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Abstract

A key feature of the AAMAS conference is its emphasis on
ties to real-world applications. The focus of this article is
to provide a broad overview of application-focused papers
published at the AAMAS 2010 and 2011 conferences. More
specifically, recent applications at AAMAS could be broadly
categorized as belonging to research areas of security, sus-
tainability and safety. We outline the domains of applica-
tions, key research thrusts underlying each such application
area, and emerging trends.

Introduction

A key feature of the AAMAS conference is its emphasis
on ties to real-world applications. This emphasis of trying
to marry theory and practice at AAMAS goes all the way
back to the origins of its predecessor conferences, such as
the Agents conference (Agents 1997). However, the effort
to tie research into practical applications got a significant
boost with the establishment of the industry track at AA-
MAS, which was more recently renamed as the innovative
applications track.

Over the past few years, within this industry/innovative
application track at AAMAS and other related tracks at sister
conferences including innovative applications of Al (IAAI),
there have been presentations of several successful transi-
tions of key component technologies of agents and multia-
gent systems. Individual agents integrate multiple compo-
nents and capabilities, e.g. planning, learning, reactivity,
goal-orientedness, and they act autonomously while being
situated in their environments — thus facilitating their ap-
plication in real-world settings. On the other hand, multi-
agent systems and techniques focused on reasoning about
multiple agents reflect the fact that there exist many au-
tonomous agents (cooperative or self-interested) in the real-
world, and capturing their interaction establishes higher ve-
racity of the model. This appropriateness of agent and mul-
tiagent systems to model complex real-world problems has
led to successful transitions of practically applied technolo-
gies ranging from belief-desire-intention (BDI) frameworks,
to game-theoretic approaches, to auction frameworks, to
biologically inspired approaches. These previously suc-
cessful applications have been reviewed in the literature
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and textbooks on multiagent systems (Wooldridge 2009;
Shoham and Leyton-Brown 2008).

This paper focuses on the more recent efforts to marry
research with practical applications that is reported at AA-
MAS over the past two years. Specifically, focusing on pa-
pers from AAMAS’2010 and AAMAS’2011, we will dis-
cuss the three broad areas that have been the focus of tran-
sitioning research into practice: security, sustainability and
safety.

With respect to security, research at AAMAS has empha-
sized the use of game-theoretic techniques to schedule lim-
ited security resources to protect targets of economic and po-
litical importance. For example, ARMOR (Pita et al. 2008;
Jain et al. 2010b) schedules checkpoints and canine patrols
at the Los Angeles International Airport whereas IRIS (Tsai
et al. 2009; Jain et al. 2010b) schedules federal air mar-
shals on board international flights of US air carriers. More
game-theoretic scheduling assistants are being designed for
other security agencies as well, such as GUARDS (Pita et al.
2011) for scheduling activities conducted by the Transporta-
tion Security Administration. GUARDS is being evaluated
at an undisclosed airport for potential nationwide deploy-
ment. Finally, PROTECT (An et al. 2011a) is in use for
scheduling the patrols of the US Coast Guard in the port of
Boston and beyond.

Multi agent systems have also been applied to research
on the sustainable use of energy resources (Chalkiadakis
et al. 2011; Kamboj, Kempton, and Decker 2011; Kok
2010). Sustainable production, delivery and use of energy
is an important challenge of today. One of the ways this
can be done is by developing intelligent systems, like smart
grids (Vytelingum et al. 2010b; Ramchurn et al. 2011), that
can efficiently predict the use of energy and dynamically
optimize its delivery. The distributed nature of the energy
grid and the individual interests of users makes multi-agent
modeling an appropriate approach for this problem. Multi-
agent research in this area has primarily focused on develop-
ing techniques based on game-theoretic approaches (includ-
ing coalitional game theory) and auctions that help reduce
the usage and wastage of energy (Vytelingum et al. 2010a;
Gerding et al. 2011; Lamparter, Becher, and Fischer 2010;
Vandael et al. 2011).

With respect to the final area of application, safety, multi-
agent systems have been applied for disaster response simu-



lations, air-traffic management, evacuation simulations and
related applications (Ramchurn et al. 2010; Dos Santos and
Bazzan 2011; Schurr, Picciano, and Marecki 2010). The
key advantage is the rich models of individual agents that
can be brought to bear in such applications. For instance,
from large-scale citywide evacuations to small-scale evacua-
tions of buildings, emergency evacuations are unfortunately
a perpetual fixture in society. While commercial evacuation
simulation tools have begun to explore agent-based simula-
tions (Legion 2011), researchers at AAMAS have brought to
bear richer models of agents in such simulations, allowing us
to gauge the impact of different environmental, emotional,
and informational conditions (Tsai et al. 2011).

Security Applications

The last five years have witnessed the successful application
of multi-agent systems in reasoning about complex secu-
rity problems (Basilico, Gatti, and Amigoni 2009; Korzhyk,
Conitzer, and Parr 2010; Jain et al. 2010b; Pita et al. 2011;
An et al. 2011a). The framework of game-theory is becom-
ing very popular in the arena of security, in part due to the
increasing need to address the challenges posed by terror-
ism, drugs and crime. Yet, limited security resources cannot
be everywhere all the time, raising a crucial question of how
to best utilize our limited security resources.

Game theory provides a sound mathematical approach for
deploying limited security resources to maximize their ef-
fectiveness. As mentioned previously, there have been a
wide range of actual deployed applications of game theory
for security, such as ARMOR and IRIS. This set of appli-
cations and associated algorithms has added to the already
significant interest in developing multi-agent systems apply-
ing game theory for security. We now describe the applica-
tion of game theory to these security domains, partitioned
into four key subsections: (i) problem domains; (ii) game-
theoretic solution approaches; (iii) deployments; and (iv) re-
search challenges.

Problem Domains

Security scenarios addressed in previous work exhibit
the following important characteristics: there is a
leader/follower dynamic between the security forces and ter-
rorist adversaries, since the police commit to a security pol-
icy first while the adversaries conduct surveillance to exploit
any weaknesses or patterns in the security strategies (Tambe
2011). A security policy here refers to some schedule to pa-
trol, check or monitor the area under protection. There are
limited security resources available to protect a very large
space of possible targets, so it is not possible to provide
complete coverage at all times. Moreover, the targets in
the real-world clearly have different values and vulnerabili-
ties in each domain. Additionally, there is uncertainty over
many adversary types. For example, the security forces may
not know whether they would face a well-funded terrorist
or a local gang member or some other threat. Typically, the
security forces are interested in a randomized schedule, so
that surveillance does not yield predictable patterns; yet they
wish to ensure that more important targets have a higher pro-
tection and that they guard against an intelligent adversary’s

adaptive response to their randomized schedule. We now
describe some security domains where game-theoretic ap-
plications have been successfully deployed.

Los Angeles International Airport (LAX): LAX is the
fifth busiest airport in the United States, the largest destina-
tion airport in the United States, and serves 60-70 million
passengers per year (LAWA 2007; Stevens and et. al. 2006).
The LAX police use diverse measures to protect the airport,
which include vehicular checkpoints, police units patrolling
the roads to the terminals, patrolling inside the terminals
(with canines), and security screening and bag checks for
passengers. The application of game-theoretic approach is
focused on two of these measures: (1) placing vehicle check-
points on inbound roads that service the LAX terminals, in-
cluding both location and timing (2) scheduling patrols for
bomb-sniffing canine units at the different LAX terminals.

The eight different terminals at LAX have very different
characteristics, like physical size, passenger loads, foot traf-
fic or international versus domestic flights. These factors
contribute to the differing risk assessments of these eight ter-
minals. The numbers of available vehicle checkpoints and
canine units are limited by resource constraints, so the key
challenge is to apply game-theoretic algorithms to intelli-
gently allocate these resources — typically in a randomized
fashion — to improve their effectiveness while avoiding pat-
terns in the scheduled deployments.

United States Federal Air Marshals Service (FAMS):
The FAMS places undercover law enforcement personnel
aboard flights of US air carriers originating in and depart-
ing the United States to dissuade potential aggressors and
prevent an attack should one occur (TSA 2008). The ex-
act methods used to evaluate the risks posed by individual
flights is not made public by the service, and many factors
might influence such an evaluation. For example, flights
have different numbers of passengers, and some fly over
densely populated areas while others do not (TSA 2008).
International flights also serve different countries, which
may pose different risks. Special events can also change
the risks for particular flights at certain times (Wiki 2008).
The scale of the domain is massive. There are currently tens
of thousands of commercial flights scheduled each day, and
public estimates state that there are thousands of air mar-
shals (CNN 2008). Air marshals must be scheduled on tours
of flights that obey various constraints (e.g., the time re-
quired to board, fly, and disembark). Simply finding sched-
ules for the marshals that meet all of these constraints is a
computational challenge. The task is made more difficult
by the need to find a randomized policy that meets these
scheduling constraints, while also accounting for the differ-
ent values of each flight.

United States Transportation Security Agency (TSA):
The TSA is tasked with protecting the nation’s transporta-
tion systems (TSA 2011b). One set of systems in particular
is the over 400 airports (TSA 2011b) which services approx-
imately 28,000 commercial flights and up to approximately
87,000 total flights (ATC 2011) per day. To protect this large
transportation network, the TSA employs approximately



48,000 Transportation Security Officers (TSA 2011b), who
are responsible for implementing security activities at each
individual airport. While many people are aware of com-
mon security activities, such as individual passenger screen-
ing, this is just one of many security layers TSA person-
nel implement to help prevent potential threats (TSA 2011a;
2011b). These layers can involve hundreds of heterogeneous
security activities executed by limited TSA personnel lead-
ing to a complex resource allocation challenge. While activ-
ities like passenger screening are performed for every pas-
senger, the TSA cannot possibly run every security activity
all the time. Thus, while the resources required for pas-
senger screening are always allocated by the TSA, it must
also decide how to appropriately allocate its remaining secu-
rity officers among the layers of security to protect against a
number of potential threats, while facing challenges such as
surveillance and an adaptive adversary as mentioned before.

United States Coast Guard: The US Coast Guard pa-
trols harbors to safeguard the maritime and security inter-
ests of the country. Figure 1 shows an example of the types
of boats used in patrols conducted by the Coast Guard in
Boston. The Coast Guard continues to face a challenging
future with an evolving asymmetric threat within the mar-
itime environment both within the Maritime Global Com-
mons but also within the ports and waterways that make up
the United States Maritime Transportation System (MTS).
The Coast Guard can cover any subset of patrol areas in any
patrol schedule. They can also perform many security activ-
ities at each patrol area. The challenge for the Coast Guard
again is to design a randomized patrolling strategy given that
they need to protect a diverse set of targets along the harbor
and the attacker conducts surveillance and is adaptive.

Figure 1: US Coast Guard conducting a patrol at the port of
Boston.

Game Theoretic Solution Approaches

ARMOR, IRIS, GUARDS and PROTECT, deployed for
the security domains mentioned above, build on the game-
theoretic foundations to reason about two types of players —
the security force and the adversary — to provide a random-
ized security policy. The algorithms used in these applica-
tions build on several years of research reported in the Au-
tonomous Agents and Multiagent Systems (AAMAS) con-
ference main track and workshops (Paruchuri et al. 2005;
2006; 2007, Jain, Kiekintveld, and Tambe 2011; Jain et al.

2011). Although, the security systems use the newest al-
gorithms from this line of research, we first provide an in-
troduction to key game-theoretic concepts and then describe
the solution approaches.

Stackelberg Game: A generic Stackelberg game has two
players, a leader, and a follower. These players need not rep-
resent individuals, but could also be groups that cooperate to
execute a joint strategy, such as a police force or a terrorist
organization. Each player has a set of possible pure strate-
gies, or the actions that they can execute. A mixed strat-
egy allows a player to play a probability distribution over
pure strategies. Payoffs for each player are defined over all
possible pure-strategy outcomes for both the players. The
payoff functions are extended to mixed strategies by taking
the expectation over pure-strategy outcomes. The follower
can observe the leader’s strategy, and then act in a way to
optimize its own payoffs. Thus, the attacker’s strategy in a
Stackelberg game is a best response to the leader’s strategy.

The most common solution concept in game theory is a
Nash equilibrium, which is a profile of strategies for each
player in which no player can gain by unilaterally changing
to another strategy (Osbourne and Rubinstein 1994). Strong
Stackelberg equilibrium is a refinement of Nash equilibrium;
it is a form of equilibrium where the leader commits to
a strategy first, and the follower provides a best response
while breaking ties in favor of the leader.! This Strong
Stackelberg equilibrium is the solution concept adopted
in security applications (Osbourne and Rubinstein 1994;
von Stengel and Zamir 2004; Conitzer and Sandholm 2006;
Paruchuri et al. 2008).

The Bayesian extension to the Stackelberg game allows
for multiple types of players, with each type associated
with its own payoff values (Harsanyi and Selten 1972;
Paruchuri et al. 2007; 2008). For real-world security do-
mains, we assume that there is only one leader type (e.g.
only one police force), although there are multiple follower
types (e.g. multiple groups of adversaries are trying to infil-
trate security). Each follower type is represented by a differ-
ent payoff matrix. The leader does not know the follower’s
type. The goal is to find the optimal mixed strategy for the
leader to commiit to, given that each follower type will know
the mixed strategy of the leader when choosing its own strat-

cgy.

Security Domain Representation: In a security domain,
a defender must perpetually defend the site in question,
whereas the attacker is able to observe the defender’s strat-
egy and attack when success seems most likely. This is
appropriately modeled as a Stackelberg game if we map
the attacker to the follower’s role and the defender to the
leader’s role (Avenhaus, von Stengel, and Zamir 2002;
Brown et al. 2006; Tambe 2011). The actions for the se-
curity forces represent the action of scheduling a patrol or
checkpoint, e.g. a checkpoint at the LAX airport or a federal
air marshal scheduled to a flight. The actions for an adver-

'The leader can always induce the follower to strictly break ties
in favor of the leader by perturbing his strategy by an infinitesimal
amount (von Stengel and Zamir 2004).



sary represent an attack at a target, e.g. a terminal at LAX
or a flight. The strategy for the leader is a mixed strategy
spanning the various possible actions.

Covered | Uncovered
Defender 5 =20
Attacker -10 30

Table 1: Example payoffs in a security game for an attack
on one specific target.

We now introduce a further specialization of Stackel-
berg games prominently used in security applications so far,
called “security games” (Kiekintveld et al. 2009). In a se-
curity game, associated with each target are four payoffs
defining the possible outcomes for an attack on the target, as
shown in Table 1. Thus, in this example, if the attacker at-
tacked this target and it was being “covered” by the defender,
then the attacker would be unsuccessful and would receive
a payoff of —10. On the other hand, the defender would re-
ceive a payoff of 5 units in this particular situation. Thus,
the payoffs in a security game depend only on the target
attacked, and whether or not it is covered by the defender.
They do not depend on the remaining aspects of the sched-
ule, such as which set of unattacked targets are covered or
which specific defense resource provides coverage.

Algorithms: Over the years, significant research has fo-
cused on continually improving the set of algorithms used to
solve, or find the optimal mixed strategy in Bayesian Stack-
elberg games. These algorithms have been the basis of the
deployed applications. This section provides a quick tour of
the algorithms that have been used in the deployed applica-
tions. While the initial algorithm (Conitzer and Sandholm
2006) provided a linear programming approach, it did not
address multiple adversary types, which were important in
the first application ARMOR deployed at the LAX airport.
Instead, ARMOR relied on DOBSS (Paruchuri et al. 2008),
which was designed to scale-up for many adversary types.
The ERASER algorithm (Kiekintveld et al. 2009) developed
next was used in the first version of IRIS. It was capable of
scaling up to large number of defender action, which was
required for the FAMS domain given the large number of
flights the federal air marshals could fly. However, ERASER
was not capable of generating schedules over flight tours
with more than two flights, thereby motivating the devel-
opment of ASPEN (Jain et al. 2010a). ASPEN can com-
pute optimal solution over arbitrary tour sizes and schedul-
ing constraints, and is the algorithm of choice in the second
version of IRIS. GUARDS uses DOBSS again with a novel
domain representation (Pita et al. 2011), whereas PROTECT
uses further research advances (An et al. 2011a). These new
algorithms use mixed-integer linear programming formula-
tions to compute the Strong Stackelberg Equilibrium. We
now describe the ERASER algorithm to give the readers an
understanding of the underlying mixed integer program.
ERASER was the first algorithm that took as input a se-
curity game and solved for the optimal coverage vector cor-
responding to a Strong Stackelberg equilibrium strategy for

the defender. A coverage vector here implies a probability
distribution, which defines the defender’s probability of pro-
tecting each target. ERASER computes the coverage vector
C that maximizes the defender’s payoff, subject to the con-
straints that (i) the attacker will be able to learn this coverage
vector C' and best-respond to it, and (ii) the sum total of cov-
erage across all targets is limited to the number of available
resources. The mixed-integer linear program of ERASER
is presented in Equations 1-7. Equations 2 and 3 force the
attacker to choose an attack vector A = (a;) in a way to
attack a single target with probability 1. Equation 4 restricts
the coverage vector C' = {c;) to probabilities in the range
[0, 1], and Equation 5 constraints the coverage by the num-
ber of available resources.

Equations 6 and 7 compute the defender’s payoff d and
the attacker’s payoff k. Here, Ug(t, C) represents the ex-
pected utility to the defender when the attacker attacks target
t and the defender executes the coverage strategy C. Simi-
larly, Uy (t, C') represents the expected utility to the attacker.
Z is a large positive constant relative to maximum payoff
value. In this way, Equation 7 forces the attacker to com-
pute the optimal strategy to the defender strategy C. Simi-
larly, Equation 6 computes the defender payoff d given the
defender’s and the attacker’s strategy. Taken together, the
objective and Equations 67 imply that C' and A are mutual
best-responses in any optimal solution.

max d (D
a; € {0,1} VteT 2)
Sa= 1 ©

teT
th < m )

teT
d—Us(t,C)< (l—ay)-Z VteT (6)
0<k-Ug(t,C)< (l—ay)-Z VteT (7

Deployments and Results

Having described the foundations of game-theoretic algo-
rithms, we now briefly discuss the game-theoretical models
for the applications discussed above. We then evaluate their
performance in the real-world.

Constructing a game model: Instantiating a real-world
security domain in a specific Stackelberg game model in-
volves specifying details of three aspects: (i) the possible
targets that could be attacked, for example the terminals at
LAX; (ii) the defense resources and constraints on how they
may or may not be scheduled, for example the number of
available canines; and (iii) the payoffs that describe the out-
comes of attacks on each target for both the defender and the
attacker.

The payoffs provided to the game model define the out-
come for both the defender and the attacker in case the at-
tack on a particular target was successful or unsuccessful.
These payoffs are provided by domain experts. The payoffs



for a security domain, and the exact methods used by the do-
main experts to arrive at these values are sensitive informa-
tion. Risk analysts use a detailed set of questions to arrive at
the exact payoff values; some of the considerations for pay-
off values are outlined (Pita et al. 2008; Tsai et al. 2009;
Jain et al. 2010b; Tambe 2011).

Evaluation: While ARMOR and IRIS have been success-
fully deployed for a number of years, evaluating their impact
in the real world is not easy. There are also security concerns
in making evaluations of security policies publicly available
and ethical concerns in not providing the best security pos-
sible to a control group. It is important to understand that
there is no 100% security; all that these game-theoretic al-
gorithms are trying to do is to increase adversary cost and
uncertainty. We use at least five types of evaluation in an-
swering the evaluation question: (i) models and simulations
in the laboratory; (ii) experiments with human subjects; (iii)
evaluations by domain experts; (iv) comparison of game-
theoretic strategies with previous deployment strategies; and
(v) impersonation of an adversary using teams of security of-
ficers to test a security strategy. Finally, researchers continue
to look for additional evidence and data that would provide
additional evaluation and potential pointers to improvements
in the deployment of game-theoretic algorithms.

The key conclusions from comparison against previous
deployment techniques are as follows. When compared
to human schedulers, we find that the game-theoretic ap-
proaches provide more unpredictability. Human schedulers
tend to generate predictable patterns, and this weakness
of human schedulers was noted in the case of LAX po-
lice schedules as well as for FAMS schedules (Murr 2007,
GAO 2009). Indeed, human inability to generate random
patterns is well studied (Wagenaar 1972). It would seem that
the task of scheduling a tour for an air marshal is already
quite complex; requiring further that the tours be unpre-
dictable just creates a significant cognitive burden for a hu-
man. When compared to a uniform random schedule, game-
theoretic schedules perform better since they can account
for differing weights of different targets (Jain et al. 2010b).
Similarly, game-theoretic scheduling out-performs simple
weighted random schedules since game theory explicitly ac-
counts for an adaptive adversary (Jain et al. 2010b).

While these conclusions are supported by our different
evaluation techniques, we present one example result from
IRIS in terms of our simulations. The results are shown
in Figure 2. Here, the x-axis shows the number of sched-
ules or flight-tours that the federal air marshals could fly and
the y-axis shows the expected utility for the defender where
higher expected utility is better for the defender. In these
experiments, each schedule was a tour composed of one de-
parture flight and one arrival flight. The number of air mar-
shals available to do these flight tours was kept fixed to 1 in
all the experiments. We compare the expected utility from
the IRIS strategy with the expected utilities from uniform
and simple weighted random strategies. The results show
that the IRIS strategy gives a higher expected utility to the
defender in all the settings. Experiments comparing game-
theoretic schedules with other weighted randomization tech-

niques, as well as with previously used scheduling practices
also showed that game-theoretic schedules performed bet-
ter (Jain et al. 2010b). More details of the evaluation can be
found in (Tambe 2011).
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Figure 2: Comparison of IRIS schedules with uniform ran-
dom and naive weighted random techniques.

Further evidence of the merit of these software assistants
is the adoption and continued use of these tools. ARMOR
has been deployed by the LAX police since August 2007
and IRIS began to be used by FAMS in October 2009 af-
ter undergoing a non-public internal evaluation. PROTECT
is deployed in Boston by the Coast Guard in Boston since
April 2011 and it is being considered for further deploy-
ments. Finally, GUARDS is being evaluated by the TSA
at an undisclosed airport.

Research Challenges

While the deployed applications have advanced the state of
the art, significant future research remains to be done. At
least two of the primary challenges relate to scale-up and ro-
bustness. In the following, we highlight key research thrusts
in both.

First, with respect to scale-up, algorithms for security
games must address increase in both the number of defender
strategies as well as the number of attacker strategies. A
key motivating domain for such a scale-up is when defend-
ing cities against potential attackers. For example, police in
the city of Mumbai have started scheduling limited number
of checkpoints on roads in response to the Mumbai attacks
of 2008 (Ali 2009). Security game algorithms could poten-
tially be used to schedule randomized checkpoints in such
settings. In such domains, the strategy space of both the
defender grows exponentially with the number of available
resources and the strategy space of the attacker grows expo-
nentially with the size of the road network considered. The
latest technique to schedule such checkpoints is based on a
“double oracle approach” which does not require the enu-
meration of the entire strategy space for either of the play-
ers (Jain et al. 2011). However, significant further scale up
is required to handle a city of the size of Mumbai.

Second with respect to robustness, our solution algo-
rithms must be robust to the significant uncertainty faced in
the domain. For example, while the Stackelberg formulation
assumes that the adversary conducts careful surveillance and
thus has perfect knowledge of the defender’s mixed strat-
egy, in reality, adversary’s surveillance may be limited or
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Figure 3: The terrorist attacks of 2008 in Mumbai.

error-prone; requiring security game algorithms to be robust
to such an occurrence (Yin et al. 2011). Similarly, these
algorithms must handle the significant uncertainty of the
defender’s model of the adversary’s payoffs (Kiekintveld,
Marecki, and Tambe 2011) and uncertainty over the capa-
bility of the attacker as well (An et al. 2011b).

While there are many such uncertainties, we will briefly
highlight work that focuses on the adversary’s bounded ra-
tionality, which introduces uncertainty in the adversary’s de-
cision procedure. In addition to computational game the-
ory, this research also focuses on addressing human bi-
ases and cognitive limitations when computing solutions to
the game-theoretic models. Thus, this work has led to a
new area of research combining behavioral or experimen-
tal game theory (Camerer, Ho, and Chongn 2004) with se-
curity game algorithms. It marries concepts like anchoring
bias (Fox and Rottenstreich 2003), prospect theory (Kahne-
man and Tvesky 1979; Hastie and Dawes 2001) and quantal
response (McKelvey and Palfrey 1995) with computational
game theory, resulting in a novel approach to model real-
world players.

As an example of this style of research, an internet-based
computer game inspired by the security situation at LAX
was designed to test game-theoretic schedules against hu-
man opponents (Yang et al. 2011). Figure 4 shows a screen-
shot of this game. In this game, the doors represent the ter-
minals that need to be protected. The values shown for the
door define the payoffs for the players of the game. The de-
fender was simulated by a pirate, who happened to guard
few of the doors using a pre-specified scheduling strategy.
The human subject, analogous to the attacker, was able to
observe the pirate for a few observations, and then made
a choice as to which door to attack. The outcome of the
game was dependent on whether or not a pirate guarded the
door chosen by the human subject. The students were give
a bank-roll at the start of the game; they added to the bank
for every success and money was deducted for every failure.
The net results of tests with human subjects showed that the
standard game-theoretic strategies perform better compared
to uniform and naive weighted random strategies against hu-
mans as well (Pita et al. 2010). It also showed that strate-
gies that exploited human biases performed even better than
these standard game-theoretic strategies.
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Figure 4: Internet-based computer game simulating check-
points at LAX Airport.

Other applications

This section summarizes some other recent multi-agent ap-
plications based on papers from AAMAS’2010 and AA-
MAS’2011, including those in sustainable energy and safety,
which includes traffic management, disaster management,
air-traffic management and health. We begin with applica-
tions in sustainable energy.

Smart Grid Management/Coordination

Providing sustainable energy is a critical grand challenge
facing the world today and it affects all aspects of devel-
opment. One way to mitigate the challenge is using renew-
able energy sources, such as hydroelectricity, solar energy,
wind energy, wave power, geothermal energy, bio-energy,
and tidal power. The other approach is saving energy during
its distribution and consumption. In order to efficiently de-
liver and use energy, energy systems (such as the smart grid)
should be able to predict and intelligently respond to the be-
havior and actions of all electric power users connected to it.
In addition, such systems should allow dynamic optimiza-
tion of system operations and resources. The distributed na-
ture and autonomous behavior of these systems lend them-
selves to a multi-agent methodology.

The function of an electrical grid is to aggregate mul-
tiple networks and power generation companies. Smart
grids increase the connectivity, automation and coordina-
tion between suppliers, consumers and networks that per-
form either long distance transmission or local distribution
tasks. Given the existence of multiple entities in the smart
grid, smart grid management/coordination is crucial for the
creation of a robust, intelligent electricity supply network.
However, smart grid management is challenging due to the
dynamic nature of the grid and the self-interested nature of
all the entities participating in the grid.

There are two lines of work related to regulating the en-
ergy supply and consumption. One is using different types
of storage devices with appropriate (dis)charging strategies
and the other focuses on using different market mechanisms
to match supply and consumption. Most smart grid tech-
nologies are trying to balance demand and supply in order
to better integrate distributed intermittent renewable energy
sources. Renewable energy often depend on environmen-
tal conditions (e.g., wind speeds) that can vary significantly
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Figure 5: Smart grid management would require coordina-
tion between these multiple entities.

over a short time. Therefore, it is difficult (even impossi-
ble) for supply to continuously follow the vagaries of con-
sumer demand. In the recent years, efficient low cost en-
ergy storage devices have been widely used to support sus-
tainable energy provisioning and balance demand and sup-
ply. While energy usage can be potentially improved by us-
ing such devices, it is possible that individual homes charge
at the same time according to their own needs. This will
cause a higher peak in demand in the electricity market, and
in the worst case, it could cause blackouts and infrastruc-
ture damage if the total demand were to exceed network ca-
pacity. Vytelingum et al (2010b) provide a game-theoretic
framework for modeling storage devices in large-scale sys-
tems where each storage device is owned by a self-interested
agent that aims to maximize its monetary profit. Under cer-
tain assumptions, the proposed agent-based micro-storage
management strategy allows all storage devices in the sys-
tem to converge to profitable and efficient behavior. Ram-
churn et al (2011) consider more complex deferrable loads
and managing the comfort in the home. In addition to micro-
storage devices at homes, plug-in Electric Drive Vehicles
(EDVs), i.e., vehicles that use electricity to power at least
part of their drive trains, can be integrated into the smart grid
and can provide power storage services to the smart grid.
Although individual EDVs control too little power to sell in
the market at an individual level, a large group of EDVs may
form an aggregate or coalition that controls enough power to
meaningfully sell in the various electricity markets. A pro-
totype system has been deployed in the real world and it is
shown that a vehicle has an incentive to participate in coali-
tions (Kamboj, Kempton, and Decker 2011).

In addition to using small storage devices, different mar-
ket mechanisms have been proposed to regulate the en-
ergy consumption and supply in different scenarios at the
smart grid. The most widely used mechanism is auc-
tion (Vytelingum et al. 2010a; Gerding et al. 2011;
Lamparter, Becher, and Fischer 2010). For example, contin-
uous double auction (CDA) mechanism with agents’ trad-
ing strategies is used to balance different traders in the
market (Vytelingum et al. 2010a). An online alloca-
tion mechanism is proposed for electric vehicle owners to
bid for power and the time window for charging (Gerd-
ing et al. 2011). Since the smart grid market is a com-
plex dynamic market, those mechanisms often can only

guarantee truthfulness and efficiency under very strong as-
sumptions. Alternatively, some heuristic approaches are
used for supply and demand matching in electricity net-
works. PowerMatcher (Kok, Warmer, and Kamphuis 2005;
Kok 2010) is a general purpose coordination mechanism for
balancing demand and supply in clusters of distributed en-
ergy resources. The heart of the system is an electronic mar-
ket on which local control agents negotiate using strategies
based on short-term micro-economics. Different scheduling
strategies have also been proposed for reducing imbalance
costs in smart grid due to unpredictable changes in produc-
tion and consumption (Vandael et al. 2011).

Minimize Building Energy Consumption

In addition to saving energy in its distribution stage through
techniques such as smart grid management, minimizing the
energy consumption is also important to achieve the goal
of sustainable energy. In the U.S., about 40% of energy
consumption is from buildings, of which 25% is associated
with heating and cooling at an annual cost of $40 billion.
Furthermore, on an annual basis, buildings in the United
States consume 73% of its electricity. Multiagent technol-
ogy, together with existing IT solutions/infrastructure, has
been identified as a promising approach to achieve greater
energy efficiency in buildings (Rogers et al. 2011). Kwak
et al (2011) present a novel multiagent system based on dis-
tributed coordination reasoning under uncertainty for sus-
tainability called SAVES. SAVES is capable of generating
plans to minimize the energy consumption while satisfying
the comfort level of occupants in the buildings. SAVES is
currently being tested in simulations, but the goal is to de-
ploy in buildings for a proof of concept demonstration.

In a related research, Rogers et al (Rogers et al. 2011)
address the challenge of adaptively controlling a home heat-
ing system in order to minimize cost and carbon emissions
within a smart grid. The designed energy management agent
learns the thermal properties of the home, and uses Gaussian
processes to predict the environmental parameters over the
next 24 hours, allowing it to adjust the timing of heater use
in order to satisfy preferences for comfort while minimizing
cost and carbon emissions.

Multiagent Traffic Management

The increasing demand for mobility in our society has led
to the more serious problem of traffic congestion. Traf-
fic causes air pollution and decrease in speed, which is di-
rectly linked to energy (e.g., fuel) consumption. A more
efficient use of the available transportation infrastructure
is necessary and this relates closely to multiagent sys-
tems as many problems in traffic management and control
are inherently distributed (Bazzan 2009). Al and multi-
agent techniques have been proposed for traffic manage-
ment (see (Klugl and Bazzan 2011; Bazzan 2009) for a
survey). A reservation-based intersection control approach
with a communication protocol is proposed in (Dresner
and Stone 2008). In the reservation-based approach, au-
tonomous guided vehicles report information (e.g., the ve-
locity, direction, maximum/minimum acceleration) to inter-



section managers, which later decide rejection/acceptance of
requests based on its knowledge of other vehicles.

Pulter et al (Pulter, Schepperle, and Bohm 2011) quantify
the fuel consumption with existing agent-based approaches
for intersection control and propose an agent-based mecha-
nism for intersection control, with minimization of fuel con-
sumption as an explicit design objective. Simulations show
that the proposed mechanism could reduce fuel consumption
by up to 26% and waiting time by up to 98%, compared to
traffic lights.

Agent technology has also been used to offer support for
commercial aviation transportation. An air traffic control
system based on adjustable autonomy has been created to
support the optimal allocation of tasks (functions) between
the system and the human operators (Schurr, Picciano, and
Marecki 2010). The system includes 1) a simulation envi-
ronment, 2) a DFAS algorithm for providing adjustable au-
tonomy strategies and 3) the agents for executing the strate-
gies and measuring system efficiency. An initial pilot study
shows some promising results.

Disaster Management

Efficient and effective disaster management is becoming in-
creasingly important for the world given the major disas-
ters in the recent years, ranging from natural disasters such
as the Tohoku earthquake, Haiti earthquake, Asian tsunami
and hurricane Katrina, to the man-made disasters such as
the 9/11 attack and the London terrorist attacks. Disaster
management is a significantly challenging research topic.
Agents face a highly dynamic and uncertain environment,
which makes it difficult for agents to make the optimal deci-
sions in the long term. For disasters, new tasks may contin-
ually appear or disappear, thus timely response is crucial. In
addition, there are often a large number of complex rescue
tasks, each requiring multiple agents (or other entities) to act
together since agents often have limited capabilities.

Efficient task (resource) allocation is a critical factor in
any successful disaster management. Since agents’ capa-
bilities are often limited, coordination is often necessary
through forming teams for coalitions. Effective coordina-
tion ensures that tasks are allocated so that efforts are not
duplicated and all resources (including time) are used in
an efficient way. Coordination can be done in either a
centralized way or a distributed way. Distributed mecha-
nisms have many useful properties (e.g., robustness, flexi-
bility, lower overheads) and are more appropriate for com-
plex dynamic environments. A variety of distributed co-
ordination mechanisms have been proposed, e.g., DCOP
based approaches (Scerri et al. 2005; Dos Santos and Baz-
zan 2011), max-sum algorithms (Ramchurn et al. 2010;
Farinelli et al. 2008).

Another important line of work is simulating pedestrian
behavior in disaster scenarios. Agent-based simulation al-
lows for each pedestrian to be modeled as an autonomous
entity. Under this model, pedestrians are represented as
agents capable of perceiving and interacting with their envi-
ronment as well as other agents. Recent research on agent-
modeling includes the ESCAPES system (Tsai et al. 2011)
which is concerned with the interactions between agents and

the resulting group dynamics. Additionally, ESCAPES fo-
cuses on domains including airports, malls, and museums.
To accurately represent these types of environments, ES-
CAPES considered it particularly important to model the in-
fluence of families, emotional contagion, social comparison,
and spread of knowledge, which past work had not cohe-
sively addressed.

Health Applications

The use of modern information and communication tech-
nologies can aid to decrease both the cost of prenatal health-
care services and also the load of medical practitioners. One
key example at AAMAS is the SUAP project which pro-
vides a multi-agent system for supporting and monitoring
the prenatal care (Nunes et al. 2010). SUAP uses agent
technology to manage health-care records, to act as a clin-
ical decision support system, and to handle the logistics of
high risk pregnancy cases. The first version of the SUAP
system was deployed in July 2009 and it was composed of
the core functionalities that provided the prenatal care sys-
tematization.

Conclusions and Future Work

Key applications of multiagent systems highlighted at the
AAMAS conference illustrate that researchers are making
huge strides in the areas of security, sustainability and safety.
Many applications are already in use, with more in the
pipeline. These applications have also led to some funda-
mental research challenges in many different areas of multi-
agent systems.

In terms of future directions, some of the domains where
such agent based approaches could and should have a signif-
icant impact can be found in the grand challenges listed by
the National Academy of Engineering (NAE 2011). For ex-
ample, one of the challenges is to secure cyberspace, where
current agent-based solution methods can be extended and
applied. Researchers in cyber-security have already started
investigating game-theoretic approaches similar to the ones
mentioned earlier for routing packets and scheduling packet
inspections (Alpcan 2010; Kodialam and Lakshman 2003).
Similarly, agent based techniques can be very useful in ad-
dressing another grand challenge of improving urban infras-
tructure. Indeed, as mentioned earlier, disaster response and
energy management in urban settings are active areas of re-
search focused on improving urban societies. A third impor-
tant example research area where agent technology can have
a very significant impact is advanced personalized learn-
ing. This requires the development of an agent or multia-
gent system that can identify individual preferences and ap-
titudes of each student, such that instruction can be tailored
to a students individual needs. Indeed, while significant re-
search challenges remain to be addressed, the trajectory of
use-inspired research at AAMAS conference is extremely
promising; and thus as it has already begun to do, research
in agents and multiagent systems could have significant so-
cietal impact in the near future.
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