
Randomizing Regression Tests Using Game Theory
Nupul Kukreja, William G.J. Halfond, Milind Tambe

University of Southern California
Los Angeles, California, USA

Email: {nkukreja, halfond, tambe}@usc.edu

Abstract—As software evolves, the number of test-cases in the
regression test suites continues to increase, requiring testers to
prioritize their execution. Usually only a subset of the test cases
is executed due to limited testing resources. This subset is often
known to the developers who may try to “game” the system by
committing insufficiently tested code for parts of the software
that will not be tested. In this new ideas paper, we propose a
novel approach for randomizing regression test scheduling, based
on Stackelberg games for deployment of scarce resources. We
apply this approach to randomizing test cases in such a way
as to maximize the testers’ expected payoff when executing the
test cases. Our approach accounts for resource limitations (e.g.,
number of testers) and provides a probabilistic distribution for
scheduling test cases. We provide an example application of our
approach showcasing the idea of using Stackelberg games for
randomized regression test scheduling.

I. INTRODUCTION

The size of regression test suites continues to grow as
software evolves. Often there are more test cases to execute
than is feasible given schedule constraints. Therefore, project
teams must prioritize the regression test cases to be executed.
In many cases, developers can easily anticipate the test cases
that will be run, since this is based on widely disseminated
requirement priorities. As a result the developers can commit
insufficiently tested code into the version control repository,
fully aware that a particular test case may not be executed for
a given schedule – following a “code-now-fix-later” approach.
A developer’s motivation to do this can be high if there is a
significant risk or penalty for missing the delivery deadline of
the software system.

Existing regression prioritization schemes generally lead to
deterministic testing activities. Developers are able to predict
which test cases will be executed and when. Even in the case
of automated testing, only a prioritized subset of the tests
may be executed periodically to get quick feedback on the
functionality of the system. Complete regression test suites
may be run less frequently e.g., every alternate weekend or at
the end of a particular iteration. This determinism allows the
developers to “game” the system by checking-in insufficiently
tested code and fixing it either after the execution of the
test cases or just prior to their scheduled execution. In case
of low priority test cases, the turn-around time between the
initial commit of the code and fixing the errors may be much
higher. Random test scheduling would help to address this
problem, but ignores the fact that some test requirements
are more important than others. Adding priority weights to
the random testing is another improvement, but even this

somewhat predictable distribution would allow developers to
find a sweet spot that balances a requirement’s extra testing
work with the likelihood of their code being tested.

This tension between testers and developers is reflected in
many problems addressed in the game theory community. In
particular, a security game models a situation where limited
security resources (defenders) must be deployed for protecting
public infrastructure such as ports, trains, airports etc. These
games assume that an adversary (attacker) can perform perfect
surveillance and exploit any predictable patterns in the security
schedule before planning an attack. Thus, it is in the defender’s
best interest to randomize the allocation of security resources
to decrease the predictability in scheduling, making it difficult
for an attacker to plan an attack. The game solution seeks to
optimize the defender’s payoff given resource limitations and
in face of an adaptive adversary.

In this new ideas paper we introduce the analogous idea
of a testing game. In this type of game the testers act
as defenders guarding against loss of software quality and
developers assume the role of attackers who may check in
insufficiently tested code that could decrease software quality.
Given a regression test suite, computing the solution to this
game allows testers to select an optimal test case distribution.
The method of computing this distribution takes into account
both the developers’ incentives to game the system and the
testers rewards and penalties for testing or not testing the
code. The probability of executing a particular test case is
therefore proportional to the overall value of the requirement
and effectiveness of the test case.

The paper is organized as follows: In Section II, we
introduce basic information about game theory and security
games. We outline our approach and map it to the concepts
of a security game in Section III. To illustrate the viability
of such a technique, we present a small analytic based case
study in Section IV. We discuss related work and conclude in
Sections V and VI.

II. BACKGROUND

Our testing game is derived from the idea of a security
game, a well-known model in the game theory community.

A. Game Theory

Game theory [16] is a study of strategic decision making
– an abstract mathematical theory for analyzing interactions
among multiple intelligent players. These players may be
people, corporations, software agents or as in our case, testers



TABLE I: Security game: Defender vs. Adversary. Defender
payoffs lower-left, adversary upper right

Adversary

Defender

Terminal 1 Terminal 2

Terminal 1
-3 1

5 -1

Terminal 2
5 -1

-5 2

and developers. In the context of security games, one of the
players is usually part of the security forces e.g., federal
air marshals, police etc., with the adversaries as the other
player. Game-theoretic approaches assume that the players will
anticipate each others actions and act appropriately.

Mathematically a game is represented as a matrix (i.e.,
normal form) showing the strategies available to each player
and their corresponding payoffs. For example, consider an
airport with two terminals, 1 and 2, a single police unit to
protect them, and one adversary. Table I shows the matrix
corresponding to this game. The possible police actions are
shown across the rows and those of the adversary across the
columns. The numbers in the matrix represent payoffs for each
player. For this example we assume the payoffs range from -
5 to 5. The police can protect either terminal 1 or terminal
2 and an adversary can attack either of the terminals (i.e.,
their strategies when playing the game). In a simultaneous
move game, both players play at the same time and cannot
observe the action of the other player before choosing their
response. However, in the context of a security game, the
defender commits to a strategy that is fully observable by the
adversary before responding with their strategy. For the game
in Table I, assume that terminal 1 is more important than
terminal 2 and the police choose to always protect terminal
1. The adversary can observe this after conducting necessary
surveillance and choose to attack terminal 2. Since there are
no police at terminal 2, we assume the attack succeeds (with
a positive payoff). If the police choose to protect terminal 2,
the adversary can attack terminal 1 for a positive payoff.

Thus, if the police commit to a deterministic strategy of
always protecting either terminal 1 or terminal 2, the adversary
can exploit the predictability of the protection schedule and
choose to attack the other unprotected terminal. This results
in a positive payoff for the adversary and a corresponding
negative payoff for the defender. If however, the police were to
employ a mixed strategy i.e., randomize their actions, and 60%
of the time protect terminal 1 and 40% of the times protect
terminal 2, it would lead to a higher expected payoff for the
police. The randomization seeks to optimize the defender’s
payoff in face of an adaptive adversary and is proportional
to the payoffs of both players. We assume the adversary can
perfectly observe the probabilistic distribution of the protection
schedule (60%–40% split between terminals) but precisely
which terminal will be protected on the day of the planned

attack remains unknown. This increases adversary uncertainty
thereby increasing the expected reward for the defender.

These types of games are called Stackelberg games [17]
where the defender commits to a strategy that is fully observ-
able by the adversary before choosing his/her response. In the
above security game the police has effectively committed itself
to a mixed strategy (60%–40% split between the terminals).
The challenge for game theory models is to ensure that the
60%–40% split of security resources between the terminals is
indeed optimal or determine if there is another optimal split.
Solving this optimization problem for large games requires
efficient computational algorithms [14].

B. Security Games

Security games are based on the principle that what is good
for the adversary is bad for the defender and vice versa.
However, most security games are non-zero sum (i.e., sum
of all payoffs is not zero) [11]. This is because an adversary
views some targets as highly valuable and they may not be
of equal value to the security forces. An adversary may even
view a failed attack as a success owing to the publicity and
fear generated as a result. In a security game, if an adversary
attacks a target protected by the defender, then the adversary
has a worse (i.e., lower) payoff than attacking it when it is
unprotected. The situation is reversed for the defender i.e., the
defender has a higher payoff if the target is attacked when
protected than when it’s unprotected. Given such security
games it is vital to find the optimal allocation of security
resources that will maximize the defenders expected payoff.
This involves computing what is known as the game’s Strong
Stackelberg Equilibrium (SSE).

A well known solution concept in game theory is Nash
Equilibrium, which computes an optimum strategy for each
player such that no player has any incentive to deviate to
another strategy. Stackelberg equilibrium is a refinement of
Nash equilibrium specific to Stackelberg games where each
player chooses a best-response (i.e., Nash equilibrium) in any
subgame (i.e., partial sequence of actions) of the original
game. Thus, a player observes the response of the other player
and responds with an optimum action from his/her set of
possible actions. There are two types of unique Stackelberg
equilibria – strong and weak [2]. The strong form assumes that
in case of ties (i.e., multiple best responses) the adversary will
break ties in favor of the defender i.e, select a response that is
optimal for the defender. Whereas the weak form assumes that
the adversary will select the worst response for the defender.
A SSE exists in all Stackelberg games but a weak one may
not [1]. Thus, security games solve for an SSE due to this
crucial existence result.

III. TESTING GAME

Software test scheduling can be viewed as a security game
between testers and developers. Testers commit to a testing
strategy i.e., executing the most valuable test cases, given
resource/time constraints, to ensure high software quality.
Thus, testers act as defenders guarding against the loss of



software quality. Developers play the role of attackers who
may check-in insufficiently tested code that could lead to bugs
in the system, potentially decreasing software quality. The
testers must ensure that errors are caught and fixed prior to
transitioning the software system into production. We assume
that developers prefer, with some probability, to check in code
and get credit for completing application functionality sooner
rather than spending additional effort on sufficient testing.

We cast regression test scheduling as a Stackelberg game
where the testers commit to a randomized test strategy fully
observable by the developers. That is, the developers know
the probability of execution of each test case. However, when
each particular test case will be executed is unknown. We then
solve this game to compute a strong Stackelberg equilibrium
(SSE) that provides the optimal probability distribution of
the test cases to be selected for a randomized schedule. The
distribution, in essence, prioritizes over the regression test suite
that’s been selected.

We explain our approach in four steps: Step 1: We define the
test case utilities for the tester and developer (Section III-A).
Step 2: We define their expected payoff functions given some
probability distribution of the test cases (Section III-B). Step
3: We then show how to solve this game in order to maximize
the expected payoff for the testers (i.e., computing SSE).
The solution of the game provides the optimum probability
distribution of the test cases (Section III-C). Step 4: Finally,
we randomly sample from the probability distribution of the
test cases to generate a test schedule (Section III-D).

A. Computing Test Case Utilities for Tester/Developer

In a game each player has an incentive (or penalty) for
taking a particular action. The incentive or penalty is referred
to as the utility of the player and is represented by a positive or
negative number, respectively. These utilities are indicative of
the relative importance of the particular action for that player.
In a testing game, testers are assumed to have a positive utility
for executing a test suite for testing a particular requirement
(i.e., potential value of catching a bug) and a negative utility
otherwise (i.e., potential loss of missing a bug). These utility
scores are proportional to the value of the requirement and can
be derived from the requirement priority itself or from expert
judgment as is done in Planning Poker [4], the Delphi method
[9], and other requirement prioritization schemes [7]. If a bug
is caught by the tester, the developer gets a negative utility
since they incur a penalty of fixing it and possibly interrupting
what they were working on. The developer gets a positive
utility if the insufficiently tested code is not tested by the tester
since there is no penalty for fixing a bug, if any.

For our game model we assume that the test cases are
grouped by requirements i.e., each requirement has one or
more test cases covering it that may be grouped into in-
dividual test suites. A single test suite may cover multiple
requirements but for simplicity we assume that each test suite
corresponds to exactly one requirement – the mapping of test
suites to requirements and vice versa is usually maintained
in the software engineering process to enable traceability.

Let T = {t1, . . . , tn} be the set of test cases pertaining to
each requirement. The testers have a set of resources–either
human testers or dedicated machines for automated testing–
that execute test cases covering each requirement. We then
capture the tester’s and developer’s utilities, on a −10 (high
penalty) to +10 (high value) scale, for each requirement as
shown in Table II. The tester’s utilities for an uncovered
requirement (i.e., test cases covering the requirement are not
executed) is denoted by Uuτ (t) and for a covered requirement
is denoted by U cτ (t). Similarly, U cd(t) and Uud (t) are the
developer’s utilities when checking in insufficiently tested
code for covered and uncovered requirements as mentioned
above. These utilities are proportional to the overall priority
of the requirement. For example, for requirement 5 in Table II,
U cτ (t) = 9 is the tester’s utility for executing a test case
covering that requirement and Uuτ (t) = −9 is the utility
for not executing that test case. Similarly, U cd(t) = −10
is the developer’s utility if the insufficiently tested code is
caught by the test case and Uud (t) = 3 is their utility if the
insufficiently tested code is not caught. These utility numbers
would be representative of a critical ’must-have’ requirement.
The tester gets a high utility for testing the requirement, since
it is mandatory to have that requirement, and a high penalty
if it is not tested since a bug could prevent the users from
accessing the core functionality of the system and lead to
monetary losses for the organization. Also, if the developer
checks in insufficiently tested code for requirement 5 and a
bug is detected by the tester, they have a high penalty since
it may involve substantial rework to get the system up and
running quickly. However, the developers have low positive
utility for checking in insufficiently tested code owing to the
critical nature of the requirement.

B. Computing Tester/Developer Payoffs

In a security game, defenders may employ mixed strategies
i.e., selecting a particular action with some probability as
opposed to a deterministic choice. This use of a distribution
decreases the predictability that may be exploited by an adver-
sary. For our testing game we refer to the set of distributions
as a coverage vector, C, that gives the probability, ct, that a
particular test suite, t, covering a particular requirement will
be executed. We then compute the expected payoffs for the
testers and developers as shown in Equations (1) through (3)

Uτ (t, C) = ct · U cτ (t) + (1− ct) · Uuτ (t) (1)

Uτ (C,R) =
∑
t∈T

rt · (ct · U cτ (t) + (1− ct) · Uuτ (t)) (2)

Γ(C) = {t : Ud(t, C) ≥ Ud(t′, C)∀t′ ∈ T} (3)

Equation (1) gives the expected payoff for the tester for an
individual test suite, t, given C, when the developer checks in
code. The same notation is used for computing payoffs for the
developers (not shown), replacing Uτ with Ud. We also define
the notion of a requirement vector, R, that gives the probability
of checking in insufficiently tested code, rt, for a particular
requirement. For simplicity, we restrict the requirement vector



TABLE II: Compact representation of game showing tester and developer utilities

Requirement 1 Requirement 2 Requirement 3 Requirement 4 Requirement 5

Covered Uncovered Covered Uncovered Covered Uncovered Covered Uncovered Covered Uncovered

Tester’s utility 2 -10 7 -4 6 -1 9 -9 9 -9

Developer’s utility -7 4 -1 3 -6 5 -3 7 -10 3

to attacking a single requirement with the probability of 1.
That is, the developer checks in insufficiently tested code for
a single requirement at a time with the probability of 1. This
assumption simplifies computing the solution of the game (i.e.,
computing the SSE) without loss of generality. The tester’s
total expected payoff, given coverage and requirement vectors,
is given by Equation (2). It is the sum of the payoffs for each
individual test suite times the probability, rt, of the developer
attacking the corresponding requirement. Equation (3) defines
a requirement set, Γ(C), which contains all the requirements
that yield the maximum expected payoff for the developer
given coverage vector, C. That is, the set of requirements for
which the developer is most likely to check in insufficiently
tested code.

C. Maximizing Tester’s Expected Payoff – Computing SSE

The aim of each player in a game is to maximize their
individual payoffs. In the testing game we solve for the
optimum coverage vector, C, that maximizes the testers’ total
expected payoff. Testers then commit to the randomized test
case scheduling strategy given by C. Test cases are grouped
by requirements (Table II), which are known to both testers
and developers and thus both players are aware of each others
strategies. As per the Stackelberg formulation of the game,
we assume the developers can perfectly observe the testing
strategy and deduce the probability of execution of the test
suite for the corresponding requirement. The developers then
intend to maximize their utility by selecting the best response
to the tester’s strategy. In this section we detail the algorithm
used for solving the testing game to obtain C that maximizes
the tester’s utility–the SSE of the game.

Most security games can be expressed and solved efficiently
using the compact representation shown in Table II, as opposed
to the normal form representation in Table I. For solving our
testing game, we use the ERASER (Efficient Randomized
Allocation of SEcurity Resources) algorithm [5], which is
reproduced below.

max δ (4)
rt ∈ {0, 1} ∀t ∈ T (5)∑
∀t∈T

rt = 1 (6)

ct ∈ [0, 1] ∀t ∈ T (7)∑
∀t∈T

ct ≤ m (8)

δ − Uτ (t, C) ≤ (1− rt) · Z ∀t ∈ T (9)
0 ≤ k − Ud(t, C) ≤ (1− rt) · Z ∀t ∈ T (10)

It takes a compact representation of a security game as input
and solves for an optimal coverage vector for the defender (i.e.,
the tester in our case). The algorithm is a mixed-integer linear
program (MILP) as shown by Equations (4) through (10).

Equation (5) restricts the requirement vector probabilities to
0 or 1 and Equation (6) constrains the vector to only attack
a single requirement, as explained previously. Equation (7)
restricts the coverage vector probabilities in the range [0, 1]
and Equation (8) constrains the coverage by the number of
available resources, m. In Equations (9) and (10) Z is an
arbitrarily large constant, greater than the maximum utility of
the tester/developer. Equation (9) defines the testers expected
payoff subject to the requirement attacked by the developers,
as given by the requirement vector, R (i.e., insufficiently tested
code for the requirement is committed). Equation (9) places
an upper bound Uτ (t, C) on δ, but only for the attacked
requirement. For all other requirements the right hand side
is arbitrarily large (equal to Z). Since, the objective function
maximizes δ (tester’s utility), for any optimal solution δ =
Uτ (C,R) (from (2) and (4)) it also implies that C is maximal,
given R for any optimal solution. Similarly, Equation (10)
forces the developer to select a requirement in the requirement
set, Γ(C). The first part of the constraint k − Ud(t, C) ≥ 0
implies that k must be at least as large as the maximal
payoff for attacking any requirement. The second part forces
k − Ud(t, C) ≤ 0 for any requirement that is attacked in R.
The constraint is violated if the requirement vector specifies
a requirement that is not maximal. Equations (9) and (10)
together imply that C and R are mutual best responses in any
optimal solution. An optimal solution to the ERASER MILP
thus corresponds to an SSE of the testing game [5].

D. Test case scheduling

Solving the testing game shown in Table II with a single
testing resource (i.e., setting m = 1 in Equation (8)) pro-
vides the coverage probabilities as shown in Table III . The
probability distribution of test cases is proportional to the
value of the requirements for both players and not just for
the tester or developer. Solving the testing game takes into
account both tester’s and developer’s utilities to compute the
optimum distribution. The distribution is effectively a weighted
prioritization of the test cases in face of an adaptive adversary
i.e., the developer. The test suites are then sampled from
this distribution to create a randomized test schedule. We
need to recompute coverage probabilities only when a new
requirement is added or an existing one is removed, since
test suites are grouped by the requirement they belong to.



TABLE III: Coverage probabilities

c1 c2 c3 c4 c5

0.1398 0.1344 0.2307 0.4538 0.0414

Thus, updating the code or test cases does not incur the cost
recomputation of the coverage probabilities.

The distribution in Table III may seem counter-intuitive.
For example, in Table II, Requirement 4 and 5 have the same
payoffs for the tester but radically different distributions. The
corresponding test suite for requirement 4 has the highest
probability of execution since it’s also the one where the
developers are most likely to check in insufficiently tested
code as indicated by their utilities. Although requirement
5 has the same utilities for the tester, it has the lowest
probability of execution given the utilities of the developer.
The probability distribution is computed by considering the
utilities and payoffs of both, testers and developers. As a result
the distribution, seemingly counter-intuitive at first is actually
optimal [15] in a two player game setting.

The equations we defined above are able to handle multi-
ple testing resources e.g., more human testers or machines.
Separate ERASER instances can be executed for calculating
the coverage vector specific to the particular resource. For
parallel test case execution, the number of testing resources,
m in Equation (8), is increased accordingly. This leads to
higher values of the coverage probabilities. That is, the more
resources that are available, the more testing that can be done.

IV. EVALUATION

To provide preliminary validation of our approach, we
perform a small case study of its ability to generate test suite
distributions with higher tester payoff. In this case study we
compare the tester’s payoff associated with using our approach
against a uniform random approach. The expected payoffs
for the tester and developer, given the coverage probabilities
previously computed by our approach (Table III), are shown
in Table IV. Table V shows the expected payoffs for the tester
and developer if the test cases are distributed uniformly at
random (i.e., ct = 0.2∀t ∈ T ).

TABLE IV: Expected Payoffs - Our Approach

t1 t2 t3 t4 t5

Tester -8.32 -2.52 0.61 -0.83 -8.26

Developer 2.46 2.46 2.46 2.46 2.46

TABLE V: Expected Payoffs - Uniform Random

t1 t2 t3 t4 t5

Tester -7.6 -1.8 0.4 -5.4 -5.4

Developer 1.8 2.2 2.8 5 0.4

The expected value for each test case, ti, is computed
using Equation (1). As an example, we compute the expected

payoff for the tester Uτ (1, C) and developer Ud(1, C), given
the distribution of test case 1 (Table III) for requirement 1
(Table II) as follows:

Uτ (1, C) = 0.1398× 2 + (1− 0.1398)×−10 = −8.32

Ud(1, C) = 0.1398×−7 + (1− 0.1398)× 4 = 2.46

The results in Tables IV and V are similarly computed for
each of the test cases. In our approach the expected payoffs
for developers is the same for each requirement. As mentioned
previously, in an SSE the developer breaks ties in favor of the
tester. Thus, the requirement vector, R ≡ {0, 0, r3 = 1, 0, 0}
as t3 = 0.61, is optimal for the tester, as seen in Table IV.
In an SSE the payoff for the developer is strictly greater than
the utility of attacking any other uncovered requirement. (By
definition, since SSE consists of mutual best responses for
both, tester and developer.) Thus, the ERASER algorithm sets
the expected payoff for each test case, for the developer in the
requirement set Γ(C), equal to that of the SSE. Hence, the
expected payoffs for the developer are the same for all test
cases. Test case distributions are then computed in order to
maintain a level of indifference for the developer in attacking
a particular requirement from the requirement set. That is,
we compute a test case distribution, ct, by making it equally
attractive for the developer to check in insufficiently tested
code for each requirement.

The uniform random distribution of test cases doesn’t take
into account the developer’s utilities and payoffs into consid-
eration. It’s value neutral since it assumes each test case to be
equally important for scheduling. For example, the probability
of executing the test case for requirement 4, computed by
our approach (c4 = 0.4538) is much higher than 0.2. This
implies that test case 4 will be scheduled almost twice as
often as opposed to the uniform distribution. This takes into
account that the developer is most likely to gain by checking
in insufficiently tested code for requirement 4 than any other
requirement and thus has a higher probability of execution.
The developer utilities are ignored in the case of uniform
distribution and all test cases are treated as being equally
valuable. The ERASER algorithm effectively computes the
optimum distribution that maximizes the tester’s expected
payoff [15]. Also, as an adversary will act rationally, the
developer too will get a higher expected payoff (Table IV) with
our approach. Thus, prefering that over the uniform random
approach (Table V).

Our case study shows that the expected payoff is higher
in case of our approach as opposed to a uniform random
distribution. However, we are limited in the generalizability
of our case study results. In future work we plan to include
sensitivity analysis with larger datasets and more realistic data.
However, our results at this stage indicate that the use of
our approach can improve tester payoff against a baseline
approach.

V. RELATED WORK

We provide a brief survey of the application of game theory
to software testing along with a discussion of several test case



prioritization approaches. We highlight the key differences
between the related work and our approach.

Feijs [3] models software testing as a strategic game and
shows its equivalence to the Prisoner’s Dilemma [10]. Feijs
focuses on understanding the interactions among developers
and testers using game theoretic principles. However, the
analysis is very coarse grained and studies the interactions
from a project management point of view. Similarly, Yilmaz
and O’Connor [19] look at maximizing the value of software
development using game theory. The paper focuses on creating
economic mechanisms to align the motivations of the various
competing stakeholders to ensure delivery of a high value
software system. As such, it covers the entire software de-
velopment lifecycle and does not focus on techniques specific
for software testing. There has also been extensive research
on prioritizing test cases for regression testing ([18], [20],
[13], [6]) to decrease the time/effort overhead when running
large regression test suites. However, these approaches do
not take into account the possibility of developers gaming
the system by checking in untested code given a predictable
testing schedule (i.e., the game theory aspect of software
testing.) Value-based testing practices [12] also fail to take
this into account and focus on managing/prioritizing testing
activities to maximize business value. Li [8] proposes creating
test schedules by sampling a subset of test cases uniformly
at random. Its primary focus is predicting test coverage by
random sampling within some confidence intervals.

VI. CONCLUSION

In this paper we proposed a novel application of game
theory and security games to software testing. In our approach
we use game theoretic principles to compute test case distri-
butions based on test case priority that takes into account both
developers’ and testers’ motivations and resource limitations.
Our approach weights the test cases with respect to the utilities
of the two players, testers and developers, and computes a
distribution that maximizes tester payoff. This distribution of
test cases is optimum, given the utilities of both players. In a
small case study we showed that the expected payoff for testers
is higher in the case of our approach as opposed to a uniform
random distribution. This provides preliminary support to our
idea that casting regression testing as a Stackelberg game can
help increase software quality.

ACKNOWLEDGMENTS

This research is supported by MURI grant W911NF-11-1-
0332 and NSF award 1321141.

REFERENCES

[1] T. Basar, G. J. Olsder, G. Clsder, T. Basar, T. Baser, and G. J. Olsder.
Dynamic noncooperative game theory, volume 200. SIAM, 1995.

[2] M. Breton, A. Alj, and A. Haurie. Sequential stackelberg equilibria in
two-person games. Journal of Optimization Theory and Applications,
59(1):71–97, 1988.

[3] L. Feijs. Prisoners dilemma in software testing. 7e Nederlandse Testdag,
page 65, 2001.

[4] J. Grenning. Planning poker or how to avoid analysis paralysis while
release planning. Hawthorn Woods: Renaissance Software Consulting,
3, 2002.

[5] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe.
Computing optimal randomized resource allocations for massive se-
curity games. In Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 689–
696. International Foundation for Autonomous Agents and Multiagent
Systems, 2009.

[6] J.-M. Kim and A. Porter. A history-based test prioritization technique
for regression testing in resource constrained environments. In Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on, pages 119–129, 2002.

[7] N. Kukreja, B. Boehm, S. S. Payyavula, and S. Padmanabhuni. Se-
lecting the most appropriate framework for value based requirements
prioritization.

[8] W. Li and M. J. Harrold. Using random test selection to gain confidence
in modified software. In Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, pages 267–276. IEEE, 2008.

[9] H. A. Linstone and M. Turoff. The delphi method. Addison-Wesley
Reading, MA, 1975.

[10] W. Poundstone and N. Metropolis. Prisoner’s dilemma: John von
neumann, game theory, and the puzzle of the bomb. Physics Today,
45:73, 1992.

[11] R. Powell. Defending against terrorist attacks with limited resources.
American Political Science Review, 101(3):527, 2007.

[12] R. Ramler, S. Biffl, and P. Grünbacher. Value-based management of
software testing. In Value-Based Software Engineering, pages 225–244.
Springer, 2006.

[13] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. Software Engineering, IEEE Transactions
on, 27(10):929–948, 2001.

[14] M. Tambe. Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press, 2011.

[15] M. E. Taylor, C. Kiekintveld, and M. Tambe. Evaluating deployed deci-
sion support systems for security: Challenges, analysis, and approaches.

[16] J. Von Neumann and O. Morgenstern. Theory of games and economic
behavior (commemorative edition). Princeton university press, 2007.

[17] H. Von StackelberG. Market structure and equilibrium. Springerverlag
Berlin Heidelberg, 2011.

[18] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of
effective regression testing in practice. In PROCEEDINGS The Eighth
International Symposium On Software Reliability Engineering, pages
264–274. IEEE, 1997.

[19] M. Yilmaz and R. V. O’Connor. Maximizing the value of the software
development process by game theoretic analysis. In Proceedings of the
11th International Conference on Product Focused Software, pages 93–
96. ACM, 2010.

[20] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.


