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ABSTRACT
Given their existing and potential real-world security applications,
Bayesian Stackelberg games have received significant research in-
terest [3, 12, 8]. In these games, the defender acts as a leader, and
the many different follower types model the uncertainty over dis-
crete attacker types. Unfortunately since solving such games is an
NP-hard problem, scale-up has remained a difficult challenge.

This paper scales up Bayesian Stackelberg games, providing a
novel unified approach to handling uncertainty not only over dis-
crete follower types but also other key continuously distributed real
world uncertainty, due to the leader’s execution error, the follower’s
observation error, and continuous payoff uncertainty. To that end,
this paper provides contributions in two parts. First, we present a
new algorithm for Bayesian Stackelberg games, called HUNTER,
to scale up the number of types. HUNTER combines the follow-
ing five key features: i) efficient pruning via a best-first search of
the leader’s strategy space; ii) a novel linear program for comput-
ing tight upper bounds for this search; iii) using Bender’s decom-
position for solving the upper bound linear program efficiently;
iv) efficient inheritance of Bender’s cuts from parent to child; v)
an efficient heuristic branching rule. Our experiments show that
HUNTER provides orders of magnitude speedups over the best ex-
isting methods to handle discrete follower types. In the second part,
we show HUNTER’s efficiency for Bayesian Stackelberg games
can be exploited to also handle the continuous uncertainty using
sample average approximation. We experimentally show that our
HUNTER-based approach also outperforms latest robust solution
methods under continuously distributed uncertainty.
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Due to their significance in real-world security, there has been a
lot of recent research activity in leader-follower Stackelberg games,
oriented towards producing deployed solutions: ARMOR at LAX [9],
IRIS for Federal Air Marshals Service [9], and GUARDS for the
TSA [14]. Bayesian extension to Stackelberg game has been used
to model the uncertainty over players’ preferences [12, 8] by allow-
ing multiple discrete follower types, as well as, by use of sampling-
based algorithms, continuous payoff uncertainty [10].

The key idea in this paper is to scale-up Bayesian Stackelberg
games, providing a novel unified approach to handling not only dis-
crete follower types but also continuous uncertainty. Scalability of
discrete follower types is essential in domains such as road network
security [6], where each follower type could represent a criminal at-
tempting to follow a certain path. Scaling up the number of types
is also necessary for the sampling-based algorithms to obtain high
quality solutions under continuous uncertainty. Unfortunately, such
scale-up remains difficult, as finding the equilibrium of a Bayesian
Stackelberg game is NP-hard [5]. Indeed, despite the recent al-
gorithmic advancement including Multiple-LPs [5], DOBSS [12],
HBGS [8], none of these techniques can handle games with more
than ≈ 50 types, even when the number of actions per player is
as few as 5: inadequate both for scale-up in discrete follower types
and for sampling-based approaches. This scale-up difficulty has led
to an entirely new set of algorithms developed for handling contin-
uous payoff uncertainty [10], and continuous observation and exe-
cution error [16]; these algorithms do not handle discrete follower
types, however.

This paper provides contributions in two parts. In the first part, to
address the challenge of discrete uncertainty, we propose a novel al-
gorithm for solving Bayesian Stackelberg games, called HUNTER,
combining the following five key ideas. First, it conducts a best-
first search in the follower’s best-response assignment space, which
only expands a small number of nodes (within an exponentially
large assignment space). Second, HUNTER computes tight upper
bounds to speed up this search using a novel linear program. Third,
HUNTER solves this linear program efficiently using Bender’s de-
composition. Fourth, we show that the Bender’s cuts generated
in a parent node are valid cuts for its children, providing further
speedups. Finally, HUNTER deploys a heuristic branching rule
to further improve efficiency. Thus, this paper’s contribution is in
combining an AI search technique (best-first search) with multi-
ple techniques from Operations Research (disjunctive program and
Bender’s decomposition) to provide a novel efficient algorithm; the
application of these techniques for solving Stackelberg games had
not been explored earlier, and thus their application towards solv-
ing these games, as well as their particular synergistic combination
in HUNTER are both novel. Our experiments show HUNTER dra-
matically improves the scalability of the number of types over other



existing approaches [12, 8].
In the second part of our contribution, we show that via sample

average approximation, HUNTER for Bayesian Stackelberg games
can be used in handling continuously distributed uncertainty such
as the leader’s execution error, the follower’s observation noise, and
both players’ preference uncertainty. For comparison, we consider
a class of Stackelberg games motivated by security applications,
and enhance two existing robust solution methods, BRASS [13]
and RECON [16] to handle such uncertainty. We again show that
HUNTER provides significantly better performance than BRASS
and RECON. Our final set of experiments in this paper also illus-
trates HUNTER’s unique ability to handle both discrete and con-
tinuous uncertainty within a single problem.

2. BACKGROUND AND NOTATION
The first part of the paper is focused on solving Bayesian Stack-

elberg games with discrete follower types; this background section
focuses on such games. A Stackelberg game is a two-person game
played by a leader and a follower [15]. Following the recent lit-
erature [8], we focus on Stackelberg games where the leader com-
mits to a mixed strategy first, and the follower observes the leader’s
strategy and responds with a pure strategy, maximizing his utility
correspondingly. We generalize this set-up by extending the def-
inition of the leader’s strategy space and the leader and follower
utilities in two ways beyond what was previously considered [12,
8] and by allowing for compact representation of constraints.

We assume the leader’s mixed strategy is an N -dimensional real
column vector x ∈ RN , bounded by a polytope Ax � b,x � 0,
which generalizes the traditional constraint of

∑
i xi = 1 and al-

lows for compact strategy representation with constraints as in [9]
(although such constraints are not the focus of this paper). Sec-
ond, given a leader’s strategy x, the follower maximizes his util-
ity by choosing from J pure strategies. For each pure strategy
j = 1, . . . , J played by the follower, the leader gets a utility of
µT
j x + µj,0 and the follower gets a utility of νT

j x + νj,0, where
µj ,νj are real vectors in RN and µj,0, νj,0 ∈ R. This use of µj,0,
νj,0 terms generalizes the utility functions.

We now define the leader’s utility matrix U and the follower’s
utility matrix V as the following,

U =

(
µ1,0 . . . µJ,0
µ1 . . . µJ

)
, V =

(
ν1,0 . . . νJ,0
ν1 . . . νJ

)
.

Then for a leader’s strategy x, the leader and follower’s J utilities

for the follower’s J pure strategies areUT

(
1
x

)
and V T

(
1
x

)
.

A Bayesian extension to the Stackelberg game allows multiple
types of players, each with its own payoff matrix. We represent a
Bayesian Stackelberg game with S follower types by a set of util-
ity matrix pairs (U1, V 1), . . . , (US , V S), each corresponding to a
type. A type s has a prior probability ps representing the likelihood
of its occurrence. The leader commits to a mixed strategy without
knowing the type of the follower she faces. The follower, however,
knows his own type s, and plays the best response js ∈ {1, . . . , J}
according to his utility matrix V s. A strategy profile in a Bayesian
Stackelberg game is 〈x, j〉, a pair of leader’s mixed strategy x and
follower’s response j, where j = 〈j1, . . . , jS〉 denotes a vector of
the follower’s responses for all types.

Type 1 Target1 Target2
Target1 1, -1 -1, 0
Target2 0, 1 1, -1

Type 2 Target1 Target2
Target1 1, -1 -1, 1
Target2 0, 1 1, -1

Figure 1: Payoff matrices of a Bayesian Stackelberg game.

The solution concept of interest is a Strong Stackelberg Equilib-
rium (SSE) [15], where the leader maximizes her expected util-
ity assuming the follower chooses the best response and breaks
ties in favor of the leader for each type. Formally, let u(x, j) =∑S
s=1 p

s((µsjs)Tx + µsjs,0) denote the leader’s expected utility,
and vs(x, js) = (νsjs)Tx + νsjs,0 denote the follower’s expected
utility for a type s. Then, 〈x∗, j∗〉 is an SSE if and only if,

〈x∗, j∗〉 = arg max
x,j
{u(x, j)|vs(x, js) ≥ vs(x, j′), ∀j′ 6= js}.

As an example, which we will return to throughout the paper,
consider a Bayesian Stackelberg game with two follower types,
where type 1 appears with probability .84 and type 2 appears with
probability .16. The leader (defender) chooses a probability distri-
bution of allocating one resource to protect the two targets whereas
the follower (attacker) chooses the best target to attack. We show
the payoff matrices in Figure 1, where the leader is the row player
and the follower is the column player. The utilities of the two types
are identical except that a follower of type 2 gets a utility of 1
for attacking Target2 successfully, whereas one of type 1 gets 0.
The leader’s strategy is a column vector (x1, x2)T representing the
probabilities of protecting the two targets. Given one resource, the
strategy space of the leader is x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0, i.e.,
A = (1, 1),b = 1. The payoffs in Figure 1 can be represented by
the following utility matrices,

U1 =

 0 0
1 −1
0 1

 , V 1 =

 0 0
−1 0
1 −1

 ;

U2 =

 0 0
1 −1
0 1

 , V 2 =

 0 0
−1 1
1 −1

 .

In terms of previous work, Bayesian Stackelberg games have
been typically solved via tree search, where we assign one follower
type to a pure strategy at each tree level [8]. For example, Figure 2
shows the search tree of the example game in Figure 1. We solve
four linear programs, one for each leaf node. At each leaf node,
the linear program provides an optimal leader strategy such that the
follower’s best response for every follower type is the chosen target
at that leaf node, e.g., at the leftmost leaf node, the linear program
finds the optimal leader strategy such that both type 1 and type 2
have a best response of attacking Target1. Comparing across leaf
nodes, we obtain the overall optimal leader strategy [5]. In this
case, the leaf node where type 1 is assigned to Target1 and type 2
to Target2 provides the overall optimal strategy.

Instead of solving an LP for all JS leaf nodes, recent work uses
a branch-and-bound technique to speed up the tree search [8]. The
key to efficiency in branch-and-bound is obtaining tight upper and
lower bounds for internal nodes, i.e., for nodes shown by circles in
Figure 2, where subsets of follower types are assigned to particu-
lar targets. For example, in Figure 2, suppose the left subtree has
been explored; now if at the rightmost internal node (where type 1
is assigned to Target2) we realize that the upper bound on solution
quality is 0.5, we could prune the right subtree without even con-
sidering type 2. One possible way of obtaining upper bounds is by
relaxing the integrality constraints in DOBSS MILP [12]. Unfortu-
nately, when the integer variables in DOBSS are relaxed, the objec-
tive can be arbitrarily large, leading to meaningless upper bounds.
HBGS [8] computes upper bounds by heuristically utilizing the so-
lutions of smaller restricted games. However, the preprocessing
involved in solving many small games can be expensive and the
bounds computed using heuristics can again be loose.
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Figure 2: Example search tree of solving Bayesian games.

3. APPROACH
We present HUNTER (Handling UNcerTainty Efficiently using

Relaxation) based on the five key ideas mentioned in Section 1.

3.1 Algorithm Overview
To find the optimal leader’s mixed strategy, HUNTER would

conduct a best-first search in the search tree that results from as-
signing follower types to pure strategies, such as the search tree in
Figure 2. Simply stated, HUNTER aims to search this space much
more efficiently than HBGS [8]. As discussed earlier, efficiency
gains are sought by obtaining tight upper bounds and lower bounds
at internal nodes in the search tree (which corresponds to a partial
assignment in which a subset of follower types are fixed). To that
end, as illustrated in Figure 3, we use an upper bound LP within
an internal search node. The LP returns an upper bound UB and
a feasible solution x∗, which is then evaluated by computing the
follower best response, providing a lower bound LB. The solution
returned by the upper bound LP is also utilized in choosing a new
type s∗ to create branches. To avoid having this upper bound LP
itself become a bottleneck, it is solved efficiently using Bender’s
decomposition, which will be explained below.

Node
Upper Bound LP: 

Bender’s Decomposition

Constraints:

Ax≤b, x≥0
x*

UB

LB
Master

Sub
1

Sub
2

Sub
S...

s*

 

Figure 3: Steps of creating internal search nodes in HUNTER.

To understand HUNTER’s behavior on a toy game instance, see
Figure 4, which illustrates HUNTER’s search tree in solving the
example game from Figure 1 above. To start the best-first search,
at the root node, no types are assigned any targets yet; we solve
the upper bound LP with the initial strategy space x1 + x2 ≤
1, x1, x2 ≥ 0 (Node 1). As a result, we obtain an upper bound
of 0.560 and the optimal solution x∗1 = 2/3, x∗2 = 1/3. We evalu-
ate the solution returned and obtain a lower bound of 0.506. Using
HUNTER’s heuristics, type 2 is then chosen to create branches by
assigning it to Target1 and Target2 respectively. Next, we consider
a child node (Node 2) in which type 2 is assigned to Target1, i.e.,
type 2’s best response is to attack Target1. As a result, the fol-
lower’s expected utility of choosing Target1 must be higher than
that of choosing Target2, i.e., −x1 + x2 ≥ x1 − x2, simplified as
x1 − x2 ≤ 0. Thus, in Node 2, we impose an additional constraint
x1 − x2 ≤ 0 on the strategy space and obtain an upper bound of
0.5. Since its upper bound is lower than the current lower bound
0.506, this branch can be pruned out. Next we consider the other
child node (Node 3) in which type 2 is assigned to Target2. This
time we add constraint−x1 + x2 ≤ 0 instead, and obtain an upper
bound of 0.506. Since the upper bound coincides with the lower
bound, we do not need to expand the node further. Moreover, since
we have considered both Target1 and Target2 for type 2, we can

terminate the algorithm and return 0.506 as the optimal solution
value.

Node 2: Type 2 → Target1

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0,

x1 – x2 ≤ 0

UB = 0.5

Pruned!

UB < best LB

Node 1

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0

x1* = 2/3,

x2* = 1/3

UB = 0.560

LB = 0.506

s* = Type 2

Node 3: Type 2 → Target2

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0,

-x1 + x2 ≤ 0

UB = 0.506

Optimality proved!

UB = best LB

 

Figure 4: Example of internal nodes in HUNTER’s search tree.

We now discuss HUNTER’s behavior line-by-line (see Algo-
rithm 1). We initialize the best-first search by creating the root
node of the search tree with no assignment of types to targets and
with the computation of the node’s upper bound (Line 2 and 3). The
initial lower bound is obtained by evaluating the solution returned
by the upper bound LP (Line 4). We added the root node to a prior-
ity queue of open nodes which is internally sorted in a decreasing
order of their upper bounds (Line 5). Each node contains informa-
tion of the partial assignment, the feasible region of x, the upper
bound, and the Bender’s cuts generated by the upper bound LP. At
each iteration, we retrieve the node with the highest upper bound
(Line 8), select a type s∗ to assign pure strategies (Line 9), com-
pute the upper bounds of the node’s child nodes (Line 12 and 14),
update the lower bound using the new solutions (Line 15), and en-
queue child nodes with upper bound higher than the current lower
bound (Line 16). As shown later, Bender’s cuts at a parent node can
be inherited by its children, speeding up the computation (Line 12).

Algorithm 1: HUNTER
1 Initialization;
2 [UB, x∗, BendersCuts] = SolveUBLP(φ,Ax � b,−∞);
3 root := 〈 UB, x∗,Ax � b, x � 0, BendersCuts 〉 ;
4 LB := Evaluate(x∗);
5 Enqueue(queue, root);

6 Best-first Search;
7 while not Empty(queue) do
8 node := pop(queue);
9 s∗ := PickType(node);

10 for j := 1 to J do
11 NewConstraints := node.Constraints ∪{Ds∗

j x + ds∗
j � 0} ;

12 [NewUB, x′, NewBendersCuts] = SolveUBLP(node.BendersCuts,
NewConstraints, LB) ;

13 if NewUB > LB then
14 child := 〈 NewUB, x′, NewConstraints, NewBendersCuts〉 ;
15 LB := max{Evaluate(x′), LB} ;
16 Enqueue(queue, child);
17 end
18 end
19 end

In the rest of the section, we will 1) present the upper bound
LP, 2) show how to solve it using Bender’s decomposition, and 3)
verify the correctness of passing down Bender’s cuts from parent
to child nodes, 4) introduce the heuristic branching rule.

3.2 Upper Bound Linear Program
We derive a tractable linear relaxation of Bayesian Stackelberg

games to provide an upper bound efficiently at each of HUNTER’s
internal nodes. For expository purpose, we focus on the root node



of the search tree. Applying the results in disjunctive program [2],
we first derive the convex hull for a single type. Then we show
intersecting the convex hulls of all its types provides a tractable,
polynomial-size relaxation of a Bayesian Stackelberg game.

3.2.1 Convex hull of a Single Type
Consider a Stackelberg game with a single follower type (U, V ),

the leader’s optimal strategy x∗ is the best among the optimal so-
lutions of J LPs where each restricts the follower’s best response
to one pure strategy [5]. Hence we can represent the optimization
problem as the following disjunctive program (i.e., a disjunction of
"Multiple LPs" [5]),

max
x,u

u

s.t. Ax � b,x � 0
J∨
j=1

(
u ≤ µT

j x + µj,0
Djx + dj � 0

) (1)

where Dj and dj are given by,

Dj =

 νT
1 − νT

j

...
νT
J − νT

j

 ,dj =

 ν1,0 − νj,0
...

νJ,0 − νj,0

 .

The feasible set of (1), denoted by H , is a union of J convex
sets, each corresponding to a disjunctive term. Applying the results
in [2], the closure of the convex hull of H , clconvH , is1,

x =

J∑
j=1

χj ,χj � 0,∀j

u ∈ R u =

J∑
j=1

ψj , ψj ≥ 0,∀j

x ∈ Rn
J∑
j=1

θj = 1, θj ≥ 0, ∀j A −b 0
Dj dj 0
−µT

j −µj,0 1

 χj
θj
ψj

 � 0,∀j



.

The intuition here is that the continuous variables θ,
∑J
j=1 θj = 1

are used to create all possible convex combination of points in H .
Furthermore, when θj 6= 0, 〈χj

θj
,
ψj

θj
〉 represents a point in the con-

vex set defined by the j-th disjunctive term in the original prob-
lem (1). Finally, since all the extreme points of clconvH belong to
H , the disjunctive program (1) is equivalent to the linear program:

max
x,u
{u|(x, u) ∈ clconvH} .

3.2.2 Tractable Relaxation
Building on the convex hulls of individual types, we now derive

the relaxation of a Bayesian Stackelberg game with S types. We
write this game with S types as the following disjunctive program,

max
x,u1,...,uS

∑S
s=1 p

sus

s.t. Ax � b,x � 0
S∧
s=1

[
J∨
j=1

(
us ≤ (µsj)

Tx + µsj,0
Ds
jx + dsj � 0

)] (2)

1To use the results in [2], we assume u ≥ 0 for convenience. In the
case where u can be negative, we can replace u by u+ − u−, with
u+, u− ≥ 0.

Returning to our toy example, the corresponding disjunctive pro-
gram of the game in Figure 1 can be written as,

max
x1,x2,u1,u2

0.84u1 + 0.16u2

s.t. x1 + x2 ≤ 1, x1, x2 ≥ 0(
u1 ≤ x1
x1 − 2x2 ≤ 0

)∨(
u1 ≤ −x1 + x2
−x1 + 2x2 ≤ 0

)
(
u2 ≤ x1
x1 − x2 ≤ 0

)∨(
u2 ≤ −x1 + x2
−x1 + x2 ≤ 0

) (3)

Denote the set of feasible points (x, u1, . . . , uS) of (2) by H∗.
Unfortunately, to use the results of [2] here and create clconvH∗,
we need to expand (2) to a disjunctive normal form, resulting in
a linear program with an exponential number (O(NJS)) of vari-
ables. Instead, we now give a much more tractable, polynomial-
size relaxation of (2). Denote the feasible set of each type s, (x, us)

byHs, and define Ĥ∗ := {(x, u1, . . . , uS)|(x, us) ∈ clconvHs, ∀s}.
Then the following program is a relaxation of (2):

max
x,u1,...,us

{
S∑
s=1

psus|(x, us) ∈ clconvHs,∀s

}
(4)

Indeed, for any feasible point (x, u1, . . . , uS) in H∗, (x, us) must
belong to Hs, implying that (x, us) ∈ clconvHs. Hence H∗ ⊆
Ĥ∗, implying that optimizing over Ĥ∗ provides an upper bound on
H∗. On the other hand, Ĥ∗ will in general have points not belong-
ing to H∗ and thus the relaxation can lead to an overestimation.

For example, consider the disjunctive program in (3). (x1 =
2
3
, x2 = 1

3
, u1 = 2

3
, u2 = 0) does not belong to H∗ since −x1 +

x2 ≤ 0 but u2 � −x1 + x2 = − 1
3

. However the point belongs
to Ĥ∗ because: i) (x1 = 2

3
, x2 = 1

3
, u1 = 2

3
) belongs to H1 ⊆

clconvH1; ii) (x1 = 2
3
, x2 = 1

3
, u2 = 0) belongs to clconvH2, as

it is the convex combination of two points in H2: (x1 = 1
2
, x2 =

1
2
, u2 = 1

2
) and (x1 = 1, x2 = 0, u2 = −1),

(
2

3
,

1

3
, 0) =

2

3
× (

1

2
,

1

2
,

1

2
) +

1

3
× (1, 0,−1).

The upper bound LP (4) has O(NJS) number of variables and
constraints, and can be written as the following two-stage problem
by explicitly representing clconvHs:

max
x

S∑
s=1

psus(x)

s.t. Ax � b,x � 0

(5)

where us(x) is defined to be the optimal value of,

max
χs

j ,ψ
s
j ,θ

s
j

J∑
j=1

ψsj , ψ
s
j ≥ 0, ∀j

s.t.

S∑
j=1

χsj = x, χsj � 0, ∀j

S∑
j=1

θsj = 1, θsj ≥ 0,∀j A −b 0
Ds
j dsj 0

−(µsj)
T −µsj,0 1

 χsj
θsj
ψsj

 � 0, ∀j

(6)

Although written in two stages, the above formulation is in fact
a single linear program, as both stages are maximization prob-
lems and combining the two stages will not produce any non-linear



terms. We display formulations (5) and (6) in order to reveal the
block structure for further speedup as explained below.

Note that so far, we have only derived the relaxation for the root
node of HUNTER’s search tree, without assigning any type to a
pure strategy. This relaxation is also applied to other internal nodes
in HUNTER’s search tree. For example, if type s is assigned to
pure strategy j, the leader’s strategy space is further restricted by
the addition of constraints of Ds

jx + dsj � 0 to the original con-
straints Ax � b,x � 0. That is, we now have A′x � b′,x � 0,

where A′ =

(
Ds
j

A

)
and b′ =

(
−dsj
b

)
.

3.3 Bender’s Decomposition
Although much easier than solving a full Bayesian Stackelberg

game, solving the upper bound LP can still be computationally
challenging. Here we invoke the block structure of (4) we observed
above, which partitioned it into (5) and (6), where, (5) is a mas-
ter problem and (6) for s = 1, . . . , S are S subproblems. This
block structure allows us to solve the upper bound LP efficiently us-
ing multi-cut Bender’s Decomposition [4]. Generally speaking, the
computational difficulty of optimization problems increases signif-
icantly with the number of variables and constraints. Instead of
considering all variables and constraints of a large problem simul-
taneously, Bender’s decomposition partitions the problem into mul-
tiple smaller problems, which can then be solved in sequence. For
completeness, we now briefly describe the technique.

In Bender’s decomposition, the second-stage maximization prob-
lem (6) is replaced by its dual minimization counterpart, with dual
variables λsj ,π

s, ηs for s = 1, . . . , S:

us(x) = min
λs
j�0,πs,ηs

(πs)Tx + ηs

s.t.

 AT (Ds
j )

T −µsj
−bT (dsj)

T −µsi,0
0T 0T 1

λsj +

πs

ηs

−1

 � 0, ∀i
(7)

Since the feasible region of (7) is independent of x, its optimal
solution is reached at one of a finite number of extreme points (of
the dual variables). Since us(x) is the minimum of (πs)Tx +
ηs over all possible dual points, we know the following inequality
must be true in the master problem,

us ≤ (πsk)Tx + ηsk, k = 1, . . . ,K (8)

where (πsk, η
s
k), k = 1, . . . ,K are all the dual extreme points.

Constraints of type (8) for the master problem are called optimality
cuts (infeasibility cuts, another type of constraint, turn out not to be
relevant for our problem).

Since there are typically exponentially many extreme points for
the dual formulation (7), generating all constraints of type (8) is
not practical. Instead, Bender’s decomposition starts by solving
the master problem (5) with a subset of these constraints to find a
candidate optimal solution (x∗, u1,∗, . . . , uS,∗). It then solves S
dual subproblems (7) to calculate us(x∗). If all the subproblems
have us(x∗) = us,∗, the algorithm stops. Otherwise for those
us(x∗) < us,∗, the corresponding constraints of type (8) are added
to the master program for the next iteration.

3.4 Reusing Bender’s Cuts
We can further speed up the upper bound LP computation at in-

ternal nodes of HUNTER’s search tree by not creating all of the
Bender’s cuts from scratch; instead, we can reuse Bender’s cuts
from the parent node in its children. Suppose us ≤ (πs)Tx + ηs

is a Bender’s cut in the parent node. This means us cannot be
greater than (πs)Tx + ηs for any x in the feasible region of the

parent node. Because a child node’s feasible region is always more
restricted than its parent’s, we can conclude us cannot be greater
than (πs)Tx+ηs for any x in the child node’s feasible region, i.e.,
us ≤ (πs)Tx + ηs must also be a valid cut for the child node.

3.5 Heuristic Branching Rules
Given an internal node in the search tree of HUNTER, we must

decide on the type to branch on next, i.e., the type for which J child
nodes will be created at the next lower level of the tree. As we show
in Section 5 below, the type selected to branch on has a significant
effect on efficiency. Intuitively, we should select a type whereby
the upper bound at these children nodes will decrease most signifi-
cantly. To that end, HUNTER chooses the type whose θs returned
by (6) violates the integrality constraint the most. Recall that θs

is used to generate convex combinations. The motivation here is
that if all θs returned by (6) are integer vectors, the solution of
the upper bound LP (5) and (6) is a feasible point of the original
problem (2), implying the relaxation already returns the optimal
solution. More specifically, as suggested in [7], HUNTER chooses
type s∗ whose corresponding θs

∗
has the maximum entropy, i.e.,

s∗ = arg maxs−
∑J
j=1 θ

s
j log θsj .

4. CONTINUOUS UNCERTAINTY IN STACK-
ELBERG GAMES

This section extends HUNTER to handle continuous uncertainty
via the sample average approximation technique [1]. We first intro-
duce the uncertain Stackelberg game model with continuously dis-
tributed uncertainty in leader’s execution, follower’s observation,
and both players’ utilities. Then we show the uncertain Stackelberg
game model can be written as a two-stage mixed-integer stochas-
tic program, to which existing convergence results of the sample
average approximation technique apply. Finally, we show the sam-
pled problems are equivalent to Bayesian Stackelberg games, and
consequently could also be solved by HUNTER.

4.1 Uncertain Stackelberg Game Model
We consider the following types of uncertainty in Stackelberg

games with known distributions. First, similar to [10], we assume
there is uncertainty in both the leader and the follower’s utilities U
and V . Second, similar to [16], we assume the leader’s execution
and the follower’s observation are noisy. In particular, we assume
the executed strategy and observed strategy are linear perturbations
of the intended strategy, i.e., when the leader commits to x, the
actual executed strategy is y = FTx+ f and the observed strategy
by the follower is z = GTx + g, where (F, f) and (G,g) are
uncertain. Here f and g are used to represent the execution and
observation noise that is independent on x. In addition, F and G
areN×N matrices allowing us to model execution and observation
noise that is linearly dependent on x. Note that G and g can be
dependent on F and f . For example, we can represent an execution
noise that is independent of x and follows a Gaussian distribution
with 0 mean using F = IN and f ∼ N (0,Σ), where IN is the
N × N identity matrix. We assume U , V , F , f , G, and g are
random variables, following some known continuous distributions.
We use a vector ξ = (U, V, F, f , G,g) to represent a realization
of the above inputs, and we use the notation ξ(ω) to represent the
corresponding random variable.

We now show the uncertain Stackelberg game can be written as
a two-stage mixed-integer stochastic program. Let Q(x, ξ) be the
leader’s utility for a strategy x and a realization ξ, assuming the
follower chooses the best response. The first stage maximizes the
expectation of leader’s utility with respect to the joint probability



distribution of ξ(ω), i.e., max
x
{E[Q(x, ξ(ω))]|Ax � b,x � 0}.

The second stage computes Q(x, ξ)2:

Q(x, ξ) = µT
i∗(F

Tx + f) + µi∗,0
where i∗ = arg maxmi=1 ν

T
i (GTx + g) + νi,0.

(9)

4.2 Sample Average Approximation
Sample average approximation is a popular solution technique

for stochastic programs with continuously distributed uncertainty [1].
It can be applied to solving uncertain Stackelberg games as follows.
First, a sample ξ1, . . . , ξS of S realizations of the random vector
ξ(ω) is generated. The expected value function E[Q(x, ξ(ω))] can
then be approximated by the sample average function 1

S

∑S
s=1Q(x, ξs).

The sampled problem is given by,

max
x

{
S∑
s=1

1

S
Q(x, ξs)|Ax � b,x � 0

}
. (10)

The sampled problem provides tighter and tighter statistical upper
bound of the true problem with increasing number of samples [11];
the number of samples required to solve the true problem to a cer-
tain accuracy grows linearly in the dimension of x [1].

In the sampled problem, each sample ξ corresponds to a tuple
(U, V, F, f , G,g). The following proposition shows ξ is equivalent
to some ξ̂ where F̂ = Ĝ = IN and f̂ = ĝ = 0, implying the
sampled execution and observation noise can be handled by simply
perturbing the utility matrices.

PROPOSITION 1. For any leader’s strategy x and follower’s
strategy j, both players get the same expected utilities in two noise
realizations (U, V, F, f , G,g) and (Û , V̂ , IN ,0, IN ,0), where,

Û =

(
1 fT

0 F

)
U, V̂ =

(
1 gT

0 G

)
V.

PROOF. We calculate both players’ expected utility vectors for
both noise realizations to establish the equivalence:

ÛT

(
1
x

)
= UT

(
1 0T

f FT

)(
1
x

)
= UT

(
1

FTx + f

)
.

V̂ T

(
1
x

)
= V T

(
1 0T

g GT

)(
1
x

)
= V T

(
1

GTx + g

)
.

A direct implication of Proposition 1 is that the sampled prob-
lem (10) and (9) is equivalent to a Bayesian Stackelberg game
of S equally weighted types, with utility matrices (Ûs, V̂ s), s =
1, . . . , S. Hence, via sample average approximation, HUNTER
could be used to solve Stackelberg games with continuous payoff,
execution, and observation uncertainty.

4.3 A Unified Approach
Applying sample average approximation in Bayesian Stackel-

berg games with discrete follower types, we are able to handle both
discrete and continuous uncertainty simultaneously using HUNTER.
The idea is to replace each discrete follower type by a set of sam-
ples of the continuous distribution, converting the original Bayesian
Stackelberg game to a larger one. The resulting problem could
again be solved by HUNTER, providing a solution robust to both
types of uncertainty.

2(9) can be formulated as a mixed-integer linear program as in [12]

5. EXPERIMENTAL RESULTS
Since none of the existing algorithm can handle both discrete

and continuous uncertainty in Stackelberg games, we conduct three
sets of experiments considering i) only discrete uncertainty, ii) only
continuous uncertainty, and iii) both types of uncertainty . The util-
ity matrices were randomly generated from a uniform distribution
between -100 and 100. Results were obtained on a standard 2.8GHz
machine with 2GB main memory, and were averaged over 30 trials.

5.1 Handling Discrete Follower Types
For discrete uncertainty, we compare the runtime of HUNTER

with DOBSS [12] and HBGS [8] (specifically, HBGS-F, the most
efficient variant), the two best known algorithms for general Bayesian
Stackelberg games. We compare these algorithms, varying the num-
ber of types and the number of pure strategies per player. The tests
use a cutoff time of one hour for all three algorithms.

Figure 5(a) shows the performance of the three algorithms when
the number of types increases. The games tested in this set have
5 pure strategies for each player. The x-axis shows the number
of types, while the y-axis shows the runtime in seconds. As can
be seen in Figure 5(a), HUNTER provides significant speed-up, of
orders of magnitude over both HBGS and DOBSS3(the line depict-
ing HUNTER is almost touching the x-axis in Figure 5(a)). For
example, we find that HUNTER can solve a Bayesian Stackelberg
game with 50 types in 17.7 seconds on average, whereas neither
HBGS nor DOBSS can solve an instance in an hour. Figure 5(b)
shows the performance of the three algorithms when the number
of pure strategies for each player increases. The games tested in
this set have 10 types. The x-axis shows the number of pure strate-
gies for each player, while the y-axis shows the runtime in seconds.
HUNTER again provides significant speed-up over both HBGS and
DOBSS. For example, HUNTER on average can solve a game with
13 pure strategies in 108.3 seconds, but HBGS and DOBSS take
more than 30 minutes.

We now turn to analyzing the contributions of HUNTER’s key
components to its performance. First, we consider the runtime of
HUNTER with two search heuristics, best-first (BFS) and depth-
first (DFS), when the number of types is further increased. We set
the pure strategies for each player to 5, and increase the number of
types from 10 to 200. In Table 1, we summarize the average run-
time and average number of nodes explored in the search process.
As we can see, DFS is faster than BFS when the number of types is
small, e.g., 10 types. However, BFS always explores significantly
fewer number of nodes than DFS and is more efficient when the
number types is large. For games with 200 types, the average run-
time of BFS based HUNTER is 20 minutes, highlighting its scal-
ability to a large number of types. Such scalability is achieved by
efficient pruning – for a game with 200 types, HUNTER explores
on average 5.3 × 103 nodes with BFS and 1.1 × 104 nodes with
DFS, compared to a total of 5200 = 6.2×10139 possible leaf nodes.

#Types 10 50 100 150 200
BFS Runtime (s) 5.7 17.7 178.4 405.1 1143.5

BFS #Nodes Explored 21 316 1596 2628 5328
DFS Runtime (s) 4.5 29.7 32.1 766.0 2323.5

DFS #Nodes Explored 33 617 3094 5468 11049

Table 1: Scalability of HUNTER to a large number of types
Second, we test the effectiveness of the two heuristics: inher-

itance of Bender’s cuts from parent node to child nodes and the
3The runtime results of HBGS and DOBSS are inconsistent with
the results in [8] because we use CPLEX 12 for solving mixed in-
teger linear program instead of GLPK which is used in [8].
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Figure 5: Experimental analysis of HUNTER and runtime comparison against HBGS, and DOBSS.

branching rule utilizing the solution returned by the upper bound
LP. We fix the number of pure strategies for each agent to 5 and
increase the number of types from 10 to 50. In Figure 5(c), we
show the runtime results of three variants of HUNTER: i) Variant-I
does not inherit Bender’s cuts and chooses a random type to create
branches; ii) Variant-II does not inherit Bender’s cuts and uses the
heuristic branching rule; iii) Variant-III (HUNTER) inherits Ben-
der’s cuts and uses the heuristic branching rule. The x-axis repre-
sents the number of types while the y-axis represents the runtime
in seconds. As we can see, each individual heuristic helps speed
up the algorithm significantly, showing their usefulness. For ex-
ample, it takes 14.0 seconds to solve an instance of 50 types when
both heuristics are enabled (Variant-III) compared to 51.5 seconds
when neither of them is enabled (Variant-I).

Finally, we consider the performance of HUNTER in finding
quality bounded approximate solutions. To this end, HUNTER is
allowed to terminate once the difference between the upper bound
and the lower bound decreases to η, a given error bound. The solu-
tion returned is therefore an approximate solution provably within
η of the optimal solution. In this set of experiment, we test 30
games with 5 pure strategies for each player and 50, 100, and 150
types with varying error bound η from 0 to 10. As shown in Fig-
ure 5(d), HUNTER can effectively trade off solution quality for
further speedup, indicating the effectiveness of its upper bound and
lower bound heuristics. For example, for games with 100 types,
HUNTER returns within 30 seconds a suboptimal solution at most
5 away from the optimal solution (the average optimal solution
quality is 60.2). Compared to finding the global optimal solution
in 178 seconds, HUNTER is able to achieve six-fold speedup by
allowing at most 5 quality loss.

5.2 Handling Continuous Uncertainty
For continuous uncertainty, ideally we want to compare HUNTER

with other algorithms that handle continuous execution and obser-
vation uncertainty in general Stackelberg games; but no such algo-
rithm exists. Hence we restrict our investigation to the more re-
stricted security games [9], so that two previous robust algorithms
BRASS [13] and RECON [16] can be used in such a comparison.
To introduce the uncertainty in these security games, we assume
the defender’s execution and the attacker’s observation uncertainty
follows independent uniform distributions. That is, for an intended
defender strategy x = 〈x1, . . . , xN 〉, where xi represents the prob-
ability of protecting target i, we assume the maximum execution
error associated with target i is αi, and the actual executed strat-
egy is y = 〈y1, . . . , yN 〉, where yi follows a uniform distribution
between xi − αi and xi + αi for each i. Similarly, we assume
the maximum observation error for target i is βi, and the actual ob-
served strategy is z = 〈z1, . . . , zN 〉, where zi follows a uniform
distribution between yi − βi and yi + βi for each i. The definition
of maximum error α and β is consistent with the definition in [16].

We use HUNTER with 20 samples and 100 samples to solve the
problem above via sample average approximation as described in
Section 4. For each setting, we repeat HUNTER 20 times with dif-
ferent sets of samples and report the best solution found (as shown
below, HUNTER’s competitors also try 20 settings and choose the
best). Having generated a solution with 20 or 100 samples, evaluat-
ing its actual quality is difficult in the continuous uncertainty model
– certainly any analytical evaluation is extremely difficult. There-
fore, to provide an accurate estimation of the actual quality, we
draw 10, 000 samples from the uncertainty distribution and evalu-
ate the solution using these samples.

For comparison, we consider two existing robust solution meth-
ods BRASS [13] and RECON [16]. As experimentally tested in [10],
when its parameter ε is chosen carefully, BRASS strategy is one of
the top performing strategy under continuous payoff uncertainty.
RECON assumes a maximum execution error α and a maximum
observation error β, computing the risk-averse strategy for the de-
fender that maximizes the worst-case performance over all possible
noise realization. To provide a more meaningful comparison, we
find solutions of BRASS / RECON repeatedly with multiple set-
tings of parameters and report the best one. For BRASS, we test 20
ε settings, and for RECON, we set α = β and test 20 settings.

In our experiments, we test on 30 random generated security
games with five targets and one resource. The maximum execu-
tion and observation error is set to α = β = 0.1. The utili-
ties in the game are drawn from a uniform distribution between
−100 and +100. Nonetheless, the possible optimal solution qual-
ity lies in a much narrower range. Over the 30 instances we tested,
the optimal solution quality we found by any algorithm varies be-
tween -26 and +17. In Table 2, we show the solution quality of
HUNTER compared to BRASS and RECON respectively. #Wins
shows the number of instances out of 30 where HUNTER returns
a better solution than BRASS / RECON. Avg. Diff. shows the av-
erage gain of HUNTER over BRASS (or RECON), and the aver-
age solution quality of the corresponding algorithm (shown in the
parentheses). Max. Diff. shows the maximum gain of HUNTER
over BRASS (or RECON), and the solution quality of the corre-
sponding instance and algorithm (shown in the parentheses). As
we can see, HUNTER with 20 and 100 samples outperforms both
BRASS and RECON on average. For example, RECON on av-
erage returns a solution with quality of −5.1, while even with 20
samples, the average gain HUNTER achieves over RECON is 0.6.
The result is statistically significant with a paired t-test value of
8.9× 10−6 and 1.0× 10−3 for BRASS and RECON respectively.
Indeed, when the number of samples used in HUNTER increases
to 100, HUNTER is able to outperform both BRASS and RECON
in every instance tested. Not only is the average difference in this
case statistically significant, but the actual solution quality found
by HUNTER– as shown by max difference – can be significantly
better in practice than solutions found by BRASS and RECON.



HUNTER-20 vs. HUNTER-100 vs.
BRASS RECON BRASS RECON

#Wins 27 24 30 30
Avg. Diff. 0.7(-5.2) 0.6(-5.1) 0.9(-5.2) 0.8(-5.1)
Max. Diff. 2.4(7.6) 4.0(-16.1) 3.31(7.6) 4.4(-16.1)

Table 2: Quality gain of HUNTER against BRASS and RECON
under continuous execution and observation uncertainty.

5.3 Handling Both Types of Uncertainty
In our last experiment, we consider Stackelberg games with both

discrete and continuous uncertainty. Since no previous algorithm
can handle both, we only show the runtime results of HUNTER. We
test on security games with five targets and one resource, and with
multiple discrete follower types whose utilities are randomly gen-
erated. For each type, we use the same utility distribution and the
same execution and observation uncertainty as in Section 5.2. Ta-
ble 3 summarizes the runtime results of HUNTER for 3, 4, 5, 6 fol-
lower types, and 10, 20 samples per type. As we can see, HUNTER
can efficiently handle both uncertainty simultaneously. For exam-
ple, HUNTER spends less than 4 minutes on average to solve a
problem with 5 follower types and 20 samples per type.

#Discrete Types 3 4 5 6
10 Samples 4.9 12.8 29.3 54.8
20 Samples 32.4 74.6 232.8 556.5

Table 3: Runtime results (in seconds) of HUNTER for handling
both discrete and continuous uncertainty.

6. CONCLUSIONS
With increasing numbers of real-world security applications of

leader-follower Stackelberg games, it is critical that we address un-
certainty in such games, including discrete attacker types and con-
tinuous uncertainty such as the follower’s observation noise, the
leader’s execution error, and both players’ payoffs uncertainty. Pre-
viously, researchers have designed specialized sets of algorithms to
handle these different types of uncertainty, e.g. algorithms for dis-
crete follower types [8, 12] have been distinct from algorithms that
handle continuous uncertainty [10]. However, in the real-world, a
leader may face all of this uncertainty simultaneously, and thus we
desire a single unified algorithm that handles all this uncertainty.

To that end, this paper provides a novel unified algorithm, called
HUNTER, that handles discrete and continuous uncertainty by scal-
ing up Bayesian Stackelberg games. The paper’s contributions are
in two parts. First it proposes the HUNTER algorithm. The novelty
of HUNTER is in combining AI search techniques (e.g. best first
search and heuristics) with techniques from Operations Research
(e.g. disjunctive programming and Bender’s decomposition). None
of these are out-of-the-box techniques, however, and most of these
techniques had not been applied earlier in the context of Stackel-
berg games even in isolation. Our novel contributions are in al-
gorithmically specifying how these can be applied (and applied in
conjunction with one another) within the context of Stackelberg
games. The result is that HUNTER provides speedups of orders of
magnitude over existing algorithms.

Second, we show that via sample average approximation, HUNTER
handles continuously distributed uncertainty. While no algorithm
other than HUNTER exists to handle such continuous uncertainty
in general Stackelberg games, we find, even in restricted settings
of security games, HUNTER performs better than competitors fo-
cusing on robust solutions [16, 13]. Finally, the paper illustrates

HUNTER’s unique ability to handle both discrete and continuous
uncertainty simultaneously within a single problem.
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