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Abstract. This paper discusses some of the recent cooperative multiagent sys-
tems work in the TEAMCORE lab at the University of Southern California.
Based in part on an invited talk at the CARE 2010 workshop, we highlight
how and why execution-time reasoning has been supplementing, or replacing,
planning-time reasoning in such systems.

1 Introduction

There have been over two decades of work in computer science focusing on cooperative
multiagent systems and teamwork [6, 15,28], much of it in the context of planning
algorithms. In addition to the problems encountered in single-agent scenarios, multi-
agent problems have a number of significant additional challenges, such as how agents
should share knowledge, assist each other, coordinate their actions, etc. These extra
considerations often make multi-agent problems exponentially more difficult, relative
to single agent tasks, in terms of both the computational complexity and the amount of
memory required for a planner.

As discussed in the following section, the BDI (Belief-Desire-Intention) framework
was one of the first to directly addresses multi-agent problems with significant the-
oretical and experimental success. In addition to formalizing teamwork relationships,
BDI became popular because of its ability to reduce computation. Rather than requiring
agents to laboriously plan for all possible outcomes, or expect a centralized planner to
account for a state space exponential in the number of agents, the BDI approach allowed
agents to reason about their plans at execution-time and adapt to information gathered
about the environment and teammates.

Later techniques focused more on preemptive planning, requiring a computationally
intensive planning phase up front, but allowed the agents to execute their joint plan
with few requirements at execution time. Two particular approaches, DCOPs and DEC-
POMDPs, will be discussed in later sections of this chapter. The DCOP framework
allows agents to explicitly reason about their coordination in a network structure in
order to achieve a joint goal. DEC-POMDPs use centralized planning to reasoning about
uncertainty, both in the sensors and actuators of the agents, producing provably (near-)
optimal plans for the multi-agent team.

While the current generation of multi-agent techniques, including DCOPs and DEC-
POMDPs, have been successful in a number of impressive contexts, they often fail



to scale up to large numbers of agents. More important, they ignore the power of
execution-time reasoning and focus on planning-time reasoning. In this chapter, we
argue that the multi-agent community would do well to focus on incorporating more
execution-time reasoning, possibly inspired by past BDI methods, in order to 1) reduce
planning time, 2) reduce the amount of required coordination, and/or 3) allow agents to
gracefully handle unforeseen circumstances. After we give a brief introduction to the
BDI framework, we will discuss some of our own work in the DCOP and DEC-POMDP
frameworks, highlighting the benefits of integrating execution-time and planning-time
reasoning.

2 The Past: BDI

The Belief-Desires-Intention (BDI) formalism was the dominant approach to multia-
gent teamwork in the mid-90’s, spurred on in large measure from the work on Shared-
Plans [6] and joint-intentions [15]. The key idea behind BDI was to capture some of
the “common-sense” ideas of teamwork and address questions like: “why does com-
munication arise in teamwork,” “why do teammates help each other,” and “how can a
teammate best help another teammate?” Answers to these questions were captured in a
logic-based domain-independent form, allowing for the same types of team-level rea-
soning in disparate domains (e.g., a team of airplane pilots or a team of personal office
assistants).

One important contribution of BDI was that this domain independence allowed pro-
grammers to reason about teams at very high levels of abstraction. BDI teamwork li-
braries could be responsible for the low-level control of coordinating the team, handling
failures, assigning agent roles, etc., allowing the programmer to instead focus on coding
at the team level of abstraction. BDI proved useful in (at least) three distinct ways:

1. through direct implementation of the logic as agent decision-making code,
2. as inspiration for operationalization in other languages, and
3. for the rational reconstruction of implemented systems.

Benefit #2 in particular has been useful in that it has allowed for the development and
deployment of large-scale teams (c.f., [9, 28]).

A second important contribution of BDI was to focus on execution time reasoning.
As discussed in the previous section, a set of pre-defined rules could be used at execu-
tion time, allowing agents to react to their environment without needing to plan for all
possible team contingencies ahead of time.

3 DCOPs

This section briefly introduces the DCOP framework and then discusses recent advance-
ments in multi-agent asynchronous reasoning and multi-agent exploration.
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Fig. 1. This figure depicts a three agent DCOP.
3.1 Background

Distributed Constraint Optimization Problems (DCOP) [18, 19] are cooperative multi-
agent problems where all agents are part of a single team; they share a common re-
ward function. DCOPs have emerged as a key technique for distributed reasoning in
multiagent domains, given their ability to optimize over a set of distributed constraints,
while keeping agents’ information private. They have been used for meeting scheduling
problems [17], for allocating tasks (e.g., allocating sensors to targets [14]) and for coor-
dinating teams of agents (e.g., coordinating unmanned vehicles [27] and coordinating
low-power embedded devices [5]).

Formally, a DCOP consists of a set V of n variables, {x1, x2, ..., x,}, assigned to
a set of agents, where each agent controls one variable’s assignment. Variable x; can
take on any value from the discrete finite domain D;. The goal is to choose values for
the variables such that the sum over a set of binary constraints and associated payoff
or reward functions, f;; : D; x D; — N, is maximized. More specifically, find an
assignment, A, s.t. F(A) is maximized: F'(4) = Z%Ijev fij(di,d;), where d; €
D;,d; € Dj and z; «— d;,xz; < d; € A. For example, in Figure 1, 21, 2, and 3
are variables, each with a domain of {0,1} and the reward function as shown. If agents
2 and 3 choose the value 1, the agent pair gets a reward of 9. If agent 1 now chooses
value 1 as well, the total solution quality of this complete assignment is 12, which is
locally optimal as no single agent can change its value to improve its own reward (and
that of the entire DCOP). F((x; < 0), (x2 « 0), (x3 < 0)) = 22 and is globally
optimal. The agents in a DCOP are traditionally assumed to have a priori knowledge of
the corresponding reward functions.

3.2 Ek-OPT and t-OPT: Algorithms and Results

When moving to large-scale applications, it is critical to have algorithms that scale well.
This is a significant challenge for DCOP, since the problem is known to be NP-hard.
Recent work has focused on incomplete algorithms that do not guarantee optimal so-
lutions, but require dramatically less computation and communication to achieve good
solutions. Most of the incomplete algorithms in the literature provide no guarantees on
solution quality, but two new methods based on local optimality criteria, k-size optimal-
ity [23] and ¢-distance optimality [11], offer both fast solutions and bounds on solution
quality.

The key idea of k-size optimality is to define optimality based on a local criteria:
if no subset of k agents can improve the solution by changing their assignment, an
assignment is said to be k-size optimal. Using a larger group size gives better solutions



(and bounds), but requires additional computational effort. A variation on this idea, ¢-
distance optimality, uses distance in the graph from a central node to define the groups
of agents that can change assignment. Formally, we define these optimality conditions
as follows.

Definition 1. Ler D(A, A’) denote the set of nodes with a different assignment in A
and A’. A DCOP assignment A is k-size optimal if R(A) > R(A’) for all A’ for which
DA, A)| < k.

Consider the DCOP in Figure 1. The assignment {1, 1,1} is a k-size optimal solu-
tion for k£ = 1 (with reward of 12), but not k¥ = 2 and k = 3. It is 1-size optimal because
the reward is reduced if any single variable changes assignment. However, if 2 and 3
change to 0 the reward increases to 17 from 12, so {1, 1, 1} is not 2-size optimal.

Definition 2. Let T'(v;,v;) be the distance between two variables in the constraint
graph. We denote by (2;(v) = {u|T (u,v) < t} the t-group centered on v. A DCOP as-
signment A is t-distance optimal if R(A) > R(A’) for all A’, where D(A, A") C ;(v)
for somev € V.

There are at most n distinct ¢-groups in the constraint graph, centered on the n
variables. There may be fewer than n distinct groups if some 2;(v) comprise identical
sets of nodes. Consider again the DCOP in Figure 1. Assignment {1, 1,1} is O-distance
optimal, because each ¢-group contains a single node, equivalent to ¥ = 1. However,
{1,1, 1} is not 1-distance optimal. The ¢ = 1 group for x5 includes both other variables,
so all three can change to assignment O and improve the reward to 22.

Both k-size optimal solution and ¢-distance optimal solution have proven quality
bounds that improve with larger value of k£ or t. However, there is a distinct tradeoff
between k-size and t-distance optimality. In k-size optimality, the number of nodes
in each individual group is strictly bounded, but the number of distinct k-groups may
be very large, especially in dense graphs. For ¢-distance optimality the situation is re-
versed; the number of groups is bounded by the number of variables, but the size of
an individual ¢-group is unbounded and may be large in dense graphs. Empirically, this
has significant implications for the speed of solution algorithms for computing the two
types of local optima.

Algorithms One advantage of k-size and ¢-distance optimality is that they can be com-
puted using local search methods. DALO (Distributed Asynchronous Local Optimiza-
tion) (DALO) is an algorithmic framework for computing either k-size or ¢-distance
optimal solutions for any setting of k£ or ¢. DALO is fast, and supports anytime, asyn-
chronous execution. This makes it ideal for dynamic environments that require signifi-
cant execution-time reasoning. At a high level, DALO executes in three phases:*

1. Initialization Agents send initialization messages to nearby agents, which are used
to find all of the k or ¢ groups in the constraint graph and assign each group a unique
leader.

4 More details about the algorithm can be found elsewhere [11].



2. Optimization Each group leader computes a new optimal assignment for the group,
assuming that all fringe nodes maintain their current assignment, where fringe
nodes of a group are directly connected to a group member, but are not members
themselves.

3. Implementation The group leader implements the new assignment if it is an im-
provement, using an asynchronous locking/commitment protocol.

DALO is particularly useful in execution time reasoning of large agent teams for
the following reasons. First, DALO allows agents to reason and act asynchronously by
following the locking/commitment protocol, avoiding expensive global synchronization
in execution. Second, as a locally optimal algorithm, DALO requires much smaller
amount of computation and communication on each individual agent as opposed to
a globally optimal algorithm, leading to efficient execution in dynamic environments.
Third, as verified by our simulations, the convergence speed of DALO remains almost
constant with increasing number of agents, demonstrating its high scalability.

Experimental Evaluation Here, we present an abbreviated set of results showing some
of the advantages of local optimality criteria and the DALO algorithm. We test k-size
optimality and t¢-distance optimality using a novel asynchronous testbed and perfor-
mance metrics.> In our experiments, we vary the setting of computation / communi-
cation ratio (CCR) to test algorithms across a broad range of possible settings with
different relative cost for sending messages and computation. Katagishi and Pearce’s
KOPT [10], the only existing algorithm for computing k-size optima for arbitrary £, is
used as a benchmark algorithm. In addition, we examine tradeoffs between k-size and
t-distance optimality.

We show results for: 1) random graphs where nodes have similar degrees, and 2)
NLPA (Nonlinear preferential attachment) graphs in which there are large hub nodes.
Figure 2 shows a few experimental results. As shown in Figures 2, both DALO-% and
DALO-t substantially outperform KOPT, converging both more quickly and to a higher
final solution quality.® In general, DALO-t converges to a higher final solution quality,
though in some cases, the difference is small. Convergence speed depends on both the
graph properties and the CCR setting. DALO-k tends to converge faster in random
graphs (Figure 2(a)) while DALO-t converges faster in NLPA graphs (Figure 2(b)).
Figure 2(c) shows the scalability of DALO-t and DALO-k as we increase the number
of nodes tenfold from 100 to 1000 for random graphs. The time necessary for both
DALO-k and DALO-t to converge is nearly constant across this range of problem size,
demonstrating the high scalability of local optimal algorithms.

The asynchronous DALO algorithm provides a general framework for computing
both k-size and ¢-distance optimality, significantly outperforming the best existing algo-

3 Code for the DALO algorithm, the testbed framework, and random problem instance genera-
tors are posted online in the USC DCOP repository at http://teamcore.usc.edu/dcop.

® The settings t=1 and k=3 are the most closely comparable; they are identical in some special
cases (e.g., ring graphs), and require the same maximum communication distance between
nodes. Empirically, these settings are also the most comparable in terms of the tradeoff between
solution quality and computational effort.
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Fig. 2. Experimental results comparing DALO-k, DALO-¢, and KOPT

rithm, KOPT, in our experiments and making applications of high values of ¢ and & vi-
able. DALO allows us to investigate tradeoffs: DALO-t consistently converges to better
solutions in practice than DALO-k. DALO-t also converges more quickly that DALO-
k in many settings, particularly when computation is costly and the constraint graph
has large hub nodes. However, DALO-k converges more quickly on random graphs
with low computation costs. Investigating additional criteria for group selection (e.g.,
hybrids of k-size and ¢-distance) can be a key avenue for future work.

3.3 DCEE: Algorithms and the Team Uncertainty Penalty

Three novel challenges must be addressed while applying DCOPs to many real-world
scenarios. First, agents in these domains may not know the initial payoff matrix and
must explore the environment to determine rewards associated with different variable
settings. All payoffs are dependent on agents’ joint actions, requiring them to coordinate
in their exploration. Second, the agents may need to maximize the total accumulated re-
ward rather than the instantaneous reward at the end of the run. Third, agents could face
a limited task-time horizon, requiring efficient exploration. These challenges disallow



direct application of current DCOP algorithms which implicitly assume that all agents
have knowledge of the full payoff matrix. Furthermore, we assume that agents cannot
fully explore their environment to learn the full payoff matrices due to the task-time
horizon, preventing an agent from simply exploring and then using a globally optimal
algorithm. Indeed, interleaving an exploration and exploitation phase may improve ac-
cumulated reward during exploration.

Such problems are referred to as DCEE (Distributed Coordination or Exploration
and Exploitation) [7], since these algorithms must simultaneously explore the domain
and exploit the explored information. An example of such a domain would be a mobile
sensor network where each agent (mobile sensor) would explore new values (move
to new locations) with the objective of maximizing the overall cumulative reward (link
quality, as measured through signal strength) within a given amount of time (e.g., within
30 minutes).

We here discuss both k=1 and k=2 based solution techniques for DCEE problems.
Most previous work in teamwork, including previous results in k-optimal algorithms,
caused us to expect that increasing the level of teamwork in decision making would lead
to improved final solution quality in our results. In direct contradiction with these ex-
pectations, we show that blindly increasing the level of teamwork may actually decrease
the final solution quality in DCEE problems. We call this phenomenon the teamwork
uncertainty penalty [29], and isolate situations where this phenomenon occurs. We also
introduce two extensions of DCEE algorithms to help ameliorate this penalty: the first
improves performance by disallowing teamwork in certain settings, and the second by
discounting actions that have uncertainty.

Solution Techniques This section describes the DCEE algorithms. Given the inappli-
cability of globally optimal algorithms, these algorithms build on locally optimal DCOP
algorithms. While all the algorithms presented are in the framework of MGM [22], a
k-optimal algorithm for a fixed k, the key ideas can be embedded in any locally optimal
DCOP framework.

In k=1 algorithms, every agent on every round: (1) communicates its current value
to all its neighbors, (2) calculates and communicates its bid (the maximum gain in its
local reward if it is allowed to change values) to all its neighbors, and (3) changes its
value (if allowed). An agent is allowed to move its value if its bid is larger than all the
bids it receives from its neighbors. At quiescence, no single agent will attempt to move
as it does not expect to increase the net reward.

k=2 algorithms are “natural extensions” of k=1 algorithms. In these algorithms,
each agent on each round: (1) selects a neighbor and sends an Offer for a joint variable
change, based on its estimate of the maximal gain from a joint action with this neighbor;
(2) for each offer, sends an Accept or Reject message reflecting the agent’s decision
to pair with the offering agent. Agents accept the offer with the maximum gain. (3)
calculates the bid or the joint gain of the pair if an offer is accepted, and otherwise
calculates the bid of an individual change (i.e. reverts to k=1 if its offer is rejected). (4)
If the bid of the agent is highest in the agent’s neighborhood, a confirmation message
is sent to the partnering agent in case of joint move, following which (5) the joint /
individual variable change is executed. The computation of the offer per agent in a k=2



DCEE algorithms is as in k=1, the offer for a team of two agents is the sum of individual
offers for the two agents without double counting the gain on the shared constraint. k=2
algorithms require more communication than k=1 variants, however, have been shown
to reach higher or similar solution quality in traditional DCOP domains [16].

Static Estimation (SE) algorithms calculate an estimate of the reward that would be
obtained if the agent explored a new value. SE-Optimistic assumes the maximum re-
ward on each constraint for all unexplored values for agents. Thus, in the mobile sensor
network domain, it assumes that if it moved to a new location, the signal strength be-
tween a mobile sensor and every neighbor would be maximized. On every round, each
agent bids its expected gain: NumberLinks x MaximumReward — R. where R, is the
current reward. The algorithm then proceeds as a normal k=1 algorithm, as discussed
above. SE-Optimistic is similar to a 1-step greedy approach where agents with the low-
est rewards have the highest bid and are allowed to move. Agents typically explore
on every round for the entire experiment. On the other hand, SE-Mean assumes that
visiting an unexplored value will result in the average reward to all neighbors (denoted
1) instead of the maximum. Agents have an expected gain of: NumberLinks x u — R,
causing the agents to greedily explore until they achieve the average reward (averaged
over all neighbors), allowing them to converge on an assignment. Thus, SE-Mean does
not explore as many values as SE-Optimistic, and is thus more conservative.

Similarly, Balanced Exploration (BE) algorithms allow agents to estimate the max-
imum expected utility of exploration given a time horizon by executing move, as well
as precisely when to stop exploring within this time horizon. The utility of exploration
is compared with the utility of returning to a previous variable setting (by executing
backtrack) or by keeping the current variable setting (executing stay). The gain
for the action with the highest expected reward is bid to neighbors. This gain from ex-
ploration depends on: (1) the number of timesteps 7" left in the trial, (2) the distribution
of rewards, and (3) the current reward R, of the agent, or the best explored reward R,
if the agent can backtrack to a previously explored state. The agent with the highest bid
(gain) per neighborhood wins the ability to move. BE-Rebid computes this expected
utility of move given that an agent can, at any time, backtrack to the best explored
value, Ry, in the future. On the other hand, BE-Stay assumes that an agent is not al-
lowed to backtrack, and thus decides between to move to a new value or stay in the
current value until the end of the experiment. Thus, BE-Stay is more conservative than
BE-Rebid and explores fewer values.

Results The DCEE algorithms were tested on physical robots and in simulation.” A
set of Creates (mobile robots from iRobot, shown in Figure 3(a)) were used. Each Cre-
ate has a wireless CenGen radio card, also shown in the inset in Figure 3(a). These
robots relied on odometry to localize their locations. Three topologies were tested with
physical robots: chain, random, and fully connected. In the random topology tests, the
robots were randomly placed and the CenGen API automatically defined the neighbors,
whereas the robots had a fixed set of neighbors over all trials in the chain and fully con-
nected tests. Each of the three experiments were repeated 5 times with a time horizon
of 20 rounds.

7 The simulator and algorithm implementations may be found at http://teamcore.usc.edu/dcop/.
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Fig. 3. Experimental results for DCEE algorithms on robots and in simulation

Figure 3(b) shows the results of running BE-Rebid and SE-Mean on the robots. SE-
Mean and BE-Rebid were chosen because they were empirically found out to be the best
algorithms for settings with few agents. The y-axis shows the actual gain achieved by
the algorithm over the 20 rounds over no optimization. The values are signal strengths
in decibels (dB). BE-Rebid performs better than SE-Mean in the chain and random
graphs, but worse than SE-Mean in the fully connected graph. While too few trials
were conducted for statistical significance, it is important to note that in all cases there
is an improvement over the initial configuration of the robots. Additionally, because
decibels are a log-scale metric, the gains are even more significant than one may think
on first glance.

Figure 3(c) compares the performance of the k=1 variants with the k=2 variants. The
y-axis is the scaled gain, where 0 corresponds to no optimization and 1 corresponds to
the gain of BE-Rebid-1. The x-axis shows the four different topologies that were used
for the experiments. The different topologies varied the graph density from chain to
fully connected with random % and 2 representing graphs where roughly  and 2 of
number of links in a fully connected graph are randomly added to the network respec-
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tively. The k=2 algorithms outperform the k=1 algorithms in the majority of situations,
except for SE-Optimistic-1 and BE-Rebid-1 on sparse graphs (chain and random %).
For instance, SE-Optimistic-1 and BE-Rebid-1 outperform their k=2 counterparts on
chain graphs (paired t-tests, p < 5.3 x 10~7), and BE-Rebid-1 outperforms BE-Rebid-
2 on Random graphs with % of their links (although not statistically significant). This
reduction in performance in k=2 algorithms is known as the team uncertainty penalty.

Understanding Team Uncertainty That k=2 does not dominate k=1 is a particularly
surprising result precisely because previous DCOP work showed that k=2 algorithms
reached higher final rewards [16, 23]. This phenomenon is solely an observation of the
total reward accrued and does not consider any penalty from increased communication
or computational complexity. Supplemental experiments that vary the number of agents
on different topologies and vary the experiment lengths all show that the factor most
critical to relative performance of k=1 versus k=2 is the graph topology. Additionally,
other experiments on robots (not shown) also show the team uncertainty penalty — this
surprising behavior is not limited to simulation.

Two key insights used to mitigate team uncertainty penalty are: (1) k=2 variants
change more constraints, because pairs of agents coordinate joint moves. Given k=2
changes more constraints, its changes could be less “valuable.” (2) k=2 variants of BE-
Rebid and SE-Optimistic algorithms can be overly aggressive, and prohibiting them
from changing constraints that have relatively low bids may increase their achieved
gain (just like the conservative algorithms, BE-Stay-2 and SE-Mean-2, outperform their
k=1 counterparts, as shown in Figure 3(c)). Indeed, algorithms have been proposed that
discourage joint actions with low bids, and/or discount the gains for exploration in the
presence of uncertainty and have been shown to successfully lessen the team uncertainty
penalty [29].

4 DEC-POMDPs

This section provides a brief introduction to DEC-POMDPs and then highlights a
method that combines planning- and execution-time reasoning.

4.1 Background

The Partially Observable Markov Decision Problem (POMDP) [8] is an extension of
the Markov Decision Problem (MDP), which provides a mathematical framework for
modeling sequential decision-making under uncertainty. POMDPs model real world de-
cision making process in that they allow uncertainty in the agents’ observations in ad-
dition to the agents’ actions. Agents must therefore maintain a probability distribution
over the set of possible states, based on a set of observations and observation probabil-
ities. POMDPs are used to model many real world applications including robot naviga-
tion [4, 12] and machine maintenance [24]. Decentralized POMDPs (DEC-POMDPs)
model sequential decision making processes in multiagent systems. In DEC-POMDPs,
multiple agents interact with the environment and the state transition depends on the
behavior of all the agents.



4.2 Scaling-up DEC-POMDPs

In general, the multiple agents in DEC-POMDPs have only limited communication
abilities, complicating the coordination of teamwork between agents. Unfortunately, as
shown by Bernstein et al. [3], finding the optimal joint policy for general DEC-POMDPs
is NEXP-complete. There have been proposed solutions to this problem which typically
fall into two categories. The first group consists of approaches for finding approximated
solution using efficient algorithms [2, 20, 30]; the second group of approaches has fo-
cused on finding the global optimal solution by identifying useful subclasses of DEC-
POMDPs [1,21]. The limitation of first category of work is the lack of guarantee on the
quality of the solution, while the second category of approaches sacrifices expressive-
ness.

4.3 Execution-time Reasoning in DEC-POMDPs

Although DEC-POMDPs have emerged as an expressive planning framework, in many
domains agents will have an erroneous world model due to model uncertainty. Under
such uncertainty, inspired by BDI teamwork, we question the wisdom of paying a high
computational cost for a promised high-quality DEC-POMDP policy — which may not
be realized in practice because of inaccuracies in the problem model. This work fo-
cuses on finding an approximate but efficient solution built upon the first category as
discussed earlier to achieve effective teamwork via execution-centric framework [26,
31, 32], which simplifies planning by shifting coordination (i.e., communication) rea-
soning from planning time to execution time. Execution-centric frameworks have been
considered as a promising technique as they significantly reduce the worst-case plan-
ning complexity by collapsing the multiagent problem to a single-agent POMDP at
plan-time [25,26]. They avoid paying unwanted planning costs for a “high-quality”
DEC-POMDP policy by postponing coordination reasoning to execution-time.

The presence of model uncertainty exposes three key weaknesses in past execution-
centric approaches. They: (i) rely on complete but erroneous model for precise online
planning; (ii) can be computationally inefficient at execution-time because they plan for
joint actions and communication at every time step; and (iii) do not explicitly consider
the effect caused by given uncertainty while reasoning about communication, leading
to a significant degradation of the overall performance.

MODERN (MOdel uncertainty in Dec-pomdp Execution-time ReasoNing) is a new
execution-time algorithm that addresses model uncertainties via execution-time com-
munication. MODERN provides three major contributions to execution-time reasoning
in DEC-POMDPs that overcome limitations in previous work. First, MODERN main-
tains an approximate model rather than a complete model of other agents’ beliefs, lead-
ing to space costs exponentially smaller than previous approaches. Second, MODERN
selectively reasons about communication at critical time steps, which are heuristically
chosen by trigger points motivated by BDI theories. Third, MODERN simplifies its
decision-theoretic reasoning to overcome model uncertainty by boosting communica-
tion rather than relying on a precise local computation over erroneous models.

We now introduce the key concepts of Individual estimate of joint Beliefs (IB) and
Trigger Points. IB' is the set of nodes of the possible belief trees of depth ¢, which is
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used in MODERN to decide whether or not communication would be beneficial and to
choose a joint action when not communicating. IB can be conceptualized as a subset of
team beliefs that depends on an agent’s local history, leading to an exponential reduc-
tion in belief space compared to past work [26,31]. The definition of trigger points is
formally defined as follows:

Definition 3. Time step t is a trigger point for agent 1 if either of the following condi-
tions are satisfied.

Asking In order to form a joint commitment, an agent requests others to commit to its
goal, P. Time step t is an Asking trigger point for agent ¢ if its action changes based on
response from the other agent.

Telling Once jointly committed to P, if an agent privately comes to believe that P is
achieved, unachievable, or irrelevant, it communicates this to its teammates. Time step
t is a Telling trigger point for agent i if the other agent’s action changes due to the
communication.

Empirical Validation: The MODERN algorithm first takes a joint policy for the team
of agents from an offline planner as input. As an agent interacts with the environment,
each node in IB is expanded using possible observations and joint actions from the
given policy, and then MODERN detects trigger points based on the belief tree. Once
an agent detects a trigger point, it reasons about whether or not communication would
be beneficial using cost-utility analysis. MODERN’s reasoning about communication is
governed by the following formula: Uc (i) — Unc (i) > 0. Uc(4) is the expected utility
of agent 7 if agents were to communicate and synchronize their beliefs. Uxc (7) is the ex-
pected utility of agent ¢ when it does not communicate, and ¢ is a given communication
cost. Unc (i) is computed based on the individual evaluation of heuristically estimated
actions of other agents. If agents do not detect trigger points, this implies there is little
chance of miscoordination, and they take individual actions as per the given policy.
We first compare the performance of MODERN for four different levels of model
uncertainty (o) in the 1-by-5 and 2-by-3 grid domains with two previous techniques:
ACE-PJB-COMM (APC) [26] and MAOP-COMM (MAOP) [31] as shown in Table 1.
In both domains, there are two agents trying to perform a joint task. The 1-by-5 grid
domain is defined to have 50 joint states, 9 joint actions, and 4 joint observations. In
the 2-by-3 grid, there are 72 joint states, 25 joint actions, and 4 joint observations. In
both tasks, each movement action incurs a small penalty. The joint task requires that
both agents perform the task together at a pre-specified location. If the joint task is
successfully performed, a high reward is obtained. If the agents do not both attempt
to perform the joint task at the same time in the correct location, a large penalty is
assessed to the team®. The communication cost is 50% of the expected value of the
policies. The time horizon (i.e., the deadline to finish the given task) is set to 3 in
this set of experiments. In Table 1, o in column 1 represents the level of model error.
Error increases (i.e., the agents’ model of the world becomes less correct, relative to
the ground truth) as « decreases. Columns 2—4 display the average reward achieved by
each algorithm in the 1-by-5 grid domain. Columns 5-7 show the results in the 2-by-3

8 More detailed domain descriptions and comparisons are available elsewhere [13].



Table 1. Comparison MODERN with APC and MAOP: Average Performance

1x5 Grid 2x3 Grid
« |MODERN|APC|MAOP|MODERN|APC|MAOP
10 338 [-1.20] -1.90 330 |-1.20] -3.69
50 326 |-1.20] -2.15 3.30 |-1.20| -3.80
100 3.18 |-1.20] -2.12 3.04 |-1.20| -3.79
10000f 2.48 |-1.20| -2.61 2.64 |-1.20| -4.01

grid domain. We performed experiments with a belief bound of 10 per time-step for our
algorithm.

Table 1 shows that MODERN (columns 2 and 5) significantly outperformed APC
(columns 3 and 6) and MAOP (columns 4 and 7). MODERN received statistically
significant improvements (via t-tests), relative to other algorithms. MAOP showed the
worst results regardless of .

Another trend in Table 1 is that the solution quality generally increases as « de-
creases. When model uncertainty is high, the true transition and observation probabili-
ties in the world have larger differences from the values in the given model. If the true
probabilities are lower than the given model values, communication helps agents avoid
miscoordination so that they can avoid a huge penalty. If the true values are higher,
agents have more opportunity to successfully perform joint actions leading to a higher
solution quality. When model uncertainty is low, the true probability values in the world
are similar or the same as the given model values. Thus, agents mostly get an average
value (i.e., the same as the expected reward). Thus, as model error increases, the average
reward could increase.

We then measured runtime of each algorithm in the same domain settings. Note
that the planning time for all algorithms is identical and thus we only measure the
average execution-reasoning time per agent. In both grid domains, MODERN and APC
showed similar runtime (i.e., the runtime difference between two algorithms was not
statistically significant). MAOP took more time than MODERN and APC by about
80% in the 1-by-5 grid domain and about 30% in the 2-by-3 grid domain. Then, we
further make the 2-by-3 grid domain complex to test the scalability of each algorithm.
Two individual tasks are added to the grid, which require only one agent to perform. In
this new domain, the number of joint states is 288, the number of joint actions is 49, and
the number of joint observations is 9. If any agent performs the individual task action
at the correct location, the team receives a small amount of reward. If an agent attempts
to perform the individual task in a location where the action is inappropriate, a small
penalty will be assessed. If an agent chooses the action wait, there will be no penalty
or reward. In this domain, while APC or MAOP could not solve the problem within
the time limit (i.e., 1800 seconds), MODERN only took about 120 seconds to get the
solution. These results experimentally show that MODERN is substantially faster than
previous approaches while achieving significantly higher reward.

One of our key design decisions in MODERN is to use trigger points to rea-
son about communication. In these experiments, we show how significant the ben-
efits of selective reasoning are. We used the same scaled-up 2-by-3 grid domain
that was used for runtime comparisons. Figure 4 shows runtime in seconds on the
y-axis and the time horizon on the x-axis. Time horizon was varied from 3 to 8.
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The communication cost was set to 5% of the expected utility of the given pol-
icy. As shown in the figure, MODERN can speedup runtime by over 300% using
trigger points. In particular, the average number of trigger points when T=8 was
about 2.6. This means MODERN only reasons about communication for about 1/3
of the total time steps, which leads to roughly three-fold improvement in runtime.

MODERN thus represents a signif-
icant step forward because it allows 250
agents to efficiently reason about com- % MODERN w/ TPs
munication at execution-time, as well as 200! | ©©-MODERN w/o TPs
to be more robust to errors in the model
than other DEC-POMDP methods.

Trigger Points (TPs) in MODERN

Runtime (sec)

5 Conclusion

. . 5 ]
The multi-agent community was started V/*’*/l/)(/’

with a BDI mindset, emphasizing 0 ‘ ‘ ‘ ‘
execution-item reasoning. In recent 3 4 Tir%e horigon ! 8
years, however, much of the work has

shifted to planning-time reasoning. The Fig. 4. Selective reasoning in MODERN

primary argument in this chapter is that

we believe execution-time reasoning to

be a critical component to multi-agent systems and that it must be robustly combined
with planning-time computation. We have presented recent techniques in the coopera-
tive multi-agent domains of DCOPs and DEC-POMDPs, emphasizing asynchronous
reasoning, run-time exploration, and execution-time communication reasoning. Our
hope is that as methods combining planning- and execution-time reasoning become
more common, the capability of large teams of complex agents will continue to im-
prove and deployments of such teams in real-world problems will become increasingly
common.
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