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Abstract—Influence blocking games have been used to model
adversarial domains with a social component, such as counterin-
surgency. In these games, a mitigator attempts to minimize the
efforts of an influencer to spread his agenda across a social
network. Previous work has assumed that the influence graph
structure is known with certainty by both players. However, in
reality, there is often significant information asymmetry between
the mitigator and the influencer. We introduce a model of this
information asymmetry as a two-player zero-sum Bayesian game.
Nearly all past work in influence maximization and social network
analysis suggests that graph structure is fundamental in strategy
generation, leading to an expectation that solving the Bayesian
game exactly is crucial. Surprisingly, we show through extensive
experimentation on synthetic and real-world social networks that
many common forms of uncertainty can be addressed near-
optimally by ignoring the vast majority of it and simply solving an
abstracted game with a few randomly chosen types. This suggests
that optimal strategies of games that do not model the full range
of uncertainty in influence blocking games are typically robust
to uncertainty about the influence graph structure.

Index Terms—Game theory, Social contagion, Influence max-
imization

I. INTRODUCTION

Social contagion has long been of great interest in the literature
on marketing, the spread of rumors, and, recently, in the
context of Arab Spring [11], [13], [19]. Our specific focus
is on counterinsurgency, which we view as a competition
for the support of local leaders. Counterinsurgency can be
modeled as a game with two strategic players, the insurgents
and the peacekeepers, in which the insurgents aim to spread
their views, unrest, etc. among the local population, while
the peacekeepers wish to minimize the resulting contagion
by engaging in their own influence campaign [8], [7], [20].
The key computational question we address is: given limited
resources, how to select which of the local leaders to influence
to minimize the global impact of the insurgency.

These ‘influence blocking’ games have received recent
attention in the security games literature [20], where they
have been modeled using graphs with nodes representing the
tribal leaders and edges representing possible transmission
of influence. However, this line of work has assumed that
full information about network structure is available to both
players. In practice, informational challenges abound in coun-
terinsurgency, where the insurgents are typically an indigenous
group that has an informational advantage, and the mitigators
are often uncertain about the the social network [8].

We model counterinsurgency as an influence blocking game
with asymmetric information. Specifically, we assume that
the influencer (an insurgent group) has perfect knowledge of
the influence graph structure, while the mitigator is uncertain
about it. In the resulting Bayesian game, an influencer type
is a particular instantiation of the influence graph, and the
mitigator must reason over the distribution over these graphs
(i.e., influencer types) in order to compute an optimal strategy.

Past work in influence maximization and social network
analysis highlight the importance of graph structure in strat-
egy generation [11], [3], [6]. In addition, previous work on
Bayesian security games has shown that not accounting for
even small degrees of payoff uncertainty can lead to large drops
in solution quality [12]. Thus, we expect strategies generated
without modeling most of the uncertainty about graph structure
to do far worse than the optimal solution to the Bayesian game.
Supporting this intuition, we show that there are cases where
a mitigator who has incorrect information about a single edge
can suffer unbounded loss and that quantifying the impact of
changing a single edge in a given graph is #P-Hard. We also
show empirically that, indeed, under our models of uncertainty,
optimal mitigator strategies for different influencer types are
vastly different.

However, while past work has focused on sophisticated
algorithms for Bayesian security games [9], [12], [22], we
showcase the opposite approach that runs directly counter to
what intuition and our initial experiments suggest: ignoring the
vast majority of uncertainty has minimal impact. Specifically,
we show through extensive experiments that computing a miti-
gation strategy based on a game with only a few randomly sam-
pled influencer types yields near-optimal rewards for widely
varied models of uncertainty. We experiment on 3 different
synthetic graph models with and without resource imbalances
on both sides, 5 models of uncertainty, weighted/unweighted
counting of nodes, varied edge weight distributions, varied
graph sizes, varied degrees of uncertainty, and varied degrees
of sampling. We also conduct experiments on two real-world
social networks using two different models graph construction.
In all, we studied over 200 experimental settings and con-
sistently observe the same result: simple sampling techniques
perform near-optimally. This suggests that even in domains
as challenging as ours, models which ignore uncertainty may
nevertheless be robust to it.



II. MODEL

A. Asymmetric Information Game

We model counterinsurgency as a two-player Bayesian zero-
sum game situated on a graph in which two players, the
influencer (denoted by I) and the mitigator (denoted by M )
compete to maximize influence over the nodes. Formally, let
G = (V,E) be a graph with weighted nodes V and edges
E, and for each edge (i, j) ∈ E, let pij be the probability
that node i’s opinion will influence node j. Suppose that the
influencer initially attempts to influence a subset of nodes
SI ⊆ V to his cause, and the mitigator’s initial influence is
aimed at a subset of nodes SM ⊆ V . We model propagation of
influence in the graph as a synchronized independent cascade
process [11], [20] as follows. For nodes v ∈ SI ∩ SM which
both players initially try to influence, initial “activation” (e.g.,
actual opinion adoption) happens in either player’s favor with
equal probability, while all the remaining nodes adopt the view
of (are activated by) the player who directly targets them. Next,
we activate all edges (i, j) in the graph with the corresponding
probability of influence, pij , yielding a subgraph upon which
influence can spread. At that point, the influence process
proceeds through a sequence of iterations. In each iteration,
if a node j has not yet adopted an opinion but has active
edges to neighbors who have, j either adopts the opinion of
these neighbors when it is unanimous, or adopts each opinion
with equal probability if j’s active neighbors disagree. Viewing
now the initial target nodes SI and SM as the strategies of the
players I and M respectively, let σ(SI , SM ) be the expected
value of nodes that adopt the influencer’s opinion following
the independent cascade process described above. We define
the utility of the influencer to be UI(SI , SM ) = σ(SI , SM ).

We now depart from the model of Tsai et al. [20] by relaxing
the complete/symmetric information assumption. Specifically,
we assume that the influencer knows the actual influence
graph G exactly, while the mitigator is uncertain about its
true structure, and only knows the probability distribution over
possible graphs. Let λ be an index identifying a particular
graph Gλ, and let us make explicit the dependence of the
expected influence on the graph, denoting it by σ(SI , SM , λ).
Finally, we denote by P the probability distribution over
λ, with Pλ being the probability that the true graph is the
one identified by λ. From the mitigator’s perspective, the
influencer’s decision will depend on his type; that is, on the
true graph which the influencer observes. Thus, we view the
influencer’s strategy SI as a function of λ, with SλI denoting
the influencer’s strategy when his type is λ. The mitigator’s
utility is then UM (SI , SM ) = −Eλ∼P [σ(SλI , SM , λ)].

B. Models of Networks and Uncertainty

Numerous stochastic generative models for graphs have
been proposed to generate synthetic instances that resemble
real social networks [14]; some of the best known examples
are the preferential attachment process, which generates scale-
free graphs [2], and the process of generating small-world
networks pioneered by Watts and Strogatz [21]. Recently, a
new generative model, BTER, has been developed, and the

authors convincingly demonstrated that this model matches
the important properties of real-world networks, such as the
distribution of degrees and clustering coefficients, far bet-
ter than alternatives [17]. BTER graphs feature a scale-free
collection of densely clustered community structures (dense
Erdös-Rényi subgraphs), which are sparsely interconnected
by ‘inter-community’ edges. We conducted experiments on
BTER graphs (including variations in community density
and interconnectedness), small-world graphs (Watts-Strogatz),
preferential attachment graphs, and real-world networks from
two villages in India. Due to space limitations, we show results
for BTER graphs and two of the Indian villages here, and will
publish the remainder in an extended journal version.

We consider several ways to model the mitigator’s uncer-
tainty about the graph. Influential Node uncertainty models
uncertainty about which nodes are most connected, motivated
by the fact the identity of the most socially connected and
influential individuals is a function of the local culture which is
more familiar to the influencer than the mitigator. Specifically,
we start with a baseline graph, then, for each type, choose a set
of j nodes and add k new randomly chosen edges from each
of these nodes to others. It is important to note that in BTER
graph, these j nodes are the only nodes that can potentially
have inter-community edges under this uncertainty. These
inter-community edges are particularly important in contagion
games because they enable the spread of influence across
groups. The second model, Random Edge uncertainty, is the
simplest: the mitigator has perfect information about the nodes
in the graph, and is uncertain about which edges out of a given
set exist. The third model of uncertainty, Inter-community Edge
uncertainty, models the mitigator’s uncertainty about a subset
of the inter-community edges. The fourth model of uncertainty,
Inter/Intra-Community Edge uncertainty, models uncertainty
about a combination of inter-community and intra-community
edges and addresses the concern that Inter-community Edge
Uncertainty may provide additional information by being
restricted to the critical inter-community edges. Note that
in Inter-community Edge, Inter/Intra-Community Edge, and
Random Edge uncertainty, we have a type λ for each possible
subset of uncertain edges in the graph so the number of types
could be as large as 2|E|. The fifth model of uncertainty,
Inter-community Edge Set uncertainty, models uncertainty over
which set of inter-community edges exists (i.e., which set of
8 edges exists). The final three uncertainties, which highlight
inter-community edges, apply only to BTER graphs. Here we
only show results for Influential Node and Inter-community
Edge uncertainty. The results for the rest are qualitatively
similar.

The counterinsurgency literature [8] makes clear that mil-
itary intelligence explicitly performs ‘intelligence preparation
of the battlefield (IPB)’ to ascertain the structure and dynamics
of a local population with high fidelity. Therefore, we are not
interested in cases in which the entire social network is largely
unknown or misunderstood. Instead, we focus on situations
with a generally correct social network in which uncertainty
is about the details of the network structure.



Fig. 1. Left: Unbounded loss; Right: Comparison of mixed strategies

III. THE CHALLENGES OF UNCERTAINTY

The first question is whether we can bound the impact of
a small amount of uncertainty, as that may help us bound the
resulting loss in solution quality. We show that, in general,
ignoring uncertainty can yield an arbitrarily poor solution for
the mitigator. Consider the graph shown in Figure 1 in which
the edge from A to B is uncertain, N > M , and both players
have a single resource. Suppose that the influencer chooses to
influence node A with probability 1. If the mitigator mistakenly
assumes the edge does not exist, then his best response is to
influence node C with probability 1, but his actual loss amounts
to N

2 as compared to the true best-response, for a sufficiently
large N , of playing B (M2 ). A similar situation arises when
the mitigator assumes the opposite. Thus, since N is arbitrary,
by ignoring the uncertainty of just a single edge the mitigator
can suffer unbounded loss.

The network in the above example is rather artificial, so
it is natural to wonder what happens under a more realistic
model of a network and uncertainty. To this end, we investigate
the following empirical question: under our models of uncer-
tainty, if we were to compute an optimal strategy assuming
a single influencer type, how much would that strategy vary
for different types? To answer this, we take a Bayesian game
with 40 types and compute an optimal mitigation strategy for
each possible influencer type λ under the assumption of com-
plete information. This yields a mixed strategy, SλM , for each
possible influencer type. Next, we select a type b uniformly
at random and measure the fraction of pure strategies in the
support of SbM that is different from the pure strategies in
the support of each SλM for λ 6= b. In Figure 1 we also
report the average fractional difference over 20 independent
instances of 40-type Bayesian games on 40-node BTER graphs
(edges vary from 130 to 200) with Influential Node uncertainty
(more details on our standard setup will be presented shortly).
Note that 1 in this case indicates that the mixed strategy for
a randomly chosen type does not share a single pure strategy
with the mixed strategy computed for any other type. Nearly
all instances show minimal overlap in the pure strategies used
by each of the type-specific optimal strategies.

IV. DOUBLE ORACLE ALGORITHM

Even though we formulated influence blocking as a zero-
sum game which can be solved using linear programming com-
puting an equilibrium of this game in our case is challenging
for three reasons. First, payoff estimation requires determining

the value of σ(SλI , SM , λ), which has been shown to be #P-
Hard [4]. Therefore, even constructing the payoff matrix for
this linear program is non-trivial. Second, the strategy sets
for both players are exponentially large, making it impractical
to store the entire payoff matrix even if we could compute
payoffs efficiently for a pair of player strategies. Third, because
we model uncertainty over graph instances, the number of
influencer types can be exponentially large.

The first problem was previously addressed by introducing
the LSMI heuristic for faster estimation of σ(·), which we
also use here [20] . The Bayesian double-oracle algorithm
introduced by Halvorson et al. [5] offers a solution to the
second problem. This algorithm begins with a small subset
of pure strategies for each player and iteratively adds best-
response strategies to the existing subgame. The algorithm
ends when no new best-responses need to be added, at which
point it has provably converged to the equilibrium of the
full game. In the context of Bayesian games, Halvorson et
al. propose computing the best response for every player type,
which in our case means that we compute the influencer’s
best response for each type (graph), and add all of these pure
strategies in each iteration. This approach runs into our third
and final problem: the exponential number of types. Since
computing a best response for a given type requires a non-
negligible amount of computation, doing it for every type will
not scale. To address this, we now show empirically that simple
heuristics actually produce near-optimal solutions.

V. THE POWER OF SIMPLE

The results presented thus far, as well as the intuition from
the vast literature on influence maximization [13], [4], [3],
suggest that carefully accounting for our uncertainty about
graph structure is crucial to obtaining high quality solutions.
Next, we present a small, representative subset of an extensive
collection of experiments, all showing precisely the opposite:
we need only to randomly sample a few types from the
type distribution and solve the resulting game as if no other
types exist, to obtain solutions that are nearly optimal. This
is quite surprising, particularly since we have already shown
that ignoring even a single influencer type can yield arbitrarily
poor solutions even with only two types.

All the results below are an average of 20 game instances
and were run on machines with CPLEX 12.2, 2.8 GHz CPU,
and 4GB of RAM. Unless otherwise stated, experiments were
run on 40-node graphs (130 to 200 edges), contagion proba-
bilities on edges drawn from a N (0.4, 0.2) distribution, node
values varying uniformly from 1-10, each player having two
seed nodes (|SI | = |SM | = 2), and payoffs estimated using
the LSMI heuristic introduced by Tsai et al. [20]. Monte Carlo
payoff estimations produced similar results but could not be
meaningfully scaled. Since an optimal benchmark is necessary,
the best-response oracles iteratively evaluate each available
action to determine the best response, rather than using greedy
hill-climbing common in the influence maximization literature.
Unless otherwise stated, Influential Node uncertainty selects
3 nodes and gives each 4 additional edges. Moreover, only



these 12 edges could potentially connect communities, making
the chosen nodes not only more connected (average degree,
excluding uncertain edges, varies from 3-5 with maximums
of 9), but also incident to the more consequential edges.
For Inter-Community Edge uncertainty we varied the number
of uncertain edges between 1 and 6 (the optimal technique
could not scale to more edges). We focus throughout on the
mitigator strategy obtained by drawing a random subset of the
influencer’s types and solving the game assuming no other
types exist (referred to as Random Sampling).

A. Experiments

(a) Inter-comm. Edge (b) Influential Node

Fig. 2. Reward comparison, BTER graphs

In our first set of results, shown in Figure 2, we consider the
impact of the number of randomly sampled types on solution
quality (only a combination of BTER and two models of
uncertainty are shown here, as these results exhibit the greatest
approximation error from random sampling; additional results
not shown offer even more dramatic support of our argument).
The x-axis shows the number of sampled types, while the
mitigator utility is plotted on the y-axis. These experiments
in Figure 2 use the same 40-node games that were featured in
Figure 1 (right) that showed pure strategies used by individual
types have minimal overlap. The key point is that with only
about 2-5 randomly sampled types we obtain a solution that
is very nearly optimal, despite the fact that only using a
single influencer type yields a relatively poor mitigator reward
(Figure 2b). While results in the optimization literature such as
sample average approximation theory [18] show that random
sampling can converge exponentially fast to optimal solutions,
our “convergence” is uncannily quick.

(a) Low community density (b) High community density

Fig. 3. Inter-community Edge uncertainty

Next, we fix the number of randomly sampled types used
to generate a solution at 2, and increase the number of

(a) Low community density (b) High community density

Fig. 4. Influential Node uncertainty

actual types (increasing the degree of uncertainty). The graph
sizes were fixed to 40 nodes. Intuitively, we would expect
that the performance of Random Sampling should degrade
significantly as we increase uncertainty by adding types. In
addition, we compare the random sampling strategy to an
even simpler heuristic which uses only a single type with
the highest probability; we call this Max Prob. Figures 3
and 4 are representative of a broad array of experiments we
ran in this space. In addition to considering several types of
uncertainty, we also varied the density of connections among
communities (low density uses ρ = 0.5 as the probability
of inter-community edges, while high density uses ρ = 0.9).
Perhaps the most surprising finding in these experiments is that
the quality of Random Sampling relative to optimal degrades
very little as we increase the number of types. While we could
not compute optimal solutions for games involving more types,
this finding suggests that we may need to sample a decreasing
(rather than a constant) fraction of all possible types as the
number of total types increases.

In our final set of results using synthetic graphs, we study
the impact of the size of the underlying network. The number
of edges varied from 28 (20 nodes) to 188 (40 nodes) with up
to 6 edges differing between types for Inter-community Edge
uncertainty and up to 24 edges for Influential Node uncertainty
(12 new edges per type). Here, we keep the number of
nodes/edges about which we are uncertain fixed, and increase
the network size. Consequently, we expect that smaller net-
works would exhibit significantly greater difference between
random sampling and optimal, since uncertainty involves a
greater fraction of the graph. Figure 5 shows little evidence

(a) Inter-comm. Edge (b) Influential Node

Fig. 5. Scale-up of graph size

of this: the quality of simple heuristics relative to optimal is
little affected by the fraction of the graph that is uncertain.

In all, we studied variations involving BTER, preferential



attachment, and small-world generative models of networks,
all five models of uncertainty described above, and, con-
sidered numerous variations in the parameter space of all
the generative models of graphs and uncertainty, the number
of resources that players had, degree distribution, etc. For
example, we studied games in which the mitigator was allowed
to initially impact 3 or 4 nodes, while the influencer was
restricted to 2, and vice versa; we varied the distribution of
contagion probabilities between 0.4 and 0.7; for BTER we
additionally examined different degree distributions. All these
results exhibit essentially the same trends that we showed here.

Finally, we conducted a set of experiments on a real-world
social network dataset released in 2012 that was obtained
via survey data in 75 Indian villages.1 The survey asked the
inhabitants of the villages a series of questions to ascertain
their relationship with other people in the village (e.g., would
you invite him in for tea, do you go to temple with him, would
you loan him money, etc.). From this data, a social network can
be constructed by beginning with a complete graph with edge
weights of 0.0, increasing the weight of an edge corresponding
to a positive answer to a survey question by 0.1, and then
normalizing all weights. For our experiments, we use the
household-level data for two of the smaller villages (8 and 10),
because even the double-oracle optimization does not scale to
larger networks. The results in Figure 6 use Influential Node
uncertainty, and each type now chooses 8 random nodes and
gives each 10 new edges to maintain the same fraction of
uncertainty, since the India data sets have 77 or 94 nodes and
an average degree of 7.7 or 7.4. As the figure testifies, our
results are not an artifact of synthetic graph models that we
generate, but can be observed on graphs based on actual social
network data as well.

(a) Village 8 (b) Village 10

Fig. 6. Influential Node uncertainty, 0.1-Weight-Scheme

As mentioned previously, in addition to using scale-free
and small-world graphs and additional models of uncertainty,
we also varied a number of other parameters. We created
resource imbalances by testing games in which the mitigator
was allowed 3 or 4 nodes against the influencer’s 2. Similarly,
we also tried the opposite. We also varied the distribution of
contagion probabilities on edges from the 0.4 we set it to for
the experiments shown to 0.7 to examine the impact of changes

1Abhijit Banerjee; Arun Chandrasekar; Esther Duflo; Matthew Jackson,
2011-08, ”Social Networks and Microfinance”, http://hdl.handle.net/1902.1/
16559” UNF:5:4EmgOYAQGaoQugFowckNfA== Jameel Poverty Action Lab
[Distributor] V5 [Version]

in contagion probability. For BTER graphs we also examined
multiple degree distributions in addition to the variation of
community density that we show here. Overall, we studied over
200 parametric variations, with the results virtually identical
to what we show here: a simple heuristic which samples only
a few types from the type distribution performs near optimally.

B. Initial Analysis

The results shown are surprising in their extremity, espe-
cially in light of the result presented previously demonstrating
minimal overlap of pure strategies in optimal strategies for
individual types. We now explore why this might be occurring
in these games. While we have previously already shown that
type-by-type action overlap in mixed strategies is quite small,
this in itself does not rule out substantial overlap in nodes
used by the type-by-type strategies. This is because each pure
strategy is a subset of nodes, and two different pure strategies
may be different, but may actually share many of the nodes
that the strategy uses. We study this, we consider the overlap of
the nodes used in mixed strategies between each type’s optimal
strategy and, first, a randomly chosen type, and, additionally,
the optimal strategy in the full Bayesian game.

(a) Against a random type (b) Against optimal strategy

Fig. 7. Overlap in nodes used

Figure 7 shows the results for 20 trials where each bar
represents the average percentage of node overlap for a single
trial (averaged over all types). We see in Figure 7a that there
is a 60-80% difference (average of 74%) in the nodes used by
individual types when compared against a randomly chosen
type’s optimal strategy. Thus, while each type’s strategy may
differ, they may all contain a set of core nodes that overlap
more with the optimal strategy, which may cause the type-
specific strategies to perform well overall. In Figure 7b we
show the results when comparing the overlap in nodes used be-
tween the optimal strategy and each type’s individual optimal
strategy. The difference drops to the 40-70% range (average of
62%), suggesting that each individual type’s optimal strategy
uses nearly half of the nodes used by the optimal Bayesian
strategy. The existence of such a core of nodes that are part of
the optimal strategy for many types can partially explain the
success of simple sampling techniques.

Our next experiment draws a direct comparison between the
impact of uncertainty on single-player influence maximization,
as well as our, two-player zero-sum contagion blocking setting.
To make this comparison most revealing, we construct the
following class of graphs: first, we generate 5 cliques of



5 nodes each, and then add 10 isolated nodes. Then, we
generate each influencer type by connecting a single isolate
to a subset of the cliques (possibly with multiple edges to
the same clique). In this graph, the optimal strategy given
one type is the pessimal for all other types. Figure 8 shows
a comparison of single-player (a) and two-player (b) results
with and without reasoning about all possible graph types.
In the single-player setting, ignoring uncertainty is markedly
detrimental; in contrast, the two-player game is extremely
robust to it. This evidence suggests that the minimax nature of
the contagion blocking problem itself confers upon our setting
high resilience to uncertainty about the influence graph.
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(a) 1-player
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(b) 2-player

Fig. 8. (a) 1-player (maximum influence) problem; (b) 2-player (influence
blocking) problem. Black lines consider all types, white considers just a single
type.

VI. DISCUSSION

The phenomenon of simple techniques providing highly
effective solutions has also been observed elsewhere [18],
[10], [16], [1]. In addition to novelty of our influence-driven,
network-based model, our work differs from these in other
important ways. As noted earlier, our results differ from
previous work using sampling techniques in how dramatic they
are, and unlike research in heuristic techniques for equilibrium
computation, our work focuses on the power of extremely few
samples instead of general heuristics.

A closer examination of previous literature in security
games that addresses uncertainty reveals that similar phenom-
ena may have been true elsewhere but went unexplored. In Yin
et al. [22], the authors provide a novel algorithm (HUNTER)
for optimally handling Bayesian Stackelberg games with many
types. While the algorithm is orders of magnitude faster than
previously proposed optimal algorithms, the authors report that
BRASS, a far less complex solution method [15], achieves an
average loss of 0.7 in a game where the range of rewards for
optimal solutions ranged from -26 to 17 compared against their
algorithm. One again wonders whether a sampling approach
would have worked extremely well here too.

Our work does not dispute the fact that extremely large
Bayesian zero-sum games remain very challenging to solve
well in general and there are certainly problem classes that are
not amenable to simple heuristics. In Kiekintveld et al. [12], for
example, the authors introduce several techniques for handling
large numbers of Bayesian types to address payoff uncertainty
and they show that simple techniques do not perform near-
optimally. Our work stresses the need to verify whether or

not simple techniques work before embarking on extensive
algorithmic gymnastics to achieve minimal gains in solution
quality. Although we have provided some analysis of why this
occurs in our domain, this is only the beginning, and more
work is necessary. Still, our findings give hope that many very
challenging problems in computational game theory may be
effectively addressed by simple techniques.
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