.25 and then per-
form a2, implying that the non-wait action (a2) at 0.25 will
inherit the probability mass related to the wait action. This ex-
act point of remaining time (0.25) will have an infinite value
in terms of a probability density function. To address this, we
use Dirac delta functions in addition to the PWC function to
properly represent all the infinite values, e.g. represented by a
Dirac component at 0.25 in the corresponding PDF as shown
in Figure 2(b). The PDF of performing a2 is the combination
of a PWC function and a Dirac delta function as shown by the
grey line in Figure 2(c). Knowing the PDF of the durations
of both a1 and a2, we can calculate the PDF of entering s′ at
step k + 1. The new PDF is a piecewise linear (PWL) func-
tion (dashed line in Figure 2(d)), and has to be approximated
by a PWC function (solid line in Figure 2(d)) before the next
iteration.

Formally, knowing the f functions for decision step k, we
can apply the following equations to compute the f functions
for decision step k + 1.

f (k)
π (t|s, a) = f (k)

π (t|s)απ(t|s, a) + g(k)
π (t|s, a), (2)

f (k+1)
π (t|s′) =

∑
s∈S

∑
a∈A

T (s, a, s′)

∫ t∗

t′=t

f (k)
π (t′|s, a) · σ(t′ − t|s, a, s′)dt′ (3)

Equation (2) captures the two possibilities that the agent will
take action a at 〈s, t〉: f

(k)
π (t|s)απ(t|s, a) is the PDF that

the agent enters 〈s, t〉 and the policy of 〈s, t〉 is to take ac-
tion a; g(k)

π (t|s, a) represents the PDF that the agent enters
〈s, t′〉 with remaining time t′ > t and the policy indicates the
agent should wait until the remaining time drops to t. To for-
mally define g(k)

π (t|s, a), we suppose given policy π and dis-
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Figure 2: Probability density function update.

crete state s, the agent should wait at L intervals {(t2l, t2l+1]}
where t2l−1 < t2l < t2l+1 and l = 0, . . . , L−1 (policy func-
tions are always PWC when value functions are PWC, more
details in the next subsection). Then g(k)

π (t|s, a) can be writ-
ten as the following,

g(k)
π (t|s, a) =

L−1∑
l=0

βa,lδ(t− t2l)

βa,l =

{∫ t2l+1

t′=t2l
f

(k)
π (t′|s)dt′, if απ(t2l|s, a) = 1,

0, if απ(t2l|s, a) = 0.

Here βa,l is the probability (not probability density) that the
agent enters s at interval (t2l, t2l+1] and takes the non-wait
action a at t2l. In PDF, this probability corresponds to a Dirac
delta function at t2l with a magnitude equal to βa,l.

Since f (k)
π (t|s) is a PWC function, f (k)

π (t|s, a) obtained
from Equation (2) is then the combination of a PWC func-
tion and a Dirac delta function. Equation (3) contains a con-
volution step between f(t) and the duration functions σ(t).
Since duration functions are approximated by PWC func-
tions, f (k+1)

π (t|s′) computed by Equation (3) is a PWL func-
tion. At this point, we need to approximate f(t) by a PWC
function f−(t) so that it can be used in the next iteration.
Similar to [Li and Littman, 2005], the approximated PDF
f−(t) is chosen such that the L∞ distance ‖f(t)− f−(t)‖∞
can be controlled by a given error bound εf > 0. In our ex-
periments, we use fixed εf = 0.01.

At this point, fπ(t|e) can be obtained from summing up
all f (k)

π (t|e) over 0 ≤ k ≤ K. RecallR(tc1 , . . . , tc|c| |ec) are
piecewise hyper-rectangular constant functions, then the inte-
gral in Equation (1) returns a PWC function. Since Ri(ti|ei)
are also PWC, then augmented reward functions R̃i are guar-
anteed to be PWC and can be directly used in solving the
augmented CT-MDP as shown below.
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Figure 3: Enhanced Lazy Approximation.

4.2 Post-Creation: Solving Augmented CT-MDPs
To solve an augmented CT-MDP, we enhance Lazy Approx-
imation [Li and Littman, 2005] to explicitly address the wait
action. In particular, since the agent with remaining time t
can wait until any t′ ≤ t with no cost, the optimal value for
〈s, t〉 is the maximum over the values of taking all possible
actions a ∈ A at all possible continuous states t′ ≤ t.

To first provide an intuitive explanation, we again demon-
strate the overall process in Figure 3. Again suppose there are
two actions a1 and a2 available at s, both taking the agent to
s′ with probability 1. The value function of s′ at step k is as
given by Figure 3(a). Figure 3(b) shows the value functions
of taking a1 and a2 at s. The maximum of the two functions
at t is the optimal value of taking an immediate action with t
remaining time. Since the agent can let remaining time drop
to any level t′ < t, the actual optimal value at t is the max-
imum of all values for all t′ < t as shown by the solid line
in Figure 3(c). The new value function is however piecewise
linear which then needs to be approximated by a PWC func-
tion before the next iteration. The solid line in Figure 3(d)
shows the new value function after approximation. Formally,
we have the following modified Bellman update,

V (k+1)(t|s) = max
0≤t′≤t

max
a∈A

V (k+1)(t|s, a), (4)

V (k+1)(t|s, a) = R(t|s, a) +
∑
s′

T (s, a, s′)

∫ t

t′=0

V (k)(t′|s′)

· σ(t− t′|s, a, s′)dt′, (5)

where V (k)(t′|s′) is the optimal value of s′ with remaining
time t′ and k more decision steps. We approximate the opti-
mal value functions V (t) by PWC functions. In Equation (5),∫ t
t′=0

V (t′)σ(t−t′)dt′ convolutes two PWC functions, V and
σ, and returns a PWL function. Recall from the previous sub-
section, the augmented reward functions R̃(t|s, a) are PWC
functions. Therefore V (k+1)(t|s, a) obtained from Equation

(5) is a PWL function. Then maxa∈A V
(k+1)(t|s, a) is also a

PWL function, and therefore V (k+1)(t|s) obtained by Equa-
tion (4) is a PWL function. Similar to the last step in the
previous subsection, we then approximate V (t) by a PWC
function V −(t) so that the L∞ distance ‖V (t) − V −(t)‖∞
can be controlled by a given error bound εv > 0. εv is a key
parameter our experiments test for efficiency tradeoffs.

5 Empirical Validation
We create a set of multiagent task allocation problems moti-
vated by the real world domain described in Section 2. Each
agent is assigned a disjoint set of tasks, corresponding to a
disjoint set of actions ai. Each task i needs an uncertain
amount of time to complete, whose distribution is denoted
by σi. Completing task i before the deadline gains the team
a reward of ri. We assume all the agents start execution at
time 0 and share the same deadline of 1.0. For simplicity, we
assume all tasks can be started from the beginning and must
be completed before the deadline. An agent’s discrete state
can be represented by the set of tasks it has completed. We
consider three types of binary temporal constraints (we omit
the discrete state terms inR below for better readability).
(1) Precedence: The team gets a positive reward rij if task j
is started after task i is completed. Let Pi(t) =

∫ t
t′=0

σi(t
′)dt′

be the probability that task i can be completed in t amount of
time. Then the constraint can be modeled by the correspond-
ing joint component reward function,

R(ti, tj |ai, aj) = rijPj(tj)Pi(ti − tj).

(2) Simultaneity: The team receives a positive reward rij >
0 if the starting times of task i and task j are close enough.

R(ti, tj |ai, aj) =

{
rijPi(ti)Pj(tj), if |ti − tj | < η,

0, otherwise.

(3) Exclusivity: The team receives a negative reward rij if
the execution intervals of task i and task j overlap.

R(ti, tj |ai, aj) =

{
rij (1− Pj(tj − ti)) , if ti ≤ tj ,
rij (1− Pi(ti − tj)) , if ti > tj .

We first compare SPAC with M-DPFP, the only existing
multiagent planner for unordered tasks and continuous re-
sources. We test 2-agent problems with task values chosen
uniformly randomly between 0 and 10. The task duration
is fixed to a normal distribution N (0.3, 0.01). A total of
two precedence constraints are added randomly. We vary
the number of tasks assigned to each agent. For each set-
ting, we create one problem instance and compare the run-
time and final solution quality of SPAC and M-DPFP. For M-
DPFP we use approximation parameter κ = 0.25 and κ = 0.2
from [Marecki and Tambe, 2009]. For SPAC, we use εv = 1
and εv = 0.1 to allow tradeoffs between quality and runtime.
Table 1 shows the total runtime of running SPAC 10 times
with different random initial policies and the best solution
among them. The first number of an entry is the runtime in
seconds and the number in parentheses is the solution qual-
ity. NA indicates the algorithm fails to solve the problem
within an hour. SPAC is seen to run substantially faster than



M-DPFP and provides a comparable solution quality. For ex-
ample, in the problem where each agent has 4 tasks, M-DPFP
with κ = 0.2 finds a solution with quality of 27.7 in 247.6
seconds while SPAC with εv = 0.1 finds a better solution
with quality of 34.7 in 0.6 seconds (412-fold speedup).

#Tks SPAC SPAC M-DPFP M-DPFP
εv = 1 εv = 0.1 κ = 0.25 κ = 0.2

3 0.1 (24.8) 0.1 (26.0) 0.4 (14.7) 2.7 (16.4)
4 0.4 (34.5) 0.6 (34.7) 21.7 (24.9) 247.6 (27.7)
5 0.4 (34.6) 0.7 (34.9) 63.2 (36.2) NA
6 0.6 (36.9) 0.8 (38.2) NA NA

Table 1: Runtime in seconds & (quality): SPAC vs M-DPFP
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Figure 4: Results of SPAC.

Next, we conduct experiments to show SPAC’s scalabil-
ity. The task durations are chosen randomly from a set of
pre-generated uniform distributions with mean in [0, 0.5] and
variance of 0.01. Task values are chosen uniformly randomly
between 0 and 10, and joint rewards are chosen uniformly
randomly between 0 and 20 (−20 for penalties). The tempo-
ral constraints are randomly assigned between tasks.

First we fix the number of tasks per agent to 5, the number
of constraints per agent to 8, and vary the number of agents

from 5 to 1280 with different error bounds εv = 0.25, 1, 4.
For each setting we create 100 random problems and report
the average runtime results in Figure 4(a). SPAC scales al-
most linearly with respect to the number of agents for every
εv setting. Second, we fix the number of agents to 10, the
number of tasks per agent to 5, and vary the number of con-
straints per agent. Again Figure 4(b) shows the average re-
sults over 100 random problems. As we can see, the runtime
is roughly linear to the number of constraints per agent.

Next, we test on large scale problems where there are 1000
agents with 8 constraints per agent. We consider 4, 5, and 6
tasks per agent with varying εv from 0.125 to 16. Figure 4(c)
and Figure 4(d) show the runtime and solution quality results
of the average over 10 random problems respectively. The
x-axes in both figures are in log-scale. These figures show
that using smaller value of εv helps find better solutions at the
cost of increasing runtime (however, the benefit of decreasing
εv ≤ 0.5 is negligible). SPAC with εv = 0.5 is seen to solve
a 1000 agent problem with 5 tasks per agent in 8 minutes –
SPAC scales beyond capabilities of current algorithms.

Finally, we test the scalability with respect to the number
of tasks per individual agent. To this end, we create 10-agent
problems with 8 constraints per agent and varying number of
tasks with task ordering either fixed or not fixed. If the task
ordering is fixed, the number of discrete states of each agent
is the number of tasks +1 and at each discrete state there is
only one non-wait action. The problem with fixed task or-
dering is essentially to find an optimal starting time for the
next task at every decision step. When the task ordering is
not fixed, the problem is much more difficult – the number of
discrete states is exponential to the number of tasks and the
agent needs to choose one from the available tasks at each
decision step. Figure 4(e) shows SPAC scales linearly with
respect to the number of tasks per agent when the task or-
dering is fixed. It runs under 20 seconds for 1, 000 tasks,
highlighting its scalability. However as shown in Figure 4(f),
if the task ordering is not fixed, SPAC does not scale well –
solving a problem with 10 unordered tasks per agent requires
250 seconds with εv = 0.25.

To test SPAC’s solution quality – in the absence of an effi-
cient global optimal solver – we run SPAC with εv = 0.25 for
5, 10, and 20 seconds and compare with best solution found in
running SPAC with εv = 0.1 for 2 hours. As Table 2 shows,
we can find good solutions with quality of at least 92% of the
best by running SPAC for 5 seconds, and of at least 95% of
the best by running SPAC for 20 seconds. Thus, SPAC can
find reasonable solutions at a cheap computational cost.

Id 1 2 3 4 5
5s 92.9% 92.0% 96.2% 92.4% 96.8%

10s 93.7% 96.4% 96.2% 97.9% 98.4%
20s 95.6% 96.4% 96.2% 97.9% 99.2%

Table 2: SPAC: comparing to best solution found in 2 hours.

6 Conclusion
This paper presents three key contributions. First, it intro-
duces a novel continuous-time model (MCT-MDP) for mul-



tiagent planning that exploits transition independence in do-
mains with graphical reward dependencies and temporal con-
straints. Second, it presents SPAC, a new locally optimal al-
gorithm, based on the following key ideas: (1) defining an
augmented CT-MDP such that solving it provably provides a
best response to neighboring agents’s policies; (2) fast convo-
lution to efficiently generate augmented CT-MDPs; (3) a new
algorithm to solve these augmented MDPs; (4) exploiting
graph structure of reward dependencies for scalability. Third,
we show empirically that SPAC outperforms the nearest com-
petitor (M-DPFP) and scales up the number of agents signif-
icantly beyond any previous continuous state DEC-MDP al-
gorithm.

As for related work, there have been many algorithms
proposed for solving discrete state DEC-MDPs and DEC-
POMDPs such as [Becker et al., 2003; Kumar and Zilber-
stein, 2010]. However, these techniques usually cannot be
easily applied to continuous state problems. On the other
hand, there are algorithms for solving hybrid state MDPs
such as [Li and Littman, 2005; Marecki et al., 2007],
which however, only solve for single-agent problems. Al-
gorithms such as [Benazera, 2007; Beynier and Mouaddib,
2005; Marecki and Tambe, 2007; 2009] have been success-
ful in solving multi-agent planning problems with continu-
ous states. Unfortunately, [Beynier and Mouaddib, 2005;
Marecki and Tambe, 2007] consider only a restricted problem
where a fixed ordering of agent actions is given. Our experi-
mental results show that when task ordering is supplied ahead
of time, SPAC’s scale-up is comparable or superior to that of
these algorithms; however, SPAC can also handle unordered
tasks which these algorithms cannot handle. The exponential
complexity of M-DPFP [Marecki and Tambe, 2009] limits
its applicability to only small problems. The goal-oriented
joint reward structure in [Benazera, 2007] cannot represent
the temporal constraints in our problems. Furthermore, none
have been shown to scale to large numbers of agents. The
MCT-MDP model introduced in this paper is a continuous
state generalization of the TI-DEC-MDP model introduced
by Becker et al. [Becker et al., 2003]. Unfortunately the
coverage set algorithm (CSA) introduced in [Becker et al.,
2003] cannot directly solve the continuous state model given
that there are an infinite number of policies for an individual
agent. We notice there exist efficient discrete state graphical
models of agent interactions including [Doshi et al., 2009]
and [Spaan and Melo, 2008]. Integrating such graphical rep-
resentations to our model can be an interesting future research
topic.
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