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Abstract— Security is a critical concern around the world. In
many security domains, limited security resources prevent full
security coverage at all times; instead, these limited resources
must be scheduled, avoiding schedule predictability, while
simultaneously taking into account different target priorities,
the responses of the adversaries to the security posture and
potential uncertainty over adversary types.

Computational game theory can help design such unpre-
dictable security schedules. Indeed, casting the problem as a
Bayesian Stackelberg game, we have developed new algorithms
that are now deployed over multiple years in multiple applica-
tions for security scheduling. These applications are leading to
real-world use-inspired research in the emerging research area
of “security games’’; specifically, the research challenges posed
by these applications include scaling up security games to large-
scale problems, handling significant adversarial uncertainty,
dealing with bounded rationality of human adversaries, and
other interdisciplinary challenges.

I. INTRODUCTION

Security is a critical concern around the world that arises in
protecting our ports, airports, transportation or other critical
national infrastructure from adversaries, in protecting our
wildlife and forests from poachers and smugglers, and in
curtailing the illegal flow of weapons, drugs and money;
and it arises in problems ranging from physical to cyber-
physical systems. In all of these problems, we have limited
security resources which prevent full security coverage at all
times; instead, limited security resources must be deployed
intelligently taking into account differences in priorities of
targets requiring security coverage, the responses of the
attackers to the security posture and potential uncertainty
over the types, capabilities, knowledge and priorities of
attackers faced.

Game theory is well-suited to adversarial reasoning for se-
curity resource allocation and scheduling problems. Casting
the problem as a Bayesian Stackelberg game, new algorithms
have been developed for efficiently solving such games that
provide randomized patrolling or inspection strategies. These
algorithms have led to some initial successes in this challenge
problem arena, leading to advances over previous approaches
in security scheduling and allocation, e.g., by addressing key
weaknesses of predictability of human schedulers. These al-
gorithms are now deployed in multiple applications: ARMOR
has been deployed at the Los Angeles International Airport
(LAX) since 2007 to randomize checkpoints on the roadways
entering the airport and canine patrol routes within the airport
terminals [32]; IRIS, a game-theoretic scheduler for random-
ized deployment of the US Federal Air Marshals (FAMS)
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requiring significant scale-up in underlying algorithms, has
been in use since 2009 [37]; PROTECT, which uses a new set
of algorithms based on quantal-response is deployed in the
port of Boston for randomizing US coast guard patrolling [3],
[35]; PROTECT has been deployed in the port of Boston since
April 2011 and is now in use at the port of New York;
GUARDS is under evaluation for national deployment by
the US Transportation Security Administration (TSA) [33],
and TRUSTS is being tested by the Los Angeles Sheriffs
Department (LASD) in the LA Metro system to schedule
randomized patrols for fare inspection [45]. These initial
successes point the way to major future applications in a
wide range of security arenas; with major research challenges
in scaling up our game-theoretic algorithms, to addressing
human adversaries’ bounded rationality and uncertainties in
action execution and observation, as well as in preference
elicitation and multiagent learning.

This paper will provide an overview of the models and
algorithms, key research challenges and a brief description
of our successful deployments. While initial research has
made a start, a lot remains to be done; yet these are large-
scale interdisciplinary research challenges that call upon
multiagent researchers to work with researchers in other
disciplines, be “on the ground” with domain experts, and
examine real-world constraints and challenges that cannot
be abstracted away.

II. STACKELBERG SECURITY GAMES

Security problems are increasingly studied using Stack-
elberg games, since Stackelberg games can appropriately
model the strategic interaction between a defender and an
attacker. Stackelberg games were first introduced to model
leadership and commitment [41], and are now widely used
to study security problems ranging from “police and rob-
bers” scenario [13], computer network security [27], missile
defense systems [8], and terrorism [34]. Models for arms
inspections and border patrolling have also been modeled
using inspection games [5], a related family of Stackelberg
games.

The wide use of Stackelberg games has inspired theoretic
and algorithmic progress leading to the development of
fielded applications. These algorithms are central to many
fielded applications, as described in Section III. For example,
DoBss [30], an algorithm for solving Bayesian Stackelberg
games, is central to a fielded application in use at the
Los Angeles International Airport [32]. Similarly, Conitzer
and Sandholm [12] give complexity results and algorithms
for computing optimal commitment strategies in Bayesian



Stackelberg games, including both pure and mixed-strategy
commitments. This chapter provides details on this use of
Stackelberg games for modeling security domains. We first
give a generic description of security domains followed by
security games, the model by which security domains are
formulated in the Stackelberg game framework.

A. Security Domains

In a security domain, a defender must perpetually defend
a set of targets using a limited number of resources, whereas
the attacker is able to surveil and learn the defender’s strategy
and attacks after careful planning. This fits precisely into the
description of a Stackelberg game if we map the defender to
the leader’s role and the attacker to the follower’s role [5],
[9]. An action, or pure strategy, for the defender represents
deploying a set of resources on patrols or checkpoints, e.g.
scheduling checkpoints at the LAX airport or assigning
federal air marshals to protect flight tours. The pure strategy
for an attacker represents an attack at a target, e.g., a flight.
The strategy for the leader is a mixed strategy, a proba-
bility distribution over the pure strategies of the defender.
Additionally, with each target are also associated a set of
payoff values that define the utilities for both the defender
and the attacker in case of a successful or a failed attack.
These payoffs are represented using the security game model,
described next.

B. Security Games

In a security game, a set of four payoffs is associated with
each target. These four payoffs are the reward and penalty to
both the defender and the attacker in case of a successful or
an unsuccessful attack, and are sufficient to define the utilities
for both players for all possible outcomes in the security
domain. Table I shows an example security game with two
targets, t; and t5. In this example game, if the defender
was covering (protecting) target ¢; and the attacker attacked
t1, the defender would get 10 units of reward whereas the
attacker would receive —1 units.

Defender Attacker
Target | Covered | Uncovered | Covered | Uncovered
t1 10 0 -1 1
to 0 -10 -1 1
TABLE I

EXAMPLE SECURITY GAME WITH TWO TARGETS.

Security games make the assumption that it is always
better for the defender to cover a target as compared to
leaving it uncovered, whereas it is always better for the
attacker to attack an uncovered target. This assumption is
consistent with the payoff trends in the real-world. Another
crucial feature of the security games is that the payoff of an
outcome depends only on the target attacked, and whether
or not it is covered by the defender [24]. The payoffs do not
depend on the remaining aspects of the defender allocation.
For example, if an adversary succeeds in attacking target ¢,
the penalty for the defender is the same whether the defender

was guarding target to or not. Therefore, from a payoff
perspective, many resource allocations by the defender are
identical. This is exploited during the computation of a
defender strategy: only the coverage probability of each
target is required to compute the utilities of the defender
and the attacker.

The Bayesian extension to the Stackelberg game allows for
multiple types of players, with each associated with its own
payoff values [30], [17]. Bayesian games are used to model
uncertainty over the payoffs and preferences of the players;
indeed more uncertainty can be expressed with increasing
number of types. For the security games of interest, there is
only one leader type (e.g., only one police force), although
there can be multiple follower types (e.g., multiple attacker
types trying to infiltrate security). Each follower type is
represented using a different payoff matrix. The leader does
not know the follower’s type, but knows the probability
distribution over them. The goal is to find the optimal mixed
strategy for the leader to commit to, given that the defender
could be facing any of the follower types.

C. Solution Concept: Strong Stackelberg Equilibrium

The solution to a security game is a mixed strategy for
the defender that maximizes the expected utility of the
defender, given that the attacker learns the mixed strategy
of the defender and chooses a best-response for himself.
This solution concept is known as a Stackelberg equilib-
rium [26]. However, the solution concept of choice in all
deployed applications is a strong form of the Stackelberg
equilibrium [7], which assumes that the follower will always
break ties in favor of the leader in cases of indifference.
This is because a strong Stackelberg equilibrium (SSE) exists
in all Stackelberg games, and additionally, the leader can
always induce the favorable strong equilibrium by selecting
a strategy arbitrarily close to the equilibrium that causes
the the follower to strictly prefer the desired strategy [42].
Indeed, SSE is the mostly commonly adopted concept in
related literature [12], [30], [29].

A SSE for security games is informally defined as follows
(the formal definition of SSE is not introduced for brevity,
and can instead be found in [24]):

Definition 1: A pair of strategies form a Strong Stackel-
berg Equilibrium (SSE) if they satisfy:

1) The defender plays a best-response, that is, the de-
fender cannot get a higher payoff by choosing any
other strategy.

2) The attacker play a best-response, that is, given a
defender strategy, the attacker cannot get a higher
payoff by attacking any other target.

3) The attacker breaks ties in favor of the leader.

III. DEPLOYED AND EMERGING SECURITY
APPLICATIONS

We now talk about five successfully deployed applications
that use the concept of strong Stackelberg Equilibrium to
suggest security scheduling strategies to the defender in
different real-world domains.



A. ARMOR for Los Angeles International Airport

Los Angeles International Airport (LAX) is the largest
destination airport in the United States and serves 60-70
million passengers per year. The LAX police use diverse
measures to protect the airport, which include vehicular
checkpoints, police units patrolling the roads to the terminals,
patrolling inside the terminals (with canines), and security
screening and bag checks for passengers. The application
of game-theoretic approach is focused on two of these
measures: (1) placing vehicle checkpoints on inbound roads
that service the LAX terminals, including both location and
timing, and (2) scheduling patrols for bomb-sniffing canine
units at the different LAX terminals. The eight different
terminals at LAX have very different characteristics, like
physical size, passenger loads, foot traffic or international
versus domestic flights. These factors contribute to the dif-
fering risk assessments of these eight terminals. Furthermore,
the numbers of available vehicle checkpoints and canine units
are limited by resource constraints. Thus, it is challenging to
optimally allocate these resources to improve their effective-
ness while avoiding patterns in the scheduled deployments.

The ARMOR system (Assistant for Randomized Monitor-
ing over Routes) focuses on two of the security measures at
LAX (checkpoints and canine patrols) and optimizes security
resource allocation using Bayesian Stackelberg games. Take
the vehicle checkpoints model as an example. Assume that
there are n roads, the police’s strategy is placing m < n
checkpoints on these roads where m is the maximum number
of checkpoints. The adversary may potentially choose to
attack through one of these roads. ARMOR models different
types of attackers with different payoff functions, represent-
ing different capabilities and preferences for the attacker.
ARMOR uses DOBSS (Decomposed Optimal Bayesian Stack-
elberg Solver) [30] to compute the defender’s optimal strat-
egy. ARMOR has been successfully deployed since August
2007 at LAX [32], [19].

B. 1RI1S for US Federal Air Marshals Service

The US Federal Air Marshals Service (FAMS) allocates
air marshals to flights originating in and departing from the
United States to dissuade potential aggressors and prevent an
attack should one occur. Flights are of different importance
based on a variety of factors such as the numbers of pas-
sengers, the population of source/destination, international
flights from different countries, and special events that can
change the risks for particular flights at certain times. Secu-
rity resource allocation in this domain is significantly more
challenging than for ARMOR: a limited number of air mar-
shals need to be scheduled to cover thousands of commercial
flights each day. Furthermore, these air marshals must be
scheduled on tours of flights that obey various constraints
(e.g., the time required to board, fly, and disembark). Simply
finding schedules for the marshals that meet all of these
constraints is a computational challenge. Our task is made
more difficult by the need to find a randomized policy that
meets these scheduling constraints, while also accounting for
the different values of each flight.

(a) PROTECT is being used in (b)
Boston

Extending
PROTECT to NY

Fig. 1. USCG boats patrolling the ports of Boston and NY

Against this background, the IRIS system (Intelligent
Randomization In Scheduling) has been developed and has
been deployed by FAMS since October 2009 to randomize
schedules of air marshals on international flights. In IRIS,
the targets are the set of n flights and the attacker could
potentially choose to attack one of these flights. The FAMS
can assign m < n air marshals that may be assigned to
protect these flights.

Since the number of possible schedules exponentially
increases with the number of flights and resources, DOBSS
is no longer applicable to the FAMS domain. Instead, IRIS
uses the much faster ASPEN algorithm [16] to generate the
schedule for thousands of commercial flights per day. IRIS
also uses an attribute-based preference elicitation system to
determine reward values for the Stackelberg game model.

C. PROTECT for US Coast Guard

The US Coast Guard’s (USCG) mission includes maritime
security of the US coasts, ports, and inland waterways; a
security domain that faces increased risks due to threats
such as terrorism and drug trafficking. Given a particular
port and the variety of critical infrastructure that an attacker
may attack within the port, USCG conducts patrols to protect
this infrastructure; however, while the attacker has the oppor-
tunity to observe patrol patterns, limited security resources
imply that USCG patrols cannot be at every location 24/7.
To assist the USCG in allocating its patrolling resources,
the PROTECT (Port Resilience Operational / Tactical En-
forcement to Combat Terrorism) model has been designed
to enhance maritime security. It has been in use at the
port of Boston since April 2011, and now is also in use
at the port of New York (Figure 1). Similar to previous
applications ARMOR and IRIS, PROTECT uses an attacker-
defender Stackelberg game framework, with USCG as the
defender against terrorists that conduct surveillance before
potentially launching an attack.

The goal of PROTECT is to use game theory to assist the
USCG in maximizing its effectiveness in the Ports, Water-
ways, and Coastal Security (PWCS) Mission. PWCS patrols
are focused on protecting critical infrastructure; without the
resources to provide one hundred percent on scene presence
at any, let alone all, of the critical infrastructure, optimization
of security resource is critical. Towards that end, unpre-
dictability creates situations of uncertainty for an enemy
and can be enough to deem a target less appealing. The
PROTECT system, focused on the PWCS patrols, addresses



how the USCG should optimally patrol critical infrastructure
in a port to maximize protection, knowing that the attacker
may conduct surveillance and then launch an attack. While
randomizing patrol patterns is key, PROTECT also addresses
the fact that the targets are of unequal value, understanding
that the attacker will adapt to whatever patrol patterns USCG
conducts. The output of PROTECT is a schedule of patrols
which includes when the patrols are to begin, what critical
infrastructure to visit for each patrol, and what activities to
perform at each critical infrastructure.

While PROTECT builds on previous work, it offers key
innovations. First, this system is a departure from the as-
sumption of perfect attacker rationality noted in previous
work, relying instead on a quantal response model [28] of
the attacker’s behavior. Second, to improve PROTECT’s effi-
ciency, a compact representation of the defender’s strategies
is used by exploiting equivalence and dominance. Finally,
the evaluation of PROTECT for the first time provides real-
world data: (i) comparison of human-generated vs PROTECT
schedules, and (ii) results from an Adversarial Perspective
Team’s (human mock attackers) analysis. The PROTECT
model is now being extended to the port of New York and
it may potentially be extended to other ports in the US.

D. GUARDS for US Transportation Security Agency

The United States Transportation Security Administration
(TSA) is tasked with protecting the nation’s over 400 airports
which services approximately 28,000 commercial flights
and up to approximately 87,000 total flights per day. To
protect this large transportation network, the TSA employs
approximately 48,000 Transportation Security Officers, who
are responsible for implementing security activities at each
individual airport. While many people are aware of common
security activities, such as individual passenger screening,
this is just one of many security layers TSA personnel
implement to help prevent potential threats [38], [39]. These
layers can involve hundreds of heterogeneous security ac-
tivities executed by limited TSA personnel leading to a
complex resource allocation challenge. While activities like
passenger screening are performed for every passenger, the
TSA cannot possibly run every security activity all the time.
Thus, while the resources required for passenger screening
are always allocated by the TSA, it must also decide how to
appropriately allocate its remaining security officers among
the layers of security to protect against a number of potential
threats, while facing challenges such as surveillance and an
adaptive attacker as mentioned before.

To aid the TSA in scheduling resources to protect airports,
a new application called GUARDS (Game-theoretic Unpre-
dictable and Randomly Deployed Security) has been devel-
oped. While GUARDS also utilizes Stackelberg games as
ARMOR and IRIS, GUARDS faces three key challenges [33]:
1) reasoning about hundreds of heterogeneous security ac-
tivities; 2) reasoning over diverse potential threats; and 3)
developing a system designed for hundreds of end-users.
To address those challenges, GUARDS created a new game-
theoretic framework that allows for heterogeneous defender

activities and compact modeling of a large number of threats
and developed an efficient solution technique based on
general-purpose Stackelberg game solvers. GUARDS is cur-
rently under evaluation and testing for scheduling practices
at an undisclosed airport. If successful, the TSA intends to
incorporate the system into their unpredictable scheduling
practices nationwide.

E. TRUSTS for Urban Security in Transit Systems

In some urban transit systems, including the Los An-
geles Metro Rail system, passengers are legally required
to purchase tickets before entering but are not physically
forced to do so (Figure 2). Instead, security personnel are
dynamically deployed throughout the transit system, ran-
domly inspecting passenger tickets. This proof-of-payment
fare collection method is typically chosen as a more cost-
effective alternative to direct fare collection, i.e., when the
revenue lost to fare evasion is believed to be less than what
it would cost to directly preclude it.

Take the Los Angeles Metro as an example. With ap-
proximately 300,000 riders daily, this revenue loss can be
significant; the annual cost has been estimated at $5.6
million [14]. The Los Angeles Sheriffs Department (LASD)
deploys uniformed patrols on board trains and at stations
for fare-checking (and for other purposes such as crime
prevention), in order to discourage fare evasion. With limited
resources to devote to patrols, it is impossible to cover
all locations at all times. The LASD thus requires some
mechanism for choosing times and locations for inspections.
Any predictable patterns in such a patrol schedule are likely
to be observed and exploited by potential fare-evaders. The
LASD’s current approach relies on humans for scheduling
the patrols. However, human schedulers are poor at gener-
ating unpredictable schedules; furthermore such scheduling
for LASD is a tremendous cognitive burden on the human
schedulers who must take into account all of the scheduling
complexities (e.g., train timings, switching time between
trains, and schedule lengths).

The TRUSTS system (Tactical Randomization for Urban
Security in Transit Systems) models the patrolling problem
as a leader-follower Stackelberg game [20]. The leader
(LASD) pre-commits to a mixed strategy patrol (a probability
distribution over all pure strategies), and riders observe this
mixed strategy before deciding whether to buy the ticket
or not. Both ticket sales and fines issued for fare evasion
translate into revenue for the government. Therefore the
optimization objective for the leader is to maximize total
revenue (total ticket sales plus penalties). Urban transit
systems, however, present unique computational challenges
since there are exponentially many possible patrol strategies,
each subject to both the spatial and temporal constraints
of travel within the transit network under consideration. To
overcome this challenge, TRUSTS uses a compact representa-
tion which captures the spatial as well as temporal structure
of the domain. The LASD is currently testing TRUSTS in
the LA Metro system by deploying patrols according to the
generated schedules and measuring the revenue recovered.
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Fig. 2. TRUSTS for transit systems

F. Future Applications

Beyond the deployed and emerging applications above are
a number of different application areas. One such area of
great importance is securing urban city networks, transporta-
tion networks, computer networks and other network centric
security domains. For example, after the terrorist attacks
in Mumbai of 2008 [11], the Mumbai police have started
setting up vehicular checkpoints on roads. We can model
the problem faced by the Mumbai police as a security game
between the Mumbai police and an attacker. In this urban
security game, the pure strategies of the defender correspond
to allocations of resources to edges in the network—for
example, an allocation of police checkpoints to roads in the
city. The pure strategies of the attacker correspond to paths
from any source node to any target node—for example, a
path from a landing spot on the coast to the airport.

Another area is protecting forests [21], where we must
protect a continuous forest area from extractors by patrols
through the forest that seek to deter such extraction activity.
With limited resources for performing such patrols, a patrol
strategy will seek to distribute the patrols throughout the
forest, in space and time, in order to minimize the resulting
amount of extraction that occurs or maximize the degree
of forest protection. This problem can be formulated as a
Stackelberg game and the focus is on computing optimal
allocations of patrol density [21].

The Stackelberg game framework can also be applied
to adversarial domains that exhibit ‘contagious’ actions for
each player. For example, word-of-mouth advertising/viral
marketing has been widely studied by marketers trying to
understand why one product or video goes ‘viral’ while
others go unnoticed [36]. Counter-insurgency is the contest
for the support of the local leaders in an armed conflict
and can include a variety of operations such as providing
security and giving medical supplies. Just as in word-of-
mouth advertising and peacekeeping operations, these efforts
carry a social effect beyond the action taken that can cause
advantageous ripples through the neighboring population.
Moreover, multiple intelligent parties attempt to leverage the
same social network to spread their message, necessitating
an adversary-aware approach to strategy generation. Game-
theoretic approaches can be used to generate resource allo-
cations strategies for such large-scale, real world networks.
This interaction can be modeled as a graph with one player
attempting to spread influence while the other player attempts

to stop the probabilistic propagation of that influence by
spreading their own influence. This ‘blocking’ problem mod-
els situations faced by governments/peacekeepers combatting
the spread of terrorist radicalism and armed conflict with
daily/weekly/monthy visits with local leaders to provide
support and discuss grievances [15].

Game-theoretic methods are also appropriate for model-
ing resource allocation in cybersecurity [1] such as packet
selection and inspection for detecting potential threats in
large computer networks [40]. The problem of attacks on
computer systems and corporate computer networks gets
more pressing each year as the sophistication of the attacks
increases together with the cost of their prevention. A
number of intrusion detection and monitoring systems are
being developed, e.g., deep packet inspection method that
periodically selects a subset of packets in a computer network
for analysis. However, there is a cost associated with the
deep packet inspection, as it leads to significant delays in
the throughput of the network. Thus, the monitoring system
works under a constraint of limited selection of a fraction of
all packets which can be inspected. The attacking/protecting
problem can be formulated as a game between two players:
the attacker (or the intruder), and the defender (the detection
system) [40]. The intruder wants to gain control over (or
to disable) a valuable computer in the network by scan-
ning the network, hacking into a more vulnerable system,
and/or gaining access to further devices on the computer
network. The actions of the attacker can therefore be seen
as sending malicious packets from a controlled computer
(termed source) to a single or multiple vulnerable computers
(termed targets). The objective of the defender is to prevent
the intruder from succeeding by selecting the packets for
inspection, identifying the attacker, and subsequently thwart-
ing the attack. However, packet inspections cause unwanted
latency and hence the defender has to decide where and
how to inspect network traffic in order to maximize the
probability of a successful malicious packet detection. The
computational challenge is efficiently computing the optimal
defending strategies for such network scenarios [40].

IV. SCALING UP TO REAL-WORLD PROBLEM SIZES

Real world problems, like the FAMS and urban road
networks, present billions of pure strategies to both the
defender and the attacker. Such large problem instances
cannot even be represented in modern computers, let alone
solved using previous techniques. We have proposed models
and algorithms that compute optimal defender strategies for
massive real-world security domains [16], [18], [17]. In this
section we describe one particular algorithm ASPEN, that
computes strong Stackelberg equilibria (SSE) in domains
with a very large number of pure strategies (up to billions
of actions) for the defender [16].

As an example, let us consider the problem faced by the
FAMS. There are currently tens of thousands of commercial
flights flying each day, and public estimates state that there
are thousands of air marshals that are scheduled daily by
the FAMS [23]. Air marshals must be scheduled on tours of



flights that obey logistical constraints (e.g., the time required
to board, fly, and disembark). An example of a schedule is
an air marshal assigned to a round trip from Los Angeles to
New York and back.

ASPEN [16] casts this problem as a security game, where
the attacker can choose any of the flights to attack, and each
air marshal can cover one schedule. Each schedule here is a
feasible set of targets that can be covered together; for the
FAMS, each schedule would represent a flight tour which
satisfies all the logistical constraints that an air marshal
could fly. A joint schedule then would assign every air
marshal to a flight tour, and there could be exponentially
many joint schedules in the domain. A pure strategy for
the defender in this security game is a joint schedule. As
mentioned previously, ASPEN employs strategy generation
since all the defender pure strategies cannot be enumerated
for such a massive problem. ASPEN decomposes the problem
into a master problem and a slave problem, which are then
solved iteratively. Given a number of pure strategies, the
master solves for the defender and the attacker optimization
constraints, while the slave is used to generate a new pure
strategy for the defender in every iteration.
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Fig. 3.  Strategy generation employed in ASPEN: The schedules for a
defender are generated iteratively. The slave problem is a novel minimum-
cost integer flow formulation that computes the new pure strategy to be
added to P; J4 is computed and added in this example.

The iteratively process is graphically depicted in Figure 3.
The master operates on the pure strategies (joint schedules)
generated thus far , which are represented using the matrix
P. Each column of P, J;, is one pure strategy (or joint
schedule). An entry P;; in the matrix P is 1 if a target ¢; is
covered by joint-schedule J;, and 0 otherwise. The objective
of the master problem is to compute x, the optimal mixed
strategy of the defender over the pure strategies in P. The
objective of the slave problem is to generate the best joint
schedule to add to P. The best joint schedule is identified
using the concept of reduced costs [6], which measures
if a pure strategy can potentially increase the defender’s
expected utility (the details of the approach are provided
in [16]). While a naive approach would be to iterate over
all possible pure strategies to identify the pure strategy with
the maximum potential, ASPEN uses a novel minimum-cost
integer flow problem to efficiently identify the best pure
strategy to add. ASPEN always converges on the optimal
mixed strategy for the defender.

Employing strategy generation for large optimization prob-
lems is not an “out-of-the-box™ approach, the problem has to

be formulated in a way that allows for domain properties to
be exploited. The novel contribution of ASPEN is to provide a
linear formulation for the master and a minimum-cost integer
flow formulation for the slave, which enable the application
of strategy generation techniques. Additionally, ASPEN also
provides a branch-and-bound heuristic to reason over attacker
actions. This branch-and-bound heuristic provides a further
order of magnitude speed-up, allowing ASPEN to handle the
massive sizes of real-world problems.

V. OPEN RESEARCH ISSUES

While the deployed applications have advanced the state
of the art, significant future research remains to be done. In
the following, we highlight some key research challenges,
including scalability, robustness, human adversary modeling,
and mixed-initiative optimization. The main point we want to
make is that this research does not require access to classified
information of any kind. Problems, solution approaches and
datasets are well specified in the papers discussed below,

Scalability: The first research challenge is improving
the scalability of our algorithms for solving Stackelberg
(security) games. The strategy space of both the defender
and the attacker in these games may exponentially increase
with the number of security activities, attacks, and resources.
As we scale up to larger domains, it is critical to develop
newer algorithms that scale up significantly beyond the
limits of the current state of the art of Bayesian Stackelberg
solvers. Driven by the growing complexity of applications,
a sequence of algorithms for solving security games have
been developed including DOBSS [30], ERASER [24], AS-
PEN [16], HBGS [17] and RUGGED [18]. However, existing
algorithms still cannot scale up to very large scale domains
such as scheduling randomized checkpoints in cities (while
RUGGED computes optimal solutions much faster than any
of the previous approaches, much work remains to be done
for it to be applicable on a large urban road network).

Robustness: The second challenge is improving solu-
tions’ robustness. Classical game theory solution concepts
often make assumptions on the knowledge, rationality, and
capability (e.g., perfect recall) of players. Unfortunately,
these assumptions could be wrong in real-world scenarios.
Therefore, while computing the defender’s optimal strategy,
algorithms should take into account various uncertainties
faced in the domain, including payoff noise [25], execu-
tion/observation error [44], uncertain capability [4]. While
there are algorithms for dealing with different types of
uncertainties, there is no general algorithm/framework that
can deal with different types of uncertainty simultaneously.
Furthermore, existing work assumes that the attacker knows
(or with a small noise) the defender’s strategy and there is
no formal framework to model the attacker’s belief update
process and how it makes tradeoffs in consideration of
surveillance cost, which remains an open issue.

One required research direction with respect to robustness
is addressing bounded rationality of human adversaries,
which is a fundamental problem that can affect the per-
formance of our game theoretic solutions. Recently, there



has been some research on applying ideas (e.g., prospect
theory [22], and quantal response [28]) from social sci-
ence or behavioral game theory within security game al-
gorithms [43], [31]. Previous work usually applies existing
frameworks and sets the parameters of these frameworks
by experimental tuning or learning. However, in real-world
security domains, we may have very limited data, or may
only have some limited information on the biases displayed
by adversaries. It is thus still a challenging problem to build
high fidelity human attacker models that can address human
bounded rationality. Furthermore, since real-world human
attackers are sometimes distributed coalitions of socially,
culturally and cognitively-biased agents, we may need sig-
nificant interdisciplinary research to build in social, cultural
and coalitional biases into our adversary models.
Mixed-Initiative Optimization: Another challenging re-
search problem in security games is mixed-initiative op-
timization in which human users and software assistants
collaborate to make security decisions [2]. There often exist
different types of constraints in security applications. For
instance, the defender always has resource constraints, e.g.,
the numbers of available vehicle checkpoints, canine units, or
air marshals. In addition, human users may place constraints
on the defender’s actions to affect the output of the game
when they are faced with exceptional circumstances and
extra knowledge. For instance, in the ARMOR system there
could be forced checkpoints (e.g., when the Governor is
flying) and forbidden checkpoints. Existing applications sim-
ply compute the optimal solution to meet all the constraints
(if possible). Unfortunately, these user defined constraints
may lead to poor (or infeasible) solutions due to the users’
bounded rationality and insufficient information about how
constraints affect the solution quality. Significantly better
solution quality can be obtained if some of these constraints
can be relaxed. However, there may be infinitely many ways
of relaxing constraints and the software assistant may not
know which can be relaxed and by how much, as well as
the real-world consequences of relaxing some constraints.
Thus, it is promising to adopt a mixed-initiative approach
in which human users and software assistants collaborate
to make security decisions. However, designing an efficient
mixed-initiative optimization approach is not trivial and
there are five major challenges. First, the scale of security
games and constraints prevent us from using an exhaustive
search algorithm to explore all constraint sets. Second, the
user’s incomplete information regarding the consequences of
relaxing constraints requires preference elicitation support.
Third, the decision making of shifting control between the
user and the software assistant is challenging. Fourth, it is
difficult to evaluate the performance of a mixed-initiative
approach. Finally, it is a challenging problem to design good
user interfaces for the software assistant to explain how
constraints affect the solution quality. What remains to be
done for the mixed-initiative approach includes sensitivity
analysis for understanding how different constraints affect
the solution quality, inference/learning for discovering direc-
tions of relaxing constraints, search for finding constraint sets

to explore, preference elicitation for finding the human user’s
preference of different constraint sets, and interface design
for explaining the game theoretic solver’s performance.
Multi-Objective Optimization: In existing applications
such as ARMOR, IRIS and PROTECT, the defender is trying
to maximize a single objective. However, there are domains
where the defender has to consider multiple objectives simul-
taneously. For example, the Los Angeles Sheriff’s Depart-
ment (LASD) needs to protect the city’s metro system from
ticketless travelers, common criminals, and terrorists. From
the perspective of LASD, each one of these attacker types
provides a unique threat (lost revenue, property theft, and loss
of life). Given this diverse set of threats, selecting a security
strategy is a significant challenge as no single strategy can
minimize the threat for all attacker types. Thus, tradeoffs
must be made and protecting more against one threat may
increase the vulnerability to another threat. However, it
is not clear how LASD should weigh these threats when
determining the security strategy to use. One could attempt
to establish methods for converting the different threats into a
single metric. However, this process can become convoluted
when attempting to compare abstract notions such as safety
and security with concrete concepts such as ticket revenue.
Multi-objective security games (MOSG) have been pro-
posed to address the challenges of domains with multiple
incomparable objectives [10]. In an MOSG, the threats
posed by the attacker types are treated as different objective
functions which are not aggregated, thus eliminating the
need for a probability distribution over attacker types. Unlike
Bayesian security games which have a single optimal solu-
tion, MOSGs have a set of pareto-optimal (non-dominated)
solutions which is referred to as the Pareto frontier. By
presenting the Pareto frontier to the end user, they are able
to better understand the structure of their problem as well
as the trade-offs between different security strategies. As a
result, end users are able to make a more informed decision
on which strategy to enact. It is challenging to develop
algorithms for solving multi-objective security games with
multiple attacker objectives and uncertain attacker payoffs.
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