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Abstract

In urban transportation networks, crime diffuses as
criminals travel through the networks and look for il-
licit opportunities. It is important to first model this dif-
fusion in order to recommend actions or patrol poli-
cies to control the diffusion of such crime. Previously,
game theory has been used for such patrol policy rec-
ommendations, but these applications of game theory
for security have not modeled the diffusion of crime that
comes about due to criminals seeking opportunities; in-
stead the focus has been on highly strategic adversaries
that plan attacks in advance. To overcome this limita-
tion of previous work, this paper provides the following
key contributions. First, we provide a model of crime
diffusion based on a quantal biased random movement
(QBRM) of criminals opportunistically and repeatedly
seeking targets. Within this model, criminals react to
real-time information, rather than strategically planning
their attack in advance. Second, we provide a game-
theoretic approach to generate randomized patrol poli-
cies for controlling such diffusion.

Introduction
Crime in transportation networks is a threat to passengers.
Given the structure of these networks, crime diffuses as
criminals traveling by public transportation seize opportu-
nities to commit crimes. Unlike strategic adversaries who
may carefully plan to exploit security weaknesses and attack
targets, criminals may opportunistically react to real-time in-
formation, which means that crime diffuses dynamically. In-
deed, recent research in criminology shows that crimes are
often crimes of opportunity and how offenders move and
mix with their potential targets or victims is a key determi-
nant of the structure of any crime opportunity (Brantingham
and Tita 2008; Felson, Clarke, and Britain 1998).

Indeed, transportation networks play an important role in
driving local crime patterns and in the diffusion of crime
(Block and Block 2000; Matthews et al. 2010). Individ-
ual transit hubs that are strong crime generators export
that propensity to other locations on the transit network.
Such diffusive potential may be particularly strong since
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a substantial portion of criminals use public transporta-
tion as their primary means of transportation (Loukaitou-
Sideris, Liggett, and Iseki 2002). Transportation networks
may themselves be at unique risk of crime because of the
way in which they concentrate large numbers of people in
time and space (Matthews et al. 2010; Taylor and Harrell
1996; Brantingham and Brantingham 1995). Within a trans-
portation network, not all locations are at equal risk. Cer-
tain transit stations, and certain transit vehicles, may have
design features that promote crime, be it poor lighting and
lack of natural surveillance (Loukaitou-Sideris 1999) or en-
vironmental cues such as poor maintenance and graffiti that
suggest that the facility is not well protected (Keizer, Lin-
denberg, and Steg 2008). Some transit locations are there-
fore more likely to attract offenders than others.

We take a metro rail network as a concrete example. In
such a network, crimes such as thefts and snatches usually
occur at nodes, such as stations or junctions where it is easy
for criminals to escape. These potential crime spots are con-
nected by trains with a fixed timetable. Crime at one node
can diffuse to a far-away node without affecting its neigh-
bors, which corresponds to the situation that criminals take
the train directly to the far-away node without getting off
halfway. This diffusion may be stochastic, with higher prob-
abilities of crime at more attractive stations.

Deploying police to patrol in such transportation net-
works is a way to suppress crime and control its diffu-
sion. In our example metro rail network, the police patrols
throughout all stations by trains. Previous work applying
game theory in a metro network has successfully gener-
ated randomized patrol schedules for police (Yin et al. 2012;
Jiang et al. 2012). These works deal with highly strategic at-
tackers who conduct full surveillance and plan their illegal
acts in advance; they assume attackers cannot adjust these
plans given real-time information. Another difference of that
work from ours is that attackers have fixed routes. As a re-
sult, the crime does not diffuse.

There are two key contributions in this paper. The first
contribution is a new model of crime diffusion. In this
model, criminals visit targets based on a quantal biased ran-
dom movement (QBRM), which has been used to model
criminal motion previously (Short et al. 2008), instead of
executing fixed routes. As a result, crime diffuses freely and
the pattern of such diffusion is stochastic. In addition, rather



than planning their attack in advance, criminals opportunis-
tically react to real-time information in the network. For ex-
ample, the real-time observations criminals make on the lo-
cation of police affects the QBRM model output and their
probability of committing a crime.

The second contribution is a game-theoretic approach to
generate randomized patrol schedules. We model the inter-
actions between criminals and the police as a Stackelberg
game, with the police acting as the leader and criminals
as followers. The police must commit to her patrol strat-
egy first and then criminals will choose targets to attack
given surveillance of police’s deployment. However there
are two differences with previous work in Stackelberg Secu-
rity games, which have been alluded to earlier. First, crim-
inals react to real-time information in our model as men-
tioned earlier, which is different from previous work. Sec-
ond, after one attack, criminals can still stay in the network
and find another target to attack using our QBRM model,
which is modeled as crime diffusion. Our objective is to find
a randomized patrol strategy for the police that optimizes her
expected utility against crime diffusion. We formulate the
problem as a nonlinear optimization problem on a Markov
chain model. Initial numeric experiments show that police
strategies computed by an off-the-shelf nonlinear solver on
our optimization formulation significantly outperform the
uniformly random patrol strategy.

Related Work
There has been research on a wide range of topics related to
controlling diffusion in networks. One line of work consid-
ers game-theoretic models of controlling contagion in net-
works. These are games between defenders and attackers
where the attacker attempts to maximize its diffusion influ-
ence over the network while the defender tries to minimize
this influence. Algorithms have been proposed to approxi-
mately solve such games under different models of diffu-
sion, including (Tsai, Nguyen, and Tambe 2012) for the In-
dependent Cascade Model (ICM) and (Nguyen et al. 2012)
for the Linear Threshold Model (LTM). In these contagion
games, the two players can only select a number of initial
seed nodes and their influence diffuses automatically. Such
models are thus not applicable to model the diffusive behav-
ior of opportunistic criminals.

Another line of research uses recent advances in crimi-
nology on opportunistic criminal behavior to describe crime
diffusion in networks. (Short et al. 2008) applied a biased
random walk model for house burglary, and (Zipkin, Short,
and Bertozzi 2013) analyzed the effect of the police on con-
trolling the crime diffusion in the house burglary domain.
In their works, criminals have no knowledge of the overall
strategy of the police, and their behavior is only affected by
their observation of the current police allocation in their im-
mediate neighborhood. Also in (Zipkin, Short, and Bertozzi
2013), police behave in a similarly reactionary way, allo-
cating their resources in an instantaneously optimal way in
response to the current crime risk distribution rather than
optimizing over the time horizon and within a transportation
network.

The motions of both criminals and police in (Zipkin,
Short, and Bertozzi 2013) also vary significantly from those
in the current work. Each instance of a criminal’s motion in
(Zipkin, Short, and Bertozzi 2013) may only be between ad-
jacent locations, after which the nearby police allocation is
observed anew and another movement can be made, lead-
ing to highly localized diffusion of criminals. In contrast,
criminals in the current work may make “large” directed
movements over the transportation network between distant
locations, as they see fit, before updating their beliefs and
moving again, leading to much less localized crime. Fur-
thermore, in (Zipkin, Short, and Bertozzi 2013) there is no
notion of the “movement” of police - rather, the distribution
of police is chosen to be instantaneously optimal, with no
regard for the mechanics of exactly how the allocation may
transform from one timestep to the next.

Game theoretic approaches have been successfully ap-
plied to security domains for generating randomized pa-
trol strategies against strategic adversaries, e.g., (Tsai et al.
2009) generated schedules for the Federal Air Marshals to
protect flights; (Shieh et al. 2012) generated schedules for
the US Coast Guard to protect ports; and (Yin et al. 2012;
Jiang et al. 2012) generated schedules for Los Angeles Sher-
iff Department to conduct fare checking on the LA Metro
network. We have discussed our differences with that litera-
ture in the Introduction Section.

Our approach combines and generalizes the randomized
patrolling model of previous security applications and the
criminology-based random-walk diffusion model of (Short
et al. 2008): now police can move inside the network in a
randomized fashion, and the criminals are opportunistic and
can diffuse throughout the network.

Problem Settings
In this section, we describe the problem setting of crime dif-
fusion in a metro rail network. By convention, the police are
referenced as “she” and criminal as “he”.

The metro rail network
The metro rail network consists of multiple stations along a
straight line and trains traveling in both directions through
this line. For simplicity, we assume that the distances be-
tween any two neighboring stations are the same. The trains
follow a fixed timetable. We divide time into time steps of
equal duration, so that it takes 1 time step for trains to go
from one station to its neighbors. We furthermore assume
that the trains can only arrive at or leave stations at the be-
ginning of these time steps. Denote by N the number of sta-
tions. There can be at most 2(N − 1) trains running simul-
taneously. Stations and trains running between stations are
collectively referred to as places. We denote the train from
station i to its neighboring station j (i.e., |i − j| = 1) as
i → j. Figure 1 shows such a metro rail network structure
with three stations from left to right.

There are two phases in one time step, which are shown
in Figure 2. The first phase, P1, is called the decision phase,
which is instantaneous. In this phase, trains are at stations
and passengers can make decisions. There are at most three
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decisions if the passenger is at a station: Go left means he
will get on the train heading to the left; Go right means he
will get on the train heading to the right; Stay means he stays
at the current station. The decisions that the passenger can
make if he is on a train are similar. If his train is heading to
the left, Go left means he will stay on the train; Stay means
he will get off the train and stay at the station; Go right
means he will get off his train and immediate get on the train
heading in the opposite direction. The second phase, P2, is
called the action phase. In this phase, trains are in motion
from one station to another.

The police

There are two kinds of passengers in this metro rail network.
The first kind are the police, who patrol throughout the net-
work. For the initial model in this paper we assume that there
is a single police unit. This police unit conducts random-
ized patrol using a Markov strategy π, which specifies for
each place a probability distribution over the available ac-
tions at that place. Specifically, for each place m denote by
lm, rm, sm the probabilities of actions Go left, Go right and
Stay, respectively; note that lm + rm + sm = 1 for each
place.

Example 1: A simple scenario with 3 stations (1, 2, 3)
and 4 trains (1 → 2, 2 → 1, 2 → 3, 3 → 2) is given in
Figure 1. A sample Markov strategy π is:

s1 = 0.5, r1 = 0.5;

l2 = 0.3, s2 = 0.4, r3 = 0.3;

l3 = 0.2, s3 = 0.8;

l1→2 = 0.1, s1→2 = 0.7, r1→2 = 0.2;

s2→1 = 0.8, r2→1 = 0.2;

l2→3 = 0.3, s2→3 = 0.7;

l3→2 = 0.4, s3→2 = 0.1, r3→2 = 0.5;

s1 = 0.5, r1 = 0.5 means that if the police is at station
1, she will have 0.5 probability to choose action Stay and
0.5 probability to choose action Go right at next decision
phase; l1→2 = 0.1, s1→2 = 0.7, r1→2 = 0.2 means that if
the police is at the train from station 1 to station 2, she will
have probability 0.1 to choose action Go left, probability 0.7
to choose action Stay, and probability 0.2 to choose action
Go right at next decision phase.

Criminals
The second kind of passengers are criminals. Criminals
travel throughout the network with a station-based plan. In
the decision phase, a criminal currently located at a station
will choose the next target station as described below; if he
is on a train, he can only execute the plan made earlier at
his previous station, and does not have the option to change
course.

Criminals can commit crimes during their time in the
metro network. We ignore the possibility of crimes during
decision phases because these phases are considered instan-
taneous. In action phases, crimes can only be committed by
criminals located at stations, where it is easy for them to es-
cape.

We call the subset of time steps in which a given crimi-
nal is at a station during the action phase Strikes. Figure 3
is a toy example that shows the relationship between the
time steps and strikes. For criminals with different station
sequences, their strikes are different. Also, we assume that
at each strike, and at the end of the action phase, the criminal
exits the metro system with a constant probability α.

Criminals are opportunistic and may not conduct long
time surveillance of the police. However, for simplicity, we
assume in this work that they have perfect knowledge of the
police unit’s Markov strategy (i.e., the probabilities of po-
lice actions at each place) and can compute the stationary
distribution of the police unit over the places that is induced
by the Markov strategy. Furthermore, once arrived at a sta-
tion, a criminal will observe whether or not the police unit
is present at that station. Based on this knowledge, the crim-
inal will decide whether to commit crime at that station dur-
ing the action phase, and then where to go at the decision
phase of the next time step. Each criminal is opportunis-
tic in the sense that his decision to commit crime is based
on whether the police unit is present at his current station,
along with the availability of crime opportunities at the sta-
tion. When choosing the next location for a Strike, the crim-
inal tends to move towards stations that he believes have a
higher expected value. His belief about the expected values
of a station will in turn depend on his belief about the pres-
ence of police at that station upon his arrival, the general
availability of crime opportunities at the station, as well as
the cost of time spent in traveling to that station. We consider
boundedly rational criminals, who do not always choose the
station with the highest value, but instead do random move-



N The total number of stations
π Police’s Markov strategy
E(i) The expected value of station i for crim-

inals
Vp(k) The expected value for police at strike

number k
Tp Transition matrix for police
pc Criminal’s probability vector of commit-

ting a crime for each state
−→
ct Police coverage vector
−→
cs Police stationary coverage vector
p Criminal’s probability distribution of tar-

get station for next strike.
−→cb,t Criminal’s belief coverage after t steps

from current time step
λ The rationality of criminal
α The exit rate of criminal
Ts Transition matrix for the Markov chain

model
−→
Xk The state distribution of Markov chain at

strike k
Rp Police’s revenue vector for each state
Obj Police’s objective

Table 1: Notation

ments biased toward stations of high expected utility.

Diffusion Model
In this section, we propose a model for crime diffusion in
a metro network, which describes the criminal’s behavior
in the presence of police patrols. The interactions between
the police and the criminal are modeled as a Markov chain,
where each state is a combination of the criminal’s station
and the police’s place. We then formulate the problem of
computing a maximum-revenue Markov patrol strategy for
the police as a non-linear optimization problem. The nota-
tion used in this paper is described in Table 1.

Police Patrol Model

Recall that the police’s Markov strategy is a mapping from
the police’s places to distributions over actions. There are
in total 3N − 2 places, including N stations and 2N − 2
trains. Given the Markov strategy, the police’s movement is
a Markov chain over the places. We call the transition matrix
of this Markov chain the police transition matrix Tp. Tp is a
(3N −2)× (3N −2) matrix whose entry at column i, row j
specifies the probability of the police going from place i to
place j in one time step. We choose a basis such that, in this
matrix, line 3i − 2 (i ∈ 1, . . . , N) represents the station i;
line 3i− 1 represents the train from station i to station i+1;
line 3i represents the train from station i+ 1 to i.

Example 2: Given the same scenario in Example 1, where
there are 3 stations in total, we have the following police
transition matrix.

Tp =



s1 0 s2→1 0 0 0 0
r1 0 r2→1 0 0 0 0
0 l1→2 0 l2 0 l3→2 0
0 s1→2 0 s2 0 s3→2 0
0 r1→2 0 r2 0 r3→2 0
0 0 0 0 l2→3 0 l3
0 0 0 0 s2→3 0 s3

 (1)

Using this matrix and given a probability distribution
of police’s places for the current step, we can calculate
the probability distribution over police’s places for the
next time step (or any time step in the future). We de-
note the probability distribution of police’s places as −→c =
(c1, c1→2, c2→1, c2, · · · , cN→(N−1), cN )

−−→
ct+1 = Tp ·

−→
ct (2)

Assuming the transition matrix is ergodic, there exists a
stationary coverage of each place

−→
cs , which is one of the

eigenvectors of Tp with eigenvalue 1. We assume Tp has
only one eigenvalue equal to 1, in which case there exists
a unique stationary coverage. The stationary coverage can
be computed in polynomial time by matrix inversion.

Crime Diffusion
Crime diffuses throughout the transportation network as
the criminals move around and opportunistically commit
crimes. We start by focusing on a single criminal. Before
further analysis, we first enumerate the inputs for this crime
diffusion model.

1. Input 1 : The current station of the criminal.
2. Input 2 : The Markov strategy of police.
3. Input 3 : The stationary coverage of police for each loca-

tion.
4. Input 4 : A boolean value for the relationship between the

criminal and the police in terms of their places: 1 if they
are at the same station; 0 if not.

5. Input 5 : The attractiveness of stations
−→
Att, which influ-

ences the criminal’s probabilities of committing crimes as
described below.
We can use inputs 1, 4, and 5 to calculate the criminal’s

probability of committing a crime in the action phase at the
current time step. There are two factors that affect the prob-
ability of the criminal committing a crime. First, the place
relationship between the police and the criminal at this time
step. If they are at the same station, the probability that the
criminal will attempt to commit crime is ps; else it is pd.
Second, the attractiveness of the criminal’s current station.
The concept of attractiveness is from the literature on oppor-
tunistic crime, and measures the availability of crime oppor-
tunities, i.e., how “easy” it is to commit a crime at different
stations. Hence, it measures the probability of successfully
committing a crime at a station assuming that the criminal
attempts to commit crimes there in the first place. Thus, the
crime probability is the product of two terms: if the criminal
is at station i and the police is not at that station at this time



step, he will commit a crime with probability pd · Att(i);
otherwise, the criminal and the police are both at station i
at this time step, and he will commit a crime with proba-
bility ps · Att(i). To simplify the problem, we assume for
the remainder of this work that ps = 0 and pd = 1. That
is, if the criminal and police are at different stations, then
the criminal will certainly attempt to strike, and if they are
at the same station, the criminal will certainly not attempt
to strike. Formally, then, let pc(i) be the probability of suc-
cessfully committing a crime if the criminal is at station i,
then

pc(i) =

{
0 if police is at station i
Att(i) otherwise.

(3)

Example 3: We still use the scenario in Example 1, where
there are 3 stations (1, 2, 3). Suppose the attractiveness of
station 1 is 0, station 2 is 0.5, and station 3 is 1, and that the
criminal is at station 1. If the police is at station 2, pc(1) =
Att(1) = 0 ; pc(2) = 0 (since ps = 0); pc(3) = Att(3) =
1.

The criminal will use inputs 1, 2, 3, and 4 to update his be-
lief state of the police’s place. In theory, the criminal could
base his belief on the entire history of his observations.
However, he would then need to carry out complicated
calculations and this conflicts with our assumption of
boundedly-rational criminals. Instead, we use a memory
wipe model of the criminal, which means that the criminal
forgets what he observed in previous time steps and only re-
members his current observation. If the criminal is at station
i and the police is also here, he will set his current belief
for the coverage of police to −→cb,0 as (0, 0, ..., 1, 0, ..., 0)T ,
where row 3i − 2, which stands for the coverage of
station i, is 1 and others are 0; otherwise, the criminal is
at station i while the police is not, and −→cb,0 will be set as( −→cs (1)
1−−→cs (3i− 2)

,
−→cs (2)

1−−→cs (3i− 2)
, ..., 0,

−→cs (3i− 1)

1−−→cs (3i− 2)
, ...,

−→cs (3N − 2)

1−−→cs (3i− 2)

)T
, where row 3i − 2 is 0 and others rows

are proportional to the corresponding rows in the stationary
distribution −→cs . The future belief state of the police’s places
can be calculated using the current belief state and the
police transition matrix:

−→cb,t = T tp · −→cb,0, (4)

where −→cb,t denotes the criminal’s belief state of police’s
place in t time steps.

After we have the belief state for future time steps, we
can calculate the expected value for each station at the next
strike. The expected value for one station is the revenue that
the criminal expects to get if he chooses this station as the
target for the next strike. There are two factors contribut-
ing to this revenue. The first part is the probability of a suc-
cessful crime; the second part is the expected value for one
successful crime at the next strike. If the criminal is at sta-
tion i for the current strike and chooses station j for the next
strike, there are |i − j| + 1 time steps between these two

Input: i: the criminal’s station; Tp: the transition matrix
for police; −→cs : the police’s stationary coverage
for all places; relation: the place relationship
between the criminal and the police;

−→
Att: the

attractiveness of the stations; N : the number of
stations; uc: the utility of one crime; λ: the
rationality of the criminal

Output: −→p (·|i,−→cb,0): The criminal’s probability
distribution for next target

1 Initial −→cb,0 with a 1× 3N − 2 zero vector ;
2 if relation = 1 then
3 −→cb,0(3i− 2) = 1;
4 end
5 if relation = 0 then
6 for j ∈ Station do

7 −→cb,0(j) =
−→cs (j)

1−−→cs (3i− 2)
8 end
9 −→cb,0(3i− 2) = 0

10 end
11 for j ∈ Station do
12 t = |i− j|+ 1 ;
13 −→cb,t = T tp · −→cb,0;
14 E(j|i,−→cb,0) = (1−−→cb,t(j))Att(j) · uc/t ;
15 end
16 for j ∈ Station do
17 p(j|i,−→cb,0) = (E(j|i,−−→cb,0))λ∑N

h=1(E(h|i,−−→cb,0))λ
;

18 end
19 return −→p (·|i,−→cb,0);

Algorithm 1: QBRM ALGORITHM

strikes. Hence, the probability of a successful crime occur-
ring during a strike at station j is

pc(j) = (1−−→cb,|i−j|+1(j))Att(j) .

The second part is the value the criminal assigns for
one successful crime at the next strike. For each success-
ful crime, the real utility the criminal gains is uc. However,
we assume that the value the criminal places on a successful
crime is inversely proportional to the time he spent during
the strike. The time associated with the next strike being lo-
cated at j is (|i − j| + 1). Considering these two factors,
the value placed on one successful crime at the next strike
is uc
|i−j|+1 Taking this all together, the expected value for

choosing station j as the next strike if the criminal is cur-
rently at station i is

E(j|i,−→cb,0) =
(1−−→cb,|i−j|+1(j))Att(j) · uc

(|i− j|+ 1)
. (5)

The criminal is boundedly rational: instead of always
picking the station with highest expected value, his move-
ment is a random movement process that is biased toward
stations of high expected values. Given the expected value
for each station E(·|i,−→cb,0), we determine the probability



distribution for each of them being chosen as the next strike,−→p (·|i,−→cb,0) through the equation

p(j|i,−→cb,0) =
(E(j|i,−→cb,0))λ∑N
h=1(E(h|i,−→cb,0))λ

, (6)

where λ > 0 is a parameter that describes the criminal’s
level of rationality. This is an instance of the quantal re-
sponse model of boundedly rational behavior (Luce 1959;
McFadden 1974; McKelvey and Palfrey 1995). The crim-
inological and game-theoretic effects described earlier are
incorporated into the model by the expected value. A math-
ematical description of the criminal’s movement is given in
Algorithm 1.

Optimization Formulation in a Markov Chain
We have now fully described the behavior of the police and
the criminals in the metro system; however it is not immedi-
ately obvious how to formulate the police’s problem of find-
ing an optimal strategy as a computational problem. In this
section we give such a formulation, by modeling the game
between the police and the criminal as a finite state Markov
chain. As the interactions between the police and criminals
are independent across different criminals, without loss of
generality we can focus on the interaction between police
and a representative criminal.

Each state of this Markov chain is a combination of the
criminal’s station and the police’s place. Here we only con-
sider the situations where the criminal is at a station as states
because the criminal only makes decisions at stations. Since
there are N stations and 3N − 2 places, the total number
of states is N(3N − 2). Because only the criminal’s stations
are in the Markov chain states, transitions for these states are
based on strikes rather than time steps.

The transition matrix for this Markov chain, denoted as
Ts, can be calculated by combining the police patrol model
and the crime diffusion model. However, note that the crime
diffusion model is determined by the police’s patrol strategy,
because it models the interactions between the criminal and
the police. Therefore the police’s Markov strategy π fully
determines Ts.

Each element in Ts represents the transition probability
from one state to another. For further analysis, we pick
the element pS1→S2 that represents the transition proba-
bility from S1 to S2. In S1, the criminal is at station
i ∈ {1, 2, . . . , N} while the police is at location m ∈
{1, 2, . . . , 3N − 2} and in S2, the criminal is at station j
while the police is at location n. We need two steps to cal-
culate this transition probability.

The first step is to calculate the transition probability of
the criminal from S1 to S2. Given S1, S2, and the police’s
Markov strategy π, we have all the inputs in the crime dif-
fusion model. Algorithm 1 uses these inputs to achieve the
belief state updating for the criminal. It then generates ex-
pected utility of each station for the criminal. Finally, it gives
us the probability for the criminal to choose j for the next
strike, p(j|i,−→cb,0), in terms of π.

The second step is to calculate the transition probability of
the police from S1 to S2. The number of time steps needed

to transition from S1 to S2 is |i−j|+1 so we should consider
the probability distribution of the police’s place in |i−j|+1
time steps. Denote by −−−−−→c|i−j|+1(n) the probability that the
police is at place n in |i− j|+ 1 time steps, we have

−−−−−→c|i−j|+1(n) = (T |i−j|+1
p · −→c0)(n), (7)

where −→c0 is the basis vector corresponding to the current
location, which is 1 for row m and 0 for others.

After we find the transition probabilities for both the crim-
inal and the police, we can calculate pS1→S2 as the product
of these two,

pS1→S2 = p(j|i,−→cb,0) · −−−−−→c|i−j|+1(n). (8)

Because S1 and S2 can be any states in the Markov chain,
we can represent all the elements in the transition matrix in
terms of the police’s Markov strategy.

Given this Markov chain model, we can calculate the util-
ity for the police at each strike. For each successful crime,
police receive utility up < 0; i.e., the successful occurrence
of crimes is a bad thing for police. If there is no crime or
the crime attempt fails, the police receive utility 0. At each
state in the Markov chain, we can find the expected number
of successful crimes and therefore evaluate the police’s ex-
pected utility. This is not a zero-sum game because we do
not consider the time factor in police’s expected utility.

Example 4: Given the same scenario as Example 1,
where there are 3 stations in total, we will enumerate the po-
lice’s expected utility for some state. In S1, where the crim-
inal is at station 1 while the police is also at station 1, the
police’s expected utility is rp = 0, because the criminal will
not commit a crime in this instance (recall ps is assumed 0).
In S2, where the criminal is at station 2 while the police is
at station 1, the police’s expect utility is rp = Att(2) · up.

We can use a 1 ×N(3N − 2) vector Rp to represent the
utility for all states. Rp is a pre-generated vector based on
up and

−→
Att only. Vp(k), the police’s expected utility during

strike number k (note that the strike number k is not neces-
sarily the same as the strike location), is

Vp(k) = Rp ·Xk, (9)

where Xk is the state distribution at strike number k. Using
the transition matrix Ts and the exit rate for the criminal
after each strike α, we can calculateXk from the initial state
distribution X1:

Xk = ((1− α) · Ts)k−1X1. (10)
The objective of the police is the total expected utility,

summed over all the strikes:

Obj = lim
K→∞

K∑
k=0

Vp(k + 1)

= lim
K→∞

K∑
k=0

Rp · ((1− α) · Ts)kX1

= Rp · (I − (1− α)Ts)−1X1, (11)

where I is the identity matrix. For the last equality we make
use of the geometric sum formula and the fact that the largest
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Figure 4: Experimental result

eigenvalue of Ts is 1, and therefore I− (1−α)Ts is nonsin-
gular for 0 < α < 1.

The only unknown factor in the objective is the transition
matrix Ts, which can be expressed in terms of the police’s
Markov strategy π via Equations (4), (5), (6), (7), and (8).
We have thus formulated the police’s problem of finding the
optimal Markov strategy to commit to as a nonlinear opti-
mization problem, specifically to choose π to maximizeObj
(that is, minimize the total amount of crime in the network).

Experiments
The optimization problem (11) is non-linear due to the crim-
inal’s QBRM (6) and the multiplication of the police’s tran-
sition matrix. We solve this non-linear optimization using
the FindMaximum function in Mathematica. This function
automatically chooses a local-optimal solver for the non-
linear problem. Possible solvers include Conjugate Gradi-
ent, Principal Axis, Levenberg Marquardt, Newton, Quasi
Newton and Interior Point. In this initial report, we evalu-
ate the solution quality for this Markov chain model against
crime diffusion.

Data Sets
For our experiments we used a metro network that is simi-
lar to the toy network we introduced in the Problem Setting
section, which is a simplification of real-world situations.
In our metro network, there were a number of stations N .
The stations in the network were along a straight line. The
distances between any two neighboring stations are the same
and each train needed one time step to go from one station to
its neighbor. There are always two trains on a station heading
to different directions in the decision phase of any time step.
The initial distribution of police places was set as her station-
ary coverage. For simplicity, we assume in police’s Markov
strategy, the distribution over actions at a train is the same as
that at the station where the train will reach at the decision
phase of next time step. This is feasible because the available
actions in both situations are the same. We set the attractive-
ness of station i as a function of i, Att(i) = 0.05(i + 1).
Here, because we are dealing with small scale problems, we
assume i < 19; as a result, Att(i) < 1, which is consis-
tent with the definition of the attractiveness of stations. The
police’s utility of a successful crime was up = −1. In our
experiments, we assumed the distribution of criminal’s ini-
tial stations was uniform over all the stations. We set the exit

rate of the criminal α = 0.1. Finally, we chose the revenue
of a successful crime to be uc = 1; however, any uc > 0 will
give the same results, as the factor uλc can be factored out of
both the numerator and denominator of Eq.(6), so that the
criminal’s behavior is actually independent of this parame-
ter.

We applied two different patrol strategies for police. The
first is the uniformly random strategy, which means the po-
lice will randomly choose her action from all the available
actions at current place with the same probability. For any
given stations i except the two end stations, li = ri = si =
1/3. For the end stations, the probabilities of moving and
staying are both 1/2. The second strategy applied is the strat-
egy returned from the non-linear solver. When solving the
non-linear program in Mathematica, we set the starting point
as the uniformly random strategy.

Results
In our first set of experiments, we fixed λ = 1 and var-
ied the number of stations N . Figure 4(a) shows the po-
lice’s objective, which is the total utility of police over all
the strikes. Since our nonlinear solver is only guaranteed
to return a local maximum of the objective function, this is
only the lower bound for the globally optimum solution. As
we can see, the police’s utility decreased as the number of
stations increased. Unsurprisingly, police patrol can signif-
icantly increase police’s utility against crime diffusion and
the Markov strategy from non-linear programming outper-
formed the random strategy for any number of stations. At
the same time, the ratio between the utility we get from the
optimal Markov strategy and the random strategy was sta-
ble. The ratio for 2 stations is 0.82; for 3 stations, it is 0.79;
for 4 stations, it is 0.80; for 5 stations, it is 0.82; and for 6
stations, it is 0.83. The police’s utility decreased nearly lin-
early with the increase of the number of stations, which is
to be expected for a constant number of police. The theo-
retic lower bound of the objective Objm occurs in the sit-
uation where the criminal commits a crime at each strike
before he exits the system. Given this behavior, Objm =
up+(1−α) ·up+ · · ·+(1−α)N ·up+ · · · = up · 1α = −9
. The police’s utilities in small scale problems were much
higher than Objm, which meant that the patrol could signif-
icantly control crime diffusion in these cases.

To study the effect of criminal’s rationality to the po-
lice’s objective, we fixed the station number to 4 and var-
ied λ. Figure 4(b) shows the police’s objective when pitted
against a criminal with λ from 0 to 2. As we can see, the
non-linear programming Markov strategy outperformed the
random strategy significantly for any λ. As the criminal’s
rationality increased, the police’s utility decreased. This was
because the criminal would commit more successful crimes
when he became more strategic.

The last result that we mention is the run time of solv-
ing the optimization. As we were dealing with small scale
problems in this paper, the run time was not a big concern.
Using Mathematica on a standard 2.4 GHz machine with 8
GB memory, the longest runtime was less than 2 minutes,
which was for solving the scenario with 6 stations.



Summary
In this paper we presented a novel crime diffusion model for
opportunistic and boundedly rational criminals. We also pro-
vided a game-theoretic approach for controlling such diffu-
sion via randomized police patrols. Unlike previous Stackel-
berg game models for security, in which the attackers strate-
gically plan their attack in advance, the criminals in our
model would react to real-time information. We provided
a novel formulation of the resulting problem of schedul-
ing police patrols as a nonlinear optimization problem on
a Markov chain. The experimental results showed that the
strategy that we generated outperformed the uniformly ran-
dom strategies in different scales of problem instances and
with different types of criminals. Scalability remains a ma-
jor challenge: the current algorithm is only fit for small-scale
instances of the problem. In the future, we plan to find more
efficient algorithms to solve real-world scale problem in-
stances; and one possible approach is to approximate this
non-linear crime diffusion model with something computa-
tionally more tractable.
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