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Abstract

By using robots as routers, a team of networked robots can provide a communication sub-
strate to establish a wireless mesh network. The mobile mesh network can autonomously opti-
mize its configuration, increasing performance. One of the main sources of radio signal fading
in such a network is multi-path propagation, which can be mitigated by moving the senders or
the receivers on the distance of the order of a wavelength. In this paper, we measure the perfor-
mance gain when robots are allowed to make such small movements and find that it may be as
much as 270%. Our main contribution is the design of a system that allows robots to cooperate
and improve the real-world network throughput via a practical solution. We model the problem
of which robots to move as a distributed constraint optimization problem (DCOP). Our study
includes four local metrics to estimate global throughput.

Keywords: Mobile and Wireless Ad Hoc Networks, Multi-Path Fading, Complex
Environments, Distributed Optimization, Experimental and Prototype Results

1. Introduction

With advances in processor, memory, sensing, actuation, and radio technology, it is possible
to assemble novel systems using off-the-shelf components. A good example is a robot with
navigation capabilities, and an on-board processor with wireless communication capabilities.
Among its many uses, such a robot can be used as a router in a mobile wireless mesh network.
In such a network, a team of robots can provide a communication substrate for a collection of
clients.

Such a mobile wireless mesh network can have applications in various settings. In an infras-
tructure-less settings, it can be used to form a connection backbone, such as in the LANdroids
project [1], where the goal is enable soldiers to communicate even in dense urban settings. A mo-
bile wireless network network can also be quickly and autonomously deployed in urban search
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and rescue efforts, allowing searchers to communicate even when no other infrastructure exists:
thus, small robots could venture where humans cannot, to search for survivors of earthquakes,
collapsed mines and other disasters.

Unlike a static, manually deployed mesh network, the dynamism in the network allows nodes
to move and re-organize the network, to achieve optimize or improve coverage, performance, or
other such objectives. In this paper, we leverage this mobility to consider a specific kind of
performance improvement. Our work is motivated the observation that one of the main sources
of radio signal fading in urban settings is multi-path propagation. Multi-path occurs when a
transmitted signal takes more than one path to a receiver, causing the signals to interfere. The
central observation of our paper is that robots can actively reduce multi-path effects by making
small movements (or micro-motion). By avoiding deep fades, robotics routers can increase net-
work throughput, enabling applications with higher bandwidth requirements, or improving user
satisfaction in general.

Thus, in this paper we explore two questions. First, is it possible to improve the overall
network throughput of a mobile mesh network by using (possibly coordinated) robotic micro-
motion? Second, how would one design an on-line system that performed this optimization
autonomously?

In our work, we make minimal assumptions about the capability of robots and the available
information. We consider the scenario where the robots do not need any knowledge of the envi-
ronment. Robots do not have a map of the physical layout or known obstacle points. They also
have no a priori topological information about wireless connectivity or interference maps. It is
often difficult to predict signal propagation characteristics within an urban environment, since
many factors can impact signal strength such as the angle of incidence, emitter location, and
even the building materials. We do not use models of radio propagation but instead, we rely on
empirical on-line measurements to make decisions about when to move. Finally, in our setting,
robots are not constantly in motion, but only execute small movements relative to their neighbors:
this is appropriate, given our goal is to explore how effective such motions are in improving per-
formance. As a result, our work does not require robot localization or sophisticated navigation
capabilities.

Contributions. Our paper makes four main contributions. First, we show experimentally that
we can obtain up to a factor of 2.7 improvement in TCP throughput on our testbed via robotic
micro-motion. This is encouraging, since our experiments were fairly adversarial, suggesting
that similar, or even higher, gains could be achieved in other environments. Second, we present
the design of a practical system for coordinated robotic micro-motion. This system contains
a novel use of a distributed constraint optimization framework: in this framework, robots make
local measurements of a wireless performance metric, then decide, in coordinated fashion, which
robot should move, and in what direction. This computation is executed iteratively, until the
network converges to an improved throughput state. An important component of this framework
is the choice of wireless performance metric: we empirically explore four different metrics, and
show that a carefully chosen local metric can achieve a near-optimal performance. Finally, we
evaluate our system with physical robots in an indoor environment and demonstrate that we are
able to achieve an average global throughput improvement of 30% while maximizing only local
metrics and with no a priori knowledge of the environment. Prior research ([2] [3]) showed
that, for a pair of nodes, micro-motion can increase receive signal power and improve packet
reception more than any coding scheme could achieve. We, on the other, focus on an approach
to improve global network throughput using explicit coordinated micro-motion. To the best of
our knowledge, no prior research has designed a practical system to take advantage of antenna
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gain resulting from micro-motion, nor has any work explore what throughput improvements are
achievable.

Our paper is structured as follows. In the next section, we start by providing the requisite
background, and motivating the problem setting (Section 2). In Section 3, we firstly describe
our robot platform. We then validate that network performance can improve from the robotic
micro-motion by measuring TCP and UDP Throughput.

Then, we describe the distributed constraint optimization framework (Section 4) and describe
the design of our system. Finally, we describe our experimental methodology, and our main
results in Section 5.

2. Background

Radio signal fading can be attributed to two mutually independent phenomena: multi-path
propagation and path loss. We briefly discuss these phenomena and further details can be found
elsewhere [4].

Multi-path propagation is a small-scale effect where the distance scales involved are on order
of a wavelength. Multi-path occurs when a transmitted signal takes more than one path to a
receiver, causing the signals to interfere. Interference has either a constructive or destructive
effect on the main component depending on whether it arrives in or out of phase.

Path loss is a large-scale effect of propagation in any medium (e.g., air or water), defined by
the way in which radio energy is transmitted in the medium of propagation and its resulting loss.
This property is also called slow fading.

In this paper, we focus on mitigating the destructive interference arising from multi-path fad-
ing. Two models of multi-path fading have been described in the literature: as described in [5],
if all signal components that reach the receiver are of equal strength, the multi-path fading is
called Rayleigh fading, while if there is a line-of-sight (LoS) component that is significantly
stronger, we have Ricean fading. In either case, small movements of the radio can help mitigate
the effect of deep fades (strong destructive interference), and this is the observation we experi-
mentally explore in this paper. Lindh et al. [S] use Rayleigh fading model with data correlated
until 0.38 wavelengths, while others [1] have suggested that moving % to % of a wavelength
(A) is sufficient to escape a deep fade. However, to our knowledge, we are the first to quantify
TCP-level throughput improvements resulting from micro-motions, and also the first to design
a practical decentralized coordination strategy to exploit micro-motions to obtain performance
improvements.

In our work, we move our radios on the order of half wavelength so that signals in differ-
ent locations are uncorrelated, helping our nodes escape deep fades. However, such movements
cannot be performed independently. Fading for one radio is defined with respect to a single
neighbor: a local movement may allow the radio to escape one deep fade, but at the same time
introduce a new fade with respect to a different neighbor. Thus, it is critical to coordinate move-
ments to improve the overall throughput. In this paper, we address a series of questions: (1) Is
there a sequence of coordinated movements that improves the throughput? (2) How well will
using only local information allow us to optimize the network (relative to the global optimum
configuration)?
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3. Can Micro-Motion Improve Throughput?

In this section, we show experimentally that TCP and UDP throughput can be improved by a
much as a factor of 2.7 via robotic micro-motion in our testbed.

To investigate the efficacy of small movements in improving mesh network throughput, we
have used physical robots and conducted experiments in an office building. This section describes
our platform and our experimental methodology, and then presents the results.

3.1. The Robot Platform

We use a commoditized robotics platform and made minimal modifications to it using com-
mercial off-the-shelf products. Our platform consists of an iRobot Create and a small embedded
computer mounted on top of it (Figure 1).

The Create, a differential drive robot, has a round chassis with a diameter of 33 centimeters.
The robot has two kinds of sensors. First, it has a pair of tactile sensors that, together with
a bumper, can help determine if the robot hits an obstacle and the angle at which it does so.
Second, it has a suite of infrared (IR) sensors: the bumper contains an IR wall sensor on the right
and an omnidirectional IR receiver in the top, and four additional IR sensors mounted underneath
the bumper facing down. We do not add additional sensing hardware to the Create.

The embedded computer, the Ebox 3854, is an 800 MHz embedded PC with 256MB shared
DDR memory, and supports a 1280x1024 VGA interface, one 10/100 LAN, and USB, mini PCI
and compact flash sockets. The embedded computer runs Ubuntu (Linux Kernel 2.6.22) as the
operating system. For sensing and control, we developed a Create driver for Player [6]. Robot
navigation incurs errors in odometry over larger distances. But, given that in our framework,
the distances are very small (at most 6 cm), the navigation error is very small. For the speed
of 0.20 cm/s, we measured less than 1cm translation error and less than 0.14 radian rotation
error (as measured with a multifunction knob Griffin PowerMate attached to the robot).

Figure 1: This picture shows part of the experiment set up, which has a team of iRobot Creates with an Ebox.

3.2. Configuration

Our initial experiments use five robots distributed throughout an indoor office environment as
shown in Figure 2. Robots 1, 2 and 3 are within line-of-sight of each other, and the other robots
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Figure 2: Initial Configuration of Team of Creates

are each not within line-of-sight of any robot. Figure 1 depicts part of our experiment, showing
robots 1 to 3.

The robots were configured to use 802.11b, with an 11 Mbits/s data rate (maximum data
rate), in ad-hoc mode. The transmission power was set to the lowest possible value so we could
experiment with as many robots as possible. We use channel 14 (which is unused by commercial
cards in the US), ensuring that we do not observe external interference. The network was con-
figured with static routing to avoid routing flapping (a router forwards packets via one route then
changes to another router) interfering with the measurements.

The network has three multi-hop flows, represented by arrows in Figure 2. The flows go
through nodes 3-5-4, 4-1-2 and 5-3-2-1, which will be referred to as the 3—4 flow, 4-2 flow and
5-1 flow respectively. The flows use all the links in the network. Each flow takes 10 seconds
for each sampling. We avoid interference between flows by starting and measuring the flows
sequentially. This is deliberate: our objective is to determine if micro-motion can enable good
path selection overall and running simultaneous flows would not have allowed us to observe the
impact of improved throughput as a result of improving link quality because the simultaneous
flows would interfere with each other. Flows were created with the iperf [7] tool and SNR values
were measured (per link) using the iwspy Linux utility.

3.3. Throughput Improvement

The first set of experiments quantifies the throughput improvement obtainable from small
movements. The basic methodology is to exhaustively evaluate all possible configurations re-
sulting from each robot executing a micro-motion, and then measuring the throughput achieved
by all the flows in each configuration. Since the total number of possible configurations is ex-
ponential with the number of possible robot locations, we constrain robots to only two positions
for tractability. In a later section, we will relax this assumption, allowing for more positions per
robot.
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We use five robots in our experiment, yielding a total of 32 possible configurations where
each configuration is the average sampled of at least five times. During all the measurements, the
noise was constant at -98 dBm, which implies there were no external time-varying radio sources
contributing signal interference.
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Figure 3: TCP Flows

In this section, we present results for both TCP and UDP. We consider TCP flows because
TCP is the most commonly used transport protocol. For completeness, we also present
results for UDP flows. The throughput loss for TCP and UDP are within a constant factor
of each other, suggesting that the performance loss comes from packet drops as a result of
poor link quality, and not any other TCP artifact.

Figures 3 and 4 show the multi-hop TCP and UDP flow, respectively, per configuration.
Indeed, there is high variability between the flows per configuration in both TCP and UDP flows.
Flow 34 is the flow with highest variance. Flow 51 is the flow with the longest hops and has
lowest throughput on average. Figure 3 shows that flow 3—4 has significant differences in TCP
throughput. We can also conclude that some flows will improve while others will degrade such
as flow 4-2 and 5-1 for configurations 16 and 20.

To quantify the variance, we sort the sum of the throughputs of all the TCP (respectively
UDP) flows in each configuration. Figure 5 (and 6) shows that there is a significant difference
across configurations (recall that each configuration can be attained from a starting configura-
tion by micro-motions of a subset of the 5 robots). There is almost a 2.5x difference in total
throughputs between the best configuration and the worst. Our topology has not been especially
engineered to achieve this result, which leads us to believe that in other topologies we are likely
to see similar performance improvements. This suggests that a mechanism for coordinated small
movements can improve performance significantly.

Now, we illustrate the variations in each link per position. Figure 7(a—e) show the SNR
per link for each node for all possible configurations. We can also visualize the variance
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Figure 4: UDP Flows

of SNR for each configuration. As expected, nodes with non line-of-sight connectivity have
lower SNR. We can conclude that one-hop metric SNR varies from micro-motions.

From this section, we conclude that there is a significant difference in UDP and TCP through-
put obtainable from micro-motions. In the next section, we discuss how to design a system to
take advantage of micro-motions to improve throughput.

4. Using Distributed Reasoning for Micro-Motion Based Throughput Improvement

In this section, we describe the distributed constraint optimization framework and how we
use it to design a decentralized method for throughput improvement in mobile mesh networks.

A distributed constraint optimization problem (DCOP) consists of a set V of n variables,
{x1,x2,...,%x,}, assigned to a set of agents (e.g., independent reasoning entities), where each
agent controls one variable’s assignment. Variable x; can take on any value from the discrete
finite domain D;. The goal is to choose values for the variables such that the sum over a set of
binary constraints and associated payoff or reward functions, f;; : D; x D; — N, is maximized.
More specifically, to find an assignment, A, s.t. F(A) is maximized: F(A) = ¥, . ;ev fij(di,d)),
where d; € D;,d; € D; and x; < d;,xj < d;j € A. For example, in Figure 8, x, x, and x3 are
variables, each with a domain of {0,1} and the reward function as shown. If agents 2 and 3
choose the value 1, the agent pair gets a reward of 9. If agent 1 now chooses value 1 as well,
the total solution quality of this complete assignment is 12, which is locally optimal as no single
agent can change its value to improve its own reward (and that of the entire DCOP). F((x; + 0),
(x2 <= 0), (x3 «+ 0)) =22 and is globally optimal.

In this problem, we model each mobile radio as an agent. Every value an agent can take is
one possible physical position for the mobile radio. Constraint exist between neighbors in the
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Figure 8: This figure depicts a three agent DCOP.

wireless network. Rewards on the constraints are defined by a local metric, such as the packet
reception rate on the wireless link between two neighbors.

While there are many approaches to solving DCOPs, we implemented the Maximum Gain
Message (MGM [8]) DCOP method. The MGM algorithm will find a locally-optimal assignment
of values for all agents. MGM defines a round as a period in which every agent: (1) communi-
cates its current value to all its neighbors, (2) calculates and communicates its bid (the maximum
gain in its local reward if it is allowed to change values) to all its neighbors, and (3) changes its
value (if allowed). An agent is allowed to change its value if its bid is larger than all the bids it
receives from its neighbors. At quiescence, no one agent can deviate from the proposed assign-
ment and increase the net reward. We denominate MGM-Omniscient when the agents have the
reward for each possible value. MGM-Omniscient gives an upper bound.

The agents in a DCOP are traditionally assumed to have a priori knowledge of the corre-
sponding reward functions. In order to more flexibly model a class of real world domains, we
previously introduced Distributed Cooperative Exploration and Exploitation (D-CEE) [9] prob-
lems, which do not make this assumption. Thus, D-CEE problems appear similar to DCOPs, but
with the following features absent from DCOPs: (1) agents initially know the constraint graph
but only discover rewards when a pair of agents set their values to explicitly discover a reward
value, (2) problems last a set amount of time, and (3) the agents’ seek to maximize the on-line
global reward over this time horizon 7.

The mapping from our network optimization problem onto a D-CEE is similar to that of a
DCOP, with one important difference. Agents (robots in our case) must explore different loca-
tions to determine the value of local (point-to-point) metrics, and we provide a time horizon after
which the agents must stop optimizing (to ensure that the network converges quickly) and the
on-line reward is maximized (ensuring that the network will quickly improve, and that it will be
performing as well as possible during the optimization).

SE-Mean [9], a D-CEE algorithm used in this paper, assumes the average reward (denoted
1) on each constraint for all unexplored values for agents. On every round, each agent bids
its expected gain: NumberLinks x [t — R, where R, is the current reward. The algorithm then
proceeds as in MGM-Omniscient. This algorithm causes the agents to greedily explore until
they achieve the average reward, allowing them to converge on an assignment.

The overall algorithm thus consists of two phases. In the first phase, each robot indepen-
dently, and without coordinating with other robots, samples the local metric. After computing
the local metric with respect each neighbor, each agent calculates the mean (1) and standard
deviation to be used as input to the SE-Mean. The second phase consists of running the DCOP
as explained above. The pseudo-code of the algorithm is presented in Algorithm 1.

In summary, we model the problem of maximizing throughput as a DCOP/D-CEE problem,
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Algorithm 1 D-CEE Algorithm

1: {Explore Phase}

2: for subset of positions do
3 Sample

4:  Move

5: end for
6
7
8

: Calculate average reward
: {Second Phase - Extended MGM Algorithm}
. repeat
9:  Sample
10:  Communicate current value
11:  Calculate and Communicate bid
12:  Winner of bid Moves
13: until achieve average reward over all neighbors

where robots must coordinate their movements in a decentralized fashion. The overall goal is
to maximize the throughput of a set W of (possibly multi-hop) flows w;; between nodes, but by
using purely local metrics. These local metrics enable nodes to effectively use micro-motion to
escape from deep fades, improving link quality as well as w;;. An important component of our
design is the choice of the appropriate local metric. As it turns out, this choice makes a significant
difference to the performance of our algorithm, which we evaluate in the next section.

5. Results

In this section, we experimentally evaluate our system using the distributed constraint opti-
mization framework. Initially, we explore four different local metrics, and show that the choice
of local metric is important for the performance of our algorithm. Thereafter, we quantify the per-
formance improvement attainable in practical settings by demonstrating end-to-end evaluations
of our algorithm.

5.1. Local Metrics

This section evaluates the possible local metrics to be used as a local reward to the coordina-
tion algorithms so that the system can achieve a global reward improvement. These results will
prove essential to understanding the system performance, described in the following subsection.

We evaluate four local metrics, each of which defines the reward of a particular agent (and
thus how likely it will attempt to change its position):

o minimum SNR (Signal-to-noise ratio) is the minimum SNR on an agent’s links
o the summation of SNR is the sum of all SNRs on an agent’s links
o the minimum PRR (Packet Reception Rate) is the minimum PRR on an agent’s links

e and the summation of PRR is the sum of all PRRs on an agent’s links



/ Procedia Computer Science 00 (2010) 1-19 12

Our specific choice of these four metrics is driven by their simplicity: these metrics can be esti-
mated cheaply and quickly so that network reconfiguration can be done faster than if other, more
heavyweight methods (such as direct throughput measurement) were used. Our work borrows
heavily from the wireless literature, which has long used SNR [10, 11, 12] and PRR [13, 14, 15]
as predictors for link quality and throughput in 802.11 radios.

However, a link quality metric alone does not define a reward function. In general, each node
in a network may have many neighbors, and the reward function is defined per node. There are
two natural choices for the reward function for a node: the min of the link quality metric (either
SNR or PRR) over all neighbors, or their sum. This results in four choices for the local metric,
which we evaluate below.

To evaluate the local metrics, we conducted experiments with the same configuration as in
Section 3.2. There are five robots, each with two possible positions, yielding a total of 32 possible
configurations where each configuration was sampled at least five times. We present results
for TCP flows because TCP is the most commonly used transport protocol. As shown in
Section 3 the results for TCP and UDP were very similar, modulo a scale factor.

We have the ground truth for the experiments as we measured the actual throughput for each
flow in every configuration. In this way, we know which configuration was optimal. It is also
important to notice that we do not need to estimate (SE-Mean) the reward matrices since we
collected data for all possible configurations.

We evaluate the overall system improvement obtained by using MGM-Omniscient. We fo-
cus on the four local metrics. We evaluated each local metric using the data obtained from
exhaustive search experiments. Recall that each agent will work to maximize its local reward
(in this case, the sum or max of the SNR or PRR on its links), which will ideally maximize the
global metric. Although the agents work to maximize SNR and PRR, this section shows that the
corresponding network flows are also maximized, even though they are not directly measured by
the agents for optimization purposes.

We compare the best local metric to predict global gain. Figure 9 shows how close to the
optimal the configurations are when using the local metric. First, we can conclude that the local
metric matters when designing the system. For instance, the min SNR metric improves the
total throughput on average by almost 45%. The improvement is not higher than this because
our approach uses a local metric to maximize a global metric, and because the local metric might
incur prediction error. Secondly, we can also conclude that it is possible to achieve a near-optimal
performance with a carefully chosen metric: as the figure shows, Sum PRR metric shows that it
is possible to achieve the near-optimal performance.

In summary, we can improve throughput by carefully choosing a local metric (Sum PRR)
within the DCOP Framework.

5.2. Optimizing with More Positions

We have also conducted experiments in which robots are allowed to sample more positions.
Our approach is generic and does not need to be modified to support additional positions. For our
experiments, we allowed each robot to have five possible positions as illustrated in figure 10(a).
The work by [5] solves the problem of how many samples are needed for given communication
performance.

It is not practical for agents to visit all positions since the number of configurations is ex-
ponential. Thus, in this case (unlike our experiments above where there were fewer positions)
agents need to estimate the local metrics for unexplored positions, which is calculated by the
Static Estimation (SE) Mean Algorithm.
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Figure 9: Improvement per metric

Thus, the overall algorithm consists of two phases. In the first phase, each robot indepen-
dently samples the local metric. There is no coordination and the robots sample simultaneously.
After collecting the local metric to all its neighbors, agents calculate the mean (1) and standard
deviation to be used as input to the SE-Mean. The second phase consists of running DCOP as
explained previously.

Experiment | Gain | Rounds
#1 1.32 13
#2 1.27 9
#3 1.30 10

Table 1: Experiments with 5 Robots

Figure 10(b) shows the experiment’s physical configuration. We run the experiments with
five robots and three flows. Each robot can move to five positions. The SE-Mean algorithm
is used to estimate the local metric values for the unexplored positions. Robot 2 has no free
line-of-sight with respect to the others.

Figure 10(c) illustrates the overall percentage gain over each round (line 8 of Algorithm 1).
The base is the initial total throughput. The system gain is about 32%. Table 1 shows the gain
and the number of rounds for three instances of the experiments. In Section 3, we showed that
up to a 2.5x performance improvement is possible with micro-motion. Our results from this ex-
periment do not contradict our earlier finding: that finding discusses the performance difference
between the worst and the best configuration. In this experiment, we started with an arbitrary
configuration that was not guaranteed to be the worst and therefore the actual performance im-
provement we observe is not as high.

In some rounds, the overall gain decreased when compared to previous round. This is because
the robots do not know the direction of its neighbors. When a robot moves, the robot might go to
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the opposite direction of the neighbor with the weakest local metric. The system can overcome
this in the next round since robots will move again. The iterations stop when the local metric has
improved more than a threshold (line 13 of Algorithm 1). These results are encouraging because,
even with relatively simple local algorithms, and using small movements, we could significantly
improvement system throughput.

Figure 10(d) shows each flow’s throughput per round. Two flows have little variance over
time, while one flow’s throughput increases significantly as a result of micro-motion. Therefore,
we can conclude that by using SE-Mean to estimate unexplored positions, the system can handle
many positions and still improve throughput.

5.3. Temporal Variation

Gain Variation over Static Formation

Round

Figure 11: Static Variation

Could our performance improvements have been explained by temporal variation of wireless
signals? To test this, we disabled robot motion so we could measure how the wireless signal
varies over time. Figure 11 depicts the static total throughput variation over time. The maximum
variation is about 5%, which fails to explain the 35% improvements seen in our experiments.
Thus, system improvements do not arise simply from changes in the environment.

5.4. Experiments with more robots

Experiment | Gain | Rounds
#1 1.32 9
#2 1.28 9
#3 1.25 10

Table 2: Experiments with 7 Robots
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Figure 12: Experiment Results
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We also conducted experiments with more than five robots to validate our distributed system.
Figure 12(a) shows an experiment configuration which has seven robots and three multi-hop
flows. Only robots 5, 6, and 7 have free line-of-sight with respect to each other. Each robot
can move five positions. Table 2 shows the gain and the number of rounds for three instances
of experiments. Figure 12(b) illustrates the overall percentage gain over each round for a given
experiment. In this configuration, we achieve an overall system-wide performance gain of about
30%, further validating our approach to distributed optimization via robot micro-motion.

6. Related Work

Using small movements to combat the multi-path fading effects in complex environments has
promise and this paper is not the first to examine such effects. In [2] [3], the authors showed that,
for a pair of nodes, micro-motion can increase receive signal power and improve packet reception
more than any coding scheme could achieve. We, on the other, focus on an approach to improve
global network throughput using explicit coordinated micro-motion. Other work includes [5],
where the authors propose a methodology for exploiting multi-path fading by controlling the
robot according to radio signal strength. They solve the problem of how many samples are
needed for given communications performance and how they should be spaced and provide lower
bounds on the number of samples for a single robot. Using 802.15.4 radio, they also show there
is room for improvement (as much as 20 dB in RSSI).

Other approaches have leveraged more general forms of mobility (beyond micro-motion)
for network throughput improvement or to build and configure mobile mesh networks. Early
theoretical work [16] shows that mobility increases capacity with random source-destination
pairs with loose delay constraints. Other work [17] considers the problem of controlling a team
of robots to ensure end-to-end communication. To mitigate environmental interference, they
propose two different metrics, point-to-point signal strength and data throughput, to monitor
the network connectivity of the system. Even ad-hoc communication protocols pose difficult
challenges during multi-robot experimentation, as shown by Zeiger et al. [18]. However, their
focus is not on micro-motions, they need a map of the environment and optimizing network
throughput is not one of their goals.

Complementary to our work, [19] discusses a game-theoretic dynamic programming algo-
rithm to guarantee that a single mobile user is connected to a base station by moving a chain of
robotic routers.

Multiple-input multiple-output (MIMO) [20] techniques with multiple antennas [21] take ad-
vantage of spatial diversity and spatial multiplexing and can improve performance by avoiding
deep fades through diversity. For example, consider the scenario of two transmit antennas
at a node sending to one receiving antenna. This adds spatial diversity because of the
independently faded paths. However, when node positions are fixed, there are limits to di-
versity gains. For example, in certain scenarios such as at low SNR, the extra transmit
antennas make little difference in performance [21]. Our approach is complementary, since
it uses explicit micro-motions to improve performance, and can improve performance in sce-
narios where MIMO gains are limited. We intend to investigate the performance gain of
micro-motions with MIMO configuration in future work. For more information, we refer the
interested reader to check textbooks on wireless communications and MIMO [22, 23, 24].

Delay-tolerant networking (DTN) [25][26] is a computer network that may lack continuous
network connectivity but is still operable. DTNs can take advantage of mobility to deliver mes-
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sages. Unlike DTNs, where nodes may only have intermittent connectivity, our work applies to
mesh networks where a communication backbone exists in the network.

The distributed constraint optimization framework has been studied extensively in the multi-
agent literature. In [9], the D-CEE framework is presented to study the problem of how to
coordinate mobile nodes to maximize the cumulative RSSI. The paper’s focus is on algorithms
to study the trade-off between exploration and exploitation. We, on the other hand, focus on
different local metrics (SNR, PRR) and how it affects the overall network. We quantify how
much gain the network can benefit from small movements and how we can design a system to
improve the real-world network throughput.

In addition to the DCOP work discussed in earlier sections, previous work in distributed con-
straint reasoning in sensor networks [27, 28] uses a precursor method to the DCOP formulation
which does not handle unknown reward matrices. Marder et al. [29] formulate dynamic sensor
coverage as a “potential game,” which is similar to a DCOP. However, like other DCOP work,
the reward matrix is known, there is no time limit, and only final reward is considered. Cheng et
al. [30] suggest an approach for coordinating a set of robots based on swarm intelligence, how-
ever the objective of the work is to disperse the robots evenly within a specified shape, and not
to optimize the signal strengths across the network.

Correll et al. [31] look at optimizing a wireless network of mobile robots using a distributed
swarm optimization, but are concerned with changing the topology (i.e., neighbors) of the net-
work rather than optimizing signal strength. Gerkey et al. [32] address a similar problem, but
use auction mechanism and the goals of agents are significantly different (agents modify the
topology of the network and on-line reward is not emphasized). Farinelli et al [33] perform de-
centralized coordination on physical hardware using factor graphs, however, rewards are known
and cumulative reward is not considered.

7. Conclusion

In this paper, we demonstrate that mobile robots can be used successfully in a mesh network.
With robotic routers forming a network, nodes can avoid deep face caused by multi-path fading.
Our study shows that small movements can improve network performance and that the total
network throughput could vary as much as 270% when the robots moved on the order of half
a wavelength. Avoiding deep fades is a pairwise problem between sender and receiver, which
requires coordination. Thus, we designed a practical system which uses the distributed constraint
optimization framework to improve communication. We studied four local metric (min SNR,
min PRR, sum SNR, sum PRR) to estimate the global throughput. Our results are encouraging
because we can achieve an average global performance improvement of 30% while maximizing
only local metrics.
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