
Analysis of Heuristic Techniques for Controlling Contagion

Jason Tsai, Nicholas Weller, Milind Tambe

University of Southern California, Los Angeles, CA 90089
{jasontts@usc.edu, nweller@dornsife.usc.edu, tambe@usc.edu

Abstract

Many strategic actions carry a ‘contagious’ component be-
yond the immediate locale of the effort itself. Viral marketing
and peacekeeping operations have both been observed to have
a spreading effect. In this work, we use counterinsurgency as
our illustrative domain. Defined as the effort to block the
spread of support for an insurgency, such operations lack the
manpower to defend the entire population and must focus on
the opinions of a subset of local leaders. As past researchers
of security resource allocation have done, we propose using
game theory to develop such policies and model the intercon-
nected network of leaders as a graph.
Unlike this past work in security games, actions in these do-
mains possess a probabilistic, non-local impact. To address
this new class of security games, recent research has used
novel heuristic oracles in a double oracle formulation to gen-
erate mixed strategies. However, these heuristic oracles were
evaluated only on runtime and quality scaling with the graph
size. Given the complexity of the problem, numerous other
problem features and metrics must be considered to better
inform practical application of such techniques. Thus, this
work provides a thorough experimental analysis including
variations of the contagion probability average and standard
deviation. We extend the previous analysis to also examine
the size of the action set constructed in the algorithms and the
final mixed strategies themselves. Our results indicate that
game instances featuring smaller graphs and low contagion
probabilities converge slowly while games with larger graphs
and medium contagion probabilities converge most quickly.

Introduction
Numerous competitive situations feature actions that pro-
duce a contagious effect. Word-of-mouth advertising / viral
marketing has gained significant research interest as com-
panies attempt to understand what makes some products or
videos go viral (Trusov, Bucklin, and Pauwels 2009). Peace-
keeping operations have also been shown to have a positive
effect on neighboring areas (Beardsley 2011).

Counterinsurgency (COIN) is the military effort to win
the support of a local population by activities such as pro-
viding security, medical supplies, and building infrastruc-
ture (U.S. Dept. of the Army and U.S. Marine Corps 2007).
These efforts often reach the ears of neighboring populations

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that may then form a positive opinion about the organiza-
tion/country as well. Given that counterinsurgency is, by
definition, a competitive effort, deciding which areas to visit
requires a principled, adversary-aware approach.

Our recent work proposes the use of game theory to de-
velop these resource allocation policies (Tsai, Nguyen, and
Tambe 2012), taking after the deployed applications now
in use by numerous security agencies (Shieh et al. 2012;
Pita et al. 2011). Specifically, we model the problem as a
game with two players that takes place on a graph in which
nodes represent local leaders and links between them repre-
sent the influence they have upon each other. Each player’s
task is then to each select a subset of the local leaders to
visit and win over. These initial leaders will then probabilis-
tically spread their opinion to neighboring leaders with the
probabilities dictated by the edge weights. The goal of the
insurgents is to maximize the support of the local populace
while the counterinsurgents seek to mitigate the insurgents’
support. We then solved the game for the Nash equilibrium
strategies for each player. However, given the limitations of
known optimal and approximate solution methods, we de-
veloped heuristic techniques that provide scalable solutions
that showed minimal quality loss in our experiments.

Given the lack of theoretical guarantees for heuristic tech-
niques, the purpose of this work is to thoroughly evaluate
the performance of the proposed heuristic techniques and
identify key trends that would inform their use in practical
application. Our prior work evaluated runtime and solution
quality as the graph size was increased. In this work, instead
of only varying the graph size, we also evaluate the impact
of changing the contagion probability on edges. In partic-
ular, our prior evaluation set all edge probabilities to 0.3,
while here we draw the edge probabilities from a normal
distribution and vary the average and standard deviation of
the distribution. Furthermore, for all of the above variations,
we examine not only the runtime and solution quality, but
also the support set size of the strategies generated and the
number of actions that are generated by the iterative double
oracle approach.

Our investigation reveals that when the graph size in-
creases, all of the algorithms converge in fewer iterations
because the defender oracles are unable to find strong block-
ing actions. Furthermore, game instances with low conta-
gion probabilities prove difficult because the attacker can

continuously find new actions that avoid the entire set of
current defender actions until a sufficient number of actions
had been added to both players’ action sets, thereby requir-
ing many iterations to converge. Finally, our experiments
varying the contagion probability distribution’s standard de-
viation revealed little impact of this parameter on the perfor-
mance of the algorithms tested.

Related Work
Related work generally falls into one of two categories:
(1) game-theoretic resource allocation that does not feature
networked domains with contagion and (2) influence max-
imization which has only focused on best-response gen-
eration and usually features only one ‘player’. In game-
theoretic resource allocation, the most relevant work pro-
vides algorithms for strategy generation in games that take
place on a network (Basilico and Gatti 2011; Jain et al. 2011;
Halvorson, Conitzer, and Parr 2009). However, these do-
mains do not feature a diffusion effect which results in im-
mense complexity as shown by work in influence maximiza-
tion.

Specifically, influence maximization studies the problem
of what subset of nodes to select in a graph to maximize
the spread of influence (Chen, Wang, and Wang 2010;
Leskovec et al. 2007; Kempe, Kleinberg, and Tardos 2003).
The spreading occurs via known propagation dynamics,
translating into a one player version of the problem we are
interested in in this work. Influence blocking maximiza-
tion is a very recent area that has looked at the two-player
maximize/mitigate game we consider, but has thus far only
focused on best-response generation instead of equilibrium
strategies (Budak, Agrawal, and Abbadi 2011; He et al.
2011). Some research exists on competitive influence max-
imization where all players try to maximize their own in-
fluence instead of limiting others’ (Goyal and Kearns 2012;
Borodin, Filmus, and Oren 2010; Kostka, Oswald, and Wat-
tenhofer 2008; Bharathi, Kempe, and Salek 2007). Further-
more, these works focus on complexity results instead of
equilibrium strategy generation. Hung et al. (2011) and
Howard (2010) also address the COIN problem. However,
Hung et al. (2011) assume a static adversary and Howard
(2010) solves for local pure strategy equilibria. These are
very restrictive assumptions that do not reflect real con-
straints of the adversary.

Example Domain and Problem Definition
While many domains feature a competitive scenario on a
network with diffusion effects, we will use counterinsur-
gency as an example domain to illustrate our methods.
Specifically, the counterinsurgency domain includes one
player that is attempting to win the support of the popula-
tion to their cause while the second player attempts to thwart
the first player’s efforts (Hung, Kolitz, and Ozdaglar 2011;
Howard 2011; Hung 2010). Each player is assumed to pos-
sess the ability to win local leaders over to their side via ac-
tivities such as providing security, medical supply, or help-
ing to build infrastructure. Furthermore, each leader has a
known probability of influencing other leaders to support

their affiliated player. Prior work has noted the immense
size of the problem faced by military leaders engaging in
counterinsurgency. Specifically, Hung (2010) notes that in
Afghanistan, a single battalion with 5-30 teams is responsi-
ble for an area consisting of approximately 300-500 leaders.

The two-player interaction is modeled as a influence
blocking maximization (IBM). An IBM takes place on an
undirected graph G = (V,E). One player, the attacker,
will attempt to maximize the number of nodes supporting his
cause while the second player, the defender will attempt to
mitigate the attacker’s influence. Vertices in the graph repre-
sent local leaders that each player can affect and edges rep-
resent the influence of one local leader on another. Specifi-
cally, each edge e = (n,m) has an associated probability
pe that leader n will influence leader m to side with n’s
chosen player. Only uninfluenced nodes are eligible to be
influenced.

Each player must decide upon a strategy to choose an ac-
tion, also referred to as a seed set, where an action is a sub-
set of the nodes in the graph (Sa, Sd ⊆ V). The size of
the subset, (|Sa| = ra, |Sd| = rd), is given and models
the resource constraint of the player. Nodes in Sa support
the attacker and nodes in Sd support the defender, except
nodes in Sa ∩ Sd which have a 50% chance of supporting
each player. The influence then propagates synchronously,
where at time step t0 only the initial nodes have been influ-
enced and at t1 each edge incident to nodes in Sa ∪ Sd is
‘activated’ probabilistically. Uninfluenced nodes incident to
activated edges become supporters of the influencing node’s
player. If a single uninfluenced node is incident to activated
edges from both player’s nodes, the node has a 50% chance
of being influenced by each player in that time step. Propa-
gation continues until no new nodes are influenced.

For a given pair of actions, the attacker’s payoff in an IBM
is equal to the expected number of nodes that will support
the attacker and the defender’s payoff is exactly the opposite
of the attacker’s. The natural solution concept for such a
zero-sum game is the Nash equilibrium mixed strategy over
their pure strategies (subsets of nodes of size ra or rd). The
resulting mixed strategy can then be sampled each time the
counterinsurgency team is deployed. Our propagation model
implicitly assumes that the opinions of local leaders resets
between deployments to reflect the difficulty of maintaining
local support.

Double Oracle Approach
Traditionally, zero-sum games such as the one we have mod-
eled are solved with a Maximin linear program. In our do-
main, however, the action spaces for each player are too
large to store in memory for anything but trivial problem
sizes, necessitating an alternate approach. The one elected in
Tsai et. al (2012) involves an iterative approach that builds
the action sets incrementally and is known as a double oracle
algorithm.

The double oracle algorithm features a Maximin linear
program at the core which solves for the equilibrium strate-
gies for each player given the current action set. It also pos-
sesses two oracles, one for the attacker and one for the de-
fender, that each produce a best-response action to the cur-

rent opponent strategy. At each iteration, then, the Maximin
linear program solves for the current equilibrium strategies
and passes this as input to each of the oracles that each return
with a new action to add. These new actions are added into
the current action set for each player and the Maximin linear
program is run again. This repeats until convergence, which
occurs when neither oracle is able to find a best-response
that is superior to the equilibrium strategy found by the Max-
imin linear program. The algorithm is outlined formally in
Algorithm 1.

Algorithm 1 DOUBLE ORACLE ALGORITHM

1: Initialize D with random defender allocations.
2: Initialize A with random attacker allocations.
3: repeat
4: (ρd, ρa) = MaximinLP(D,A)
5: D = D ∪ {DefenderOracle(ρa)}
6: A = A ∪ {AttackerOracle(ρd)}
7: until convergence
8: return (ρd, ρa)

The double oracle algorithm, when using two optimal
best-response oracles, has been shown to converge to the
Maximin Nash equilibrium (McMahan, Gordon, and Blum
2003). However, with heuristic oracles, the algorithm be-
comes a best-response dynamics method that no longer pro-
vides runtime or quality guarantees. Thus, the purpose of
this work is to evaluate the performance of the proposed
heuristic techniques under a wide range of parameters and
identify key trends that would inform their use in practical
application.

LSMI Oracle
In studying contagion, a measure of payoff values must be
specified. Here we adopt the commonly used metric in influ-
ence maximization which is the expected number of nodes
that have been influenced by each player. In our particular
zero-sum game, the expected number of nodes that will be
influenced by the attacker is the relevant measure of reward.
Under the independent cascade model of propagation that
we have used in this work, it has been shown that even de-
termining the expected influence of one player is #P-Hard
(Chen, Wang, and Wang 2010), necessitating approximate
or heuristic techniques for larger problem sizes. A com-
monly proposed method involves Monte Carlo simulations
of the propagation process for, typically, 10,000-20,000 tri-
als to reliably estimate the expected influence. Theoretically,
the Monte Carlo process can guarantee an arbitrarily small
error bound with sufficient trials (Kempe, Kleinberg, and
Tardos 2003). To find a best-response, as each of the or-
acles must do, the Monte Carlo technique can be used to
determine the payoff of all possible actions and the best can
be chosen. However, this is prohibitively slow, so an ap-
proximate best-response technique was used by Budak et.
al (2011) that continues to use the Monte Carlo estimation
technique.

The LSMI oracle implements the best-response tech-
nique used by Budak et. al (2011), but uses a heuristic esti-
mate of the actual payoff of a given pair of actions to replace

the Monte Carlo estimation technique. The algorithm for
the heuristic estimate is given in Algorithm 2 and is based
on the idea of ignoring low probability influences. Note that
because L-Eval(·) is a heuristic estimation of influence prop-
agation instead of an ε-approximation as the Monte Carlo
scheme is, the algorithm no longer guarantees an approxi-
mation bound on the best-response generated.

Algorithm 2 L-Eval(V, Sa, Sd)
1: InfV alue = 0
2: for v ∈ (V − Sa − Sd) do
3: N = GetVerticesWithinθ(v) ∩ (Sa ∪ Sd)
4: /* Prioritize sources by lowest hop-distance to v*/
5: S =makePriorityQueue(N)
6: pa = 0, pd = 0
7: while S 6= ∅ do
8: s = S.poll()
9: if (s ∈ Sa) then

10: pa = pa + (1− pa − pd)· Prob(s, v), pd = pd
11: else /* s must be in Sd */
12: pd = pd + (1− pa − pd)· Prob(s, v), pa = pa
13: end if
14: end while
15: InfV alue = InfV alue+ pa
16: end for
17: return InfV alue

In L-Eval(·), V is the set of n’s local nodes and Sa/Sd are
the attacker/defender source sets. Due to the addition of n,
we must recalculate the expected influence of each v ∈ V .
First, we determine all the nearby nodes that impact a given
v by calling GetVerticesWithinθ(v). Since only sources ex-
ert influence, we intersect this set with the set of all sources
and compile them into a priority queue ordered from lowest
hop-distance to greatest. pa and pd represent the probability
that the attacker/defender successfully influences the given
node. From the nearest source, we aggregate the conditional
probabilities in order. If the next nearest source is an attacker
source, then pa is increased by the probability that the new
source succeeds, conditional on the failure of all closer de-
fender and attacker sources. The probability that all closer
sources failed is exactly (1 - pa + pd). If the next nearest
source is a defender source, then a similar update is per-
formed. The algorithm iterates through all impacted nodes
and returns the total expected influence. For readers inter-
ested in how the heuristic is incorporated into the algorithm
from Budak et. al (2011), more detail is given in Tsai et. al
(2012).

PAGERANK Oracle
PageRank is a popular algorithm to rank webpages (Brin
and Page 1998), which we adapted due to its frequent use in
influence maximization as a benchmark heuristic. The un-
derlying idea is to give each node a rating that captures the
power it has for spreading influence that is based on its con-
nectivity. For the purposes of describing PageRank, we will
refer to directed edges eu,v and ev,u for every undirected
edge between u and v. For each edge eu,v , set a weight
wu,v = pe/pv where pv =

∑
e pe over all edges incident

to v. The rating or ‘rank’ of a node u, τu =
∑

v wu,v · τv

Figure 1: Preliminary test, r = 10, avg. = 0.3, s.d. = 0.1

for all non-source nodes v adjacent to u. The exclusion of
source nodes is performed because u cannot spread its influ-
ence through a source node.

For the PAGERANK oracle, since the defender’s goal is to
minimize the attacker’s influence, the defender oracle will
focus on nodes incident to attacker sources Na = {n|n ∈
V ∧∃en,m,m ∈ Sa}. Specifically, ordering the nodes ofNa

by decreasing rank value, the top rd nodes will be chosen as
the best response. In the attacker’s oracle phase, the attacker
will simply choose the nodes with the highest ranks. Unlike
the LSMI oracle, the PAGERANK oracle ignores payoff es-
timation entirely and generates a heuristic best-response to
the current opponent strategy based purely on graph proper-
ties instead. While this results in much faster runtimes, the
quality of solutions generated tend to be lower than those
found by LSMI oracles.

Experiments
Three types of variations were explored in this work. First,
we varied the size of the graph and kept all other parameters
constant. Second, we varied the average contagion proba-
bility in the graphs at three separate graph sizes. Finally, we
varied the standard deviation of the contagion probability
in the graphs and again tested these at three separate graph
sizes. All experiments featured a randomly generated scale-
free graph, 10 resources per player (Sd, Sa = 10), and con-
tagion probabilities on edges that were drawn from a nor-
mal distribution. Scale-free graphs were chosen due to their
widespread use as proxies for general social networks and
were generated according to the principle of ‘preferential
attachment’ as introduced by Barabasi and Albert (1999).
Our particular implementation adds edges between exist-
ing vertices and newly added vertices with a probability of
p = (deg(v) + 1) / (|E|+ |V |)1. 100 trials were run for every
data point shown.

Figure 1 shows a preliminary test that was conducted to
provide a benchmark for the quality results. It shows the
reward for the defender when each of the four algorithms
is used as well as when no defender is present as well for
graphs of size 80, 160, and 240 and with the average con-

1http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/
generators/random/BarabasiAlbertGenerator.html

(a) Runtime (b) Quality

Figure 2: Scale-up results, r = 10, avg. = 0.3, s.d. = 0.1

tagion probability set to 0.3, 0.5, and 0.7. As was done in
previous work, the reward reported is the reward achiev-
able by an adversary that best-responds to our algorithm’s
generated defender strategy by calculating the approximate
best-response via the algorithm proposed by Budak et. al
(2011). The solution is guaranteed to be within 1

e of optimal,
making it a more consistent basis for comparison than any
heuristic best-response. This reward was chosen because
determining the optimal best-response for an attacker re-
quired far more than 20 minutes for each best-response. As
mentioned, the graph sizes tested were limited to 260 nodes
because for larger graphs even calculating the approximate
best-response outlined above begins to take longer than 20
minutes as well.

As can be seen, all of the algorithms provide at least a
30-40% improvement in reward obtained as opposed to hav-
ing no defender present across all of the cases tested. Since
this was intended as a preliminary justification for the algo-
rithms, we will provide more in-depth analysis of the solu-
tion quality of the algorithms in the following subsections.

Graph size scale-up
The first set of experiments explored the impact of scaling
up the size of the graph alone. Specifically, the four al-
gorithms (all combinations of the LSMI and PAGERANK
oracles) were run on randomly generated scale-free graphs
with 80-260 nodes in increments of 20, with 10 resources
and contagion probabilities drawn from a normal distribu-
tion N (0.3, 0.1). Graph sizes were limited to 260 nodes
because the adversary best-response technique used to de-
termine the defender’s reward became too cumbersome for
larger graphs.

Figure 2a shows the impact on runtime as the graph size
is scaled up. As can be seen, the solution technique that
features two LSMI oracles (DOLL) requires the longest run
time at 40-50 seconds for all of the game sizes tested. Inter-
estingly, there did not appear to be a consistent increase in
runtime as was observed in the other 3 algorithms (each of
which had at least one PAGERANK oracle). The other 3 al-
gorithms were much faster, all requiring less than 30 seconds
with a consistent trend as the graph size increases. DOPL re-
quires more time than DOLP because of the fact that the de-
fender PAGERANK oracle explicitly adapts to the attacker’s
strategy (only uses nodes adjacent to attacker nodes), while
the attacker PAGERANK oracle does not. Previous work

(a) Action set size (b) Support set size

Figure 3: Scale-up results, r = 10, avg. = 0.3, s.d. = 0.1

explored scaling to larger graphs with more resources, but
since this is not the focus of our work, we refer the inter-
ested reader to Tsai et. al (2012).

Figure 2b shows the impact on solution quality as the
graph size is scaled up. Unsurprisingly, as the size of the
graph increases, it becomes increasingly difficult for the de-
fender to block the adversary’s influence spread and the de-
fender receives a correspondingly lower reward. As was
seen in previous work, we also observe a large difference
between algorithms that use a LSMI oracle for the defender
as opposed to a PAGERANK oracle for the defender, with the
latter providing much lower rewards. This is expected, due
to the higher sophistication of the LSMI defender oracle as
was noted in previous work.

Figure 3a shows the final number of actions in the de-
fender’s action set as the size of the graph is increased. The
action set is defined as the number of actions available to the
defender in the CoreLP phase of the double oracle algorithm
and is exactly the number of new best-responses that have
been found by the defender oracle. In the worst case, this
would include all possible actions in the game, but as can
be seen is generally far smaller, making the problem much
more tractable. The attacker’s action set size was always ex-
tremely similar if not identical to the defender’s action set
size.

Figure 3b shows a similar metric and features the number
of actions in the support set of the final defender strategy.
The support set is the set of actions that have non-zero prob-
ability in the final mixed strategy. Again, the final attacker
support set size was always extremely similar if not identical
to the defender’s.

As can be seen, both the action set and the support set
sizes are much larger with the DOLL algorithm than for any
of the other algorithms. This is due to the sophistication of
the LSMI oracles as opposed to the PAGERANK oracle. The
PAGERANK oracles converge extremely quickly to a small
set of actions and often do not generate new actions in re-
sponse to new adversary strategies. This is especially true
for the PAGERANK attacker oracle, since the defender ora-
cle actually chooses nodes directly adjacent to the attacker.
Thus, even when only one PAGERANK oracle is used, the
algorithm overall converges quickly. The DOLL algorithm
is iterating many more times than algorithms featuring the
PAGERANK oracle, leading to the previous runtime result
with DOLL being far slower than the other algorithms.

(a) Runtime (b) Quality

Figure 4: Contagion probability average results, s.d. = 0.1

Furthermore, the trends seen in both Figure 3a and b show
the size of the final action set and support set decreasing as
the graph size is increased. This is due to the fact that as
the graph grows larger, very few actions are useful for the
defender to use to defend against the spread of the attacker’s
influence. For the attacker, randomization becomes less es-
sential for the same reason. Thus, both players converge to
a very small set of actions for the final mixed strategy.

Contagion probability: Average
To explore the impact of changing the contagion probabil-
ities on the four algorithms, we tested three different con-
tagion probability averages for three separate graph sizes.
Specifically, we ran all four algorithms with the contagion
probabilities drawn from normal distributions N (0.3, 0.1),
N (0.5, 0.1), and N (0.7, 0.1). The graph sizes tested were
80, 160, and 240 node random scale-free graphs with 10 re-
sources allowed per player. We measured the same 4 metrics
as in the previous section: runtime, solution quality, action
set size, and support set size.

Figure 4a shows the results pertaining to runtime. The
x-axis is divided into three sets of three bars each. Each
set represents one setting for the contagion probability av-
erage (0.3, 0.5, 0.7) while each bar represents the runtime
result for one algorithm. At averages of 0.5 and 0.7, con-
sistent trends can be seen, with larger graphs taking longer
and higher probabilities leading to longer runtimes for al-
gorithms with LSMI oracles. This is because LSMI ora-
cles speed up heuristic estimation by calculating only high
probability influences, but when contagion probabilities are
higher, this leads to many more nodes that must be processed
by the algorithm.

For the case of 0.3, however, the trend is not consistent
for the DOLL algorithm. Experiments suggest that with low
contagion probabilities, two LSMI oracles continually find
new best-responses to each other’s strategies. This occurs
because at low contagion probabilities, different parts of the
graph interact minimally and the attacker is able to move to
‘new’ nodes and entirely avoid the defender, resulting in a
cat-and-mouse game that requires many more iterations to
converge than when a PAGERANK oracle is used.

Figure 4b shows the reward for the defender using the
same approximate best-response technique described previ-
ously. Unsurprisingly, larger graphs lead to lower reward
for the defender because it is harder to defend. Higher con-

(a) Action set size (b) Support set size

Figure 5: Contagion probability average results, s.d. = 0.1

Figure 6: Contagion probability s.d. results, avg. = 0.3

tagion probabilities also result in lower defender rewards for
the same reason.

As we noticed in the scale-up experiments, larger graphs
lead to fewer actions in the action set as well as the final
support set, as shown in Figures 5a and b. As mentioned, at
the lowest contagion probability tested (0.3), the action and
support set sizes are very large for DOLL, causing very high
runtimes due to the many iterations required to generate the
observed action sets.

Contagion probability: Standard deviation
Next we tested variations of the standard deviation of the
normal distribution that the contagion probabilities on edges
are drawn from. Specifically, we ran all four algorithms with
the contagion probabilities drawn from normal distributions
N (0.3, 0.0), N (0.3, 0.05), N (0.3, 0.1), and N (0.3, 0.15).
These results, however, did not show statistically significant
differences in the results when the standard deviation was
changed under the particular parameter settings we tested.
We only show the runtime results in Figure 6 to support this
claim, but the quality, action set size, and support set size
results all looked similarly homogenous across the different
standard deviations tested.

Conclusion
Previous research in game-theoretic contagion blocking pro-
posed heuristic algorithms to scale to realistic domain sizes.
In this work, we perform a thorough investigation of the at-
tributes of these algorithms and the solutions they generate
by systematically varying the graph size, contagion proba-

bility distribution’s average, and contagion probability dis-
tribution’s standard deviation. Our experiments reveal that
when the graph size increases, all of the algorithms con-
verge in fewer iterations because the defender becomes un-
able to find strong blocking actions. Interestingly, low con-
tagion probabilities provided difficult problem instances be-
cause the attacker could continuously find new actions that
avoided the entire set of current defender actions until a suf-
ficient number of actions had been added to both players’
action sets, thereby requiring many iterations to converge.
For the LSMI oracle, which increases in complexity as con-
tagion probabilities are increased, this results in low conta-
gion probability problems requiring high runtimes (due to
more iterations), high contagion probability problems also
requiring high runtimes (due to more time required per iter-
ation), and a relatively easy middle region.

While these findings serve as a much more thorough in-
vestigation of the behavior of these heuristic algorithms, ad-
ditional avenues for future analysis clearly exist. For ex-
ample, only scale-free graphs were used in this work. While
this is accepted as a good approximation for general-purpose
social networks, many other social network structures have
been observed in the literature. Also, sociologists have noted
the importance of structural factors in the social networks
such as the clustering coefficient, skew of degree distribu-
tion, degree correlation, and path lengths on the contagion
behavior. In future work we will analyze the algorithms on
graphs across the spectrum of these metrics and design new
heuristics tailored for specific parts of the parameter space
that remain challenging for existing methods.

Acknowledgments
This research was supported by the United States Depart-
ment of Homeland Security through the National Center for
Risk and Economic Analysis of Terrorism Events (CRE-
ATE) under award number 2010-ST-061-RE0001. Any
opinions, findings, conclusions or recommendations herein
are those of the authors and do not reflect views of the United
States Department of Homeland Security, or the University
of Southern California, or CREATE.

References
[1999] Barabási, A.-L., and Albert, R. 1999. Emergence of
Scaling in Random Networks. Science 286(5439):509–512.

[2011] Basilico, N., and Gatti, N. 2011. Automated abstrac-
tions for patrolling security games. In AAAI.

[2011] Beardsley, K. 2011. Peacekeeping and the contagion
of armed conflict. The Journal of Politics 73(4):1051–1064.

[2007] Bharathi, S.; Kempe, D.; and Salek, M. 2007.
Competitive influence maximization in social networks. In
WINE, 306–311.

[2010] Borodin, A.; Filmus, Y.; and Oren, J. 2010. Thresh-
old models for competitive influence in social networks. In
WINE, 539–550.

[1998] Brin, S., and Page, L. 1998. The anatomy of a large-
scale hypertextual web search engine. Computer Networks
30:107–117.

[2011] Budak, C.; Agrawal, D.; and Abbadi, A. E. 2011.
Limiting the spread of misinformation in social networks.
In WWW, 665–674.

[2010] Chen, W.; Wang, C.; and Wang, Y. 2010. Scalable in-
fluence maximization for prevalent viral marketing in large-
scale social networks. In KDD, 1029–1038.

[2012] Goyal, S., and Kearns, M. 2012. Competitive conta-
gion in networks. In STOC.

[2009] Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-
step multi-sensor hider-seeker games. In IJCAI, 159–166.

[2011] He, X.; Song, G.; Chen, W.; and Jiang, Q. 2011. In-
fluence blocking maximization in social networks under the
competitive linear threshold model technical report. CoRR
abs/1110.4723.

[2011] Howard, N. J. 2011. Finding optimal strategies for
influencing social networks in two player games. Masters
thesis, MIT, Sloan School of Management.

[2011] Hung, B. W. K.; Kolitz, S. E.; and Ozdaglar, A. E.
2011. Optimization-based influencing of village social net-
works in a counterinsurgency. In SBP, 10–17.

[2010] Hung, B. W. K. 2010. Optimization-Based Selec-
tion of Influential Agents in a Rural Afghan Social Network.
Masters thesis, MIT, Sloan School of Management.

[2011] Jain, M.; Korzhyk, D.; Vanek, O.; Conitzer, V.; Pe-
choucek, M.; and Tambe, M. 2011. A double oracle algo-
rithm for zero-sum security games on graphs. In AAMAS,
327–334.

[2003] Kempe, D.; Kleinberg, J. M.; and Tardos, É. 2003.
Maximizing the spread of influence through a social net-
work. In KDD, 137–146.

[2008] Kostka, J.; Oswald, Y. A.; and Wattenhofer, R. 2008.
Word of mouth: Rumor dissemination in social networks. In
SIROCCO, 185–196.

[2007] Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.;
VanBriesen, J. M.; and Glance, N. S. 2007. Cost-effective
outbreak detection in networks. In KDD, 420–429.

[2003] McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003.
Planning in the presence of cost functions controlled by an
adversary. In ICML, 536–543.

[2011] Pita, J.; Tambe, M.; Kiekintveld, C.; Cullen, S.; and
Steigerwald, E. 2011. Guards - game theoretic security al-
location on a national scale. In AAMAS.

[2012] Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.;
DiRenzo, J.; Maule, B.; and Meyer, G. 2012. Protect: A
deployed game theoretic system to protect the ports of the
united states. In AAMAS.

[2009] Trusov, M.; Bucklin, R. E.; and Pauwels, K. 2009. Ef-
fects of word-of-mouth versus traditional marketing: Find-
ings from an internet social networking site. Journal of Mar-
keting 73.

[2012] Tsai, J.; Nguyen, T. H.; and Tambe, M. 2012. Secu-
rity games for controlling contagion. In AAAI.

[2007] U.S. Dept. of the Army and U.S. Marine Corps.
2007. The U.S. Army/Marine Corps Counterinsurgency
Field Manual 3-24. University of Chicago Press.

	Introduction
	Related Work
	Example Domain and Problem Definition
	Double Oracle Approach
	LSMI Oracle
	PageRank Oracle

	Experiments
	Graph size scale-up
	Contagion probability: Average
	Contagion probability: Standard deviation

	Conclusion
	Acknowledgments

