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Abstract. Despite recent successful real-world deployments of Stackelberg Se-
curity Games (SSGs), scale-up remains a fundamental challenge in this field.
The latest techniques do not scale-up to domains where multiple defenders must
coordinate time-dependent joint activities. To address this challenge, this pa-
per presents two branch-and-price algorithms for solving SSGs, SMARTO and
SMARTH , with three novel features: (i) a column-generation approach that uses
an ordered network of nodes (determined by solving the traveling salesman prob-
lem) to generate individual defender strategies; (ii) exploitation of iterative re-
ward shaping of multiple coordinating defender units to generate coordinated
strategies; (iii) generation of tighter upper-bounds for pruning by solving secu-
rity games that only abide by key scheduling constraints. We provide extensive
experimental results and formal analyses.

1 Introduction

Stackelberg Security Games (SSGs) have been widely applied to real-world security
domains with these applications depending on significant advances in fast algorithms
for SSGs [1, 2]. Yet, scale-up remains a significant issue in advancing the scope of
SSGs.

A major drawback of the current algorithms [3, 1, 4, 5] is their failure to scale-up
in solving games that include joint coordinated activities, which require coordination
in time and/or space, and provide the defender additional benefits. Yet such coordina-
tion is an important aspect of real-world security systems. For example, the PROTECT
application for the US Coast Guard computes patrol routes for protecting ports in the
US [6]; but this application only focuses on one-boat patrols. Yet there are benefits
that may accrue from coordination across multiple boats, e.g., if a target is visited by
a single patrol boat, it may only be 50% effective in detecting (and hence stopping) a
potential attack. The arrival of a second boat may increase the effectiveness to 80% (as
the attacker may be forced to react to a second boat). Yet no SSG algorithm today can
scale-up to handle US Coast Guard coordinated patrols for small or large-scale ports.
Even though such coordination is a critical aspect of other security domains as well,
e.g., airports and border patrols, it has been addressed due to its complexity.

To remedy the challenge of scale-up, this paper makes the following contributions.
First, it presents SMART, Security games with Multiple coordinated Activities and Re-
sources that are Time-dependent, a model extending the framework of security games to



explicitly represent jointly coordinated activities. Second, the paper puts forward an op-
timal algorithm, SMARTO, that computes optimal defender strategies for SMART prob-
lems. Third, the paper discusses a heuristic iterative procedure, SMARTH , that achieves
further speed-up over SMARTO. Both algorithms use a branch-and-price algorithm [7]
to deal with the large strategy space of the domain. Furthermore, these algorithms are
able to exploit the structure of the joint activity coordination problem to gain speed up
based on the following key ideas: (i) use of insights from the Traveling Salesman Prob-
lem to order the search space, especially in SMARTH , while maintaining coordination,
(ii) efficient greedy computation of patrols per resource via iterative reward shaping to
generate a joint patrol, and (iii) generation of tight upper-bounds exploiting schedul-
ing constraints to allow pruning of the search space based on the submodular property
of joint activities. The resulting speed-ups enable us to solve real-world problems of
coordinated joint activities, e.g., the ports of Boston and NY.

2 SMART

A SMART problem instance is defined on a graph Gr = (T,Er), where the vertices T
are the targets and the edges Er represent connectivity between the targets for resource
r. This allows for heterogeneous resources, e.g., boats or helicopters, which have the
same targets but the connectivity between nodes can be different. For each e ∈ Er, τ(e)
represents the time it takes one defender resource to traverse the edge e. As usual with
SSGs [8], for each target t ∈ T , there is an associated reward U cd(t) and penalty Uud (t)
to the defender if t was protected with an effectiveness of 100% and 0% respectively.
Similarly, payoffs U ca(t) and Uua (t) are defined for the attacker, with Uud (t) < U cd(t)
and U ca(t) < Uua (t). The defender has a set of R resources, and each resource can
choose an activity from the set A = {α1, α2, . . . αK}. The notation used in SMART is
described in Table 1.

The attacker’s pure strategy space is the set of all targets, T . Each pure strategy of
the defender is a route for each resource, such that the route starts and ends at a pre-
defined home base tb ∈ T , and the total route length of each individual patrol is upper
bounded by Γr. The pure strategy Xi of one defender resource is a patrol route, which
is represented as an ordered list of 3-tuples Xi = [X1

i , . . . , X
j
i , . . .]. Here, each 3-tuple

Xj
i = (t, α, γ) represents that this defender resource conducts and completes activity

α at target t at time γ, where different activities require different amounts of time and
effectiveness. Each pure strategy is restricted to begin and end at the home base, i.e.
X1
i .t = tb and X |Xi|

i .t = tb. Each route length is upper bounded by Γr, as follows:

traversal time time for activities︷ ︸︸ ︷
|Xi|−1∑
j=1

τ(Xj
i .t,X

j+1
i .t) +

︷ ︸︸ ︷
|Xi|∑
j=1

τ(Xj
i .α)≤ Γr∀Xi (1)

X r is defined as the set of pure strategies for resource r and the set of joint pure
strategies P is given by the cross-product of pure strategies for each resource, i.e.,∏R
r=1{X r}.



R Number of defender resources, subscripted by r
Gr = (T,Er) Graph of the input problem instance

T Set of targets
tb Home base

Er : {e(ti, tj)} Set of edges
τ(e(ti, tj)) Time required to traverse the edge e
Uc

d(t)/U
c
a(t) Defender/Attacker payoff for 100% protection of t

Uu
d (t)/U

u
a (t) Defender/Attacker payoff for 0% protection of t

A : {α1, α2, . . . αK} Set of security activities
τ(α) Time required to conduct activity α

eff(α) Effectiveness of activity α
eff(αi, αj) Effectiveness of joint activity 〈αi, αj〉

P Set of pure strategies
ωt(Pi) Effective coverage of t in Pi

Γr Maximum time of a patrol
W Time window for a joint activity

Table 1. Notation Table

SMART is unique in that it explicitly models joint activities, or activities coordinated
in space and time between multiple defender resources. The defender is said to conduct
a joint activity 〈αi, αj〉 in its pure strategy if there exists at least two tuples (ti, αi, γi)
and (tj , αj , γj) in the defender’s pure strategy such that ti = tj and |γi − γj | ≤ W ,
where W is the time window for two activities on the same target.

For each activity αi, eff(αi) represents the effectiveness of the activity αi. This ef-
fectiveness ranges from 0% to 100%, and measures the probability of the defender suc-
cessfully preventing an attack on target t if the attack on t happened when the defender
was conducting activity αi at t. This is similar to what was done in PROTECT [6]. We
define the effectiveness of the joint activity 〈αi, αj〉 as eff(αi, αj). We assume that a
joint activity composed of two resources receives the maximum effectiveness and any
additional resource visiting target t in the time window will have no additional benefit.
eff(S) represents the maximum effectiveness of an individual or a joint activity over
a set S of activities performed at a target. eff() is submodular if for all S1 ⊆ S2:

eff(S1 ∪ αi)− eff(S1) ≥ eff(S2 ∪ αi)− eff(S2) (2)

This means that each additional activity performed has diminishing gains in effective-
ness. As we will see later in the paper, when this property holds we are able to prove
nice theoretical properties of our algorithms.

The expected utility Ud(Pi, t) of the defender when the defender is conducting
pure strategy Pi, which is a single pure strategy for multiple defender resources, and
the attacker attacks target t is given as follows:

ωt(Pi) = max
(t,α,γ)∈Pi

{(t,αl,γl),(t,αm,γm)}⊆Pi,|γl−γm|≤W

{eff(α),eff(αl, αm)} (3)

Ud(Pi, t) = ωt(Pi)U
c
d(t) + (1− ωt(Pi))Uud (t) (4)

Ua(Pi, t) = ωt(Pi)U
c
a(t) + (1− ωt(Pi))Uua (t) (5)



Here ωt(Pi) defined in Equation (3) represents the effective coverage of the de-
fender on target t when executing pure strategy Pi. This is computed by taking the
maximum effectiveness of either a single or joint activity performed at target t. For the
purposes of this paper we assume that the time it takes to attack is longer than the time
required to patrol, thus the attacker only cares about the maximum effective activity
or joint activity. Once the effectiveness ωt(Pi) is computed from the pure strategy Pi,
the defender and attacker expected utilities Ud(Pi, t) and Ua(Pi, t) are calculated as
defined in Equation (4) and (5).

Problem Statement: The objective of the defender is to maximize her expected
utility in the SMART problem by computing the optimal mixed strategy given that the
attacker will best respond to the defender’s strategy.

3 SMARTO: Optimal Branch-and-Price Solver

SMARTO computes an optimal solution of the SMART problem by building upon work
that has leveraged the branch-and-price framework [1]. The two major novelties of
SMARTO over previous work are the formulation of the slave component to handle
joint activities (in Section 3.1) and a better bounding component (in Section 3.2).

3.1 Pricing component

The branch-and-price framework constructs a branch-and-bound tree, where for each
leaf of the tree, the attacker’s target is fixed to a different t′. The objective of the pricing
component is to find the best defender mixed strategy x at that leaf, such that the best
response of the attacker to x is to attack target t′. Due to the exponential number of
defender pure strategies to handle joint activities, the best defender mixed strategy is
determined using column generation, which is composed of a master and slave proce-
dure, where the slave iteratively adds a new column (defender strategy) to the master.

min
c,x
−Ud(t′, c) (6)

Ua(t
′, c) ≥ Ua(t, c) ∀t 6= t′ (7)

ct −
∑
j∈J

ωt(Pj)xj ≤ 0 ∀t ∈ T (8)

∑
j∈J

xj = 1 (9)

xj ∈ [0, 1] ∀j ∈ J, ct ∈ [0, 1] ∀t ∈ T (10)

Master: The master LP given in Equations (6) to (10) solves for the optimal de-
fender mixed strategy x over a given set of pure strategies J , given that the pure strategy
of the attacker is set to t′ (determined by the leaf node). This is similar in formulation
to the ERASER algorithm [9]. Ud(t, c) and Ua(t, c) are the utilities of the defender and
the attacker respectively when the defender’s effective marginal coverage is c and the
attacker attacks t. For each pure strategy Pj , ωt(Pj) is the effectiveness on t.



Slave: Once the master LP is solved to optimality, the slave problem receives the
values of the duals of the master LP. The reduced cost cj associated with column Pj is
defined to be

cj =
∑
t

yt · ωt(Pj)− z, (11)

where z is the dual variable of Equation (9) and {yt} are the duals of Equation fam-
ily (8). The reduced cost of a column gives the potential change in the master’s objective
function when a candidate pure strategy is added to J .

The objective for the slave problem is to find the column Pj with the least reduced
cost, to add to the current set of columns. The best column is identified using a mixed-
integer linear program (MILP) formulation over the transition graph as defined below,
which captures all the spatio-temporal constraints of the problem in handling joint
activities and avoids having to enumerate all pure strategies.

The transition graph Gr = (N ′r, E
′
r) contains nodes u = (t, γ) for each target t

and time instant γ ∈ [0, Γr] if it is possible for the defender to be at target t at time
instant γ (the time interval is discretized). The transition graph can have up to |T | × Γr
nodes. Each edge in E′r is associated with an activity α. An edge e(u,v,α) from node
u to node v maps to a defender patrol that starts from target tu at time γu, goes to
target tv and conducts activity α at target tv. Therefore, γv = γu + τ(tu, tv) + τ(α)
where τ(tu, tv) is the time required to traverse from target tu to tv and τ(α) is the time
required to conduct activity α. The graph contains a virtual source and sink node
that contain edges to/from the base target tb to ensure that patrols start and end at tb.

Example: Figure 1 shows a sample transition graph. Here, tb = t1 and the source
has three edges, one for each activity α1 – α3. Looking at node u = (t1, 0), target t1
is adjacent to t2 and t5, so for each of these targets, three edges are added to represent
the travel and corresponding activity at that target. For example, if activity α2 is then
performed at target t2, then the new vertex would be at time γ = 0 + τ(α2) + τ12 =
0 + 1 + 2 = 3, where τ12 = 2, and node v = (t2, 3) as shown in Figure 1.
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Fig. 1. An Example for the Transition Graph

Slave Problem MILP: This novel MILP component of SMARTO solves for joint
activities and generates the optimal defender pure strategy as given in Equation (12)
to (16).



min
∑
t∈T

yt ·max{gt, ht} (12)∑
e∈out(u)

f(er) =
∑

e∈in(u)
f(er) ∀u, r (13)

gt =max
er∈IA(t),∀r

{f(er) · eff(e.α)} (14)

ht = max
ei,ej∈JA(ri,rj ,t),∀i,j∈R

{(f(ei)+ f(ej)− 1) · eff(ei.α, ej .α)} (15)

f(er) ∈ {0, 1} ∀er, gt, ht ∈ [0, 1] ∀t ∈ T (16)

This MILP uses one copy of the transition graph for each defender resource, where
f(er) represents the flow on edge e for resource r, and gt and ht represent the effec-
tiveness of the defender’s individual and joint activities on target t. It only considers the
maximum effective activity at target t (Equations (12), (14), and (15)) in accordance
with our assumption of the attacker’s decision making.

Here, the set IA(d) represents the set of edges in the transition graph such that they
represent one resource performing an activity α on target d, and can be represented as:

IA(d) = {in(ur)|ur.t = d,∀ur ∈ N ′r,∀r ∈ R}

where in(ur) represents all edges with the target node ur. Similarly, the set JA(ri, rj , d)
contains pairs of edges 〈ei, ej〉 such that both edges lead to the same target d and are
separated by a time window no larger than W , corresponding to when resources i and
j perform a joint activity on target d. Formally, JA(ri, rj , d) =

{〈ei = (u,v), ej = (u′,v′)〉|v.t = v′.t = d, |v.γ − v′.γ| ≤W}.

The result from the slave MILP is a set of 0-1 integer flows for each defender re-
source r. From the flows, the defender pure strategy Pj is computed, and the effective
coverage ω(Pj) is then calculated and returned to the master.

3.2 Branch-and-bound component

The objective of the branch and bound component is (i) to compute upper bounds for
each internal node of the tree such that leaf nodes can be pruned thereby requiring
less computation, and (ii) to determine an efficient ordering of leaves. To compute tight
upper bounds, we present ORIGAMIP, a novel modification of ORIGAMI [9] specifically
designed to generate tighter upper bounds for SMART problem instances by exploiting
the structure of the domain.



min
c,f(e)

k (17)

0 ≤ k − Ua(t, c) ≤(1− qt) ·M ∀t ∈ T (18)∑
e∈out(source)

f(e) = R,
∑

e∈in(sink)
f(e) = R (19)∑

e∈out(u)
f(e) =

∑
e∈in(u)

f(e) ∀u (20)

ct ≤
∑

e=(u,v)|v.t=t

f(e) · eff(αk) ∀t ∈ T (21)

ct ∈ [0, 1] ∀t ∈ T, f(e) ∈ [0, R] ∀e ∈ E (22)

ORIGAMIP uses the transition graph defined in the slave formulation (Section 3.1).
Equations (17)–(18) minimize the attacker’s maximum expected utility, with Ua(t, c)
representing the attacker’s utility given the defender’s effective marginal coverage is c
and the attacker attacks t. Equations (19)–(20) define the flows of the edges and enforce
the flow conservation property. Equation (21) limits the coverage of the defender based
on the amount of flow through the edges and the respective activity.

ORIGAMIP estimates the effectiveness of a defender patrol on a target as being the
addition of the effectiveness of all individual activities on a target. This is an over-
estimate of the effectiveness (thereby providing an upper bound on defender utility) if
the effectiveness function eff is sub-additive, i.e., eff(αi) + eff(αj)≥ eff(αi, αj),
which follows from the submodularity property in (2).

Proposition 1. ORIGAMIP computes valid upper bounds if eff() is submodular.

ORIGAMIP is an LP and therefore solvable in polynomial time. Once the ORIGAMIP
solution has been obtained, the defender’s expected utilityUd(t, c) is computed for each
target t. The targets are then ordered in decreasing order of Ud(t, c). This ordering and
computation of upper bounds is then exploited to prune the nodes in the branch-and-
price tree.

4 SMARTH: Further scaling up SMART

SMARTO fails to scale beyond 4 targets in our computational experiments; thus we
present SMARTH , a heuristic approach for SMART that achieves further scale-up. It uses
the previously discussed branch-and-price framework, but the slave is now solved using
a novel heuristic formulation, which is built on two intuitions related to coordination: (i)
Joint patrols can be computed by considering individual patrols iteratively, by shaping
the reward function between iterations to reflect the additive benefit of joint activities.
(ii) Each defender resource would like to visit as many targets as possible, and visiting
targets in accordance with an ordering based on a solution of the Traveling Salesman
Problem is likely to extract maximal benefit out of the resource while still accounting
for the spatio-temporal constraints needed for coordination. As a result, the SMARTH
slave only needs to solve a set of linear programs (as opposed to solving a MILP in
SMARTO’s slave).



4.1 Reward Shaping

The slave in SMARTH computes the joint patrol Pj of the defender by iteratively and
greedily building up individual patrols Xr for each defender resource r. The additional
benefit of joint activities is considered by appropriately shaping the rewards for each
resource based on the patrols of other resources. Reward shaping has been used in other
reinforcement learning contexts [10]; here we leverage this idea for coordination among
multiple resources.

Algorithm 1 SMARTH Greedy Algorithm
1: Input: y, G
2: Initialize Pj , µ
3: for all ri ∈ R do
4: Xi ← SolveSinglePatrol(y,µ,Gr)
5: Pj ← Pj ∪Xi

6: µ← ComputeCostCoef(Pj ,Gr)
7: ω(Pj)← ConvertToColumn(Pj)
8: return Pj ,ω(Pj)

SMARTH uses a greedy algorithm, as outlined in Algorithm 1. This algorithm takes
the coefficients yt (refer Equation (11)) as input and builds Pj iteratively in Lines 3–5.
Line 4 computes the best individual patrol Xr for the defender resource r (described
in Section 4.2). Xr is then merged with the rest of the defender’s pure strategy Pj
(in Line 5). Line 6 computes µ, the potential effectiveness contribution from one re-
source to another given the current pure strategy Pj . This is computed over each edge
e(u,v,α) in the transition graph, and measures the added benefit to the defender if
the defender resource was to travel from u.t to v.t at time u.γ performing activity
e.α at target v.t. These values of µ are used in the next iteration when computing an
individual patrol for the next defender resource.

How close to optimal is the solution of the greedy algorithm? [11] states that greedy
maximization of a non-negative submodular function achieves a constant-factor approx-
imation. Recall that the objective of the slave problem is to find a pure strategy Pj that
minimizes the reduced cost cj . This is equivalent to maximizing:

F (Pj) = −
∑
t∈T

ωt(Pj) · yt (23)

The duals y from the master are always negative in this formulation making F (Pj)
non-negative. ωt(Pj) is the effectiveness of pure strategy Pj at target t as defined in
(3).

If F (Pj) is submodular, and if P∗ is the optimal defender pure strategy, then the
solution Pj of the greedy algorithm satisfies

F (Pj) ≥ (1− 1/e)F (P∗) (24)



For the relaxed constraint where the time window, W , is greater than or equal to the
maximum patrol time, Γ ,1 we show that F (Pj) is submodular. F (Pj) is submodular
if P1 and P2 are two pure strategies where P1 ⊆ P2 and F (P1 ∪ {X}) − F (P1) ≥
F (P2 ∪ {X}) − F (P2). We show F (Pj) is submodular by showing that ωt(Pj) is
submodular since F (Pj) is defined by a non-negative linear combination of ωt(Pj).

Theorem 1. F (Pj) is submodular in Pj if W ≥ Γ and eff() is submodular.

Proof (Proof Sketch).
Because W ≥ Γ , ωt(Pj) = eff(SPj ), where SPj is the set of activities of Pj on

target t. Together with (2), this directly implies that ωt(P1 ∪X) − ωt(P1) ≥ ωt(P2 ∪
X)− ωt(P2), P1 ⊆ P2.

In real life situations,W may be less than Γ . We show that even in this situation, F (Pj)
is submodular for 2 resources.

Theorem 2. F (Pj) is submodular in Pj for two resources if eff() is submodular.

Proof (Proof Sketch). We prove that F (P1 ∪{X})−F (P1) ≥ F (P2 ∪{X})−F (P2)
where P1 = {∅} and P2 contains a single patrol {X2}. For each target t, we show that
ωt({X}) ≥ ωt({X2, X}) − ωt({X2}) based on the submodularity property of eff()
in (2).

Qualifying this result for W < Γ for 2 resources is important since this setup is used
most frequently in the real-world, e.g., US Coast Guard. For three or more resources, we
can artificially construct counter-examples that break submodularity. However, given
actual domain geometries, time windows and operational rules, submodularity may hold
even for larger number of resources – e.g., Theorem 1 shows that relaxing the time
window may lead to such submodularity. Characterizing these spaces is a topic left for
future work.

4.2 TSP Ordering with Transition Graph

To achieve the approximation bound (24), we need to optimally compute an individual
patrolXr for the defender resource r in Line 4 of Algorithm 1. This can be solved by an
MILP of similar form to the slave MILP (Equations (12)-(16)), but for a single patrol.
The resulting MILP for a single patrol has less variables than the MILP for all patrols,
however this still fails to scale up beyond 6 targets (Section 5).

Instead, we present a heuristic approach that achieves better scale-up by exploit-
ing the spatial structure of the domain, and is provably optimal in certain cases. Our
approach is based on the following restricted version of the problem: we define an or-
dering of the targets and restrict the patrols’ sequence of target visits to be increasing
in this order. We construct the ordered transition graph in the same way as described in
Section 3.1; however, now, an edge from node u to v is added only if target u.t appears
before target v.t in the ordering. If there does not exist a direct edge from u to v, an edge

1 W ≥ Γ implies that two resources present at the same target at anytime during the patrol are
considered to conduct a joint activity.



is added between these nodes where the distance is that of the shortest path. Traversing
along this edge does not impact the effectiveness of the intermediate targets. Instead of
computing the maximum effectiveness of the multiple edges per target, each target is
only visited once per patrol in the ordered transition graph. The resulting problem is
equivalent to a min-cost flow, which has integer extreme points that allow us to drop the
integrality constraint (16), since a feasible solution of the resulting LP is guaranteed to
be an integer flow. These LPs are easier to solve than the above MILPs, both in theory
as well as in our experiments.

Fixing an ordering will exclude certain patrols. Therefore, we would like an order-
ing such that the resulting patrol, which corresponds to a subsequence of the ordering,
will still be a sensible way to visit targets compared to patrols with alternative orderings.
To that end, SMARTH uses an ordering based on the solution of the traveling salesman
problem (TSP) for the input graph with all targets G = (T,E). We show that under
certain conditions, using the TSP ordering results in an optimal solution of the single-
patrol problem. We look at a tree structure because various domains in the real-world,
e.g., ports, contain an graph similar to a tree.

Theorem 3. Suppose the input graph G is a tree, and the time window for joint effec-
tiveness is greater than or equal to the maximum patrol time. Then SMARTH computes
a patrol for a single unit that optimizes the slave objective.

Proof (Proof Sketch). We first observe that the optimal TSP tour of G visits each edge
of the tree exactly twice. The TSP tour corresponds to a complete preorder traversal of
the tree.

SMARTH outputs a patrol P on a subset of targets TP , corresponding to a subse-
quence of the TSP ordering. We show that this patrol is a TSP tour of GP , which is
the subgraph of G restricted to TP . If GP is not connected, for each two targets in dif-
ferent connected components of GP there is a unique path in the original tree graph G
that connects the two. By adding nodes on these paths to GP , we recover a connected
subtree G′P , an optimal TSP tour on which is also optimal for GP . Then since P is a
preorder traversal of the subtree G′P , it is a TSP tour of GP .

Consider a patrol P ′ that does not follow the TSP ordering. Let P be the patrol we
get by reordering targets of P ′ so that they are increasing in the TSP ordering. Since
P is a TSP tour of GP , if P ′ finishes within the time limit then P also does. Since
the time window is large, joint activities in P ′ will also be joint activities in P , and
thus P achieves the same slave objective as P ′. Therefore we never lose optimality by
considering only patrols that follow the TSP order.

When the graph is a tree but the time window is smaller than the patrol time limit,
the algorithm is not guaranteed to be optimal. However, as we show in our experiments,
SMARTH generates optimal or near-optimal solutions for SMART problem instances.

5 Experimental Results

We cannot compare with previous algorithms [3, 1, 4, 5] due to the inability of these
algorithms to scale-up to the combinatorics unleashed by joint activities. This problem



is so complex that even human schedulers are unable to generate schedules. Therefore,
we are limited to comparing different versions of SMARTH and SMARTO.

The experiments were run on 100 game instances generated with random payoffs
in the range [-10,10] and two defender resources unless otherwise noted. All exper-
iments were run on graphs resembling ports: the graphs were constructed beginning
with a tree that spans the targets and then adding 10 random edges between nodes. The
time window was 30 minutes with 3 possible activities for the defender, taking 0, 5,
or 15 minutes. The time discretization was 5 minutes, with the exception of the tests
comparing SMARTO to SMARTH , where the time discretization was 15 minutes. All
experiments were run on a machine with a Dual core 2.0 GHz processor and 4 GB of
RAM.

0

10

20

30

40

50

3 4 5 20

R
un

tim
e 

(m
in

ut
es

)

Number of Targets

SMART-H

SMART-O

SMART-O (out
of memory)

Fig. 2. Evaluating Runtime of SMARTH vs
SMARTO

Figure 2 shows the runtime of
SMARTH versus SMARTO. The x-axis
is the number of targets and the y-axis
is the runtime. SMARTO was only able
to run for 4 or less targets. For 20 tar-
gets, SMARTH takes less than a minute
to run. This shows the difficulty of solv-
ing SMART instances and the importance
of finding efficient solution techniques.

Table 2 shows the solution quality,
or defender expected utility, of SMARTH
versus SMARTO. For 3 targets, SMARTH
provided the same exact solution qual-
ity as SMARTO for all game instances.
For 4 targets, the average solution qual-
ity for SMARTH was 0.0205 lower than
SMARTO with there being only one game instance where SMARTH computed a lower
defender expected utility than SMARTO (difference of 0.679). This shows that on aver-
age SMARTH computes a final result that is very close to SMARTO. However, SMARTO
is unable to run on bigger game instances.
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SMARTH SMARTO
3 targets 1.298 1.298
4 targets -0.7135 -0.6930

Table 2. Solution Quality of SMARTH

vs. SMARTO

Figure 3(a) shows that as we increase the im-
portance of the coordinated joint activity, as mea-
sured by the ratio of effectiveness of joint ac-
tivities (discussed below), the defender achieves
a higher expected reward. The y-axis shows the
solution quality and the x-axis denotes the max-
imum patrol time. This ratio is computed as
shown with αmax equivalent to the highest qual-
ity activity: eff(αmax,αmax)−eff(αmax)

eff(αmax)
. As the patrol time is increased, a simple strat-

egy with no defender coordination (no benefit to joint activities) provides very little
benefit to the solution quality while the improvement due to the coordination of mul-
tiple defender resources can almost double the solution quality. Without coordination,
once the higher valued targets are covered with the maximum effective activity, addi-
tional time does not provide more effectiveness for those targets.

Figure 3(b) shows that SMARTH can handle heterogeneous defender resources (a
boat and an aerial type) for 10 targets. The aerial resource is different than the boat in
the following ways: (1) shorter transit times; (2) shorter patrol time; (3) lower effective-
ness values. The x-axis is the maximum patrol time for a boat resource and the y-axis is
the solution quality. In this experiment, the aerial resource has a patrol time and effec-
tiveness value that is 25% of the boat resource’s time/value. SMARTH was able to run
these instances.
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Fig. 4. Evaluating runtime and solution quality of SMARTH for homogeneous resources

The ability of the SMARTH algorithm to handle multiple homogeneous defender re-
sources is shown in Figure 4(a) and 4(b), with the number of defender resources (boats)
varying from 2 to 5. We assume that the defender will only get a joint effectiveness
when 2 resources are coordinated; if 3 or more resources cover a target there is no ad-
ditional joint effectiveness. In Figure 4(a), the x-axis is the number of targets and the
y-axis is the runtime. Each line represents the runtime for a different number of de-
fender resources. As the number of defender resources increases, the runtime increases.
However, the increase in runtime due to the increase of defender resources is relatively
minor, e.g., when there are 40 targets, the difference in increasing the number of re-
sources from 2 to 3 only results in a two minute increase in runtime while there is still a



benefit to additional resources. This shows the scaleability of SMARTH to handle more
than two defender resources.
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Fig. 5. Runtime improvements for SMARTH

Next, the different components of SMARTH are examined to show the impact of
node ordering and pruning. In Figure 5(a), the x-axis is the number of targets and the
y-axis is the runtime. This figure shows the improvement of SMARTH in using TSP
ordering of the nodes (Section 4.2). When using a MILP (no TSP ordering), the runtime
for 6 targets is over 40 minutes while the runtime for using TSP ordering is less than a
second. For 7 targets, the algorithm using a MILP runs out of memory. In Figure 5(b),
the x-axis is the number of targets and the y-axis is the runtime. This figure shows the
benefit of ORIGAMIP in generating tight upper bounds to prune the branch-and-price
tree (Section 3.2). As the number of targets increases, the amount of time saved by
pruning increases.
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Fig. 6. Example of Boston scenario

Real World Motivated Example: In addition to running simulations of SMART,
we took the port of Boston as an example scenario that included 15 total targets as
shown in Figure 6(a). We conducted simulations using SMARTH on this graph varying
the number of defender resources and maximum patrol time with the runtimes depicted
in Figure 6(b). In this figure, the x-axis is the maximum patrol time and the y-axis is the



runtime in seconds. This shows that we were able to solve the Boston scenario in under
30 seconds.

6 Conclusion and Related Work

Addressing joint coordinated activities is the next frontier of the SSG research area.
Such coordination is critical for real-world applications, and yet beyond the capabilities
of both today’s best algorithms to solve SSGs and human schedulers.

To address this challenge, this paper presented two novel algorithms, SMARTO and
SMARTH , that leveraged the properties and structure of joint activities to provide sig-
nificant speed-ups to solve SMART problem instances. We provide proofs of theoretical
properties of our algorithms while also showing the improved performance of the key
components.

In terms of other related work, joint planning among agents has been studied in
the planning community with models such as DEC-MDPs [12, 13] but do not address
adversarial agents. In terms of related work within SSGs, we have discussed limita-
tions of related algorithms throughout this paper. Studies on multiagent patrols beyond
SSGs have focused on frequency-based patrols and adversarial environments [14, 15],
including patrols in marine environments that take into account uncertain environmen-
tal conditions [16]. These studies aim to minimize the time lag between visits and do
not consider targets of varying importance nor the impact of joint activities.
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