
Designing Optimal Patrol Strategy for Protecting
Moving Targets with Multiple Mobile Resources

Fei Fang, Albert Xin Jiang, Milind Tambe
{feifang,jiangx,tambe}@usc.edu

University of Southern California
Los Angeles, CA, 90089

Abstract. Previous work on Stackelberg Security Games for scheduling secu-
rity resources has mostly assumed that the targets are stationary relative to the
defender and the attacker, leading to discrete game models with finite numbers of
pure strategies. This paper in contrast focuses on protecting mobile targets that
lead to a continuous set of strategies for the players. The problem is motivated
by several real-world domains including protecting ferries with escorts and pro-
tecting refugee supply lines. Our contributions include: (i) a new game model for
multiple mobile defender resources and moving targets with a discretized strat-
egy space for the defender and a continuous strategy space for the attacker; (ii)
an efficient linear-program-based solution that uses a compact representation for
the defender’s mixed strategy, while accurately modeling the attacker’s continu-
ous strategy using a novel sub-interval analysis method; (iii) a heuristic method
of equilibrium refinement for improved robustness and (iv) detailed experimental
analysis in the ferry protection domain.

Keywords: Continuous Strategy Set, Moving Targets, Two Dimensional Movement

1 Introduction

Stackelberg security games have been successfully deployed in a number of infrastruc-
ture security applications [1], most recently in the TRUSTS system in use by the Los
Angeles Sheriff’s department [2]. In these games, the leader (defender) commits to a
randomized schedule – a probability distribution over deterministic schedules – and the
follower (attacker) then surveils the distribution and then plays a best response.

This paper focuses on modeling patrolling domains with a mobile set of targets. The
attacker can attack these targets at any time during their movement, leading to a contin-
uous set of strategies in the resulting game. The defender has a set of mobile patroller(s)
to protect these targets. As opposed to previous work [3,4,5], our contributions include
computing optimal strategies for the defender while reasoning about the attacker’s con-
tinuous strategy set without discretization. This work further models target values that
vary depending on location and time and assumes a zero-sum game. The defender’s
objective is to schedule the mobile patrol resources to minimize attacker’s maximum
expected utility.

2

Fang et al. [6] has discussed this problem with the following contributions. The
first contribution of the paper is a novel game model called MRMTsg for this prob-
lem of multiple Mobile Resources protecting Moving Targets. MRMTsg is an attacker-
defender Stackelberg game model with a continuous set of strategies for the players,
particularly for the attacker. More specifically, while the defender’s strategy space is
also continuous, it is discretized for three reasons. Firstly, the space of mixed strategies
for the defender would then have infinite dimensions, which makes exact computation
infeasible. Secondly, in practice, the patrollers are not able to have such fine-grained
control over their vehicles, which makes the actual defender’s strategy space effective-
ly a discrete one. Finally, the discretized defender strategy is still valid in the original
game with continuous strategy space for the defender, so the solution calculated under
our formulation gives a guarantee in terms of expected utility for the original contin-
uous game. On the other hand, discretizing the attacker’s strategy space can be highly
problematic: if we assume the attacker could only attack at certain descretized time
points, the actual attacker could attack at some other time point, leading to a possibly
worse outcome for the defender.

The second contribution is CASS (Solver for Continuous Attacker Strategies), an
efficient linear program to exactly solve MRMTsg. Despite discretization, the defender
strategy space still has an exponential number of pure strategies. This shortcoming is
overcome by compactly representing the defender’s mixed strategies as marginal proba-
bility variables. On the attacker side, CASS exactly and efficiently models the attacker’s
continuous strategy space using sub-interval analysis, exploiting the piecewise linear
nature of the attacker’s expected utility function. Our third contribution is focused on
equilibrium refinement. Our game has multiple equilibria, and the defender strategy
found by CASS can be suboptimal with respect to uncertainties in the attacker’s model,
e.g., if the attacker can only attack during certain time intervals. A heuristic equilibrium
refinement approach is presented for the game.

In this paper, we will briefly introduce the MRMTsg model, the linear-program-
based solution and provide the generalized solution when the game is extended to a
two-dimensional space. 1

2 Related Work

As mentioned before, Stackelberg games have been widely applied to security domain-
s [2]. However, most of this work has considered static targets [1]. Even when the play-
ers are mobile, e.g. in hider-seeker games [7], infiltration games [8] or search games [9],
the models have considered static targets if any. Additionally, even when the targets
were mobile, e.g., trains [2], the players were restricted to move along the targets to
protect or attack them (the targets there are in essence stationary).

With respect to related work computing defender strategies for patrolling domains,
Noah et al. [3] compute strategies for setting up a perimeter patrol in adversarial set-

1 A preliminary version of this work appears as the conference paper[6]. We extend the work
with the following new features: both DASS and CASS are extended to two-dimensional s-
pace; we add more experimental results in the ferry protection domain for two-dimensional
scenario.

3

tings with mobile patrollers. Similarly, Basilico et al. [5] compute the leader-follower
equilibrium for robotic patrolling in environments with arbitrary topologies. In the same
way, Johnson et al. [10] propose a continuous game model for protecting forests from
illegal logging. However, in contrast to our problem, the targets are stationary in all this
related work.

Bosansky et al. have studied the problem of protecting moving targets [4], similar to
our domain. However, they considered a model in which the defender, the attacker and
targets have discretized movements on a directed graph. We, in our work, generalize the
strategy space of the attacker to the continuous realm and compute optimal strategies
even in such a setting. Furthermore, while we provide an efficient and scalable linear
formulation, Bosanky et al. presented a formulation with non-linear constraints that
faced scaling problems even with a single defender resource.

3 Problem Statement

One major example of the practical domains motivating this paper is the problem of
protecting ferries that carry passengers in many waterside cities. Packed with hundreds
of passengers, these may present attractive targets to attack (e.g., with a small boat
packed with explosives that may be only detected once it gets close to the ferry). Small,
fast patrol boats can provide protection to such ferries (Figure 1(a)), but there are often
limited numbers of patrol boats, i.e., they cannot protect the ferries at all times at all
locations. Other examples include protecting refugee aid convoys with overhead UAVs.

(a)

� ��

� �

�

� �

(b)

Fig. 1. (a) Protecting ferries with patrol boats; (b) Example with three targets (triangles) and two
patrollers (squares). Patroller P1 is protecting F2 and P2 is protecting F3.

Domain description. In this problem, there are L moving targets, F1, F2, ..., FL
2.

We assume that these targets move along a one-dimensional domain, specifically a s-
traight line segment linking two terminal points which we will name A and B (an
illustrative instance is shown in Figure 1(b)). This is sufficient to capture real-world
domains such as ferries moving back-and-forth in a straight line between two terminals
as they do in many ports around the world. The targets have fixed daily schedules. The
schedule of each target can be described as a continuous function Sq : T → D where
q = 1, ..., L is the index of the target, T = [0, 1] represents the continuous time inter-
val of a typical day (normalized) and D = [0, 1] is the continuous space of possible

2 A table of all notations can be found in the online appendix (http://mrmt.webs.com/).

4

locations (normalized) with 0 corresponding to terminal A and 1 terminal B. So Sq(t)
denotes the position of the target Fq at a specified time t. We assume Sq is piecewise
linear.

The defender has W mobile patrollers that can move along D to protect the targets,
denoted as P1, P2, ..., PW . Although faster than the targets, they have a maximum speed
vm (range of velocity is [−vm, vm]). The attacker will choose a certain time and a
certain target to attack. The probability of attack success depends on the positions of
the patrollers at that time. Specifically, each patroller can detect and try to intercept
anything within the protection radius re but cannot detect the attacker prior to that
radius. Thus, a patroller protects all targets within her protective circle of radius re
(centered at her current position), as in Figure 1(b)). Symmetrically, a target is protected
by all patrollers whose protective circles can cover it. If the attacker attacks a protected
target, then the probability of successful attack is a decreasing function of the number
of patrollers that are protecting the target. Formally, we use a set of coefficients {CG}
to describe the strength of the protection.

Definition 1. Let G ∈ {1, ...,W} be the total number of patrollers protecting a target
Fq , i.e., there are G patrollers such that Fq is within radius re of each of the G pa-
trollers. Then CG ∈ [0, 1] specifies the probability that the patrollers can successfully
stop the attacker. We require that CG1

≤ CG2
if G1 ≤ G2, i.e., more patrollers offer

stronger protection.

As with previous work in security games [1,2], we model the game as a Stackelberg
game, where the defender commits to a randomized strategy first, and then the attacker
can respond to such a strategy. The patrol schedules in these domains are currently cre-
ated by hand; and hence suffer the drawbacks of hand-drawn patrols, including lack of
randomness (in particular, informed randomness) and reliance on simple patrol patterns
[1], which we remedy in this paper. (In the rest of the paper, we denote the defender
with “she” and the attacker with “he”).

Defender strategy. A pure strategy of defender is to designate a moving schedule
for each patroller. Analogous to the target’s schedule, a patroller’s schedule can be
written as a continuous function Ru : T → D where u = 1, ...,W is the index the
patroller. Ru must be compatible with the patroller’s velocity range.

Attacker strategy. The attacker conducts surveillance of the defender’s mixed strat-
egy and the targets’ schedules; he may then execute a pure strategy response to attack
a certain target at a certain time. The attacker’s pure strategy can be denoted as (Fq, t)
where Fq is the target to attack and t is the time to attack.

Utilities. We assume the game is zero-sum. If the attacker performed a successful
attack on target Fq at location x at time t, he gets a positive reward Uq(x, t) and the
defender gets −Uq(x, t), otherwise both players get utility zero. The positive reward
Uq(x, t) is a known function which accounts for many factors in practice. For example,
an attacker may be more effective in his attack when the target is stationary (such as at
a terminal point) than when the target is in motion. As the target’s position is decided
by the schedule, the utility function can be written as Uq(t) ≡ Uq(Sq(t), t). We assume
Uq(t) can be represented as a piecewise linear function of t for each target Fq (we will
show an example in Section 7).

5

4 Models

In this section, we introduce our MRMTsg model that uses a discretized strategy space
for the defender and a continuous strategy space for the attacker. For clarity of exposi-
tion, we then introduce DASS approach to compute a minimax solution for discretized
attacker strategy space (Section 4.2), followed by CASS for the attacker’s continuous
strategy space (Section 4.3). We first assume a single patroller and then generalize to
multiple patrollers in Section 4.4. Since our game is zero-sum, we use minimax (mini-
mizing the maximum attacker utility) which returns the same solution as Strong Stack-
elberg Equilibrium [11,12] for MRMTsg.

4.1 Representing Defender’s Strategies

Since the defender’s strategy space is discretized, we assume that each patroller only
makes changes at a finite set of time points T = {t1, t2, ..., tM}, evenly spaced across
the original continuous time interval. t1 = 0 is the starting time and tM = 1 is the
normalized ending time. We denote by δt the distance between two adjacent time points:
δt = tk+1 − tk = 1

M−1 . We require δt to be small enough such that for each target Fq ,
the utility function Uq(t) and the moving schedule Sq(t) are linear within each interval
[tk, tk+1] for k = 1, . . . ,M − 1, i.e., the target is moving with uniform speed and
linearly changing utility during each of these intervals.

In addition to discretization in time, we also discretize the line segmentAB3 that the
targets move along a set of points D = {d1, d2, ..., dN} and restrict each patroller to be
located at one of the discretized points di at any discretized time point tk. During each
time interval [tk, tk+1], each patroller moves with constant speed from her location di
at time tk to her location dj at time tk+1. The points d1, d2, ..., dN are ordered by their
distance to terminal A, and d1 refers to A and dN refers to B. Since the time interval
is discretized into M points, a patroller’s route Ru (Ru is, in essence, a mapping of
T → D) can be represented as a vector Ru = (dRu(1), dRu(2), ..., dRu(M)). Ru(k) is
the index of the discretized distance point where the patroller is located at time tk.

For a single defender resource in the full representation, the defender’s mixed strat-
egy assigns a probability to each of the patrol routes that can be executed. If vm is large
enough, there are in total NM patrol routes, which makes the full representation in-
tractable. Therefore, we use a compact representation of the defender’s mixed strategy
where we represent the defender’s strategy with flow distribution variables {f(i, j, k)}.
f(i, j, k) is the probability of the patroller moving from di at time tk to dj at time
tk+1. The complexity of the compact representation is O(MN2), much more efficient
compared to the full representation. Figure 2 shows a simple example illustrating the
compact representation. Numbers on the edges indicate the value of f(i, j, k). We use
Ei,j,k to denote the directed edge linking nodes (tk, di) and (tk+1, dj). While a simi-
lar compact representation was used earlier in Yin et al. [2], we use it in a continuous
setting.

3 It is possible to have additional points where targets may stop (e.g., to load and unload passen-
gers).

6

����

�� ��

��

��

�
��
��
�
�
�

��� ���
��

Fig. 2. Compact representation: x-axis shows time intervals; y-axis the discretized distance-points
in the one-dimensional movement space.

Any strategy in full representation can be mapped into a compact representation,
and different mixed strategies in full representation can be mapped to the same compact
representation. Table 1 shows a simple example. Rows 1 and 2 show full representation
for two mixed strategies. The probability of a route is labeled on all edges in the route in
full representation. Adding up the numbers of a particular edge Ei,j,k in all routes of a
full representation together, we can get f(i, j, k) for the compact representation (shown
in Figure 2).

Full Representation 1

��� ��� � �

Full Representation 2

��� ��� ��� ���

Table 1. Two full representations that can be mapped into the same compact representation shown
in Figure 2.

This compact representation does not lead to any loss in solution quality. Recall our
goal is to find an optimal defender strategy that minimizes maximum attacker utility.
The attacker expected utility of attacking target Fq at time t given defender strategy f
can be expressed as

AttEUf (Fq, t) = (1− C1ω(Fq, t))Uq(t), (1)

where Uq(t) is the reward for a successful attack, ω(Fq, t) is the probability that the
patroller is protecting target Fq at time t and C1 is the protection coefficient of single
patroller. We drop the subscript if f is obvious from the context. As C1 and Uq(t) are
constants for a given attacker’s pure strategy (Fq, t), AttEU(Fq, t) is purely decided
by ω(Fq, t). As we will show in the next subsection, ω(Fq, t) can be calculated from
the compact representation {f(i, j, k)}. If two defender strategies under the full repre-
sentation are mapped to the same compact representation {f(i, j, k)}, they will have
the same ω function and AttEU for any attacker’s pure strategy (Fq, t). We exploit the
following properties of the compact representation.

7

Property 1. For any time interval [tk, tk+1], the sum of all flow distribution variables
equals to 1:

∑N
i=1

∑N
j=1 f(i, j, k) = 1.

Property 2. The sum of flows that go into a particular node equals the sum of flows that
go out of the node. Denote the sum as p(i, k), then p(i, k) =

∑N
j=1 f(j, i, k − 1) =∑N

j=1 f(i, j, k).

Property 3. Combining Property 1 and 2,
∑N
i=1 p(i, k) = 1.

4.2 DASS: Discretized Attacker Strategies

DASS (Solver for Discretized Attacker Strategies) efficiently finds minimax solutions
for MRMT-based games while constraining the attacker to attack at discretized time
points tk. That is, we need to minimize v where v is the maximum of attacker’s expected
utility. Here, v is the maximum of AttEU(Fq, t) for any target Fq at any discretized time
point tk.

From Equation (1), we know that AttEU(Fq, t) is decided by ω(Fq, t), the proba-
bility that the patroller is protecting target Fq at time t. Given the position of the target
Sq(t), we define the protection range β(Fq, t) = [max{Sq(t) − re, d1},min{Sq(t) +
re, dN}]. If the patroller is located within the range β(Fq, t), the distance between the
target and the patroller is no more than re and thus the patroller is protecting Fq at time
t. So ω(Fq, t) is the probability that the patroller is located within range β(Fq, t) at time
t. For the discretized time points tk, the patroller can only be located at a discretized
distance point di, so we define the following.

Definition 2. I(i, q, k) is a function of two values. I(i, q, k) = 1 if di ∈ β(Fq, tk), and
otherwise I(i, q, k) = 0.

In other words, I(i, q, k) = 1 means that a patroller located at di at time tk is protecting
target Fq . The probability that the patroller is at di at time tk is p(i, k). So we have

ω(Fq, tk) =
∑

i:I(i,q,k)=1
p(i, k), (2)

AttEU(Fq, tk) =

(
1− C1

∑
i:I(i,q,k)=1

p(i, k)

)
Uq(t). (3)

Equation (3) follows from Equations (1) and (2). Finally, we must address speed re-
strictions on the patroller. We can set all flows that are not achievable to zero, that is

8

f(i, j, k) = 0 if |dj − di| > vmδt. Thus, DASS can be formulated as a linear program:

min
f(i,j,k),p(i,k)

v (4)

f(i, j, k) ∈ [0, 1],∀i, j, k (5)
f(i, j, k) = 0,∀i, j, k such that |dj − di| > vmδt (6)

p(i, k) =

N∑
j=1

f(j, i, k − 1),∀i,∀k > 1 (7)

p(i, k) =

N∑
j=1

f(i, j, k),∀i,∀k < M (8)

N∑
i=1

p(i, k) = 1,∀k (9)

v ≥ AttEU(Fq, tk),∀q,∀k (10)

Constraint 5 describes the probability range. Constraint 6 describes the speed limit.
Constraints 7–8 describes Property 2. Constraint 9 is exactly Property 3. Property 1 can
be derived from the other two properties, so it is not listed as a constraint. Equation
(10) shows the attacker chooses the strategy that gives him the maximal expected utility
among all possible attacks at discretized time points; where AttEU(·) is described by
Equation (3).

4.3 CASS: Continuous Attacker Strategies

Unfortunately, DASS’s solution quality guarantee may fail: if the attacker chooses to
attack between tk and tk+1, he may get a higher expected reward than attacking at tk or
tk+1. Consider the following example: Figure 3 shows the defender’s compact strategy
between tk and tk+1. Here the defender’s marginal strategy has only three non-zero
variables f(3, 4, k) = 0.3, f(3, 1, k) = 0.2, and f(1, 3, k) = 0.5, indicated by the set
of three edges E+ = {E3,4,k, E3,1,k, E1,3,k}. There is only one target, which moves
from d3 to d2 at constant speed during [tk, tk+1]. Its schedule is depicted by the straight
line segment S1. The dark lines L1

1 and L2
1 are parallel to S1 with distance re. The

area between them indicates the protection range β(Fq, t) for any time t ∈ (tk, tk+1).
Consider the time points at which an edge from E+ intersects one of L1

1, L2
1 (labeled as

θrk, r = 1 . . . 4 in Figure 3). Intuitively, these are all the time points at which a defender
patrol could potentially enter or leave the protection range of the target. To simplify the
notation, we denote tk as θ0k and tk+1 as θ5k. For example, a patroller moving from d3
to d4 (or equivalently, taking the edge E3,4,k) protects the target from θ0k to θ1k because
E3,4,k is between L1

1 and L2
1 in [θ0k, θ

1
k], during which the distance to the target is less or

equal than protection radius re. Consider the sub-intervals between each θjk and θj+1
k ,

for j = 0 . . . 4. Since within each of these five sub-intervals, no patroller enters or leaves
the protection range, the probability that the target is being protected is a constant in
each sub-interval, as shown in Figure 4(a).

9

����
��
�

��

��
�

����

��

��

��

�
��
��
�
��

��

�	

��

��
�

��
�

��
�

��
	

Fig. 3. Changes of AttEU in (tk, tk+1).

Suppose U(Fq, t) decreases linearly from 2 to 1 during [tk, tk+1] and C1 = 0.8. We
can then calculate the attacker’s expected utility function AttEU(Fq, t) for (tk, tk+1),
as plotted in Figure 4(b). AttEU(Fq, t) is linear in each sub-interval but the function
is discontinuous at the intersection points θ1k, . . . , θ

4
k because of the discontinuity of

ω(Fq, t). We denote:

lim
t→θr−k

AttEU(Fq, t) = AttEU(Fq, θ
r−
k)

lim
t→θr+k

AttEU(Fq, t) = AttEU(Fq, θ
r+
k)

An attacker can choose to attack at a time immediately after θ2k, getting an expected util-
ity that is arbitrarily close to 1.70. According to Equation (3), we can get AttEU(Fq, tk) =
1.20 and AttEU(Fq, tk+1) = 1.00, both lower than AttEU(Fq, θ

2+
k).

�

����

0.20

��
�

��

��
�

��
�

��
�

��
�

����

��
�

0.00

0.50

(a) Probability that the
target is protected in
(tk, tk+1).

�����

����

1.70

1.20

�
�

��

�
�

�
�

�
�

�

�

����

�
�

1.43

1.00

(b) The attacker’s
expected utility in
(tk, tk+1).

Fig. 4. Sub-interval analysis

Thus, the attacker can get a higher expected reward by attacking between tk and
tk+1. However, because of discontinuities in the attacker’s expected utility function, a
maximum might not exist. This implies that the minimax solution concept might not be
well-defined for our game. We thus define our solution concept to be minimizing the
supremum of AttEU(Fq, t). Supremum is defined to be the smallest real number that is
greater than or equal to any AttEU(Fq, t), i.e., it is the least upper bound. In the above

10

example, the supremum of attacker’s expected utility in (tk, tk+1) is AttEU(Fq, θ
1+
k) =

1.70. Formally, a defender strategy f is minimax if f ∈ argminf ′ supAttEUf ′(Fq, t).
We generalize the process above (called sub-interval analysis) to all possible edges

Ei,j,k. We then make use of the piecewise linearity of AttEU(Fq, t) and the fact that
the potential discontinuity points are fixed, which allows us to construct a linear pro-
gram that solves the problem to optimality. We name the approach CASS (Solver for
Continuous Attacker Strategies).

We first introduce the general sub-interval analysis. For any target Fq and any time
interval (tk, tk+1), we calculate the intersection points of edges Ei,j,k and L1

q , L2
q . We

sort the intersection points in increasing order, denoted as θrk, r = 1 . . .Mqk, where
Mqk is the total number of intersection points. Set θ0k = tk and θMqk+1

k = tk+1. Thus
(tk, tk+1) is divided into sub-intervals (θrk, θ

r+1
k), r = 0, ...,Mqk. Define coefficient

Arqk(i, j) to be C1 if edge Ei,j,k is between L1
q and L2

q in (θrk, θ
r+1
k), and 0 otherwise.

According to Equation (1) and the fact that ω(Fq, t) is the sum of f(i, j, k) whose
corresponding coefficient Arqk(i, j) = C1, we have the following equation for t ∈
(θrk, θ

r+1
k).

AttEU(Fq, t) =

1−
N∑
i=1

N∑
j=1

Arqk(i, j)f(i, j, k)

 · Uq(t) (11)

Piecewise linearity of AttEU(Fq, t) means the function is monotonic in each sub-interval
and the supremum can be found at the intersection points. Because of linearity, the
supremum of AttEU in (θrk, θ

r+1
k) can only be chosen from the one-sided limits of the

endpoints, AttEU(Fq, θ
r+
k) and AttEU(Fq, θ

(r+1)−
k). Furthermore, if U(Fq, t) is de-

creasing in [tk, tk+1], the supremum is AttEU(Fq, θ
r+
k) and otherwise it is AttEU(Fq, θ

(r+1)−
k).

In other words, all other attacker’s strategies in (θrk, θ
r+1
k) are dominated by attacking at

time close to θrk or θr+1
k . Thus, CASS adds new constraints to Constraints 5–10 which

consider attacks to occur at t ∈ (tk, tk+1). We add one constraint for each sub-interval
with respect to the possible supremum value in this sub-interval:

min
f(i,j,k),p(i,k)

v (12)

subject to constraints(5..10)

v ≥ max{AttEU(Fq, θ
r+
k),AttEU(Fq, θ

(r+1)−
k)} (13)

∀k = 1..M, q = 1..L, r = 0..Mqk

This linear program stands at the core of CASS. 4

4.4 Generalized Model

To illustrate generalization to the multiple defender resources case, we take two pa-
trollers as an example. If there are two patrollers, the patrol strategy can be represented

4 Readers can refer to the main paper for the algorithm of generating all the constraints repre-
sented by Constraint 13.

11

as {f(i1, j1, i2, j2, k)}. f(i1, j1, i2, j2, k) shows the probability of the first patroller
moving from di1 to dj1 and the second patroller moving from di2 to di2 during time tk
to tk+1, i.e., taking edge Ei1,j1,k and Ei2,j2,k respectively. The corresponding marginal
distribution variable p(i1, i2, k) represents for the probability that the first patroller is at
di1 and the second at di2 at time tk. Protection coefficients C1 and C2 are used when
one or two patrollers are protecting the target respectively. So the attacker’s expected
utility can be written as

AttEU(Fq, t) = (1− (C1 · ω1(Fq, t) + C2 · ω2(Fq, t))) · Uq(t)

ω1(Fq, t) is the probability that only one patroller is protecting the target Fq at time t
and ω2(Fq, t) is the probability that both patrollers are protecting the target. For attacks
that happen at discretized points tk, we can make use of I(i, q, k) in Definition 2 and
I(i1, q, k) + I(i2, q, k) is the total number of patrollers protecting the ferry at time tk.

ω1(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=1
p(i1, i2, k)

ω2(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=2
p(i1, i2, k)

Constraints for attacks occurring in (tk, tk+1) can be calculated in a similar way as
described in Section 4.3, the main difference is to set the values in the coefficient matrix
Arqk(i1, j1, i2, j2) as C2 if both edges Ei1,j1,k and Ei2,j2,k are between L1

q and L2
q .

AttEU(Fq, t) = (1−
∑

i1,j1,i2,j2

Arqk(i1, j1, i2, j2)f(i1, j1, i2, j2, k)) · Uq(t)

For a general case of W defender resources, we can use {f(i1, j1, ..., iW , jW , k)} to
represent the patrol strategy and get the following equations.

AttEU(Fq, t) =

1−
W∑
Q=1

CQ · ωQ(Fq, t)

 · Uq(t)
ωQ(Fq, tk) =

∑
i1,...,iW :

W∑
u=1

I(iu,q,k)=Q
p(i1, . . . , iW , k)

Q is the number of patrollers protecting the target, and is the probability of protection
for the discretized time points tk.

5 Equilibrium Refinement

A game often has multiple equilibria. Since our game is zero-sum, all equilibria achieve
the same objective value. However, if an attacker deviates from his best response, some
equilibrium strategies for the defender may provide better results than others.

Our goal is to improve the defender strategy so that it is more robust against con-
strained attackers while keeping the defender’s expected utility against unconstrained
attackers the same. This task of selecting one from the multiple equilibria of a game is
an instance of the equilibrium refinement problem. 5

5 Readers can refer to the main paper for details on this.

12

6 Extension For Two-Dimensional Space

Both DASS and CASS discussed in Section 4 are based on the fact that both the ferries
and the patrollers are moving along a straight line. However, the transportation system
on the water can be much more complex. Figure 5 shows a part of the route map of
Washington State Ferries, where there are several ferry trajectories. If a number of pa-
troller boats are protecting all the ferries in this area, it is not smart to simply assign a
ferry trajectory to each of the patroller boat and calculate the patrolling strategies sep-
arately according to CASS described in Section 4. As the trajectories are close to each
other, a patrolling strategy that can take into account all the ferries in this area will be
much more efficient, e.g., a patroller can protect a ferry moving from Seattle to Bre-
merton first, and then change direction halfway and protect another ferry moving from
Bainbridge Island back to Seattle.

Fig. 5. Part of route map of Washington State Ferries

So in this section, we extend the previous model to a more complex case, where
the ferries and patrollers are moving on a two-dimensional space and provide the corre-
sponding linear-program-based solution. Again we use single patroller as an example.

Recall in Figure 1(b), a patroller protects all targets within her protective circle of
radius. However, in one-dimensional space, we only cares about the straight lineAB, so
we use β(Fq, t) = [max{Sq(t)−re, d1},min{Sq(t)+re, dN}] to denote the protection
range of Ferry q at time t, which is in essence a line segment. In contrast, the whole
circle need to be considered as the protection range in two-dimensional space and the
protection range can be written as β(Fq, t) = {V = (x, y), ||V − Sq(t)|| <= re}.

6.1 Defender Strategy for 2-D

Similar to the one-dimensional case, we need to discretize the time and space to calcu-
late the patroller’s optimal strategy. The time interval T is discretized into a set of time
points T = {tk}. Let G = (V,E) represents the graph where V is the set of verticals
that the patrollers may be located at the discretized time points tk and E is the set of
feasible edges that the patrollers can take. An edge e ∈ E satisfies the maximum speed
limit of patroller and some other practical constraints (e.g. a small island may block
some edges).

13

6.2 DASS for 2-D

When the attack only happens at the discretized time points, the linear program is almost
identical to the one mentioned in Section 4.2. The only difference is that the nodes are
now in 2-D space. f(i, j, k) represents for the probability that a patroller is moving
from node Vi to Vj during [tk, tk+1]. And we calculate the Euclidean distance in 2-D
space of nodes Vi and Vj .

6.3 CASS for 2-D

When the attacking time t can be chosen from not only the discretized time points tk,
we need to analyze the problem in a similar way as in Section 4.3. The protection radius
is re, which means only patrollers located in the circle whose origin is Sq(t) and radius
is re can protect ferry Fq . As we assume that the ferry will not change its speed and
direction during time [tk, tk+1], the circle will also move along a line in the 2-D space.
If we track the circle in a 3-D space where x and y axis indicates the position in 2-D and
the z axis is the time, we get a surface which is similar to a cylinder. When a patroller
is moving from vertical Vi(∈ V) to vertical Vj during time [tk, tk+1], he can protect
the ferry only when he is within the surface. In the 3-D space we described above,
the patroller’s movement can be represented as a line segment. Intuitively, there will
be at most two intersection points between the line segment and the surface. It can be
proved by actually calculating the exact time of these intersection points. Assume the
patroller is moving from V1 = (x1, y1) to V2 = (x2, y2) and the ferry is moving from
Sq(tk) = (x̂1, ŷ1) to Sq(tk+1) = (x̂2, ŷ2) during [tk, tk+1]. The patroller’s position
at given time t ∈ [tk, tk+1] is denoted as (x, y) and the ferry’s position is denoted as
(x̂, ŷ). Then we have

x =
t− tk

tk+1 − tk
(x2 − x1) + x1, y =

t− tk
tk+1 − tk

(y2 − y1) + y1 (14)

x̂ =
t− tk

tk+1 − tk
(x̂2 − x̂1) + x1, ŷ =

t− tk
tk+1 − tk

(ŷ2 − ŷ1) + ŷ1 (15)

We are looking for the intersection point, or equivalently, we are looking for a time t
such that

(x− x̂)2 + (y − ŷ)2 = r2e (16)

By substituting the symbols with Equations 14–15, and denotingA1 = (x2−x1)−(x̂2−x̂1)
tk+1−tk ,

B1 = x1 − x̂1, A2 = (y2−y1)−(ŷ2−ŷ1)
tk+1−tk , B2 = y1 − ŷ1, then Equation 16 can be simpli-

fied to (A1t−A1tk+B1)
2+(A2t−A2tk+B2)

2 = r2e . Denote C1 = B1−A1tk and
C2 = B2−A2tk, we further simplify the equation to (A1t+C1)

2+(A2t+C2)
2 = r2e ,

that is, (A2
1 + A2

2)t
2 + (2A1C1 + 2A2C2)t+ (C2

1 + C2
2 − r2e) = 0. We can easily get

the two roots of this quadratic equation, which are

ta,b =
−2(A1C1 +A2C2)± 2

√
(A1C1 +A2C2)2 − (A2

1 +A2
2)(C

2
1 + C2

2 − r2e)
2(A2

1 +A2
2)

(17)

14

If ta,b ∈ [tk, tk+1], the patroller’s route intersects with the surface. Once find these
intersection points, it goes back to the analysis in Section 4.3 and we can conclude
that we only need to consider the attacker’s strategies at these intersection points. So
the linear program of DASS and CASS described in Section 4 can be applied a two-
dimensional setting when Constraint 6 is substituted with the following:

f(i, j, k) = 0,∀i, j, k such that ||Vj − Vi|| > vmδt (18)

7 Evaluation

0 10 20 30
0

0.5

1

t − time

d
−

 d
is

ta
nc

e

Ferry1
Ferry2
Ferry3

(a) Schedules of the ferries

0 0.5 1
0

5

10

d − distance

U
 −

 u
til

ity

U
mid

=5

randomized

(b) Attacker utility function
Level1 Level2 Level3 Level4

0

2

4

6

8

A
ve

(S
up

(A
ttE

U
))

NAIVE
DASS
CASS

(c) Solution quality of
different strategies

0 5 10 15 20
0

5

10

15

U
mid

S
up

(A
ttE

U
)

NAIVE
DASS
CASS

(d) Strategies under realistic
utility function

0 10 20 30
0

2

4

6

t − time

A
ttE

U

DASS
CASS

(e) DASS vs CASS

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t − time

d
−

 d
is

ta
nc

e

Patrol Boat 1
Patrol Boat 2

(f) Sampled routes
superimposed on ferry
schedules

Fig. 6. Experimental settings and results

We use an example set in the ferry protection domain and compare the performance
in terms of the attacker’s expected utility AttEU(Fq, t). As it is a zero-sum game, a
lower value of AttEU indicates a higher value of defender’s expected utility.

7.1 Experiments under One-Dimensional Setting

We used the following setting for the experiments, illustrating that this is a complex
spatio-temporal game; rather than a discrete security game as in most previous work.
There are three ferries moving between terminals A and B and the total distance AB =
1. The simulation time is 30 minutes. The schedules of the ferries are shown in Figure
6(a), where the x-axis indicates the time and the y-axis is the distance from terminal A.
Ferry 1 and Ferry 3 are moving from A to B while Ferry 2 is moving from B to A. We
first show results with 2 patrollers (where C1 = 0.8, and C2 = 1.0), and with more
patrollers later.

15

Performance of CASS. We compare the strategies calculated by CASS with DASS
and a baseline strategy. In the baseline strategy, the two patrollers choose a ferry with a
probability of 1/3 (uniformly random) and move alongside it to offer it full protection,
leaving the other two unprotected (strategy observed in practice). First we wished to
stress test CASS by using more complex utility functions than in the realistic case that
follows. Therefore, we tested under 4 different discretization levels (e.g., at level 1,
M = 4, N = 3, and at level 4, M = 16, and N = 11) with random utilities, and at
each discretization level, we created 20 problem instances. Each instance has utilities
uniformly randomly chosen between [0, 10] at discretized points; an example is shown
in dashed lines of Figure 6(b). The x-axis indicates the distance d from terminal A,
the y-axis indicates the utility of a successful attack if the ferry is located at distance
d. In Figure 6(c), x-axis plots the four discretization levels. y-axis plots the average
attacker utility over the 20 instances for baseline, DASS and CASS. CASS is shown to
outperform DASS and baseline (p < 0.01).

Next we turn to more realistic utility function in this ferry domain, which is of U -
shape or inverse U -shape. The solid line in Figure 6(b) shows a sample utility curve
where the attacker gains higher utility closer to the shore. In Figure 6(d), we fix the
utility at the shore as 10, vary the utility in the middle (the floor of the U -shape or the
top of the inverse U -shape), shown on x-axis and compare performance of the strate-
gies in terms of attacker utility on the y-axis. We conclude that 1) The strategy cal-
culated by CASS outperforms the baseline and DASS. 2) DASS may actually achieve
worse results than the baseline. Figure 6(e) gives a more detailed analysis for the one
instance (shown in Figure 6(b) with solid line). The x-axis indicates the time t, and
the y-axis indicates the attacker’s expected utility if he attacks Ferry 1 at time t. For
the strategy calculated by DASS the worst performance at discretized time points is
3.50(AttEU(F1, 20)), however, the supremum of AttEU(F1, t), t ∈ [0, 30] can be as
high as 4.99 (AttEU(F1, 4

+)), which experimentally shows that taking into consid-
eration the attacks between the discretized time points is necessary. For the strategy
calculated by CASS the supremum of AttEU(F1, t) is reduced to 3.82.

Sampled Routes. We now give a pair of sampled routes for two patrollers given the
defender strategy calculated by CASS(See Figure 6(f)). The x-axis indicates the time
and the y-axis is the distance to terminal A. The solid lines show the escorts’ patrol
routes and the dashed lines show the ferries’ schedules.

7.2 Experiments under Two-Dimensional Setting

The settings in 2-D space is more complex and multiple parameters are involved. Here
we only show an example setting, where three terminals (denoted as A,B and C) are
non-collinear in the 2-D space as shown in Figure 7(a). Ferry 1 and Ferry 2 are moving
on the trajectory between Terminal B and C (denoted as Trajectory 1) and Ferry 3 and
Ferry 4 are moving on the trajectory between Terminal B and A (denoted as Trajectory
2). The schedules of the four ferries are shown in Figre 7(b), where the x-axis is the
time and the y-axis is the distance from the common terminal B. Similar to the one-
dimensional scenario in ferry domain, we assume the utility is decided by the ferry’s
position and the utility function is shown in Figre 7(c). The x-axis is the distance from
the common terminal B and the y axis is the utility for the two trajectories respectively.

16

The 2-D space is discretized into grids as shown in Figure 7(a). That is, a patroller will
be located at one of the intersection points of the grid graph at any discretized time
points. The simulation time is 60 minutes and M=13, i.e., tk+1 − tk = 5 minutes. The
speed limit for the patroller is ve = 0.38 and all the available edges that a patroller can
take during [tk, tk+1] is shown in Figure 7(d). The protection radius is set to re = 0.5,
and protection coefficient is C1 = 0.8.

0 1.5 3 4.5

0

1

2

x

y

Terminals in 2D

A

B

C

Trajectory 2

Trajectory 1

(a) Three terminals

0 20 40 60
0

0.2

0.4

0.6

0.8

1

timedi
st

an
ce

 fr
om

 T
er

m
in

al
 B Ferry Schedules

Ferry1
Ferry2
Ferry3
Ferry4

(b) Ferry schedules

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

distance from Terminal B

ut
ili

ty

Utility Function

Ferry Trajectory1
Ferry Trajectory2

(c) Utility function

0 1.5 3 4.5
0

1

2

x

y

Edges Available

(d) Available edges

Fig. 7. An example setting in two-dimensional space

time x y time x y
0 4.5 1 35 1.5 2
5 4.5 1 40 1.5 2
10 4.5 2 45 1.5 2
15 3 1 50 1.5 2
20 4.5 0 55 1.5 2
25 4.5 1 60 1.5 2
30 3 2

Table 2. A sampled patrol route in two dimensional space.

Figure 8(a) and 8(b) shows the performance of DASS and CASS. The x-axis is the
time t, and the y-axis is the attacker expected utility of attacking Ferry q at time t. The

17

0 20 40 60
0

2

4

6

8

time

ex
pe

ct
ed

 u
til

ity

DASS

Ferry1
Ferry2
Ferry3
Ferry4

(a) Solution quality of DASS

0 20 40 60
0

2

4

6

8

time

ex
pe

ct
ed

 u
til

ity

CASS

Ferry1
Ferry2
Ferry3
Ferry4

(b) Solution quality of CASS

0 1.5 3 4.5

0

1

2

x

y
Sampled Route by CASS

start

end

stay

staystaystaystaystay

(c) Sampled routes superimposed on
ferry trajectories

Fig. 8. Experimental results under two-dimensional setting

maximum of AttEU of CASSis 6.1466, 12% lower compared to the result of DASS,
which is 6.9817. Figure 8(c) shows the sampled route given the strategy calculated by
CASS on the 2-D map where the dashed lines represents for the ferry trajectories. The
patroller starts from the node with text “start” and follows the arrowed route, until he
reaches the node with text “end”. He may stay at the nodes with text “stay”. This figure
shows the patrol route in a intuitive way but can be ambiguous. The exact route should
be listed as a table with time and position, as shown in Table 2.

8 Summary

This paper makes several contributions in computing optimal strategies given moving
targets and mobile patrollers: (i) MRMTsg, a game model with continuous attacker s-
trategy set; (ii) a fast solution approach, CASS, based on compact representation and
sub-interval analysis; and (iii) a heuristic method for equilibrium refinement for CASS’s
solutions; and (iv) detailed experimental analysis in the ferry protection domain. CASS
is currently being considered for deployment by the US Coast Guard.

9 Acknowledgements

We thank the USCG officers, and particularly Craig Baldwin, Joe Direnzo and Fran-
cis Varrichio at sector New York, for their exceptional collaboration. This research is

18

supported by US Coast Guard grant HSHQDC-10-D-00019 and MURI grant W911NF-
11-1-0332.

References

1. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press (2011)

2. Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm,
T., Sullivan, J.: TRUSTS: Scheduling randomized patrols for fare inspection in transit sys-
tems. In: IAAI. (2012)

3. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings.
In: ICRA. (2008)

4. Bošanský, B., Lisý, V., Jakob, M., Pěchouček, M.: Computing time-dependent policies for
patrolling games with mobile targets. In: AAMAS. (2011)

5. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in en-
vironments with arbitrary topologies. In: AAMAS. (2009)

6. Fang, F., Jiang, A.X., Tambe, M.: Optimal patrol strategy for protecting moving targets
with multiple mobile resources. In: International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). (2013)

7. Halvorson, E., Conitzer, V., Parr, R.: Multi-step Multi-sensor Hider-Seeker Games. In:
IJCAI. (2009) 159–166

8. Alpern, S.: Infiltration Games on Arbitrary Graphs. Journal of Mathematical Analysis and
Applications 163 (1992) 286–288

9. Gal, S.: Search Games. Academic Press, New York (1980)
10. Johnson, M.P., Fang, F., Tambe, M.: Patrol strategies to maximize pristine forest area. In:

AAAI. (2012)
11. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)
12. Korzhyk, D., Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies

in security resource allocation games. In: AAAI. (2010) 805–810

	Designing Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources

