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ABSTRACT
Illegal extraction of forest resources is fought, in many developing
countries, by patrols that seek to deter such activity by decreas-
ing its profitability. With a limited budget, a patrol strategy will
seek to distribute the patrols throughout the forest, in order to mini-
mize the resulting amount of extraction that occurs or maximize the
amount of “pristine” forest area. Prior work in forest economics
has posed this problem as a Stackelberg game, but efficient opti-
mal or approximation algorithms for generating leader strategies
have not previously been found. Unlike previous work on Stack-
elberg games in the multiagent literature, much of it motivated by
counter-terrorism, here we seek to protect a continuous area, as
much as possible, from extraction by an indeterminate number of
followers. The continuous nature of this problem setting leads to
new challenges and solutions, very different in character from in
the discrete Stackelberg settings previously studied.

In this paper, we give an optimal patrol allocation algorithm and a
guaranteed approximation algorithm, the latter of which is more ef-
ficient and yields simpler, more practical patrol allocations. In our
experimental investigations, we find that these algorithms perfor-
m significantly better—yielding a larger pristine area—than naive
patrol allocations.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Compelxity]: Non-
numerical Algorithms and Problems—geometrical problems and
computations

General Terms
Algorithms, Economics, Security, Theory

Keywords
patrol strategy, forest protection, Stackelberg game

1. INTRODUCTION
Illegal extraction of fuelwood or other natural resources from forest-
s is a problem confronted by officials in many developing countries,
with only partial success [8, 4, 3, 12]. To cite just two examples,
Tanzania’s Kibaha Ruvu Forest Reserves are “under constant pres-
sure from the illegal production of charcoal to supply markets in
nearby Dar es Salaam,"1 and illegal logging is reportedly “deci-
mating" the rosewood of Cambodia’s Central Cardamom Protect-
ed Forest (see Fig. 1). In many cases, forest land covers a large
area, which the local people may freely visit. Rather than protect-
ing the forest by denying extractors entry to it, therefore, protective
1http://www.tfcg.org/ruvu.html

measures take the form of patrols throughout the forest, seeking to
observe and hence deter illegal extraction activity [7, 16]. With a
limited budget, a patrol strategy will seek to distribute the patrols
throughout the forest, in order to minimize the resulting amount of
extraction that occurs or protect as much of the forest as possible.

Figure 1: “A truck loaded with il-
legally cut rosewood passes through
Russey Chrum Village...in the Cen-
tral Cardamom Protected Forest."
Photo from [2].

We pose this problem as
a Stackelberg game in
which the policymaker or
leader publicly chooses
a (mixed) patrol strategy;
in response, the extractor
or follower then chooses
whether or not to extrac-
t, or to what degree. The
problem we study is of
computing optimal lead-
er strategies in such a
game. The extraction-
preventing benefits of pa-
trols are twofold: extrac-
tion is prevented directly,

when catching would-be extractors in the act, and also indirectly,
through deterrence. As in other Stackelberg application settings,
here the followers are likely to learn the leader’s chosen strategy—
the patrol personnel are often observed by the (many) villagers,
who can communicate with one another over time. The leader
wishes to arrange the potential troublemaker’s environment so as
to render his choice of engaging in this behavior as expensive to
him as possible.2 More precisely, given the continuous nature of
this setting, we wish to minimize to the amount of extraction that
will yield a positive net return in his cost-benefit analysis.

Background. Economists have studied the relationship generally
between enforcement policy for protecting natural resources and
the resulting incentives for neighbors of the protected area [9, 12,
15]. Our point of departure in this paper is the influential forest
protection model of [1] (see also [13, 14]), in which there is a cir-
cular forest surrounded by villages (hence potential extractors); the
task is to distribute the patrols’ probability density across the re-
gion of interest; the objective is to minimize the distance by which
the extractors will trespass into the forest and hence (since nearby
villagers will extract as a function of this distance [6]) or maximize
the size of the resulting pristine forestland.

We strengthen this model in several ways, permitting spatial vari-
ation in patrol density, multiple patrol units, and convex polygon-

2By convention, we refer to leader as she and follower as he.



shaped forests. As has been observed [1], exogenous legal restric-
tions on patrol strategies, such as requiring homogenous patrols,
can degrade protection performance [8, 5]. Unlike the existing
work on this model, we bring to bear algorithmic analysis on the
problem. Specifically, we show that while certain such allocation-
s can perform arbitrarily badly compared to the optimal, provably
approximate or near-optimal allocations can be found efficiently.

The forest patrol problem we study here is an instance of the leader-
follower Stackelberg game model, which has been the topic of
much recent research and has been applied to a number of real-
world security domains, including the Los Angeles International
Airport [10], the Federal Air Marshals Service [19], and the Trans-
portation Security Administration [11]. See [18] for an overview.

The problem setting we address here differs from those considered
in these previous works, most crucially in that the forest protection
setting is essentially continuous rather than discrete, both spatial-
ly and in terms of player actions. In the existing problems there
are a finite number of discrete locations to protect (e.g., modeled
as nodes of a graph), whereas ideally the entire forest area would
be protected from extraction. The spatial continuity of our prob-
lem setting permits a very different approach, in which we solve
for the optimal or approximate probability distributions over the
region using efficient, combinatorial algorithms, without the use of
general-purpose solvers. (Of course, the continuous space could
be discretized by superimposing a grid on it, but such an approach
would be highly inefficient due to the geometric density.) Once we
have computed a distribution over patrol locations, selecting patrols
locations is straightforward. As such, our primary focus is on the
choice of distribution for patrol density over the two-dimensional
forest region, i.e. a probability distribution from which to select
patrols.

Contributions. We give a full analysis of the problem of maxi-
mizing pristine forest radius. Our main contributions are efficient
optimal and 1/2-approximation algorithms for this problem, the lat-
ter of which has the advantage of both greater efficiency and more
practical, easier to implement solutions. Our results generalize a)
from one to multiple patrol units, and b) from circular forests to
convex polygon forests with symmetric patrols. Simulations indi-
cate that our algorithms substantially outperform baseline strate-
gies.

2. PROBLEM SETTING
In this section we present the forest model of [1] and formulate
a corresponding optimization problem. Villagers are distributed
about the forest perimeter (see Fig. 2), which is initially assumed
to be a circular region of radius 1, though we later extend to con-
vex polygons. An extractor’s action is to choose some distance d
to walk into the forest, extracting on the return trip. We may as-
sume, without loss of generality, that the extractor’s route goes the
chosen distance d towards the forest center (on a straight line), be-
fore reversing back to his starting point P on the perimeter. To
see this, observe that all possible paths from P will sweep out a
lens-like shape but, since all points on the perimeter are possible s-
tarting points, the set of all trespass paths directed towards the cen-
ter sweeps out the same area. Given our objective of maximizing
pristine forest area, this holds true even if extractors are distributed
around the perimeter nonuniformly, as long as there is a nonzero
probability of villager presence at each point on the perimeter.

Due to symmetries and the fact that extractors’ decisions are unco-

ordinated, the problem is essentially one-dimensional. Extractors
incur a cost and gain a benefit if not caught, based on an increasing
marginal cost function c(d) and a decreasing marginal benefit func-
tion b(d). (The instantaneous or marginal cost and benefit func-
tions are the derivatives of the functions specifying the cumulative
costs and benefits, respectively, of walking that far into the forest.)
If caught, the extractor’s benefit is 0 (the extracted resources are
confiscated) but the cost is unchanged (the extractor’s traveled dis-
tance does not change; there is no positive punishment beyond the
confiscation itself and being prevented from engaging in further ex-
traction while leaving the forest). Since extraction can be assumed
to occur only on the return trip, and given the nature of the pun-
ishment, we may restrict our attention to detection on the return
trip. Thus a given patrol strategy will reduce the extractor’s expect-
ed benefit for an incursion of distance d from b(d) to some value
bp(d).

dp

Figure 2: The for-
est, with the pris-
tine area shaded.

For a sufficiently fast-growing cost func-
tion relative to the benefit function, there
will be a “natural core” of pristine for-
est even with no patrolling at all [1]; that
is, the optimal trespass distance will be
less than 1, since the marginal cost of
extraction will eventually outweigh the
marginal benefit, corresponding to the
point at which the curves b(d) and c(d)
intersect (see Fig. 3). The overall result
of choosing a given patrol strategy there-
fore is to transform the benefit curve b(d)

into a lower benefit curve bp(d), thus reducing the extractor’s opti-
mal incursion distance (see Fig. 3). In the language of mathemati-
cal morphology [17], the pristine forest area P due to a given patrol
strategy will be an erosion P = F 	 B of the forest F by a shape
B, where B is a circle whose radius equals the trespass distance.
The erosion is the locus of points reached by the center of B as it
moves about inside of F .

Notation. b(x), c(x), φ(x) are the marginal benefit, cost, and cap-
ture probability functions, respectively. B(x), C(x),Φ(x) are the
corresponding cumulative functions. dp for p ∈ {n, o, r} is the
trespass distance under no patrols, the optimal patrol allocation,
the best ring allocation, respectively. rp is the radius of the pristine
forest area under some patrol p. (Similarly, bp(x), Bp(x).) dn−dp
is the reduction in trespass distance under this patrol.

DEFINITION 1. LetOPT (I) be the optimal solution value of a
problem instance I , and let ALG(I) be the solution value comput-
ed by a given algorithm. An algorithm for a maximization problem
is a c-approximation (with c < 1) if, for every problem instance I ,
we have ALG(I) ≥ c ·OPT (I).

The leader has a budgetE specifying a bound on the total detection
probability mass that can be distributed across the region. The task
is to choose an allocation in order to minimize the extractor’s result-
ing optimal trespass distance dn, which is equivalent to maximizing
the trespass distance reduction and implies maximizing the pristine
radius. Note that our optimal and approximation algorithms both
perform binary search, and thus incur an additive error ε.

2.1 Detection probability models
Let φ(x) be the detection probability density function chosen by
the leader for the forest. An extractor is detected if he comes within



some distance ∆ << 1 of the patrol. Under our time model, the
patrol units move much less quickly than the extractors, and so
patrols can be modeled as stationary from the extractor’s point of
view. Therefore, if e.g. φ(x) is constant (for a single patrol unit)
over the region R (of size |R|), then the probability of detection
for an extraction path of length d is proportional to φd, specifically
φd2∆/|R|, where the total area within distance ∆ of the length-d
walk is approximated as d · 2∆. That is, probabilities are added
rather than “multiplied” due to stationarity. (Here we assume the
patrol unit is not visible to the extractor.) The model described
here also covers settings in which the amount spent at a location
determines the sensing range ∆ there. For notational convenience,
we drop ∆ and |R| throughout the paper, assuming normalization
as appropriate.

φ(x) influences the extractor’s behavior in two ways. The rational
extractor will trespass a distance into the forest that maximizes his
total (or cumulative) net benefit, which is where his net marginal
benefit b(x) − c(x) equals zero. As the extractor moves about
through a region with nonzero φ(x), his cost-benefit analysis is
affected in two ways. First, the probability of reaching a given
location x is reduced by the cumulative probability of capture up
to that point, Φ(x), and so the net marginal benefit at point x is
reduced from b(x) − c(x) by amount Φ(x)b(x). (Recall that cap-
ture occurs on the return trip out of the forest, and so the cost c(x)
is paid regardless of whether confiscation occurs.) Second, being
caught at point x is φ(x) means losing the full benefit accrued so
far, which further reduces the net marginal benefit at this point by
amount φ(x)B(x), where B(x) =

∫ x
y=0

b(y)dy is the cumulative
benefit.

We emphasize that the extractor’s strategy (trespass distance) is
chosen offline (in advance), based on the expected returns of each
possible strategy. Note that the extractor acquires no new informa-
tion online that can affect his decision-making: the strategy consists
entirely of a distance by which to attempt to trespass; once caught,
there is no further choice.

3. PATROL ALLOCATIONS
Let the patrol zone be the region of the forest assigned nonzero
patrol density. We note three patrol allocation strategies that have
been proposed in the past:

• Homogeneous: Patrol density distributed uniformly over the
entire region.

• Boundary: Patrol density distributed uniformly over a ring
(of some negligible width w) at the forest boundary.

• Ring: Patrol density distributed uniformly over a ring (of
some negligible width w) concentric with the forest.

Boundary patrols can be superior to homogenous patrols, since
homogeneous patrols waste enforcement on the natural core [1].
It is interesting to note that this is not always so. Suppose the
homogenous-induced core radius is less than 1−d,w is very small,
and the trip length d satisfies w < 1/2 < d ≤ 1. With homoge-
nous patrols, we will have Φ(d) = E/π ·d. With boundary patrols,
however, this probability for any d ≥ w will be E

π−π(1−w)2
· w =

E/π · w
1−(1−w)2

, which approaches E
2π

as w → 0. In this case,
homogeneous patrols will actually outperform boundary patrols.

Intuitively, this is because a patrol in the interior will “intersect"
more trips from center to boundary than a patrol on the boundary
will. Unfortunately, both boundary and homogeneous patrols can
perform arbitrarily badly.

PROPOSITION 1. The approximation ratios of boundary and
homogeneous patrols are both 0.

PROOF (SKETCH). To see this, hold the budget fixed, and con-
sider extremely large forests and cost and benefit functions yielding
an empty natural core. The relationship between the cost/benefit
functions and the budget be that an optimal patrol allocation will
place patrols near to the forest center, halting the extractors at some
distance ro from the center, but the significant dispersions of patrols
due to either boundary or homogenous allocations would mean fail-
ing to stop the extractors prior to the forest center, resulting in an
approximation factor of 0.

Instead, our optimal patrol will be of the following sort:

• Band: The shape of the patrol zone is a band, i.e, the set
difference of two circles,3 both concentric with the forest.

The net cumulative benefit of walking distance x isBo(x)−C(x) =
B(x)−Φ(x)B(x)−C(x), where Φ(x) is the capture probability
for this walk. Let φ(x) = dΦ(x)/dx be the probability density
function of the capture probability, which is proportional to pa-
trol density. Then the probability density function corresponding
to Bo(x)− C(x) will be

d(Bo(x) − C(x))/dx = dB(x)/dx− dΦ(x)B(x)/dx− dC(x)/dx

= (1 − Φ(x)) · b(x) − φ(x)B(x) − c(x) (1)

Let band [do, e) (with 0 ≤ do ≤ e ≤ dn) be the patrol zone chosen
by Algorithm 1.

Algorithm 1 Computing the optimal allocation(b, c, E, ε)

1: (d1, d2)← (0, dn)
binary search:

2: while d1 < d2 − ε/3 or φ2 not set do
3: d← (d1 + d2)/2

4: .5φ(x) , b(x)−c(x)
B(x)

− b(x)

B2(x)
(B(x)−C(x)−(B(d)−C(d))

5: e← x s.t. d ≤ x ≤ dn and φ(x) = 0
6: cost =

∫ e
d

2π(1− x)φ(x)dx
7: {d2 ← d, φ2 ← φ} if cost ≤ E else d1 ← d
8: end while
9: return (d2, φ2)

LEMMA 1. Without loss of generality, the optimal density φ(x)
at each point x ∈ [do, e) can be assumed to be the smallest possi-
ble value disincentivizing further walking from x, i.e., that density
yielding bo(x) = c(x). Moreover, bo(x) < c(x) and φ(x) = 0 for
x > e.

PROOF. Consider a function φ(·) that successfully stops the ex-
tractor at some location do but which violates the stated property, at
3Generalizable to other forest shapes, as discussed below.
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Figure 3: The shaded regions correspond to the reduction in marginal
benefits within the patrol zone. Not shown are the (less dramatic) ef-
fects on b(·) following the patrol zone, due to the cumulative capture
probability.

some particular level of discretization. That is, partition the interval
[do, dn] into n equal sized subintervals, numbered d1, ..., dn. For
this discretization, we write B(di) =

∑i−1
j=1 b(j) and Φ(di) =∑i−1

j=1 φ(i) (omitting the coefficients). Let di be the first such
subinterval for which bo(di) < c(x), and let d+i be shorthand for
di + 1. In this case (see Eq. 1) we have (1 − Φ(di))b(di) −
φ(di)B(di)− c(di) < 0. We correct this by subtracting a value δ
from φ(di) to bring about equality, and adding δ to φ(d+i ).

The marginal net benefit of step di is then 0 (by construction), and
that of step d+i is only lower than it was before, so there is no
immediate payoff to walking from di to d+i or di + 2. Clearly
Φ(di + 2) is unchanged. Finally, we verify that the expected total
net benefit of walking to position di + 2 is unchanged. This benefit
is affected by the changes to both φ(di) and φ(d+i ). First, δB(di)
is added to bo(di) by subtracting δ from φ(di); second, bo(d+i )
becomes

b(d+i )(1 − (Φ(d+i ) − δ)) − (φ(d+i ) + δ) ·B(d+i )

= b(d+i )(1 − Φ(d+i )) + b(d+i )δ − φ(d+i )B(d+i ) − δB(d+i )

=
(
b(d+i )(1 − Φ(d+i )) − φ(d+i )B(d+i )

)
+

(
b(d+i )δ − δB(d+i )

)
= bo(d

+
i ) − δB(di)

Thus, since these two changes cancel out and there was no incen-
tive for walking from di past di + 2 prior to the modification, this
remains true, and so the extractor will walk no farther than he did
before the modification. We repeat this modification iteratively for
all earliest adjacent violations (di, d

+
i ), and for discretization pre-

cisions n. Since outer rings of circular (or, more generally, convex)
forests have greater circumference, each such operation of mov-
ing patrol density forward only lowers the total cost of the patrol.
bo(x) < c(x) and φ(x) = 0 for x > e follows from φ(·) being a
band that stops the extractor at position do.

LEMMA 2. Without loss of generality, we may assume do kisses
the outer edge of the patrol region.

PROOF. Clearly do will not be prior to the start of the patrol
region. If do lay after the beginning of the patrol region, then, by
Lemma 1, the solution would have its cost only lowered by shifting
the earlier patrol density past do.

Under the varying patrol density regime, the optimal patrol allo-
cation can be computed (numerically). We remark that under the
resulting patrol allocation, patrol density will decline monotonical-
ly with distance into the forest. Intuitively, the reason for this is

that as distance into the forest grows, there is a smaller and smaller
remaining net marginal benefit (b(x)− c(x)) that we need to com-
pensate for by threat of confiscation, and yet the magnitude of the
potential confiscation (B(x)) grows only larger.

THEOREM 1. Algorithm 1 produces a near-optimal allocation
(i.e., with arbitrarily small error).

PROOF. We assume the properties stated by Lemma 1. Let do
indeed be the optimal trespass distance. Observe that for x < do,
bo(x) = b(x); for x > e, bo(x) is determined only by b(x) and the
cumulative capture probability, i.e., bo(x) = (1 − Φ(x)) · b(x). e
is the point at which φ(x) = 0 and (1− Φ(x)) · b(x)− c(x) = 0.
Now we compute φ(·). Setting Eq. 1 to 0 yields:

φ(x) =
(1− Φ(x)) · b(x)− c(x)

B(x)
(2)

The solution to this standard-form first-order differential equation
(recall that Φ(x) =

∫ x
do
φ(y)dy, and note that Φ depends on the

value do) is:

Φ(x) = e−
∫
P (x)dx ·

(∫
Q(x) · e

∫
P (x)dxdx+K)

)
where P (x) = b(x)

B(x)
, Q(x) = b(x)−c(x)

B(x)
, and K is a constant.

Since
∫
P (x)dx =

∫ b(x)
B(x)

dx = lnB(x), we have e
∫
P (x)dx =

elnB(x) = B(x). Therefore∫
Q(x) · e

∫
P (x)dxdx =

∫
b(x)− c(x)

B(x)
·B(x)dx

=

∫
(b(x)− c(x))dx = B(x)− C(x)

and, based on initial condition Φ(do) = 0,

K = −
∫
Q(x) · e

∫
P (x)dxdx|do = −(B(do)− C(do))

Since φ(x) = (Φ(x))′, this yields:

Φ(x) =
B(x) − C(x) − (B(do) − C(do))

B(x)

φ(x) =
b(x) − c(x)

B(x)
−

b(x)

B2(x)
(B(x) − C(x) − (B(do) − C(do))

Then the optimal allocation for any given budgetE will equal φ(x)

for x ∈ [do, dn]. The total cost of this is E(do) =
∫ d∗
do

2π(1 −
x)φ(x)dx. If b(x) and c(x) are polynomial functions, then φ(x)
is a rational function, and so E(do) is solvable analytically, by the
method of partial fractions. In this case, we can evaluate E(do)
in constant time (for fixed b(x) and c(x)) in a real-number com-
putation model. Alternatively, E(do) can be approximated within
additive error ε in time O(1/ε), using standard numerical integra-
tion methods.

We can compute the smallest do for which E(do) ≤ E by binary
search. (e is also found by binary search, within error ε

3
1

2πφ(0)
,

which is a constant; recall that φ(x) is a decreasing function.) This
yields a total running time of eitherO(log2 1/ε) orO(1/ε log 1/ε),
depending on whether E(do) is solved analytically or approximat-
ed.
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Figure 4: Patrol strategy effectiveness for sample b(·), c(·) functions.

The varying-density allocation of Algorithm 1 may be difficult or
impractical to implement; moreover, each iteration of the loop re-
quires an expensive iterative approximation parameterized by s, if
E(do) is not solvable analytically. Now we present a more effi-
cient algorithm that produces easier-to-implement allocations. As-
suming b(·) and c(·) can be integrated analytically and that their
intersection can be found analytically, Algorithm 2 runs in time
O(log 1/ε).

Algorithm 2 Computing the best ring patrol(b, c, E, ε)
1: (d1, d2)← (0, dn)

binary search:
2: while d1 < d2 − ε or φ2 not set do
3: d← (d1 + d2)/2
4: φ(d)← E/(2π · ((1− d)− w/2) · w)
5: Φ← φ · w
6: e← x s.t. (1− Φ)b(x) = c(x)
7: pos←

∫ e
d

(1− Φ)b(x)− c(x)dx
8: neg ← Φ ·B(d)
9: {d2 ← d, φ2 ← φ} if neg ≥ pos else d1 ← d

10: end while
11: return (d2, φ2)

THEOREM 2. Algorithm 2 produces a near-optimal ring patrol
(i.e., within additive error at most ε).

PROOF. For a candidate trespass distance d, allocating the bud-
get E to a width-w ring (where w is negligible) of radius d yields
φ = E/(2π · ((1 − d) − w/2) · w) and Φ = φ · w. In order
to discourage the extractor from passing point d, it must be the
case that the expected cost of doing so (the potential loss due to
confiscated, weighted by probability: Φ · B(d)) exceeds the ex-
pected benefit (the remaining net benefit, weighted by probability:
(1−Φ)

∫ dn
d

b(x)− c(x)dx). We do binary search for the smallest
such value d.

THEOREM 3. Algorithm 2 provides a 1/2-approximation, both
in trespass distance reduction and pristine radius.

PROOF. Let rn = 1 − dn be the radius of the natural core.
Let ro = 1−do be the pristine area radius under the optimal patrol
allocation φo(·). We know that φo(·) will be nonzero over the range
[do, dn]. Consider locations x within this range. As x grows from
do to dn, the marginal benefit b(x) falls monotonically while c(x)
grows, and the cumulative benefit B(x) and cumulative capture
probability Φ(x) both grow monotonically. Thus by Eq. 2, φ(x)
falls monotonically over [do, dn].

Now consider the radius rr = (ro + rn)/2 and the correspond-
ing location dr = 1 − rr , which divides the range [do, dn] into
two halves. Because φ(x) is monotonic decreasing, φ(x) has at
least as much total mass in the first half than in the second, i.e.,∫ dr
do
φ(x)dx ≥

∫ dn
dr

φ(x)dx. Because the total cost of patrol den-
sity φ(x) at location x, rotated about the entire circle, is 2πφ(x),
“flattening” φ(x) over the range [do, dn] (i.e., setting it equal to

1
dn−do

∫ dn
do

φ(x)dx) will only lower the total cost. (Though doing
so will sacrifice the guarantee of trespass distance do.) Then “com-
pressing” this total probability mass

∫ dn
do

φ(x)dx from the range
[do, dn] to the point dr will not change the cost any further, since
the mean circle circumference for radii in [ro, rn] is 2π(ro+rn)/2,
which is the same as that for radius rr .

We now claim that the constructed negligible-width ring patrol at
dr will deter the extractors from crossing it, by accounting for the
two “halves” of φo(x). First, the “left” half of φo(x) transferred to
dr will yield a cumulative detect probability of Φo(dr), just as un-
der the optimal patrol. Second, the “right” half of φo(x) will inflict
the same total reduction in net benefits for the action of traversing
[dr, dn] as the optimal patrol does. After passing dr , each addi-
tional step would provide a positive net marginal benefit, until re-
gaining the pre-dr cumulative net benefit only at point dn, after
which all net marginal benefits are negative. Thus every stopping
point after dr will have cumulative net benefit lower than this value
immediately before dr .

We have constructed a ring patrol allocation that reduces the tres-
pass distance by at least half the optimal such value, i.e., (rn −
ro)/2, yielding pristine radius rr = (ro + rn)/2 ≥ ro/2, and so



the result follows.

We note that the approximation ratio is tight. To see this, problem
instances can be constructed satisfying the following: c(x) = 0
and b(x) is constant (and small) over the interval [do, dn] (which
meets an empty natural core, i.e. dn = 1), and E is very small
and hence [do, dn] is very narrow. In this case, Φi(x) grows very
slowly over the patrol region, and φo(x) declines very slowly over
it. In the extreme case, the weight of φo(x)’s probability mass to
the right of dr approaches the weight to the left.

3.1 Algorithmic extensions
Multiple patrol units. We can extend from one to multiple patrol
units, weighted equally or unequally. Given k patrol units, each
given budget Ei (e.g., 1/k) with E =

∑
Ei, we partition the for-

est into k sectors, each of angle 2πEi/E. We run one of our algo-
rithms below, with budget E. Then we position patrol unit i at a
location within sector i, chosen according to the computed φ(·).

Other forest shapes. In the noncircular forest context, permitting
extractors to traverse any length-bounded path from their starting
points implies that the pristine area determined by a given patrol
strategy will again be an erosion of the forest. Computing the ero-
sion of an arbitrary shape is computationally intensive [17], but it
is easily computable for convex polygons, which will approximate
many realistic forests. In order to be practically implementable in
such cases, the patrol should be symmetric around the forest area.
Our algorithms above adapt easily to the setting of convex poly-
gon forest shapes, where pristine areas are erosions, by integrating
the cost of a patrol around the forest boundary. In both cases, we
replace the circle circumference 2π(1 − x) with the cost of the
corresponding polygon circumference. For large polygons with a
reasonable number of sides, the resulting error due to corners will
be insignificant.

4. EXPERIMENTS
We implemented both our algorithms, as well as the baseline solu-
tions of homogenous and boundary patrols. We tested these algo-
rithms on certain realistic pairs of benefit and cost functions (with
forest radius 1; see four examples in Fig. 3). We now summarize
our observations on these results.

In each setting (see left subfigures), we vary the patrol budget, com-
puting the patrol allocation function and hence the extractor’s tres-
pass distance dp, for each. First, the optimal algorithm indeed dom-
inates all the others. Both our algorithms perform much better over-
all than the two baselines, however, up until the point at which the
budget is sufficient to deter any entry into the forest, using bound-
ary and best ring. Best ring will consider a ring at the boundary, so
it cannot do worse than boundary, and so the two curves must inter-
sect at zero. Prior to this best ring does outperform boundary. As
observed above, neither homogeneous nor boundary consistently
dominates the other.

We computed ring patrols for two ring widths, one very narrow
(1/103) and one less so (0.1). Interestingly, neither ring size dom-
inates the other. With a sufficiently large budget, the rings will lie
on the boundary, but a wider ring will permit some nonnegligible
trespass (part way across the ring itself). With smaller budgets the
rings will lie in the interior of the forest. In this case, the narrow
ring will spend the entire budget at one (expensive) density level,

whereas the wider ring can will (more cheaply, and hence more
successfully) spend some of its budget at lower-density levels.

Next (see middle subfigures), we plot the optimal φo(·) functions
under many different budgets. As can be seen, these curves sweep
out different regions of the plane, depending on the b(·), c(·) pair.

Finally (see right subfigures), we illustrate the result of applying
Algorithm 1 to a rectangular forest, with one sample budget (3.5,
normalized to the dimensions of the forest). The patrol density is
represented by the level of shading. The border of the natural core
is also shown.

5. CONCLUSION
In this paper, we have presented a Stackelberg security game setting
that differs significantly from those previously considered in the AI
literature, which necessitates the use of very different techniques
from those used in the past. At the same time, this work opens up
an exciting new area of research for AI at the intersection of forest
economics and game theory. Eventually, as with counterterroris-
m Stackelberg games studied in the literature, we aim to deploy
our solutions in real-world settings. Potential sites for such de-
ployments include Tanzania’s aforementioned Kibaha Ruvu Forest
Reserves and the mangrove forests of Mnazi Bay Ruvuma Estuary
Marine Park.
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