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ABSTRACT

Influence blocking games have been used to model
adversarial domains with a social component, such
as counterinsurgency. In these games, a mitigator
attempts to minimize the efforts of an influencer to
spread his agenda across a social network. Previous
work has assumed that the influence graph structure
is known with certainty by both players. However,
in reality, there is often significant information asym-
metry between the mitigator and the influencer. We
introduce a model of this information asymmetry as a
two-player zero-sum Bayesian game. Nearly all past
work in influence maximization and social network
analysis suggests that graph structure is fundamen-
tal in strategy generation, leading to an expectation
that solving the Bayesian game exactly is crucial.
Surprisingly, we show through extensive experimen-
tation on synthetic and real-world social networks
that many common forms of uncertainty can be ad-
dressed near-optimally by ignoring the vast majority
of it and simply solving an abstracted game with a
few randomly chosen types. This suggests that op-
timal strategies of games that do not model the full
range of uncertainty in influence blocking games are
typically robust to uncertainty about the influence
graph structure.

I INTRODUCTION

Social contagion has long been of great interest in
the literature on marketing, the spread of rumors,
and, recently, in the context of Arab Spring [1-3].
Our specific focus is on counterinsurgency, which we
view as a competition for the support of local lead-
ers. Counterinsurgency can be modeled as a game
with two strategic players, the insurgents and the
peacekeepers, in which the insurgents aim to spread
their views, unrest, etc. among the local population,
while the peacekeepers wish to minimize the result-
ing contagion by engaging in their own influence cam-
paign [4H6]. The key computational question we ad-
dress is: given limited resources, how to select which
of the local leaders to influence to minimize the global
impact of the insurgency.
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These ‘influence blocking’ games have received recent
attention in the security games literature [6], where
they have been modeled using graphs with nodes rep-
resenting the tribal leaders and edges representing
possible transmission of influence. However, this line
of work has assumed that full information about net-
work structure is available to both players. In prac-
tice, informational challenges abound in counterin-
surgency, where the insurgents are typically an in-
digenous group that has an informational advantage,
and the mitigators are often uncertain about the the
social network [4].

We model counterinsurgency as an influence block-
ing game with asymmetric information. Specifically,
we assume that the influencer (an insurgent group)
has perfect knowledge of the influence graph struc-
ture, while the mitigator is uncertain about it. In
the resulting Bayesian game, an influencer type is a
particular instantiation of the influence graph, and
the mitigator must reason over the distribution over
these graphs (i.e., influencer types) in order to com-
pute an optimal strategy.

Past work in influence maximization and social net-
work analysis highlights the importance of graph
structure in strategy generation [1}7,8]. In addition,
previous work on Bayesian security games has shown
that not accounting for even small degrees of payoff
uncertainty can lead to large drops in solution qual-
ity [9]. Thus, we expect strategies generated with-
out modeling most of the uncertainty about graph
structure to do far worse than the optimal solution
to the Bayesian game. Supporting this intuition, we
show that there are cases where a mitigator who has
incorrect information about a single edge can suffer
unbounded loss and that quantifying the impact of
changing a single edge in a given graph is #P-Hard.
We also show empirically that, indeed, under our
models of uncertainty, optimal mitigator strategies
for different influencer types are vastly different.

However, while past work has focused on sophisti-
cated algorithms for Bayesian security games [9-11],
we showcase the opposite approach that runs directly
counter to what intuition and our initial experiments
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suggest: ignoring the vast majority of uncertainty
has minimal impact. Specifically, we show through
extensive experiments that computing a mitigation
strategy based on a game with only a few randomly
sampled influencer types yields near-optimal rewards
for widely varied models of uncertainty. We experi-
ment on 3 different synthetic graph models with and
without resource imbalances on both sides, 5 mod-
els of uncertainty, weighted/unweighted counting of
nodes, varied edge weight distributions, varied graph
sizes, varied degrees of uncertainty, and varied de-
grees of sampling. We also conduct experiments on
two real-world social networks using two different
models graph construction. In all, we studied over
200 experimental settings and consistently observe
the same result: simple sampling techniques perform
near-optimally. This suggests that even in domains as
challenging as ours, models which ignore uncertainty
may nevertheless be robust to it.

II MODEL
1 ASYMMETRIC INFORMATION GAME

We model counterinsurgency as a two-player
Bayesian zero-sum game situated on a graph in which
two players, the influencer (denoted by I) and the
mitigator (denoted by M) compete to maximize in-
fluence over the nodes. Formally, let G = (V, E) be
a graph with weighted nodes V' and edges E, and for
each edge (i,j) € E, let p;; be the probability that
node ¢’s opinion will influence node j. Suppose that
the influencer initially attempts to influence a subset
of nodes S; C V to his cause, and the mitigator’s ini-
tial influence is aimed at a subset of nodes Sy C V.
We model propagation of influence in the graph as
a synchronized independent cascade process [1L[6] as
follows. For nodes v € S;NSy; which both players ini-
tially try to influence, initial “activation” (e.g., actual
opinion adoption) happens in either player’s favor
with equal probability, while all the remaining nodes
adopt the view of (are activated by) the player who
directly targets them. Next, we activate all edges
(i,7) in the graph with the corresponding probabil-
ity of influence, p;;, yielding a subgraph upon which
influence can spread. At that point, the influence
process proceeds through a sequence of iterations. In
each iteration, if a node j has not yet adopted an
opinion but has active edges to neighbors who have,
7 either adopts the opinion of these neighbors when
it is unanimous, or adopts each opinion with equal
probability if j’s active neighbors disagree. Viewing
now the initial target nodes S; and Sy as the strate-

gies of the players I and M respectively, let o(St, Sar)
be the expected value of nodes that adopt the in-
fluencer’s opinion following the independent cascade
process described above. We define the utility of the
influencer to be U; (S, Spar) = o(Sr, Snr).

We now depart from the model of Tsai et al. [6]
by relaxing the complete/symmetric information as-
sumption. Specifically, we assume that the influencer
knows the actual influence graph G exactly, while the
mitigator is uncertain about its true structure, and
only knows the probability distribution over possi-
ble graphs. Let A be an index identifying a particu-
lar graph G, and let us make explicit the depen-
dence of the expected influence on the graph, de-
noting it by o(Sy, Sy, A). Finally, we denote by P
the probability distribution over A, with P, being
the probability that the true graph is the one iden-
tified by A. From the mitigator’s perspective, the
influencer’s decision will depend on his type; that
is, on the true graph which the influencer observes.
Thus, we view the influencer’s strategy S; as a func-
tion of A, with S7 denoting the influencer’s strategy
when his type is A. The mitigator’s utility is then
U (St, Sar) = —Exwp[a(S?, Sar, \)].

2 MODELS OF NETWORKS
CERTAINTY

AND UN-

Numerous stochastic generative models for graphs
have been proposed to generate synthetic instances
that resemble real social networks [12]; some of the
best known examples are the preferential attachment
process, which generates scale-free graphs [13], and
the process of generating small-world networks pi-
oneered by Watts and Strogatz |14]. Recently, a
new generative model, BTER, has been developed,
and the authors convincingly demonstrated that this
model matches the important properties of real-
world networks, such as the distribution of degrees
and clustering coefficients, far better than alterna-
tives [15]. BTER graphs feature a scale-free collec-
tion of densely clustered community structures (dense
Erdos-Rényi subgraphs), which are sparsely intercon-
nected by ‘inter-community’ edges. We conducted ex-
periments on BTER graphs (including variations in
community density and interconnectedness), small-
world graphs (Watts-Strogatz), preferential attach-
ment graphs, and real-world networks from two vil-
lages in India.

We consider several ways to model the mitigator’s
uncertainty about the graph. Influential Node un-
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certainty models uncertainty about which nodes are
most connected, motivated by the fact the identity of
the most socially connected and influential individ-
uals is a function of the local culture which is more
familiar to the influencer than the mitigator. Specif-
ically, we start with a baseline graph, then, for each
type, choose a set of j nodes and add k new randomly
chosen edges from each of these nodes to others. It
is important to note that in BTER graph, these j
nodes are the only nodes that can potentially have
inter-community edges under this uncertainty. These
inter-community edges are particularly important in
contagion games because they enable the spread of
influence across groups. The second model, Ran-
dom FEdge uncertainty, is the simplest: the mitiga-
tor has perfect information about the nodes in the
graph, and is uncertain about which edges out of a
given set exist. The third model of uncertainty, Inter-
community Edge uncertainty, models the mitigator’s
uncertainty about a subset of the inter-community
edges. The fourth model of uncertainty, Inter/Intra-
Community Fdge uncertainty, models uncertainty
about a combination of inter-community and intra-
community edges and addresses the concern that
Inter-community Edge Uncertainty may provide ad-
ditional information by being restricted to the crit-
ical inter-community edges. Note that in Inter-
community Edge, Inter/Intra-Community Edge, and
Random Edge uncertainty, we have a type A for each
possible subset of uncertain edges in the graph so the
number of types could be as large as 2/, The fifth
model of uncertainty, Inter-community Edge Set un-
certainty, models uncertainty over which set of inter-
community edges exists (i.e., which set of 8 edges ex-
ists). The final three uncertainties, which highlight
inter-community edges, apply only to BTER graphs.

The counterinsurgency literature [4] makes clear that
military intelligence explicitly performs ‘intelligence
preparation of the battlefield (IPB)’ to ascertain the
structure and dynamics of a local population with
high fidelity. Therefore, we are not interested in cases
in which the entire social network is largely unknown
or misunderstood. Instead, we focus on situations
with a generally correct social network in which un-
certainty is about the details of the network structure.

IIT THE CHALLENGES OF UNCER-
TAINTY

The first question is whether we can bound the im-
pact of a small amount of uncertainty, as that may
help us bound the resulting loss in solution quality.

We show that, in general, ignoring uncertainty can
yield an arbitrarily poor solution for the mitigator.
Consider the graph shown in Figure [T] in which the
edge from A to B is uncertain, N > M, and both
players have a single resource. Suppose that the in-
fluencer chooses to influence node A with probability
1. If the mitigator mistakenly assumes the edge does
not exist, then his best response is to influence node
C with probability 1, but his actual loss amounts to
% as compared to the true best-response, for a suf-
ficiently large N, of playing B (%) A similar situa-
tion arises when the mitigator assumes the opposite.
Thus, since N is arbitrary, by ignoring the uncer-
tainty of just a single edge the mitigator can suffer
unbounded loss.

N Nodes

sen

M Nodes

aen

Figure 1: Schematic representation of the graph that
yields unbounded loss.

The network in the above example is rather artificial,
so it is natural to wonder what happens under a more
realistic model of a network and uncertainty. To this
end, we investigate the following empirical question:
under our models of uncertainty, if we were to com-
pute an optimal strategy assuming a single influencer
type, how much would that strategy vary for different
types? To answer this, we take a Bayesian game with
40 types and compute an optimal mitigation strategy
for each possible influencer type A under the assump-
tion of complete information. This yields a mixed
strategy, S3y, for each possible influencer type. Next,
we select a type b uniformly at random and measure
the fraction of pure strategies in the support of S%,
that is different from the pure strategies in the sup-
port of each S}, for A # b. In Figure [2| we report the
average fractional difference over 20 independent in-
stances of 40-type Bayesian games on 40-node BTER
graphs (edges vary from 130 to 200) with Influential
Node uncertainty (more details on our standard setup
will be presented shortly). Note that 1 in this case
indicates that the mixed strategy for a randomly cho-
sen type does not share a single pure strategy with
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the mixed strategy computed for any other type. As
can be seen here for this instance, and is generally
true under this uncertainty, nearly all instances show
minimal overlap in the pure strategies used by each
of the type-specific optimal strategies.

Average Difference in Pure Strategies Used

1,

o~ o O
- (o)} ®

Average Fraction Difference
o
o

P

5 10 15 20
Game Instance Number

Figure 2: Comparison of mized strategies

Finally, we turn to the question of complexity, where
the result is very clear and very negative. At a high
level, the challenge of efficiently reducing the runtime
of computing equilibria in our setting lies in quanti-
fying the impact of even small changes in the graph
structure. If this could quickly and accurately be
determined, then types could be efficiently clustered
and bounds could be placed on the quality loss. The
fact that computing the expected influence is #P-
Hard [16] should already give us pause. Indeed, a
simple corollary of this result reveals that such quan-
tification is intractable in general.

Proposition 1. Computing the difference in ex-
pected influence for a given seed set even when a sin-
gle edge is added to a graph is #P-Hard.

Proof. We prove this by contradiction. Call the dif-
ference function, d(S, G, e), where S is the given seed
set, G = (N, E) is the base graph, and e is the edge
to be added. Assume d(-) can be calculated in poly-
nomial time. Define a graph G’ = (N, ). o¢/(S) can
be calculated in polynomial time. Repeatedly add
edges from F to G’ until G is fully reconstructed,
computing d(S, G, e) in each iteration. Since the to-
tal influence of G'is ) ., d(S, G, e), this implies that
we have computed influence in polynomial time, since
only |E| iterations were executed, which contradicts
that fact that computing the expected influence of a
graph is #P-Hard. O

IV DOUBLE ORACLE ALGORITHM

Even though we formulated influence blocking as a
zero-sum game which can be solved using linear pro-
gramming computing, an equilibrium of this game
in our case is challenging for three reasons. First,
payoff estimation requires determining the value of
a(S7, S, A), which has been shown to be #P-Hard
[16]. Therefore, even constructing the payoff matrix
for this linear program is non-trivial. Second, the
strategy sets for both players are exponentially large,
making it impractical to store the entire payoff ma-
trix even if we could compute payoffs efficiently for
a pair of player strategies. Third, because we model
uncertainty over graph instances, the number of in-
fluencer types can be exponentially large.

The first problem was previously addressed by in-
troducing the LSMI heuristic for faster estimation
of o(-), which we also use here [6]. The Bayesian
double-oracle algorithm introduced by Halvorson et
al. [17] offers a solution to the second problem. This
algorithm begins with a small subset of pure strate-
gies for each player and iteratively adds best-response
strategies to the existing subgame. The algorithm
ends when no new best-responses need to be added,
at which point it has provably converged to the equi-
librium of the full game. In the context of Bayesian
games, Halvorson et al. propose computing the best
response for every player type, which in our case
means that we compute the influencer’s best response
for each type (graph), and add all of these pure strate-
gies in each iteration. This approach runs into our
third and final problem: the exponential number of
types. Since computing a best response for a given
type requires a non-negligible amount of computa-
tion, doing it for every type will not scale. To address
this, we now show empirically that simple heuristics
actually produce near-optimal solutions.

V THE POWER OF SIMPLE

The results presented thus far, as well as the intu-
ition from the vast literature on influence maximiza-
tion [2,[7,[16], suggest that carefully accounting for
our uncertainty about graph structure is crucial to
obtaining high quality solutions. Our hardness and
initial empirical results about the Bayesian counter-
contagion problem also suggest that it will be difficult
to scale up to large graphs while carefully account-
ing for uncertainty. However, we will now present
a representative subset of an extensive collection of
experiments, all showing precisely the opposite: we
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need only to randomly sample a few types from the
type distribution and solve the resulting game as if no
other types exist, to obtain solutions that are nearly
optimal. This is quite surprising, particularly since
we have already shown, via the example in Figure
that ignoring even a single influencer type can yield
arbitrarily poor solutions even with only two types.

All the results below are an average of 20 game in-
stances and were run on machines with CPLEX 12.2,
2.8 GHz CPU, and 4GB of RAM. Unless otherwise
stated, experiments were run on 40-node graphs (130
to 200 edges), contagion probabilities on edges drawn
from a N(0.4,0.2) distribution, node values varying
uniformly from 1-10, each player having two seed
nodes (|S7| = |Sm| = 2), and payoffs estimated us-
ing the LSMI heuristic introduced by Tsai et al. [6].
Monte Carlo payoff estimations produced similar re-
sults but could not be meaningfully scaled. Since an
optimal benchmark is necessary, the best-response or-
acles iteratively evaluate each available action to de-
termine the best response, rather than using greedy
hill-climbing common in the influence maximization
literature. Unless otherwise stated, Influential Node
uncertainty selects 3 nodes and gives each 4 addi-
tional edges. Moreover, only these 12 edges could
potentially connect communities, making the chosen
nodes not only more connected (average degree, ex-
cluding uncertain edges, varies from 3-5 with maxi-
mums of 9), but also incident to the more consequen-
tial edges. For Inter-Community Edge uncertainty
we varied the number of uncertain edges between 1
and 6 (the optimal technique could not scale to more
edges). We focus throughout on the mitigator strat-
egy obtained by drawing a random subset of the in-
fluencer’s types and solving the game assuming no
other types exist (referred to as Random Sampling).

1 EXPERIMENTS

In our first set of results, shown in Figures 3] [ and[f]
we consider the impact of the number of randomly
sampled types on solution quality. The three differ-
ent sets of figures show results for different methods
of graph generation, including scale free graphs, small
world graphs, and BTER graphs. The z-axis shows
the number of sampled types, while the mitigator
utility is plotted on the y-axis. These experiments
use the same 40-node games that were featured in
Figure [1] (right) that showed pure strategies used by
individual types have minimal overlap. The key point
is that with only about 2-5 randomly sampled types

we obtain a solution that is very nearly optimal, de-
spite the fact that only using a single influencer type
yields a relatively poor mitigator reward (Figure )
This is true regardless of the method used for gen-
erating the underlying graph. While results in the
optimization literature such as sample average ap-
proximation theory [18] show that random sampling
can converge exponentially fast to optimal solutions,
our “convergence” is uncannily quick.

Next, we fix the number of randomly sampled types
used to generate a solution at 2, and increase the
number of actual types (increasing the degree of un-
certainty). The graph sizes were fixed to 40 nodes.
Intuitively, we would expect that the performance of
Random Sampling should degrade significantly as we
increase uncertainty by adding types. In addition,
we compare the random sampling strategy to an even
simpler heuristic which uses only a single type with
the highest probability; we call this Max Prob. Fig-
ures [6] and [7] are representative of a broad array of
experiments we ran in this space. In addition to
considering several types of uncertainty, we also var-
ied the density of connections among communities
(low density uses p = 0.5 as the probability of inter-
community edges, while high density uses p = 0.9).
Perhaps the most surprising finding in these experi-
ments is that the quality of Random Sampling rela-
tive to optimal degrades very little as we increase the
number of types. While we could not compute op-
timal solutions for games involving more types, this
finding suggests that we may need to sample a de-
creasing (rather than a constant) fraction of all pos-
sible types as the number of total types increases.

In our final set of results using synthetic graphs, we
study the impact of the size of the underlying net-
work. The number of edges varied from 28 (20 nodes)
to 188 (40 nodes) with up to 6 edges differing be-
tween types for Inter-community Edge uncertainty
and up to 24 edges for Influential Node uncertainty
(12 new edges per type). Here, we keep the number
of nodes/edges about which we are uncertain fixed,
and increase the network size. Consequently, we ex-
pect that smaller networks would exhibit significantly
greater difference between random sampling and op-
timal, since uncertainty involves a greater fraction of
the graph.

Figure |8 shows little evidence of this: the quality of
simple heuristics relative to optimal is little affected
by the fraction of the graph that is uncertain.

L Abhijit Banerjee; Arun Chandrasekar; Esther Duflo; Matthew Jackson, 2011-08, “Social Networks and Microfinance”,
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H Parameter \

Variations H

Graph type

Scale-free, small-world, BTER, Indian villages

Graph size

40 node synthetic graphs, 80-100 node real graphs

20, 25, 30, 35,

Uncertainty model

Random edge, Influential node, Intercommunity edge,
Intercommunity edge set, Inter/Intracommunity edge

Number of sampled types 1-40

Total number of types 4-40
Influential node uncertainty: edges per node 4, 10-50

Intercommunity edge set uncertainty:
5-40
number of edges per type
Average contagion probability 0.1, 0.4, 0.7

Community density 0.6, 0.9

Indian village graph weighting scheme

uniform (0.1 increments), weighted

Table 1: Summary of parametric variations we had

explored, all yielding broad consensus on the overall

conclusion that only very few types need to be sampled for near-optimal results.

Finally, we conducted a set of experiments on a real-
world social network dataset released in 2012 that was
obtained via survey data in 75 Indian villagesﬂ The
survey asked the inhabitants of the villages a series
of questions to ascertain their relationship with other
people in the village (e.g., would you invite him in for
tea, do you go to temple with him, would you loan
him money, etc.). From this data, a social network
can be constructed by beginning with a complete
graph with edge weights of 0.0, increasing the weight
of an edge corresponding to a positive answer to a sur-
vey question by 0.1, and then normalizing all weights.
We also tried a second weighting scheme to address
concerns about edge-weight translation choices. This
scheme is referred to as the Varied-Weight-Scheme,
and places greater weight on intuitively stronger rela-
tionships to provide greater variation in the weights.

For our experiments, we use the household-level data
for two of the smaller villages (8 and 10), because
even the double-oracle optimization does not scale
to larger networks. The results in Figures [9] and
(reflecting the two different ways to generate weights
for edges) use Influential Node uncertainty, and each
type now chooses 8 random nodes and gives each 10
new edges to maintain the same fraction of uncer-
tainty, since the India data sets have 77 or 94 nodes
and an average degree of 7.7 or 7.4. As the figure
testifies, our results are not an artifact of synthetic
graph models that we generate, but can be observed
on graphs based on actual social network data as well.

As mentioned previously, in addition to using scale-

free and small-world graphs and additional models
of uncertainty, we also varied a number of other pa-
rameters. We created resource imbalances by testing
games in which the mitigator was allowed 3 or 4 nodes
against the influencer’s 2. We also tried the opposite,
varying the number of nodes allowed for the influ-
encer. We also varied the distribution of contagion
probabilities on edges from the 0.4 we set it to for the
experiments shown to 0.7 to examine the impact of
changes in contagion probability. For BTER graphs
we also examined multiple degree distributions in ad-
dition to the variation of community density that we
show here. Overall, we studied over 200 parametric
variations, which we summarize in Table [T} with the
results virtually identical to what we show here: a
simple heuristic which samples only a few types from
the type distribution performs near optimally.

2 ANALYSIS OF THE POWER OF SIM-
PLE

The results shown are surprising in their extremity,
especially in light of the result presented previously
demonstrating minimal overlap of pure strategies in
optimal strategies for individual types. We now ex-
plore why this might be occurring in these games. A
plausible hypothesis is that the problems are simple
to begin with and that most actions provide very high
reward to the mitigator. To examine this, we plot the
distribution of performance of pure strategies avail-
able to the mitigator by evaluating the expected re-
ward obtained by each of the mitigator’s pure strate-

http://hdl.handle.net/1902.1/16559"| UNF:5:4EmgOYAQGaoQugFowckNfA== Jameel Poverty Action Lab [Distributor] V5

[Version]
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gies against the best response of the entire range of
influencer types. To ease analysis, we bucket the re-
wards obtained into integer values. We show the re-
sults for two prototypical game instances to illustrate
our findings. As can be seen in Figure [I[Th, the ma-
jority of actions lie in two clusters near -67 and -57.
Figure shows a distribution resembling a normal
distribution. Neither of these shows a high percent-
age of high-reward actions, indicating that the initial
hypothesis is incorrect and that substantial value is
gained by optimally solving a subgame composed of
a subset of types.

While we have previously already shown that type-
by-type action overlap in mixed strategies is quite
small, this in itself does not rule out substantial over-
lap in nodes used by the type-by-type strategies. This
is because each pure strategy is a subset of nodes,
and two different pure strategies may be different,
but may actually share many of the nodes that the
strategy uses. To study this, we consider the overlap
of the nodes used in mixed strategies between each
type’s optimal strategy and, first, a randomly chosen
type, and, additionally, the optimal strategy in the
full Bayesian game. Figure shows the results for
20 trials where each bar represents the average per-
centage of node overlap for a single trial (averaged
over all types). We see in Figure that there is a
60-80% difference (average of 74%) in the nodes used
by individual types when compared against a ran-
domly chosen type’s optimal strategy. Thus, while
each type’s strategy may differ, they may all contain
a set of core nodes that overlap more with the optimal
strategy, which may cause the type-specific strategies
to perform well overall. In Figure we show the
results when comparing the overlap in nodes used be-
tween the optimal strategy and each type’s individual
optimal strategy. The difference drops to the 40-70%
range (average of 62%), suggesting that each indi-
vidual type’s optimal strategy uses nearly half of the
nodes used by the optimal Bayesian strategy. The
existence of such a core of nodes that are part of the
optimal strategy for many types can partially explain
the success of simple sampling techniques.

Next, we examine the type-by-type reward obtained
by the sampling strategy versus the reward obtained
by the optimal Bayesian strategy under Influential
Node uncertainty. These experiments were examined
instance by instance, and we show a typical example
to illustrate the trends. In Figure [[3h, we show re-
sults for the optimal strategy’s performance on each
type, where each bar shows the mitigator’s reward
on the y-axis for a particular type. Note that there is

one extremely high reward type and the others are all
in the -80 to -100 range. In Figure [[3p, we show the
results for a randomly chosen single type’s optimal
strategy. Here the majority of rewards range from
-100 to -120, suggesting that the overlap in nodes
showed previously may mitigate some of the losses
(maximum loss is -200 in expectation), but does not
explain the whole story. An additional clue, however,
is that the single type’s strategy actually performed
extremely well for two types here, leading to a compa-
rable average reward despite the poorer performance
in most cases. While not universal, this was a typ-
ical phenomenon, suggesting that within the forms
of uncertainty explored here, an optimal strategy for
one type tends to be near-optimal for a handful of
others (despite minimal overlap in optimal support
sets). Under what formal circumstances this reliably
occurs, however, remains an open question.

Our final experiment draws a direct comparison be-
tween the impact of uncertainty on single-player in-
fluence maximization, as well as our two-player zero-
sum contagion blocking setting. To make this com-
parison most revealing, we construct the following
class of graphs: first, we generate 5 cliques of 5 nodes
each, and then add 10 isolated nodes. Then, we gen-
erate each influencer type by connecting a single iso-
late to a subset of the cliques (possibly with multiple
edges to the same clique); see Figure for several
example types produced in this construction. In this
graph, the optimal strategy given one type is the pes-
simal for all other types.

Figure shows a comparison of single-player (a)
and two-player (b) results with and without reasoning
about all possible graph types. In the single-player
setting, ignoring uncertainty is markedly detrimental;
in contrast, the two-player game is extremely robust
to it. This evidence suggests that the minimax na-
ture of the contagion blocking problem itself confers
upon our setting high resilience to uncertainty about
the influence graph.

To sum up, it appears that the phenomena we ob-
served are due to a combination of at least the follow-
ing two factors: there is non-trivial overlap in nodes
used by type-optimal strategies with the Bayesian
optimal, and the minimax nature of the game itself
makes the solutions robust to uncertainty about the
game structure.
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VI DISCUSSION

The phenomenon of simple techniques providing
highly effective solutions has also been observed else-
where [18421]. In addition to novelty of our influence-
driven, network-based model, our work differs from
these in other important ways. As noted earlier, our
results differ from previous work using sampling tech-
niques in how dramatic they are, and unlike research
in heuristic techniques for equilibrium computation,
our work focuses on the power of extremely few sam-
ples instead of general heuristics.

A closer examination of previous literature in security
games that addresses uncertainty reveals that sim-
ilar phenomena may have been true elsewhere but
went unexplored. In Yin et al. [11], the authors pro-
vide a novel algorithm (HUNTER) for optimally han-
dling Bayesian Stackelberg games with many types.
While the algorithm is orders of magnitude faster
than previously proposed optimal algorithms, the au-
thors report that BRASS, a far less complex solu-
tion method [22], achieves an average loss of 0.7 in
a game where the range of rewards for optimal solu-
tions ranged from -26 to 17 compared against their
algorithm. One again wonders whether a sampling
approach would have worked extremely well here too.

Our work does not dispute the fact that extremely
large Bayesian zero-sum games remain very chal-
lenging to solve well in general and there are cer-
tainly problem classes that are not amenable to sim-
ple heuristics. In Kiekintveld et al. [9], for example,
the authors introduce several techniques for handling
large numbers of Bayesian types to address payoff
uncertainty and they show that simple techniques do
not perform near-optimally. Our work stresses the
need to verify whether or not simple techniques work
before embarking on extensive algorithmic gymnas-
tics to achieve minimal gains in solution quality. Al-
though we have provided some analysis of why this
occurs in our domain, this is only the beginning, and
more work is necessary. Still, our findings give hope
that many very challenging problems in computa-
tional game theory may be effectively addressed by
simple techniques.
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