
Refinement of Strong Stackelberg Equilibria in Security Games

Bo An, Milind Tambe, Fernando Ordonez, Eric Shieh
University of Southern California

Los Angeles, CA 90089
{boa,tambe,fordon,eshieh}@usc.edu

Christopher Kiekintveld
University of Texas, El Paso

El Paso, TX 79968
cdkiekintveld@utep.edu

Abstract
Given the real-world deployments of attacker-defender Stack-
elberg security games, robustness to deviations from expected
attacker behaviors has now emerged as a critically important
issue. This paper provides four key contributions in this con-
text. First, it identifies a fundamentally problematic aspect of
current algorithms for security games. It shows that there are
many situations where these algorithms face multiple equilib-
ria, and they arbitrarily select one that may hand the defender
a significant disadvantage, particularly if the attacker deviates
from its equilibrium strategies due to unknown constraints.
Second, for important subclasses of security games, it iden-
tifies situations where we will face such multiple equilibria.
Third, to address these problematic situations, it presents t-
wo equilibrium refinement algorithms that can optimize the
defender’s utility if the attacker deviates from equilibrium s-
trategies. Finally, it experimentally illustrates that the refine-
ment approach achieved significant robustness in considera-
tion of attackers’ deviation due to unknown constraints.

Introduction
Game theory is an increasingly important paradigm for
reasoning about complex security resource allocation and
patrolling problems (Basilico, Gatti, and Amigoni 2009;
Korzhyk, Conitzer, and Parr 2010; Dickerson et al. 2010).
Much of this work uses Stackelberg game models to repre-
sent the commitment that the security forces make to a se-
curity policy, and the capability of attackers to use surveil-
lance to learn about the policy during the planning phase
of an attack. Two important examples of this are ARMOR
used at the LAX Airport to randomize checkpoint place-
ment and canine patrols, and IRIS used by the Federal Air
Marshals Service (FAMS) to schedule air marshals (Jain et
al. 2010b). Additionally, the United States Transportation
Security Administration (TSA) is currently evaluating the
GUARDS system for use in scheduling airport security op-
erations (Pita et al. 2011).

To date, the analysis of Stackelberg security games has
focused primarily on computing Strong Stackelberg Equi-
librium (SSE), and many algorithms have been develope-
d for quickly computing these equilibria in various cas-
es (e.g., DOBSS (Jain et al. 2010b), ERASER (Jain et al.
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2010b), ASPEN (Jain et al. 2010a)). However, the assump-
tions of perfect knowledge and optimal attacker behavior
that SSE is based on are very strong, and an importan-
t line of recent work focuses on developing more robust
solutions for security games. This includes work on both
payoff uncertainty in security games (Jain et al. 2010b;
Kiekintveld, Tambe, and Marecki 2010) and uncertainty
about the behavior of human adversaries (Pita et al. 2010).

In this paper we focus on addressing a kind of uncertainty
that has not been studied in the literature, but which may
arise in many real-world applications: the possibility that
attackers have unknown capability constraints that restric-
t the set of targets they can feasibly attack. For example,
in the airline domain an attacker may not be able to attack
certain flights due to an inability to acquire tickets, flight
delays/cancellations, visa or passport issues, location con-
straints, or any number of other issues. The previous work
has not developed robust solutions to this form of uncertain-
ty and the arbitrarily selected SSEs may give defenders low
utilities if attackers deviate due to unknown constraints.

We develop a solution based on the notion of equilibri-
um refinement, which is common in the game theory liter-
ature (Carlsson and van Damme 1993; Kreps and Wilson
1982; Myerson 1978; Selten 1975). We introduce a new e-
quilibrium refinement for Stackelberg security games based
on a dominance criteria motivated by constrained attackers.
In cases where there are multiple equilibria, this refinement
is able to select more robust equilibria that make the most ef-
ficient use of available resources. An important property of
the refinement is that it improves robustness to deviations by
constrained attackers without any loss in the defender’s ex-
pected payoff against unconstrained attackers. We also show
empirically that the refinement is more robust than standard
SSE solutions when there is payoff uncertainty.

We begin by presenting background on Stackelberg secu-
rity games, and then introduce the key problem of multiple
equilibria in security games and define our refinement cri-
teria. We then present a characterization of the cases where
multiple equilibria can arise, due to a variety of differen-
t restrictions on resources and payoffs. After this theoretical
analysis we describe our algorithmic approach for comput-
ing the refinement, including specific algorithms for two im-
portant cases. We conclude with an experimental evaluation
of the refinement algorithms, demonstrating that this tech-



nique significantly improves the robustness of solutions to
Stackelberg security games.

Stackelberg Security Games
A generic Stackelberg security game has two players, a de-
fender which first decides how to use m identical resources
to protect a set of targets T (m< |T |), and an attacker which
observes the defender’s strategy before choosing a target to
attack. A defender’s pure strategy is a subset of targets from
T such that at most m targets from T are protected. An at-
tacker’s pure strategy is a target from T which will be at-
tacked. A mixed strategy allows a player to play a proba-
bility distribution over pure strategies. From a mixed strate-
gy of the defender, we can compute the overall coverage of
each target. Formally, the defender’s mixed strategy can be
compactly represented as a coverage vector c= ⟨ct⟩ where
ct is the probability that target t is covered (Kiekintveld
et al. 2009; Yin et al. 2010). The attacker’s mixed strategy
a= ⟨at⟩ is a vector where at is the probability of attacking
target t.

The payoffs for an agent depend on which target is at-
tacked and how the target is covered. The defender’s payoff
for an uncovered attack is denoted as Uu

d (t), and for a cov-
ered attack U c

d(t). Similarly, Uu
a (t) and U c

a(t) are the attack-
er’s payoffs. As a key property of security games, we assume
∆d(t)=U c

d(t)−Uu
d (t)>0 and ∆a(t)=Uu

a (t)−U c
a(t)>0.

In other words, adding resources to cover a target hurts the
attacker and helps the defender. For a strategy profile ⟨c,a⟩,
the expected utilities for both agents are given by:

Ud(c,a)=
∑
t∈T

atUd(c, t),where Ud(c, t)=ctU
c
d(t)+(1−ct)Uu

d (t)

Ua(c,a)=
∑
t∈T

atUa(c, t),where Ua(c, t)=ctU
c
a(t)+(1−ct)Uu

a (t)

It thus follows that Uu
d (t)≤Ud(c, t)≤U c

d(t) and U c
a(t)≤

Ua(c, t)≤Uu
a (t) for any target t.

In a Stackelberg model, the defender chooses its strate-
gy first, and the attacker chooses a strategy after observing
the defender’s choice. The attacker’s response function is
g(c) : c → a. We assume that the g(c) is unique to ev-
ery c. The standard solution concept for Stackelberg games
is Strong Stackelberg Equilibrium (SSE) (Breton, Alg, and
Haurie 1988; Leitmann 1978; von Stengel and Zamir 2004).
A pair of strategies ⟨c, g(c)⟩ form an SSE if they satisfy the
following:
1. The defender plays a best-response: Ud(c, g(c)) ≥

Ud(c
′, g(c′)) for any c′.

2. The attacker plays a best-response: g(c) ∈ Fa(c) where
Fa(c) = argmaxa Ua(c,a) is the set of follower best-
responses.

3. The attacker breaks ties optimally for the defender:
Ud(c, g(c))≥Ud(c,a

′) for any a′∈Fa(c).
There always exists an optimal pure-strategy response for

the attacker. Without loss of generality, we restrict to attack-
ers’ pure strategies. Given the defender’s strategy c, the at-
tack set Γ(c)=argmaxt∈T Ua(c, t) contains all targets that

yield the maximum expected payoff for the attacker. Obvi-
ously, it follows that Ua(c,a)=Ua(c, t) for any t∈Γ(c).

Refinement for SSE in Security Games
A well-known property of SSE is that all SSE give the same
expected payoff for the leader (defender) (Breton, Alg, and
Haurie 1988; Leitmann 1978), so it may seem strange to be
concerned with selecting among the possible SSE solutions.
Our interest in a refinement is driven by two observations.
First, we find that in many security games based on real-
world problems (particularly when there are restrictions on
how security resource can be allocated), there are an infinite
number of SSE solutions. Worse, in many of these solutions
a portion of the available resource are not used productively,
since they can be assigned arbitrarily without affecting the
solution quality. The second observation is that SSE solu-
tions are not robust to deviations in the strategy of the fol-
lower (attacker). This leads to the core idea of our work: us-
ing refinement to increase the robustness of SSE solutions,
without sacrificing solution quality.

To see how multiple equilibria can arise in security games,
consider the following example based on the FAMS do-
main (Jain et al. 2010b). There are 4 targets, representing
flights, which are divided into two partitions {t1, t2} and
{t3, t4}, which represent flights leaving from two different
airports. There is one air marshal at each airport, so the first
marshal can only take flight t1 or t2, and the second can only
take t3 or t4. For the payoffs shown below, the game has an
infinite number of SSE solutions: ⟨c = (x, y, 0.5, 0.5),a =
(0, 0, 1, 0)⟩ such that 0≤x≤1 and 0≤y≤1−x. In effect, it
does not matter exactly what the first air marshals does, be-
cause the attacker always prefers to attack flight 3 regardless.
In contrast, if there was no restriction on the resources, the
unique SSE solution is ⟨c=(1/3, 0, 1, 2/3),a=(0, 0, 1, 0)⟩,
which places additional resources on flights 3 and 4.

Uu
d (t) Uc

d(t) Uu
a (t) Uc

a(t)
t1 3 4 9 6
t2 2 3 7 6
t3 4 6 10 8
t4 2 3 12 6

It is also possible to have multiple equilibria with no
resource restrictions. Consider the game with only target-
s {t1, t2, t3} and 2 resources that can cover any of the
three targets. This game also has an infinite number of SS-
Es ⟨c = (x, y, 1),a = (0, 0, 1)⟩ such that x ≥ 1/3 and
y ≤ 1−x. For instance, S1 = ⟨c = (1, 0, 1),a = (0, 0, 1)⟩
and S2 = ⟨c = (0.75, 0.25, 1),a = (0, 0, 1)⟩. In every case,
the attacker chooses to attack the fully covered target t3 with
a utility of 8. The intuition for this case is that the attack-
er prefers to attack a highly valuable target, even though it
is heavily defended.1 This is an important real-world phe-
nomenon. Even though airports, government buildings, and

1We note that the security game model as presented focuses on
allocating a single type of resource (e.g., air marshals or check-
points). The addition of altogether different types of protection
could further enhance security; our model does not address this di-
rection, but does provide useful diagnostic information to identify
cases where this may be useful.



other critical targets are very heavily secured, they may still
be more desirable targets than millions of unsecured “soft
targets”. In practice, it is never possible to achieve perfec-
t security, so there is always some chance of success—and
even a failed attack against an important target may result in
a costly response and a large amount of publicity.

We will further characterize the situations where multi-
ple SSE are possible in the next section. Now, we turn to
the question of how to select among the multiple equilibri-
a. Our primary motivation is to increase the robustness of
the solution in case the attacker deviates from the SSE s-
trategy. This could occur for many different reasons, includ-
ing bounded rationality, payoff noise, and unknown capabil-
ity constraints. We formulate our refinement based on the
assumption that the attacker deviates due to unknown con-
straints for three reasons: (1) it has not been previously s-
tudied in the literature so there are no known methods for
dealing with this form of uncertainty, (2) it leads to a natu-
ral refinement criteria, and (3) it is real-world as discussed
at the beginning. In our experimental results, we show that
the refinement is also effective for deviations as a result of
payoff uncertainty.

Consider again the example above with no resource re-
strictions. All SSEs give the defender the same optimal utili-
ty 6, but they give dramatically different results if the attack-
er deviates from the equilibrium strategy. Suppose that the
attacker is not able to attack t3 for some unknown reason. In
S1, the attacker’s second-best response is t2 and the defend-
er’s utility is 2. For S2, the attacker is indifferent between
t1 and t2. Since it breaks ties optimally for the defender, it
attacks t1 and the defender’s utility is 3.75. In this example
S2 is more robust than S1, and this robustness is ”free” in
the sense that the defender still receives the optimal utility if
the attacker attacks its optimal target t3.

More formally, we consider a model of a constrained at-
tacker. The constrained attacker has the same payoff func-
tion as defined in the base security game, but cannot attack
a subset of the possible targets. Inspired by refinement solu-
tion concepts that depend on small probability of deviations
(e.g., (Selten 1975)), we assume that each target appearing
in the set of targets cannot be attacked with small probabili-
ty, which could be different for different targets. This simple
model has several desirable properties. It is unlikely that the
attacker will be unable to attack any particular target, and
increasingly unlikely that the attacker will be unable to at-
tack larger combinations of specific targets. Moreover, even
when the attacker is forced to deviate due to a constraint, he
still behaves intelligently and chooses the next-best alterna-
tive rather than acting randomly.

Based on this model, we now define our equilibrium re-
finement concept. Given an SSE ⟨c,a⟩, we define an order-
ing over the targets as follows. Let target t(1) be the tar-
get that will be attacked if the attacker is unconstrained.
Let target t(i) be the target that will be attacked if the at-
tacker is not able to attack targets t(1), . . . , t(i−1). Utili-
ty vector v = ⟨vi⟩ represents the defender’s utilities where
vi is the defender’s utility if target t(i) is attacked, i.e.,
vi= ct(i)U

c
d(t(i)) + (1− ct(i))U

u
d (t(i)). We define a domi-

nance relation between SSEs based on their utility vectors.

Definition 1. Given two SSEs ⟨c,a⟩ and ⟨c′,a′⟩, we have
two utility vectors v and v′. SSE ⟨c,a⟩ dominates SSE
⟨c′,a′⟩ if there exists i such that 1) vi > v′i and 2) for all
1≤j<i, vj=v′j .

The refinement criterion is to find an SSE that is not dom-
inated by any other SSE. The criteria demands that the solu-
tion first optimizes for the most likely scenario, in which the
attacker can attack the optimal SSE target. The secondary
criteria is to optimize against an attacker that chooses the
second-best target, which is the next most-likely scenario.
Each successive scenario is less likely, but the refinement
continues to select an optimal response as long as resources
are available.

Characterization of Multiple SSEs
We wish to characterize situations where multiple SSEs
arise, and to that end begin with analyzing the relationship
between the coverage vector and the attack set in an SSE.
Our analysis assumes no maximum resource restrictions and
we show how to generalize the analysis to games with max-
imum resource restrictions at the end of this section.
Lemma 2. Assume that there is an SSE ⟨c,a⟩. If the cover-
age of each target t ∈ Γ(c) is less than 1, i.e., ct < 1, then
ct′ =0 for any target t′ /∈Γ(c). In addition,

∑
t∈Γ(c) ct=m.

Proof. Assume that ct′ >0 for a t′ /∈Γ(c). Since Ua(c,a)>
Ua(c, t

′), we can slightly reduce the coverage of target t′ and
increase the coverage of targets Γ(c) such that the attacker is
still indifferent among the attack set Γ(c) and no new target
is added to Γ(c). Then the defender’s utility increases, which
contradicts to the fact that ⟨c,a⟩ is an SSE. Therefore, ct′ =
0 for any target t′ /∈ Γ(c). The same argument shows that∑

t∈Γ(c) ct=m if ct<1 for every t∈Γ(c).

Lemma 2 implies that if a target t′ /∈Γ(c) is covered, i.e.,
ct′>0, at least one target t∈Γ(c) is fully covered, i.e., ct=1.
Lemma 3. Assume that there are two targets t and t′ such
that Uu

a (t)≥Uu
a (t

′) and there is an SSE ⟨c,a⟩. If t′∈Γ(c)
and t /∈Γ(c), there is at least one target t′′∈Γ(c) such that
ct′′ =1 and there is another SSE ⟨c′,a⟩ in which t∈Γ(c′).

Proof. Since target t′ is in the attack set Γ(c), we have 1)
Ua(c,a) = Ua(c, t

′) according to the definition of attack
sets and 2) Ua(c, t

′)≤Uu
a (t

′) since ct′ ≥ 0. Since Uu
a (t)≥

Uu
a (t

′), it follows that Ua(c,a)≤Uu
a (t). If ct=0, the target t

should be in the attack set since Ua(c,a)≤Uu
a (t)=Ua(c, t).

Therefore, ct > 0. It then follows that at least one target
t′′∈Γ(c) is fully covered, i.e., ct′′ =1 (Lemma 2).

Since t /∈ Γ(c), it follows that Ua(c,a) > Ua(c, t), i.e.,
ct > (Uu

a (t) − Ua(c,a))/∆a(t). If we reduce the coverage
ct to c′t = (Uu

a (t) − Ua(c,a))/∆a(t), we construct another
SSE ⟨c′,a⟩ in which c′=(c−t, c

′
t) where c−t is the coverage

of all targets except for target t in the SSE ⟨c,a⟩.

Lemma 3 implies that we may create another SSE with a
larger attack set by reducing coverage of targets outside the
attack set. The attack set of SSE S1 in our example is {t3}.
If we reduce the coverage of t1 to 1/3, we have another SSE
⟨(1/3, 0, 1), (0, 0, 1)⟩ with a larger attack set {t1, t3}. We



Algorithm 1: Compute the maximum attack set for a
security game with m resources and targets T

1 i←0,M←∅, T are sorted by Uu
a (t);

2 while i≤|T | do
3 ifM=T then returnM;
4 j ← i+ 1,M′ ←M∪ {tj};
5 while j< |T | and Uu

a (tj+1)=Uu
a (tj) do

6 M′ ←M′ ∪ {tj+1}; j ++;
7 end
8 if Condition C1 or C2 is violated for attack setM′ then

returnM;
9 M←M′; i← j;

10 end

define maximum attack set SSE (MSSE). An SSE ⟨c,a⟩ is
an MSSE if Γ(c) = {t : Uu

a (t) ≥ Ua(c,a)}. Without loss
of generality, we assume that targets T = {t1, . . . , t|T |} are
sorted by Uu

a (t), i.e., Uu
a (ti)≥Uu

a (tj) if 1≤ i≤j≤|T |.
Theorem 4. Any security game could not have two MSSEs
with different attack sets.

Proof. Assume that there are two MSSEs ⟨c,a⟩ and ⟨c′,a′⟩
such that Γ(c) ̸=Γ(c′). Given the definition of MSSE, either
Γ(c)⊂Γ(c′) or Γ(c′)⊂Γ(c) should be satisfied. We assume
that Γ(c)⊂Γ(c′) and the other situation can be proved in the
same way. Let x=Ua(c,a) and x′=Ua(c

′,a′).
Assume that x>x′. Given that x=Uu

a (t)−∆a(t)ct and
x′=Uu

a (t)−∆a(t)c
′
t, we have ct<c′t for all t∈Γ(c). There-

fore, ct < 1 for all t ∈ Γ(c). By Lemma 2, this means m=∑
t∈Γ(c) ct<

∑
t∈Γ(c′) c

′
t≤m, which is a contradiction.

Likewise, we can show a contradiction if x < x′. Thus
x′=x and MSSEs have the same maximum attack set.

Algorithm 1 computes the unique maximum attack set
for all MSSEs. The algorithm starts with the attack set
M = {t1} and gradually adds targets into M. Given a
maximum attack set M for an MSSE ⟨c,a⟩, it follows that
Ua(c,a)≤mint∈M Uu

a (t). Accordingly, the minimum cov-
erage of each target t ∈ M is (Uu

a (t) − x)/∆a(t) where
x=mint∈M Uu

a (t). Therefore, the minimum number of re-
sources needed is

∑
t∈M(Uu

a (t) − x)/∆a(t). By adding a
target ti to the attack set M, the coverage of each target
t ∈ M and the number of resources needed will not de-
crease. In particular, the defender’s utility will not decrease
since the attacker will choose the target best for the defender
from the attack set. Clearly, the attack set of each MSSE is
the largest attack set M satisfying conditions C1 and C2
(ct = (Uu

a (t)−mint∈M Uu
a (t))/∆a(t) for t∈M):

• C1:
∑

t∈M ct≤m
• C2: ct≤1 for each t∈M

The next theorem gives the necessary and sufficient con-
ditions for the uniqueness of SSEs.
Theorem 5. A security game has a unique SSE if and only if
(M is the maximum attack set computed using Algorithm 1)

max
t∈M

Uc
a(t)≤

∑
t∈M

Uu
a (t)

∆a(t)
−m∑

t∈M
1

∆a(t)

Proof. Given a maximum attack set M, we can compute
all SSEs as follows. Since decreasing the attacker’s utility
in attacking M implies increasing the defender’s utility, the
defender will use as many resources as possible to cover M
while satisfying conditions C1 and C2. Assume that the at-
tacker’s lowest utility for attacking any target in M is x.
Then the coverage of each target t ∈ M is ct = (Uu

a (t) −
x)/∆a(t). If we only consider C1 (

∑
t∈M ct≤m), we have

x≥ x=

∑
t∈M

Uu
a (t)

∆a(t)
−m∑

t∈M
1

∆a(t)

Condition C2 (ct ≤ 1 for each t ∈ M) implies that x ≥
U c
a(t) for each t∈M, i.e., x≥ x=maxt∈M U c

a(t). There-
fore, the attacker’s utility in attacking M is x=max{x, x}.
The optimal coverage of each target t∈M is ct=(Uu

a (t)−
max{x, x})/∆a(t). If x≤x, all resources will be used and
there is a unique SSE, which is also an MSSE.

If x ≤ x, the coverage vector c for the unique SSE is:
ct =

Uu
a (t)−x
∆a(t)

if t∈M, and ct = 0 otherwise. In the unique
(M)SSE, the attacker will attack the target t∗ ∈ M which
gives the defender the highest utility.

If x > x, the attacker’s expected utility of attacking any
target in an SSE is x. In an MSSE, the coverage of each tar-
get t∈M is ct=(Uu

a (t)−x)/∆a(t). Given the Algorithm 1,
it follows that m −

∑
t∈M ct > 0. The remaining resources

m−
∑

t∈M ct could be arbitrarily allocated to targets T\M.
If x > x, there are also an infinite number of SSEs with

attack sets which are subsets of M. Since the attacker will
attack the target t∗ which can give the defender the highest
utility, t∗ should be in the attack set of for any SSE, i.e., the
coverage of t∗ is (Uu

a (t) − x)/∆a(t). For t∈M\{t∗}, the
coverage ct should be no less than (Uu

a (t)− x)/∆a(t). For-
mally, the coverage vectors for all SSEs are given as follows.

ct


=

Uu
a (t)−x

∆a(t)
if t= t∗

∈ [U
u
a (t)−x

∆a(t)
, 1] s.t.

∑
t′∈M ct′≤m if t∈M\{t∗}

∈ [0, 1] s.t.
∑

t′/∈M ct′≤m−
∑

t′∈M ct′ if t /∈M

The above analysis assumes no resource restrictions and
cannot be generalized to games with arbitrary scheduling
restrictions Θ, e.g., minimum/maximum coverage require-
ment for some targets. With arbitrary restrictions, it’s impos-
sible to characterize SSE uniqueness since restrictions them-
selves (e.g., ct=0.5 for each target t) could uniquely define
the defender’s strategy. However, the above analysis can be
applied to security games with maximum resource restric-
tions as in the FAMS domain. Each restriction θ provides an
upper bound wθ on the total coverage of a set of targets Tθ,
i.e.,

∑
t∈Tθ

ct ≤wθ. When we use Algorithm 1 to compute
the maximum attack set M, we need to also guarantee that
condition C3 is not violated for M:

• C3:
∑

t∈Tθ
ct≤wθ for each θ

where ct = (Uu
a (t) − mint∈M Uu

a (t))/∆a(t) for t ∈ M
and ct = 0 for t /∈M. The attacker’s utility while attacking



Algorithm 2: Compute a refined SSE for a game with
m resources and targets T

1 i← 0, m′ ← 0,;
2 while true do
3 Compute an SSE ⟨c,a⟩ using ERASER;
4 Let x← ct(i) if at(i)=1;
5 Add restrictions at(i)=0 and ct(i)=x to Θ;
6 Add restrictions that the attacker’s expected utility for any

target must be no higher than the expected payoff for t(i);
7 i++, m′ ← m′ + x;
8 if i = |T | or m′ = m then return ⟨c, g(c)⟩;
9 end

the maximum attack set M is the lowest utility such that
conditions C1−C3 are satisfied. Then we can compute the
coverage vector for targets M. There are multiple SSEs if
there are still resources left after covering M.

Algorithms for Refinement
We now describe a general framework for computing the
equilibrium refinement and two instantiations of this frame-
work for specific classes of security games. As noted previ-
ously there are many existing algorithms for finding SSE in
various types of security games. We can compute the refined
solution by iteratively applying the SSE solver to restrict-
ed forms of the security game. Algorithm 2 gives the pseu-
docode for this approach using the ERASER MILP (Jain et
al. 2010b) as the base SSE solver. The algorithm first com-
putes an SSE ⟨c,a⟩ for the unmodified game with m re-
sources and targets T . Let t(1) be the target attacked in this
SSE, with a coverage of ct(1) = x. For the second itera-
tion, we assume that the attacker will not attack t(1), but
still maintain the equilibrium conditions from the original
solutions. Specifically, we add to the original optimization
problem constraints that the coverage ct(1) = x, that the at-
tacker does not attack t(1), and that for all targets other than
t(1), the attacker’s expected utility is less than or equal to
the expected utility for attacking t(1). We solve the modi-
fied MILP to compute a new SSE ⟨c′,a′⟩ where the attack-
er chooses a new target t(2), and a new set of constraints
is added for the third iteration. This process continues un-
til there are no targets left or there are no unconstrained re-
sources in the restricted problem on some iteration; the max-
imum number of iterations is |T |.
Theorem 6. The strategy profile computed by Algorithm 2
is an SSE and is not dominated by another SSE.

Proof. We first show that the strategy profile ⟨c,a⟩ returned
by Algorithm 2 is an SSE. Assume that the algorithm stop-
s after n iterations and at iteration i, the target will be at-
tacked is ki. Assume that the SSE computed in round 1 is
⟨c′,a′⟩, i.e., a′k1

= 1. By construction, the attacker’s utility
by attacking target k1 is no less than that by attacking target-
s k2, . . . , kn, which implies that k1 ∈Γ(c). This, combined
with the fact that (since a′k1

= 1) Ud(c,a) = Ud(c
′, k1) =

Ud(c
′,a′), implies that ⟨c,a⟩ is an SSE.

Algorithm 3: RSSE(Υ(m,T ))

1 Compute the maximum attack setM using Algorithm 1;
2 Let ⟨c,a⟩ be an MSSE (Theorem 5);
3 if There is no other SSE other than ⟨c,a⟩ (Theorem 5) then
4 return ⟨c,a⟩;
5 else
6 Let t(i) be the target such that at(i)=1;
7 Set T ′=T \{t(i)} and m′=m−

∑
t∈T\T ′ ct;

8 Let ⟨c′,a′⟩=RSSE(Υ(m′, T ′));
9 return ⟨cT\T ′ ∪ c′,a⟩;

10 end

The non-dominance of the SSE ⟨c,a⟩ is guaranteed by
construction. We first compute the defender’s optimal cov-
erage. Then we fix the coverage for the target that will be
attacked and restrict the attacker’s utility in attacking other
targets. Thus the defender can gain the highest utility if the
attacker is attacking its best target. Then we compute the de-
fender’s best strategy in the remaining game, which can give
the attacker the highest utility if the attacker attacks the sec-
ond best target. This process continues until the remaining
game has only one SSE.

This general iterative algorithm structure can be used with
other SSE solvers as well. For example, Algorithm 3 com-
putes a refined SSE for games where the defender resources
have no restrictions. This time we use Algorithm 1 as the
base SSE solver, which is much faster than ERASER for
this restricted class of games. For a game Υ(m,T ), we first
compute the maximum attack set M. If there is a unique
SSE ⟨c,a⟩, the algorithm terminates and returns ⟨c,a⟩. Oth-
erwise, it will compute an MSSE ⟨c,a⟩ in which the attacker
will attack target t(i) in iteration i. We fix the coverage of
t(i) and compute the refined SSE ⟨c′,a′⟩ for the remaining
game with targets T \{t(i)} and m − ct(i) resources. In the
final refined SSE the coverage of target t is ct and the cover-
age for targets T \{t} other than t is c′.
Theorem 7. The strategy profile computed by Algorithm 3
is an SSE and is not dominated by any other SSE.

Proof. We first show that the strategy profile returned by
Algorithm 3 is an SSE, which is obviously true if the game
Υ(m,T ) has a unique SSE. If Υ(m,T ) has multiple SSEs
and ⟨c,a⟩ is an MSSE with at = 1, showing that the com-
bined strategy profile ⟨ct ∪ c′,a⟩ is an SSE is reduced to
showing that a∈Fa(ct ∪ c′). This, combined with the fac-
t that (since at = 1) Ud(ct ∪ c′,a) = Ud(c, t) = Ud(c,a),
implies that ⟨ct∪c′,a⟩ is an SSE.

Note that the set M\ {t} is a set of targets with the
largest uncovered attacker utilities and they can form an at-
tack set (just set c′ = c−t). This means that the set M\{t}
would be constructed during the execution of Algorithm 1
on RSSE(Υ(m−ct, T \{t})) and therefore M\ {t}⊆M′

where M′ be the maximum attack set for the remaining
game Υ(m−ct, T \{t}). In the remainder, Algorithm 1 de-
creases x which increases the coverage on the targets M\{t}.
Therefore we have that c′t′ ≥ ct′ for all t′ ∈ M \ {t}.
This implies that Ua(ct ∪ c′, t′) = Uu

a (t
′)− c′t′∆a(t

′) ≤



Uu
a (t

′)−ct′∆a(t
′) = Ua(c, t

′) = Ua(c, t) = Ua(ct ∪ c′, t).
This, combined with the fact that Ua(c,a) > Uu

a (t
′′) for

any target t′′ ∈ T \M, shows that a, with at = 1, satisfies
a∈Fa(ct∪c′).

The non-dominance of the SSE ⟨ct ∪ c′,a⟩ is guaranteed
by construction. We first compute the defender’s optimal s-
trategy. Then we remove the attacker’s optimal target and fix
the coverage for that target. By doing so, the defender can
gain the highest utility if the attacker is attacking its best tar-
get. Then we compute the defender’s best strategy in the re-
maining game, which gives the attacker the highest utility if
the attacker is attacking the second best target. This process
continues until the remaining game has only one SSE.

We also note that the refined SSE computed by Algorith-
m 3 is unique, since there is a unique optimal target (and
coverage) at each iteration, leading to a unique restricted
game for the next iteration. To find the exact refinement, we
need to solve at most |T | games since after one iteration,
one target’s coverage will be fixed. We can speed up the al-
gorithm further using the following observation. Let t∈M
be the target that will be attacked in all MSSEs. By Theo-
rem 5, there should be a target t′ ∈M such that ct′ = 1. If
t ̸= t′, it is easy to see that in the equilibrium ⟨c′,a′⟩ for
Υ(m−ct, T \{t}), we have 1) c′t′ = 1, 2) c′t′′ = ct′′ for any
target t′′∈M\{t} and 3)M\{t}=M′ where M′ is the maxi-
mum attack set of equilibrium ⟨c′,a′⟩. The reason is that the
coverage of t′ cannot be increased any more. Clearly, the
attacker’s optimal target t′′ in equilibrium ⟨c′,a′⟩ is t′′ =
argmaxt′′∈M\{t} Ud(c, t

′′). By induction, c′t′′ = ct′′ for any
target t′′∈M such that Ud(c, t

′′)≥mint′∈M,ct′=1 Ud(c, t
′).

Then in Algorithm 3, we can set T ′=T \Ψ where Ψ={t′′ :
Ud(c, t

′′)≥mint′∈M,ct′=1 Ud(c, t
′), t′′ ∈M}. Targets with

full coverage are always removed, so we need to solve at
most min{m, |T |} games. We used this approach to speed
up Algorithm 3 in the experiments.

Experimental Evaluation
We run experiments to test the robustness of refined SSE and
“standard” SSE selected arbitrarily by solving the ERASER
MILP with default CPLEX settings. Our experiments use
100 sample game instances with 5 defender resources, vary-
ing numbers of targets, and randomly-generated payoffs. All
payoffs are in [0, 100], and we enforce the constraint that re-
wards are higher than penalties when the uncovered utility
is drawn for each player. For games with restrictions on de-
fender resources, we randomly generate 2 min and 2 max
coverage restrictions for sets of 2-4 randomly-chosen target-
s. The max restriction is set to 1.5n∗ m

|T | where n is the num-
ber of targets in the restriction set, and the min restriction is
set randomly U [0.1, 0.2]. T-test yields p-value< 0.0001 for
all comparison of refined SSEs against random SSEs.

Figures 1(a) and 2(a) compare the expected defender utili-
ties for the first 5 targets in the dominance ordering for stan-
dard SSE and refined SSE computed by Algorithms 2 and
3, respectively. The results show that (1) refined SSE and
standard SSE give the same utility when attackers choose
the best target, and (2) that refined SSE gives a much higher
defender utility when attackers choose t(2)− t(5).
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Figure 1: Robustness in games with restrictions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  3  4  5

D
ef

en
de

r’s
 U

til
ity

Vector Number

RSSE vs. Eraser (10 targets)

Refined
Eraser

(a) Utility vectors

 30

 40

 50

 60

 70

 80

10 14 18

D
ef

en
de

r’s
 U

til
ity

Targets

RSSE vs. Eraser
Refined e=0.1
Eraser e=0.1

Refined e=0.2
Eraser e=0.2

Refined e=0.3
Eraser e=0.3

(b) Defender’s residual utility

Figure 2: Robustness in games without restrictions.

We can compute the effects of this additional robustness
for the constrained attacker model, assuming that the attack-
er cannot attack any particular target with probability e. S-
ince the values for t(1) are identical we present the residu-
al expected utility for the remaining targets. Assuming the
attacker does not attack t(1), it will attack t(2) with proba-
bility 1−e and attack t(3) with probability e(1−e). Given
the utility vector v for an SSE, the defender’s residual u-
tility is given by

∑
2≤i≤|T |(1−e)ei−2vi. Figures. 2(b) and

1(b) compare the residual utilities for refined SSE and stan-
dard SSE. The residual utilities for the refined SSE are much
higher than standard SSE for any number of targets in our
experiments, and the effect increases as the probability e of
attacker constraints increases.
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Figure 3: Runtime and memory scaling.

Fig. 3(a) compares runtime performance of Algorithms 2
and 3 for games without defender resource restrictions. The
x-axis is the size of the game (in targets), and the y-axis
is runtime in minutes. Algorithm 2 has an average runtime
of 8m on problems with 250 targets but Algorithm 3 only
needs 0.2s. Fig. 3(b) compares the memory performance on
the same set of games and shows a similar trend.

We also tested the performance of the refinement to at-
tacker deviations due to payoff uncertainty (rather than at-
tacker constraints). We added mean-0 Gaussian noise to
each attacker payoff, with standard deviations chosen ran-
domly from either U [0, 0.5] or U [0.2, 1.5] to generate class-
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Figure 4: Robustness to payoff uncertainty.

es with “low” or “high” uncertainty. The attacker chooses an
optimal response based on the perturbed payoffs. We sample
the noisy payoffs and choose a response 1000 times to get
a distribution of possible responses for the attacker. Fig. 4
shows the defender’s expected payoffs in this setting for the
same class of games described above with no defender re-
source restrictions. Even though the refinement is designed
primarily to optimize against constrained attackers, our re-
sults show that it provides additional robustness against de-
viations due to payoff uncertainty as well, while still provid-
ing an optimal payoff if there is no uncertainty.

Conclusions
Robustness is a critically important issue in attacker-
defender Stackelberg security games, given that in real-
world deployments, attackers may deviate from expected
behaviors. This paper provides four key contributions to-
wards such robustness: (1) it identifies a fundamental prob-
lem in current security game algorithms, showing that they
may select an arbitrary SSE from multiple possible equilib-
ria, handing the defender a significant disadvantage if the
attacker deviates from its expected best response due to un-
known capability constraints; (2) for important subclasses
of security games, it mathematically characterizes situation-
s where the defender will face such problematic multiple
equilibria; (3) to address these problematic situations, this
paper presents two equilibrium refinement algorithms that
optimize defender utility if the attacker deviates from equi-
librium strategies; (4) it experimentally illustrates that the
refinement approach achieved significant robustness when
attackers deviate due to unknown capability constraints, pro-
viding a more productive use of available resources.
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