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ABSTRACT
Many strategic actions carry a ‘contagious’ component beyond the
immediate locale of the effort itself. Viral marketing and peace-
keeping operations have both been observed to have a spreading
effect. In this work, we use counterinsurgency as our illustrative
domain. Defined as the effort to block the spread of support for an
insurgency, such operations lack the manpower to defend the entire
population and must focus on the opinions of a subset of local lead-
ers. As past researchers of security resource allocation have done,
we propose using game theory to develop such policies and model
the interconnected network of leaders as a graph.

Unlike this past work in security games, actions in these domains
possess a probabilistic, non-local impact. To address this new class
of security games, we combine recent research in influence block-
ing maximization with a double oracle approach and create novel
heuristic oracles to generate mixed strategies for a real-world lead-
ership network from Afghanistan, synthetic leadership networks,
and scale-free graphs. We find that leadership networks that ex-
hibit highly interconnected clusters can be solved equally well by
our heuristic methods, but our more sophisticated heuristics outper-
form simpler ones in less interconnected scale-free graphs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Social contagion, Influence maximization

1. INTRODUCTION
Many adversarial domains exhibit ‘contagious’ actions for each
player. For example, word-of-mouth advertising / viral marketing
has been widely studied by marketers trying to understand why one
product or video goes ‘viral’ while others go unnoticed [26].

Counterinsurgency (COIN) is the contest for the support of the lo-
cal leaders in an armed conflict and can include a variety of op-
erations such as providing security and giving medical supplies
[27]. Just as in word-of-mouth advertising and peacekeeping op-
erations, these efforts carry a social effect beyond the action taken
that can cause advantageous ripples through the neighboring popu-
lation [15]. Moreover, multiple intelligent parties attempt to lever-
age the same social network to spread their message, necessitating
an adversary-aware approach to strategy generation.

We use a game-theoretic approach to the problem and develop al-
gorithms to generate resource allocations strategies for such large-
scale, real world networks. We model the interaction as a graph
with one player attempting to spread influence while the other player
attempts to stop the probabilistic propagation of that influence by
spreading their own influence. This ‘blocking’ problem models sit-
uations faced by governments/peacekeepers combatting the spread
of terrorist radicalism and armed conflict with daily/weekly/monthy
visits with local leaders to provide support and discuss grievances
[14].

This follows work in security games from recent years [3, 17, 22,
24, 11]. While some works have also modeled interactions on a
graph, we extend the approach into a new area where actions carry
a ‘contagion’ effect. The problem is a type of influence blocking
maximization (IBM) problems [7, 13], which are a competitive ex-
tension of the widely studied influence maximization problem [9,
19]. Past work in influence blocking maximization has looked only
at the best-response problems and has not produced algorithms to
generate the game-theoretic equilibria necessary for this repeated-
interaction domain.

A major contribution of this work is opening up a new area of re-
search that combines recent research in security games and in influ-
ence blocking maximization. Drawing from recent work in secu-
rity games, we propose using a double oracle algorithm where each
oracle produces a single player’s best-response to the opponent’s
strategy and incrementally creates the payoff matrix being solved.
This approach allows us to leverage advances in IBM research that
has focused entirely on fast best-response calculations.

We begin by proving approximation quality bounds on the dou-
ble oracle approach when one of the oracles is approximated and
combine this with a greedy approximate oracle to produce a more
efficient approximate algorithm. To further increase scalability, we
introduce two heuristic oracles, LSMI and PAGERANK, that offer
much greater efficiency. We conclude with an experimental ex-
ploration of a variety of combinations of oracles, testing runtime



and quality on a real-world leadership network in Afghanistan, syn-
thetic leadership networks, and random scale-free graphs. We find
that the performance of the basic PAGERANK oracle suffers min-
imal loss compared to LSMI in leadership networks that possess
clusters of highly interconnected nodes, but performs far worse in
sparsely interconnected scale-free graphs. Finally, an unintuitive
blend of the two oracles offers the best combination of scalability
and solution quality.

2. RELATED WORK
Recent work in game-theoretic security allocation have also dealt
with domains that were modeled as graphs [3, 17, 12], however
their actions were all deterministically defined and did not feature
a probabilistic contagion component. This ‘spreading’ aspect of
the problem is very closely related to influence maximization and
inoculation problems. Influence maximization, in which a player
attempts to optimize a selection of beginning ‘seed’ nodes from
which to spread his influence in a known graph, saw its first treat-
ment in computer science as a discrete maximization problem by
Kempe et al. (2003) who proposed a greedy approximation, followed-
up by numerous proposed speed-up techniques [9, 19, 21]. Al-
though these are one-player games, we draw inspiration from their
techniques to address efficiency issues in our work.

Standard inoculation games feature a defender that attempts to pro-
tect nodes in a graph and, usually, a random outbreak of a dis-
ease on a node in the graph. These games typically model nature
as the adversary, which chooses an initial set of nodes with some
predefined probability distribution that the defender is optimizing
against [1, 2, 8, 20]. Variations on this include distributed inocu-
lation games where each node acts independently, in which results
such as price of anarchy are generally considered [1, 8]. Inoculation
games do not typically include an optimizing adversary, amounting
to only an attacker or defender best-response problem. Influence
blocking maximization problems, which we use to model our do-
main, have been explored with both independent cascade and linear
threshold models of propagation [7, 13]. Both of these works only
explored the defender’s best-response problem. Some research ex-
ists on competitive influence maximization where all players try to
maximize their own influence instead of limiting others’ [4, 5]. Fur-
thermore, these works focus on complexity results instead of equi-
librium strategy generation. Aside from influence blocking maxi-
mization, a number of researchers have also explored mutual max-
imization models where both players seek to maximize their own
influence [5, 4]. Finally, Hung et al. (2011) and Howard (2010) also
address the COIN problem. However, Hung et al. (2011) assume
a static adversary and Howard (2010) only solves for pure strate-
gies. This forced predictability in a repeated-interaction situation is
dangerous since a real adversary can directly ambush COIN teams.
Additionally, it may be suboptimal since a real adversary has no
such limitation.

3. PROBLEM DEFINITION
The counterinsurgency domain we focus on includes one party that
attempts to subvert the population to their cause and another party
that attempts to thwart the first party’s efforts [16, 14, 15]. We as-
sume that each side can carry out operations such as provide secu-
rity or give medical supplies to sway the local leadership’s opinion.
Furthermore, local leaders will impact other leaders’ opinions of
the two parties. Specifically, one leader will convert other leaders
to side with their affiliated party with some predetermined probabil-
ity, giving each party’s actions a ‘spreading’ effect. Since resources
for COIN operations are very limited relative to the size of the task,

Figure 1: Example action for one player

each party is faced with a resource allocation task. Hung (2010)
models the leadership network of a single district in Afghanistan
(based on real data) with 73 nodes and notes that recent organiza-
tional assignments show that a single battalion operates in 4-7 dis-
tricts and divides into 3-4 platoons per 1-2 districts. This translates
into 5-30 teams responsible for a network with 300-500 nodes.

We model the counterinsurgency domain as a two-player influence
blocking maximization problem, which allows us to draw from the
extensive influence maximization literature. An IBM takes place
on an undirected graph G = (V,E). One player, the attacker, will
attempt to maximize the number of nodes supporting his cause on
the graph while the second player, the defender, will attempt to
minimize the attacker’s influence. Vertices represent local leaders
that each player can attempt to sway to their cause, while edges
represent the influence of one local leader on another. Specifically,
each edge, e = (n,m), has an associated probability, pe , which
dictates the chance that leader n will influence leader m to side
with n’s chosen player. Since the graph is undirected, this is also
the probability that m influences n to side with m’s chosen player.
Only uninfluenced nodes can be influenced.

The two players each choose a subset of nodes as their actions
(Sa, Sd ⊆ V ), which we will also call ‘sources’, where the al-
lowable size of the subset is given for each player (|Sa| = ra,
|Sd| = rd). Figure 1 shows an example of an action for one player
as the selection of the two nodes, D and F , filled in. The other
player would similarly choose a set of nodes on the same graph
from which to begin spreading his influence.

Each node in Sa ∩ Sd has a 50% chance of being influenced by
each player, while all other nodes in Sa support the attacker and all
other nodes in Sd support the defender. The influence then propa-
gates via a synchronized independent cascade, where at time step
t0 only the initial nodes have been influenced and at t1 each edge
incident to nodes in Sa ∪Sd is ‘activated’ with probability pe. Un-
influenced nodes incident to activated edges become supporters of
the influencing node’s player. If a single uninfluenced node is in-
cident to activated edges from both player’s nodes, the node has a
50% chance of being influenced by each player. This process is
detailed in Algorithm 1.

For a given pair of actions, the attacker’s payoff is equal to the
expected number of nodes influenced to the attacker’s side and
the defender’s payoff is the opposite of the attacker’s payoff. We
denote the function to calculate the expected number of attacker-
influenced nodes as σ(Sa, Sd). Each player chooses a mixed strat-
egy, ρa for the attacker and ρd for the defender, over their pure
strategies (subsets of nodes of size ra or rd) to maximize their ex-



pected payoff. This mixed strategy is a policy by which COIN
teams can randomize their deployment each day/week/month, de-
pending on the frequency of missions. The focus of the rest of this
work will be to develop optimal, approximate, and heuristic oracles
that can be used in double oracle algorithms to generate strategies
for real-world social networks.

Algorithm 1 INFLUENCE PROP.: Sa , Sd , G = (N,E)

1: E∗ = ∅, Eactive = ∅
2: A← {s|s ∈ Sa ∧ s /∈ Sd}, D ← {s|s /∈ Sa ∧ s ∈ Sd}
3: for {s|s ∈ Sa ∩ Sd} do
4: // randomly add s to one of the player’s sets
5: RandomAdd(s,A,D)
6: end for
7: Nnew = A ∪D
8: while Nnew 6= ∅ do
9: for {(u, v)|u ∈ Nnew,(u, v) /∈ E∗} do

10: // activate the edge based on its probability
11: Eactive.add(RandomActivate((u, v)))
12: E∗.add((u, v))
13: end for
14: Nnew = ∅
15: for {s|s /∈ A ∪D, ∃(u, s) ∈ Eactive} do
16: Nnew .add(s)
17: // Add s to appropriate set
18: AddToSet(s,A,D)
19: end for
20: end while

4. DOUBLE ORACLE APPROACH
The most commonly used approach for a zero-sum game is a naïve
Maximin strategy. This involves precalculating the payoffs for ev-
ery pair of player actions to determine the entire payoff matrix af-
ter which a Maximin algorithm can solve for a Nash equilibrium.
However, this naïve approach admits two faults.

First, the payoff for a pair of player actions, (Sa, Sd), is the value of
σ(Sa, Sd), which is the expectation of the propagation process out-
lined previously. As shown by Chen et al. (2010), calculating the
analogous expectation in a basic influence maximization game ex-
actly is #P -Hard. Since influence maximization is a special case
of influence blocking maximization, it is trivial to show that cal-
culating σ(·) exactly is also #P -Hard. The standard method for
estimating these expectations is a Monte Carlo approach that was
adapted for the IBM problem by Budak et al. (2011) and which
we also adopt here. It involves simulating the propagation process
thousands of times to reach an accurate estimate of the expected
outcome. Although it runs in time polynomial in the size of the
graph and is able to achieve arbitrarily accurate estimations, the
thousands of simulation trials required for accurate results causes
this method to be extremely slow in practice.

Second, the Maximin algorithm stores the entire payoff matrix in
memory which can be prohibitive for large graphs. For example,
with 1000 nodes and 50 resources per player, each player has

(
1000
50

)
actions. To overcome similar memory problems, double oracle al-
gorithms have been proposed in the past [17, 12] and form the basis
for our work.

Double oracle algorithms for zero-sum games use a Maximin linear
program at the core, but the payoff matrix is grown incrementally
by two oracles. This process is shown in Algorithm 2. D is the set
of defender actions generated so far, and A is the set of attacker ac-
tions generated so far. MaximinLP(D,A) solves for the equilibrium
of the game that only has the pure strategies in D and A and returns

ρd and ρa, which are the equilibrium defender and attacker mixed
strategies over D and A. DefenderOracle(·), generates a defender
action that is a best response against ρa among all possible actions.
This action is added to the set of available pure strategies for the
defender D. A similar procedure then occurs for the attacker. Con-
vergence occurs when neither best-response oracle generates a pure
strategy that is superior to the given player’s current mixed strategy
against the fixed opponent mixed strategy. The number of attacker
and defender actions in the payoff matrix varies depending on the
speed of convergence, but is generally much smaller than the full
matrix. It has been shown that with two optimal best-response or-
acles, the double oracle algorithm converges to the Maximin equi-
librium [23].

Algorithm 2 DOUBLE ORACLE ALGORITHM

1: Initialize D with random defender allocations.
2: Initialize A with random attacker allocations.
3: repeat
4: (ρd, ρa) = MaximinLP(D,A)
5: D = D ∪ {DefenderOracle(ρa)}
6: A = A ∪ {AttackerOracle(ρd)}
7: until convergence
8: return (ρd, ρa)

Now we prove an approximate double oracle setup that admits a
quality guarantee. We denote the defender and attacker’s mixed
strategies at convergence as ρd and ρa. Also, we denote the de-
fender’s expected utility given a pair of mixed strategies as ud(ρd, ρa).
Assume that the defender’s oracle, DAR, is an α-approximation
of the optimal best-response oracle, DBR, so that DAR(ρa) ≥
α ·DBR(ρa). The following theorem is a generalization of a simi-
lar result in Halvorson et al. 2009.

THEOREM 1. Let (ρd, ρa) be the output of the double oracle
algorithm using an approximate defender oracle and let (ρ∗d, ρ

∗
a) be

the optimal mixed strategies. Then: ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

PROOF. Since we knowDAR is anα-approximation, ud(ρd, ρa) ≥
ud(DAR(ρa), ρa) ≥ α · ud(DBR(ρa), ρa). Since (ρ∗d, ρ

∗
a) is a

maximin solution, we know that ∀ρ′d, ρ′a : ud(ρ
∗
d, ρ
′
a) ≥ ud(ρ∗d, ρ∗a) ≥

ud(ρ
′
d, ρ
∗
a). Thus: ud(DBR(ρa), ρa) ≥ ud(ρ∗d, ρa) ≥ ud(ρ∗d, ρ∗a),

implying ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

5. ORACLES
A major advantage of double oracle algorithms is the ability to di-
vide the problem into best-response components. This allows for
easily creating variations of algorithms to meet runtime and quality
needs by combining different oracles together. Here, we present
four oracles that we can combine to create a suite of algorithms.

5.1 EXACT Oracle
The first oracle is an optimal best-response oracle. Our oracle,
which we call EXACT , determines the best-response by iterating
through the entire action set for a given player. For each action,
the expected payoff against the opponent’s strategy is calculated,
which requires n calculations of σ(·), where n is the size of the
support for the opponent’s mixed strategy. In this oracle, σ(·) is
evaluated via the Monte Carlo estimation method1.
1The ε-error of the Monte Carlo estimation exists in the Maximin
approach as well, but can be made arbitrarily small with sufficient
simulations[18].



This oracle can be used for both the defender and the attacker to
create an incremental, optimal algorithm that can potentially be su-
perior to Maximin because of the incremental approach. However,
the oracle will perform redundant calculations that can cause it to
run slower than Maximin when the equilibrium strategy’s support
size is very large.

5.2 APPROX Oracle
Here we describe approximate oracles that draw from research in
influence maximization, competitive influence maximization, and
influence blocking maximization. Budak et al. (2011) showed that
the best-response problem for the blocker is submodular when both
players share the same probability of influencing across a given
edge. Thus, a greedy hill-climbing approach provides the high-
est marginal gain in each round provides a (1− 1

e
)-approximation.

This is outlined in Algorithm 3, where MCEst(·) is the Monte Carlo
estimation of σ(·), ρa is the current attacker mixed strategy, and
Action()/Prob() retrieve a pure strategy, Sa, and its associated prob-
ability. The Lazy-Forward speed-up to the greedy algorithm intro-
duced by Leskovec et al. (2007) to tackle influence maximization
problems is also implemented, but we do not show it in Algorithm
3 for clarity.

For the attacker problem, we note that given a fixed blocker strat-
egy, the best-response problem of the maximizer in an IBM is ex-
actly the best-response problem of the last player in a competitive
influence maximization from Bharathi et al. (2007), which they
showed to be submodular. Thus, the attacker’s best-response prob-
lem can also be approximated with a greedy algorithm with the
same guarantees. These oracles are referred to as APPROX .

By combining an APPROX oracle for the defender and an EXACT
oracle for the attacker, we can create an algorithm that generates a
strategy for the defender more efficiently than an optimal one and
guarantees a reward within (1− 1

e
) of the optimal strategy’s reward

by Theorem 1. An algorithm with two APPROX oracles no longer
admits quality guarantees, but the iteration process still maintains
the best-response reasoning crucial to adversarial domains.

Algorithm 3 APPROX -DefBR(ρa)
1: Sd = ∅
2: while |Sd| < rd do
3: for n ∈ (N − Sd) do
4: U(n) =

∑ρa.Size()
i=1 ρa.Prob(i) ·

5: MCEst(ρa.Action(i),Sd ∪ {n})
6: end for
7: n∗ = argmaxn∈N U(n)
8: BR = BR ∪ {n∗}
9: end while

5.3 LSMI Oracle
We introduce our main heuristic oracle, LSMI, which is also the
name of the heuristic it is based on: Local Shortest-paths for Mul-
tiple Influencers (LSMI(·)). This oracle uses APPROX oracle’s Al-
gorithm 3. However, LSMI(·) is used to replace the MCEst(·) func-
tion and provides a fast, heuristic estimation of the marginal gain
from adding a node to the best response. The heuristic is based on
two assumptions: very low probability paths between two nodes
are unlikely to have an impact and the highest probability path be-
tween two nodes estimates the relative strength of the influence.
The probability associated with a path is defined as p =

∏
e pe

over all edges e on the path. We then combine these heuristic influ-
ences from two players in a novel, efficient way.

The two heuristic assumptions have been applied successfully for
one-player influence maximization in various forms, one of the
most recent being Chen et al. (2010). When calculating the in-
fluence of a node, they only consider nodes reachable via a path
with an associated probability of at least some θ. Also, they as-
sume that each source will only affect nodes via the highest proba-
bility path. To improve the accuracy of this estimation, they disal-
low other sources from being on the path since the closer source’s
influence will supersede the further source’s along the same path.
We use these ideas as well, but Chen et al. (2010)’s approach to the
critical step of combining these influences efficiently relies on there
being only one type of influence. In a two-player situation such as
ours, there are two probabilities associated with each node, and the
winning influencer depends not only on the probability but on the
distance to sources as well. This ordering effect is a new issue that
necessitates a novel approach to influence estimation.

L-Eval(·), described in Algorithm 4, is our new algorithm for de-
termining the expected influence of the local neighborhood around
a given node. LSMI (n, Sa, Sd) estimates the marginal gain of n
by finding the difference between calling L-Eval(·) with and with-
out n and replaces the MCEst(·) function in Algorithm 3. For the
defender oracle, instead of a call of MCEst(Sa, Sd ∪ n):

LSMI(Sa, Sd, n) =

L-Eval(V, Sa, Sd ∪ {n}) - L-Eval(V, Sa, Sd),
s.t. V =GetVerticesWithinθ(n).

GetVerticesWithinθ() is a modified Dijkstra’s algorithm that mea-
sures path-length by hop-distance, tie-breaks with the associated
probabilities of the paths, and stores all nodes’ shortest hop-distance
and associated probability to the given node. It does not add a new
node to the search queue if the probability on the path to the node
falls below θ.

In L-Eval(·), V is the set of n’s local nodes and Sa/Sd are the at-
tacker/defender source sets. Due to the addition of n, we must
recalculate the expected influence of each v ∈ V . First, we deter-
mine all the nearby nodes that impact a given v by calling
GetVerticesWithinθ(v). Since only sources exert influence, we in-
tersect this set with the set of all sources and compile them into a
priority queue ordered from lowest hop-distance to greatest. pa and
pd represent the probability that the attacker/defender successfully
influences the given node. From the nearest source, we aggregate
the conditional probabilities in order. If the next nearest source is
an attacker source, then pa is increased by the probability that the
new source succeeds, conditional on the failure of all closer de-
fender and attacker sources. The probability that all closer sources
failed is exactly pa + pd. pd remains unchanged. If the next near-
est source is a defender source, then a similar update is performed.
The algorithm iterates through all impacted nodes and returns the
total expected influence.

Although the estimated marginal gain of LSMI can be arbitrarily
inaccurate, choosing the best action only requires that the relative
marginal gain of different nodes be accurate. We show in the Exper-
iments section that LSMI does a very good job of this in practice as
evidenced by the high reward achieved by LSMI-based algorithms.



Algorithm 4 L-Eval(V, Sa, Sd)
1: InfV alue = 0
2: for v ∈ (V − Sa − Sd) do
3: N = GetVerticesWithinθ(v) ∩ (Sa ∪ Sd)
4: /* Prioritize sources by lowest hop-distance to v*/
5: S =makePriorityQueue(N)
6: pa = 0, pd = 0
7: while S 6= ∅ do
8: s = S.poll()
9: if (s ∈ Sa) then

10: pa = pa + (1− pa − pd)· Prob(s, v), pd = pd
11: else /* s must be in Sd */
12: pd = pd + (1− pa − pd)· Prob(s, v), pa = pa
13: end if
14: end while
15: InfV alue = InfV alue+ pa
16: end for
17: return InfV alue

5.4 PAGERANK Oracle
PageRank is a popular algorithm to rank webpages [6], which we
adapt here due to its frequent use in influence maximization as a
benchmark heuristic. The underlying idea is to give each node a
rating that captures the power it has for spreading influence that is
based on its connectivity. For the purposes of describing PageRank,
we will refer to directed edges eu,v and ev,u for every undirected
edge between u and v. For each edge eu,v , set a weight wu,v =
pe/pv where pv =

∑
e pe over all edges incident to v. The rating

or ‘rank’ of a node u, τu =
∑
v wu,v ·τv for all non-source nodes v

adjacent to u. The exclusion of source nodes is performed because
u cannot spread its influence through a source node.

For our oracles, since the defender’s goal is to minimize the at-
tacker’s influence, the defender oracle will focus on nodes incident
to attacker sources Na = {n|n ∈ V ∧ ∃en,m,m ∈ Sa}. Specifi-
cally, ordering the nodes ofNa by decreasing rank value, the top rd
nodes will be chosen as the best response. In the attacker’s oracle
phase, the attacker will simply choose the nodes with the highest
ranks. Although PAGERANK is very efficient, we expect its qual-
ity to be low, since the attacker oracle fails to account for the pres-
ence of a defender and the defender oracle only searches through
nodes directly incident to the attacker’s source nodes. We will refer
to oracles based on this heuristic as PAGERANK .

6. EXPERIMENTS
In this section, we show experiments on both synthetic and real-
world leadership and social networks. We evaluate the algorithms
on scalability and solution quality. One advantage of double oracle
algorithms is the ease with which the oracles can be changed to
produce new variations of existing algorithms. This allows us to
simulate various attacker/defender best-response strategies and test
our heuristics’ performance more thoroughly.

Ideally, we would report the performance of our mixed strategy
against an optimal best-response as a worst-case analysis. How-
ever, due to scalability issues with the EXACT best-response or-
acle, rewards for larger graphs can only be calculated against an
approximate best-response generated by the APPROX oracle. Un-
less otherwise stated, each datapoint is an average over 100 tri-
als and the games created used contagion probability on edges of
0.3, 20,000 Monte Carlo simulations per estimation, and an LSMI
θ = 0.001.

Algo Label Def. Oracle Att. Oracle Nodes R
DOEE EXACT EXACT 15 3
DOAE APPROX EXACT 20 3
DOAA APPROX APPROX 100 3
DOLE LSMI EXACT 20 3
DOLA LSMI APPROX 100-200 3
DOLL LSMI LSMI 450 20
DOLP LSMI PAGERANK 700 20
DOPE PAGERANK EXACT 40 3
DOPA PAGERANK APPROX 200-300 3
DOPL PAGERANK LSMI 1000+ 20
DOPP PAGERANK PAGERANK 1000+ 20

Table 1: Algorithms evaluated

In addition to the optimal Maximin algorithm, we also test the set
of double oracle algorithms listed in Table 1, where Nodes and
R(esources) indicate the approximate problem complexity the al-
gorithm can handle within 20 minutes based on experiments with
scale-free graphs.

6.1 Leadership Networks
In Hung (2010), a leadership network was created based on real
data of a district in Afghanistan with 7 village areas, each with
a few ‘village leaders’ with connections outside the village, and
a cluster of ‘district leaders’ shown in the middle. We recreate
the same network, shown in Figure 2a and run our algorithms on
it. Although not shown, quality as measured against an APPROX
attacker was very similar for all algorithms. Algorithms exceeding
20min are not shown.

Closer examination of defender strategies reveals a difference in
the oracles’ approach. Since the PAGERANK defender oracle con-
siders only attacker-adjacent nodes with the highest rank, most of
its strategies focus on two high-degree district leaders (neither are
maximal degree nodes) and on a regular member of the highest pop-
ulation Village G. In this graph structure, where sets of nodes are
fully connected, this strategy works very well because the attacker’s
best response will often be the highest degree district leader and a
node in Village G. This approach is more conservative than LSMI
, which directly chooses the attacker’s source nodes since the 50%
chance of wiping out an attacker source provides slightly higher
utility. The attacker oracles all select from the same set of four
high-degree nodes. Aside from the highest-degree district leader
and Village G nodes, an additional high-degree village leader far
from Village G is also used. This result suggests that not only con-
nectivity, but also strategic spacing provided by our algorithms is a
key point for the maximizer’s target selection.

Experiments varying contagion probability, shown in Figure 2b,
show LSMI defender oracle algorithms randomizing over many
more nodes at low contagion levels. This occurs because the at-
tacker’s initial set of nodes accounts for most of his expected util-
ity, encouraging randomization over many nodes. PAGERANK ig-
nores this since a given set of nodes is often adjacent to all sets
of attacker-chosen nodes, while LSMI responds by matching the
increase node use directly.

As noted previously, a battalion is responsible for 4-7 districts, so
we create synthetic graphs with multiple copies of a village struc-
ture (70 nodes each) and link all district leaders together to create
multi-district graphs. In our experiments, for every district, each
player is given 3 resources. Figure 3 shows runtime and solution
quality against an APPROX attacker best-response. Since we cre-



(a) Network from Hung (2010) (b) Nodes in defender strategy

Figure 2: Afghanistan leadership network results

ate the graphs one district at a time, the graph sizes increase by 70
nodes at a time. The trend in rewards is once again that LSMI de-
fender oracle algorithms very slightly outperform the others. All
four algorithms scale to real-world problem sizes.

(a) Runtime (b) Quality

Figure 3: Synthetic leadership network results

6.2 Random Scale-Free Graphs
Scale-free graphs have commonly been used as proxies for real-
world social networks because the distribution of node degrees in
many real world networks have been observed to follow a power
law [10]. We conduct experiments on randomly generated scale-
free graphs of various sizes to illustrate both the runtime scalability
and quality of each algorithm in graphs resembling social networks
as opposed to leadership networks.

Figure 4 shows the results for small scale-free graphs of 8-20 nodes
with 3 resources for each player. The runtime graph, Figure 4a
shows only the algorithms that exceed 20 minutes for clarity. The
remaining heuristic algorithms’ results all hug the x-axis because
they take minimal time for these graphs. As would be expected,
Maximin scales the most poorly and is only able to handle graphs of
up to 11-12 nodes. The approximate algorithm, DOAE improves
upon DOEE and can handle up to 16-17 nodes, but swapping out
the APPROX oracle for the very fast LSMI oracle does not improve
runtime scalability very noticeably. This is because although the
LSMI oracle is orders of magnitude faster than the APPROX oracle,
the EXACT attacker oracle’s runtime eclipses both of them, making
the improvement irrelevant.

In Figure 4b, we show the reward obtained by the defender when
using the strategies generated against an EXACT attacker best-response
as described earlier. The key point is that the majority of rewards
are indistinguishable from the optimal algorithms. The DOLL al-
gorithm begins to diverge slightly when the graph nears 100 nodes,
but the major exceptions are the algorithms featuring PAGERANK
defender oracles. Interestingly, DOLP, which uses LSMI for the

(a) Runtime (b) Quality

Figure 4: Scale-free, 8-20 nodes, 3 resources

(a) Runtime (b) Quality

Figure 5: Scale-free, 20-100 nodes, 3 resources

defender and PAGERANK for the attacker still generates high re-
wards.

Figure 5 shows runtime and quality for larger scale-free graphs of
20-100 nodes with 3 resources for each player. As can be seen, the
algorithms featuring the APPROX oracle (DOAA, DOLA) begin
to exceed our 20-minute cutoff near 100 nodes while the remain-
ing heuristic algorithms continue to hug the x-axis because even
these games are completed in minimal time. As discussed previ-
ously, due to the inefficiency of the EXACT oracle, we use an AP-
PROX best-response to calculate a more conservative reward value.
Figure 5b again shows algorithms with PAGERANK defender ora-
cles performing noticeably more poorly than the other algorithms.
DOLP is again very close to the top performers. Note that while
this may be due to the APPROX best-response being used instead
of an EXACT best-response, it is very unlikely than an attacker
could perform any better given the hardness of the best-response
problem.

Finally, we show very large graph scalability with 100-500 nodes
and 20 resources per player in Figure 6. These games can only
be handled by algorithms using two heuristic oracles, so we try all
combinations of LSMI and PAGERANK oracles. When two LSMI
oracles are used, the algorithm begins to exceed 20 minutes around
450-475 nodes. However, when even one of the oracles is replaced
with a PAGERANK oracle, the algorithm scales much better. As
we noted earlier, DOLP performs very close to DOLL’s quality
and here we see that it scales much better, suggesting that this com-
bination of oracles provides the best blend of runtime scalability
and quality.



Figure 6: Scale-free, 100-500 nodes, 20 resources

7. CONCLUSION
With increasingly informative data about interpersonal connections,
principled methods can finally be applied to inform strategic inter-
actions in social networks. Our work combines recent research in
influence blocking maximization, operations research, and game-
theoretic resource allocation to provide the first set of solution tech-
niques for a novel class of security games with contagious actions.
Experiments on real-world leadership and scale-free graphs reveal
that a simple PAGERANK oracle can provide high quality solu-
tions for graphs with clusters of highly interconnected nodes, whereas
more sophisticated techniques can be very beneficial in sparsely
connected graphs. The methods used herein are a first step into a
new area of research in game-theoretic security with wide-ranging
applications.

8. FUTURE DIRECTIONS
This type of maximize/mitigate scenario can be used to model a
number of other domains that we hope to apply them to. For exam-
ple, anti-vaccination groups have become a serious issue for health
organizations to address [25]. By modeling the interaction as an
adversarial information diffusion problem, the techniques here can
help health organizations mitigate the impact of anti-vaccination
propaganda. In political campaigns, candidates often attempt to
disseminate negative information about their opponents to sway
votes against them. Again, we can model this scenario with one
party attempting to maximize the spread of this information while
another party attempts to block the spread by disseminating its own
news (e.g., their own negative propaganda, positive spin on the neg-
ative news, bigger news). These new domains will introduce novel
challenges as we improve the fidelity of our models to fit these
problems.
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