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Abstract

Agent-based systems for energy conservation are now a growing area of research in multiagent
systems, with applications ranging from energy management and control on the smart grid, to
energy conservation in residential buildings, to energy generation and dynamic negotiations in
distributed rural communities. Contributing to this area, my thesis presents new agent-based
models and algorithms aiming to conserve energy in commercial buildings.

More specifically, my thesis provides three sets of algorithmic contributions. First, I provide
online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling
requests considering flexibility, which is a novel concept for capturing generic user constraints
while optimizing the desired objective. Second, I present a novel BM-MDP (Bounded-parameter
Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective
optimization under uncertainty both at the planning and execution time. The BM-MDP model
and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the
presence of uncertainty over user’s preferences. Third, when multiple users contribute to energy
savings, fair division of credit for such savings to incentivize users for their energy saving activities
arises as an important question. I appeal to cooperative game theory and specifically to the concept
of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is

a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently
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compute the Shapley value based on sampling and partitions and to speed up the characteristic
function computation.

These new models have not only advanced the state of the art in multiagent algorithms, but
have actually been successfully integrated within agents dedicated to energy efficiency: SAVES,
TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and
groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA
takes a long-range planning perspective and optimizes overall energy consumption of a large
number of group events or meetings together. THINC provides an end-to-end integration within
a single agent of energy eflicient scheduling, rescheduling and credit allocation. While SAVES,
TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of
agent-based systems in actually reducing energy consumption in commercial buildings.

I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real
meetings/events at multiple educational buildings including the main libraries at the University
of Southern California. I also provide results on simulations and real-world experiments, clearly
demonstrating the power of agent technology to assist human users in saving energy in commercial

buildings.
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Chapter 1: Introduction

Limited availability of energy sources has led to the need to develop efficient measures of conserv-
ing energy and has raised broad interests in building agent-based systems for real world energy
applications. Motivated by this need, researchers in the multiagent community have successfully
developed agent-based systems for saving energy both in the smart grid and in buildings [Stein
et al., 2012; Mamidi et al., 2012b; Kamboj et al., 2011; Ramchurn et al., 2011; Rogers et al., 2011;
Voice et al., 2011; Bapat et al., 2011; Sou et al., 2011; Xiong et al., 2011].

More specifically, sustainable production, delivery and use of energy in the smart grid and
buildings has now become an important challenge. The distributed nature of the energy grid
and the individual interests of users makes multiagent modeling an appropriate approach for
this problem. For instance, intelligent systems in the smart grid efficiently predict the use of
energy and dynamically optimize its delivery [Vytelingum et al., 2010; Ramchurn et al., 2011].
A game-theoretic framework for modeling storage devices in large-scale systems where each
storage device is owned by a self-interested agent that aims to maximize its monetary profit [ Voice
et al., 2011; Vandael et al., 2011]. Multiagent systems have been also widely employed to
model home automation systems (or smart homes) and simulating control algorithms to evaluate

performance [Rogers et al., 2011; Abras et al., 2006; Conte and Scaradozzi, 2003; Roy et al.,



2006]. This research has given rise to a new area of agent-based systems for energy conservation.
Contributing to this area, my thesis presents new agent-based models and algorithms aiming
at conserving energy in commercial (including office and educational) buildings, given their

significant energy consumption.

1.1 Problem Addressed

Reducing energy consumption is an important goal for sustainability. Conserving energy in
commercial buildings is important as these buildings are responsible for significant energy con-
sumption. In 2008, commercial buildings in the U.S. consumed 18.5 QBTU!, representing 46.2%
of building energy consumption and 18.4% of U.S. energy consumption [U.S. Department of
Energy, 2010]. Such rapid growth in energy usage from commercial buildings has made the need
for systems that aid in reducing energy consumption a top priority.

Researchers have been developing multiagent systems to conserve energy for deployment in
smart grids and buildings [Kamboj et al., 2011; Mamidi et al., 2012a; Miller et al., 2012; Ramchurn
et al., 2011; Rogers et al., 2011; Stein et al., 2012; Bapat et al., 2011; Sou et al., 2011; Xiong et al.,
2011]. Howeyver, their work has been done with a particular focus on residential buildings, and that
work does not directly apply to commercial buildings. For instance, those approaches focus on
flexible scheduling of household appliances, or presenting techniques for home automation [Bapat
et al., 2011; Mohsenian-Rad and Leon-Garcia, 2010; Sou et al., 2011; Wang et al., 2009; Xiong

et al., 2011]. More discussion will follow in the related work section.

'QBTU indicates Quadrillion BTU, which is used as the common unit to explain global energy use. 1 BTU =
0.00029 kWh.



While the goal of a sustainable energy system is the same in both commercial and residential
buildings (i.e., efficiently conserving energy), three unique research challenges should be simulta-
neously addressed for successfully saving energy in commercial buildings. First, algorithms should
be able to handle massive meetings/events schedules while focusing on conserving energy and
considering the given human models. Second, the types of energy-related behaviors in commercial
buildings are different from residential buildings and require agents to negotiate with groups of
people for guiding their behaviors to conserve further energy (e.g., scheduling group activities
such as meetings). Thus, energy systems in commercial buildings should harness changes in
people’s energy related behaviors while ensuring a balance of energy savings and comfort (i.e.,
multi-objective optimization). However, there may be uncertainty in people’s preferences regard-
ing such group activities, and thus the system may not be able to directly learn those preference
models (i.e., model uncertainty). Third, algorithms should also ensure that proper credit is given
based on people’s true contribution to the energy savings in order to effectively motivate people in

a shared place (i.e., fair credit).

1.2 Contributions

The key insight underlying my thesis is that adding flexibility to meeting/event schedules in
commercial buildings can lead to significant energy savings. Such savings can then be divided
amongst the group of people who provided flexibility to incentivize further savings. In the long
run, via my agent-based systems, people are sustainably encouraged to provide more flexibility by
incentives that come from savings caused by such flexibility. In this context, my thesis presents new

agent-based models and algorithms aiming to conserve energy in commercial buildings. My three



algorithmic contributions are: (i) performing predictive scheduling on massive number of group
events while considering human users’ behavior preferences and constraints; (ii) interacting with
human users to gain further savings by changing their given behavior and in particular scheduling
preferences; and (iii) dividing up such credit of energy savings in a fair manner as part of an
incentive mechanism.

The first contribution of my thesis handles online predictive scheduling of massive numbers
of dynamically arriving and uncertain meetings/events while considering flexibility, which is a
novel concept for capturing generic user constraints [Kwak et al., 2013a,b]. In reality, uncertainty
is prevalent in the context of scheduling due to lack of accurate prediction models and data.
Therefore, it is of crucial importance to develop systematic methods to address the problem of
scheduling under uncertainty, in order to create efficient and reliable schedules while satisfying the
given objective. To that end, I propose a novel robust optimization approach for scheduling a large
number of meetings while considering (i) flexibility in meeting requests over time, location and
deadlines; and (ii) user preferences with respect to multiple objectives (e.g., energy and comfort).
More specifically, I provide the following algorithmic contribution: a two-stage stochastic mixed
integer linear program (SMILP) for energy-efficient scheduling of incrementally/dynamically
arriving meetings and events.

Stochastic programming has provided a framework for modeling optimization problems that
involve uncertainty [Beale, 1955; Dantzig, 1955; Kall and Wallace, 1994; Shapiro et al., 2009].
Whereas deterministic optimization problems are formulated with known parameters, real-world
problems almost invariably include some unknown parameters. To address this challenge, I
specifically formulate the scheduling problem as a two-stage stochastic program. In general, in a

two-stage stochastic program, the first stage variables are decided before the actual realization of



the uncertain parameters are known. Afterward, once the random events have exhibited themselves,
further decisions can be made by selecting the values of the second stage. The objective of the
SMILP above is to choose the optimal first stage variables in a way that the sum of first stage costs
and the expected value of the second stage or recourse costs is minimized. I then use the sample
average approximation (SAA) method [Ahmed et al., 2002; Pagnoncelli et al., 2009] to solve the
given SMILP. The main idea of the SAA approach to solve stochastic programs is to approximate
the expected value of the second stage cost by the weighted average function with the sample
realizations of the random vector that determines future meeting requests. The obtained sample
average approximation of the stochastic program is then solved using a standard branch and bound
algorithm such as those implemented in commercial integer programming solvers. For evaluation,
I compared the simulation results in energy savings achieved by the proposed predictive scheduling
algorithm against real-world data. These results show that my predictive scheduling algorithms
can potentially offer significant saving benefits in general scheduling domains where schedule
flexibility plays a key role for such savings.

The second contribution of my thesis provides a robust MDP (Markov Decision Problem)
model and algorithms to effectively reschedule group activities such as meetings/events for saving
energy while considering multiple objectives as well as uncertainty both at planning and execution
time [Kwak et al., 2012a,b]. In fact, in a complex domain, three challenges need to be considered.
First, there are inherently multiple competing objectives like limited energy supplies, and demands
to satisfy occupants’ comfort levels. This makes the problem harder as I need to explicitly consider
multi-objective optimization techniques. Second, as human occupants are directly involved in the
optimization procedures, understanding human behavior models and simultaneously reasoning

about such model uncertainty in the domain are essential. Third, while the offline policy is being



executed, there might be unexpected situations that were not captured at planning time. This
combination of challenges (multiple objectives and planning & execution-time uncertainty) has not
been considered in previous MDP algorithms [Chatterjee et al., 2006; Delgado et al., 2009; Givan

et al., 2000; Ogryczak et al., 2011]. Specifically, I present a novel model and robust algorithms:

o BM-MDP (Bounded-parameter Multi-objective MDP) that explicitly models multiple objec-

tives as well as uncertainty over people’s preferences

o robust algorithms to solve BM-MDPs and dynamic replanning methods for handling uncer-

tainty at execution time

BM-MDPs are a hybrid of MO-MDPs (Multi-Objective MDPs) Chatterjee et al. [2006];
Ogryczak et al. [2011] and BMDPs (Bounded-parameter MDPs) Givan et al. [2000]. Thus,
BM-MDPs are defined as an MDP where the reward function has been replaced by a vector
of rewards and upper and lower bounds on transition probabilities and rewards are provided as
closed real intervals. To optimally solve the given BM-MDPs, I provide algorithms based on
robust value iteration [Bagnell et al., 2001], which relies on a minimax approach, to obtain a
well-balanced solution across multiple objectives under model uncertainty. As I will show in the
results, BM-MDPs generate robust solutions while considering multiple objectives and model
uncertainty at planning time.

In practice, however, BM-MDPs may still not always capture unexpected situations that arise
while the BM-MDP policy is being executed. To handle such execution-time uncertainty, I also
provide the execution-centric replanning algorithms that heuristically replan the BM-MDP policy
while considering dynamic situations at execution time. As I will show in the evaluation section,

this replanning approach performs better than two other alternatives.



The final contribution of my thesis addresses fair division of credit using concepts of coopera-
tive game theory. When multiple users contribute to energy savings, fair division of credit for such
savings arises as an important question. Given the total amount of energy savings, what would
be a fair method to divide up credit of such energy savings? For instance, if each user were to
be compensated from a fixed portion of the entire group savings to incentivize further savings,
such equal division among all users would imply that those who made an extra effort get the same
credit as those who contributed little or nothing, which may not be perceived as fair [Nisan, 2007;
Nagarajan et al., 2010].

I appeal to cooperative game theory and specifically to the concept of Shapley value for this
fair division [Shapley, 1953]. While the Shapley value mathematically computes fair individual
allocations and holds desirable theoretical properties such as efficiency, symmetry, linearity, etc.,
its limitation in scale is a major hindrance in practice [Nisan, 2007; Castro et al., 2009; Fatima et al.,
2008]. The Shapley value is based on the marginal contribution of each agent in a permutation, i.e.,
the amount of additional utility generated when that agent joins the coalition of her predecessors
in the permutation. And thus, the marginal contribution of each individual agent to every subset of
a given coalition should be considered. Furthermore, computing the marginal contribution in each
permutation (i.e., the characteristic function value) requires the exact computation of the energy
savings, which is computationally challenging. Thus, I provide a novel algorithmic contribution

for scaling up the overall computations:

e approximation algorithms to efficiently compute the Shapley value based on sampling and

partitions

e an LP (linear program) relaxation method to speed up the characteristic function computation



Some studies suggest the use of sampling methods to approximate the Shapley value [Castro
et al., 2009]. Motivated by this prior work, I provide an approximate algorithm for the polynomial-
time calculation of the Shapley value based on sampling. An additional caching technique is used
to further speed-up the Shapley value computation by storing each evaluation of the characteristic
function. I also present the partition-based technique to decompose the entire agent set into smaller
independent subsets, which reduce the overall computational burden.

Next, in practice, the characteristic function computation itself is often computationally
intensive as it requires complex mathematical formulations (e.g., a mixed integer linear program
(MILP)) to be solved repeatedly. Thus, I present an LP relaxation method to speed up the
characteristic function computation by relaxing constraints of key integer decision variables. For
the corresponding LP relaxation to be practical, I also provide a rounding scheme for the resulting
continuous solution. As I will show in the evaluation section, these approximations allow efficient
computations of fair individual allocations in a large-scale saving game in the real-world. I
also show that different combinations of these approximations can be chosen under particular
circumstances while considering the tradeoff between solution quality and runtime.

My algorithmic contributions discussed above have been successfully integrated within agents
dedicated to energy efficiency. My thesis specifically introduces SAVES (Sustainable multi-A gent
building application for optimizing Various objectives including Energy and Satisfaction) [Kwak
et al., 2012a,b], TESLA (Transformative Energy-saving Schedule-Leveraging Agent) [Kwak
et al., 2013a,b] and THINC (agent Tool for Human INcentivization and Cooperation), illustrating
the potential for energy savings in commercial buildings. SAVES focuses on the day-to-day
energy-consumption of single individual or single group activity in commercial buildings, to be

reactive in suggesting energy conserving alternative to that individual or group. SAVES uses Ralph



& Goldy Lewis Hall (RGL) at the University of Southern California as a testbed building. More

specifically, SAVES provides the following key novelties:

jointly performed with the university facility management team, SAVES is based on actual
occupant preferences and schedules, actual energy consumption and loss data, real sensors

and hand-held devices, etc.

SAVES addresses novel scenarios that require agents to negotiate with groups of building
occupants to conserve energy; previous work has typically focused on agents’ negotiation

with individual occupants [Abras et al., 2008; Mo and Mahdavi, 2003].

SAVES focuses on non-residential buildings, which offer new opportunities for energy
conservation. In particular, since occupants may follow a more regular schedule, it allows

SAVES to plan ahead for energy conservation.

As mentioned previously, SAVES uses a novel algorithm for generating optimal BM-MDP
policies that explicitly considers multiple objective optimization (energy and personal
comfort) as well as uncertainty over occupant preferences when negotiating for energy

reduction.

Then, I provide three sets of evaluation results for SAVES. First, I constructed a detailed

simulation testbed, with details all the way down to individual electrical outlets in the targeted

building and variations in solar gain per day; and then validated this simulation. Within this

simulation testbed, I show that SAVES substantially reduces the overall energy consumption

compared to existing control methods while achieving comparable satisfaction level of occupants.

Second, I show the benefits of BM-MDPs by showing that it gives a well-balanced solution



while considering multiple objectives. Third, as a real-world test, I provide results of a human
subject study where SAVES is shown to lead human occupants to significantly reduce their energy
consumption in real buildings.

On the other hand, TESLA takes a long-range planning perspective and optimizes overall
energy consumption of a large number of group events or meetings together. TESLA is a goal-
seeking (to save energy), continuously running autonomous agent. Users in a commercial building
continuously submit meeting requests to TESLA while indicating flexibility in their meeting
preferences. TESLA schedules these meetings in the most energy efficient manner while ensuring
user comfort; but in cases where shifting meeting times can lead to significant savings, TESLA
interacts with users to request such a shift. More specifically, TESLA provides the following key

novelties:

e As previously mentioned, TESLA presents online scheduling algorithms using the sample
average approximation (SAA) method to solve a two-stage stochastic mixed integer linear
program (SMILP). This SMILP considers the flexibility of people’s preferences for energy-

efficient scheduling of incrementally/dynamically arriving meetings and events.

e TESLA also includes an algorithm to effectively identify key meetings that could lead
to significant energy savings by adjusting their flexibility while considering uncertainty

regarding people’s interactions.

For evaluation, I used a public domain simulation testbed [Kwak et al., 2012a,b], fitted it with
details of the testbed building, and compared the simulation results against real-world energy
usage data. TESLA was extensively evaluated on data gathered from over 110,000 meetings held

at nine campus buildings during an eight month period in 2011-2012 at the University of Southern
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California (USC) and Singapore Management University (SMU), and an extensive analysis of the
energy saving results achieved by TESLA is provided. These analyses and results show that, in a
validated simulation using the testbed building, TESLA is projected to save about 94,000 kWh of
energy (roughly $18K) annually.

Lastly, THINC is the first agent integrating (i) energy-efficient scheduling of user meeting
requests while considering flexibility, (ii) rescheduling of key meetings for more energy savings,
and (iii) fair credit allocations based on Shapley value to incentivize users for their energy saving
activities (i.e., providing flexibility). More specifically, THINC provides the following key

novelties:

e THINC computes fair division of credits from energy savings. For this fair division, THINC
uses novel algorithmic advances for efficient computation of Shapley value mentioned

earlier.

o THINC includes a novel robust algorithm to optimally reschedule identified key meetings

addressing user interaction uncertainty.

For the evaluation, I built upon the simulation testbed by using a large data set of real meeting
requests and building statistics collected from the testbed building at USC. As a real-world test, |
actually deployed THINC at the Doheny library at USC in a limited fashion, collected real user’s
flexibility and their input, and demonstrated that THINC has significant potential to produce real

energy savings in commercial buildings.
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1.3 Guide to Thesis

This thesis is organized in the following way. Chapter 2 introduces necessary background for
the research presented in this thesis. Chapter 3 presents robust algorithms for BM-MDPs, and
shows its extension to be applied in SAVES and the corresponding experimental results. Chapter 4
presents the robust optimization optimization framework for computing energy-efficient schedules
in TESLA and the corresponding experimental results. Chapter 5 describes THINC for handling
more realistic situations in order to be deployed in the real-world. Chapter 6 presents related work.

And finally, Chapter 7 concludes the thesis and presents issues for future work.
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Chapter 2: Background

In this chapter, I provide a brief background regarding MDPs in Section 2.1, and discuss concepts
of cooperative game theory and specifically the Shapley value in Section 2.2. Next, I describe
two different sets of real testbed buildings in Section 2.3 and a simulation testbed in Section 2.4.
As a simulation environment is a main testbed to evaluate algorithms presented in my thesis, I
also provide the detailed evaluation results of the simulation environment using real building and
energy data in Section 2.4.3. Finally, in Section 2.5, I present a data analysis on massive number

of meeting requests collected from real testbed buildings described in Section 2.3.

2.1 Markov Decision Problems

Planning under uncertainty is fundamental to solving many important real-world problems, includ-
ing applications in robotics, network routing, scheduling, and financial decision making. Markov
Decision Problems (MDPs) [Puterman, 2009] provide a mathematical framework for modeling

these tasks and for deriving optimal solutions, which are described by a tuple (S, A, T, R):

e S ={s1,..., s} is a finite set of states.

e A is the finite set of actions of agent.

13



e T:8 XAXS — Ris the transition function, where T'(s’|s, @) is the transition probability

from s to s’ if an action a is executed.

e R: S XAXS — Ris the reward function, where R(s, a, s”) is the reward agents get by

taking a from s and reaching s’.

The MDP is to obtain a policy with the highest expected reward/value and can be solved by

the following linear program (LP) formulation to find the optimal policy:

min V(s) (2.1)

st. V(s)>R(s,a)+y Z T(s,a,s')- V(s), (2.2)
s’eS

0<y<l (2.3)

where V is a value function, and vy is a discount factor.

2.2 Cooperative Game Theory and the Shapley Value

Cooperative game theory [Nisan, 2007; Leyton-Brown and Shoham, 2008] allows players to band
together and form coalitions. Formally, a cooperative game is defined by a pair (&, v), where
N ={1,2,...,n}is aset of players, and v is a characteristic function specifying the value created
of different subsets (i.e., coalitions) of the players in the game. Specifically, the characteristic
function, v(S), associates with every subset S of N a value v(S), the value of the coalition §.

In a cooperative game, we often want to encourage the grand coalition N to form. The

challenge is to allocate the overall payoff v(N) among the players in a fair way so that they

14



will not deviate and form their own coalitions. Several solution concepts such as the Shapley
value [Shapley, 1953], the core [Gillies, 1959], and the nucleolus [Schmeidler, 1969] exist to guide
allocation. These solution concepts all find a vector x € R that represents the allocation to each
player.

The Shapley value yields a unigue allocation x(v) = ¢(N, v) that is also fair. Specifically, the
Shapley value satisfies the efficiency, symmetry, dummy player, and additivity properties which
axiomatize fairness. Other concepts in cooperative game theory such as the core and the nucleolus
focus on yielding stable outcomes, but not necessarily fairness, which is of key interest in our
work. Furthermore, the existence and uniqueness of the core are not guaranteed.

I use two (equivalent) definitions of Shapley value in our paper. The Shapley value is obtained
by averaging the marginal contributions over all possible coalitions. Specifically, the Shapley

value for player i is:

n—1

(n—1-s)!
BiN.v) = ) s(”n—,” D S Ui - v(s) (2.4)
s=0 ’ SCN\{i},IS|=s

where ¢;(N, v) is the savings due to i € N in the game (N, v).

An alternative definition of the Shapley value can be expressed in terms of all possible orders
of the players N. Let O : {1,...,n} — {1,...,n} be a permutation that assigns to each position
k the player O(k). Let us denote by m(N) the set of all possible permutations with player set N.

Given a permutation O, let us denote by P/(O) the set of predecessors of the player i in the order O

15



(a) The actual testbed at USC for SAVES (b) The actual testbed buildings at USC and SMU for TESLA/THINC

Figure 2.1: Real Testbed Buildings
(i.e., PI(0) = {O(1),...,0(k — 1)}, if i = O(k)). Thus, the Shapley value can be expressed in the

following way:

1 . .
oi(N,v) = Z —’(v(P’(O) Ui —-v(P(O)), i=1,...,n.

Oen(N) n:

2.3 Educational Building Testbeds

Recall that my work focuses on two sets of agent-based systems: SAVES and TESLA.

2.3.1 The actual testbed building for SAVES

SAVES, focusing on multi-objective optimization under model uncertainty, is to be deployed in
an actual educational building (Ralph & Goldy Lewis Hall (RGL)) at the University of Southern
California (shown in Figure 2.1(a)). It is a multi-functional building that has been designed with a
building management system, and it provides a good environment to test various control strategies
to mitigate energy consumption. In particular, this campus building has three floors in total and
is composed of different types of spaces including classrooms, offices for faculty and staff, and

conference rooms for meetings. Each floor has a large number of rooms and zones (a set of
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rooms that is controlled by specific piece of equipment) with various physical properties including
different building devices, orientation, window size, room size and lighting specifications.

Within this building, components and equipment include HVAC (Heating, Ventilating, and
Air Conditioning) systems, lighting systems, office electronic devices such as computers and AV
equipment, and different types of sensors and energy meters. Human occupants of the building
are divided into two main categories: permanent and temporary. Permanent occupants include
office users such as faculty, staff, researchers and laboratory residents. Temporary occupants
include scheduled occupants like students or faculty attending classes or meetings and unscheduled
occupants who are students or faculty using common lounges or dining spaces.

In this domain, there are two types of energy-related occupant behaviors that SAVES can
influence to conserve energy use: individual behaviors and group behaviors. Individual behaviors
only affect an environment where the individual is located. They include adjusting light sources
and temperature in individual offices and turning on/off computers and other electronics. Group
behaviors lead to changes in shared spaces and require negotiation with a group of occupants in
the building. For instance, SAVES may negotiate with a group of occupants to adjust the lighting
level and temperature in their shared office or to relocate a meeting to a smaller office. As I will
show later, energy savings by considering such group negotiations together are significant.

The desired goal in this educational building is to optimize multiple criteria, i.e., achieve
maximum energy savings without trading off the comfort level of occupants. The research on this
testbed building is intended to be generalized to other building types, where we can observe many

different types of energy-use and the behavioral patterns of occupants in the buildings.
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Figure 2.2: The current room reservation system at the testbed building
2.3.2 The actual testbed buildings for TESLA & THINC

Figure 2.1(b) shows the testbed buildings for TESLA and THINC and the floor plans of 2"
and basement floors. They include one of main libraries (Leavey library) at USC and eight
educational buildings at Singapore Management University. They have been designed with a
building management system. Specifically, USC’s Leavey library hosts a large number of meetings
(about 300 unique meetings per regular day) across 35 group study rooms. Each study room has
different physical properties including different types and numbers of devices and facilities (e.g.,
video conferencing equipment, computer, projector, video recorder, office electronic devices, etc.),
room size, lighting specification, and maximum capacity (4 — 15 people). This building operates
these study rooms 24 hours a day and 7 days a week except on national holidays. The temperature
in group study rooms is regulated by the facility managers according to two set ranges for occupied
and unoccupied periods of the day. HVAC systems always attempt to reach the pre-set temperature
regardless of the presence of people and their preferences in terms of temperature. Lighting and

appliance devices are manually controlled by users.
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(@ (b)

Figure 2.3: Screen Capture of the Simulation Testbed
In this building, meetings are requested by users by a centralized online room reservation

system (see Figure 2.2). In the current reservation system, no underlying intelligent system is
used; instead, users reactively make a request based on the availability of room and time when they
access the system. While users make a request using the system, they are asked about additional
information including the number of meeting attendees and special requirements. Reservations

can be made up to 7 days in advance.

2.4 Simulation Testbed

As an important first step in deploying my work in the actual building described in the previous
section, I test my agent-based systems in a realistic simulation environment using real building
data. To that end, I have constructed a simulation testbed based on the open-source project
OpenSteer (http://opensteer.sourceforge.net/), which provides a 2D, OpenGL environment, as
shown in Figure 2.3. It can be used for efficient statistical analysis of different control strategies in

buildings before deploying the system.
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2.4.1 Building Components

My simulation considers three building component categories: HVAC devices, lighting devices,
and appliances. The HVAC components control the temperature of the assigned zone. The lighting
devices control the lighting level of the room. The appliances in my simulation are either desktop
or laptop computers. These components have two possible actions: “on” and “standby”. When the
lighting or appliance devices are on, they consume a fixed amount of energy. My work attempts to
accurately reflect the energy consumed by each of the three component categories in the simulation.
The energy consumption of HVAC:s is calculated based on changes in air temperature and airflow
speeds, and gains from natural light source and appliances in the space. To calculate the energy
consumption of the lighting and appliance devices, I collected actual energy consumption data in
the testbed building. For the appliances, a desktop computer spends 0.150 kW/h and 0.010 kW/h
when it is on and standby, respectively. A laptop computer spends 0.050 kW/h when it is on and
0.005 kW/h when it is on standby.

In the simulation testbed, the energy consumption (Q,) of HVAC is calculated as follow-
ing [Standard, 2001] mainly based on changes in air temperature and airflow speeds, and gains

from natural light source and appliances in the space, etc.:
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0; = Ocw + Ofan> (2.5)

Ocw = 0.21 X O, (2.6)
Ocs = 1.1 X (Typg — Tsa) X Vias 2.7)
V \%
Tia = (25) X Tog + (1 = (Z) X T, (2.8)
VSG Vsa
Ofan = 1.25 X 3412 X Vg, (2.9)
v, = (Wee X HCyy X H X A) X AT + st’ (2.10)
1.1 X (T, - Tsa)
Vi, = max(20P, 0.05A), 2.11)

Q.5 = (P X 255) + (C x500) + (LW x3.412) + (0.5 X A,y X (Tpsa — T7)) + (SG X Apy),

2.12)

In this work, I use measured parameter values such as solar gain (Figure 2.4(a)) and outdoor

temperature (Figure 2.4(b)) and real parameter values regarding the real testbed building (RGL) at
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Figure 2.4: Parameter Values for Energy Calculation
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Table 2.1: Parameter Description for Energy Calculation

Parameters Meaning Default Value
A Zone Area (sq. ft)

Ay Window Area per Zone (sq. ft)

P Number of People in Zone

C Number of Computers in Current Use

LW Zone Light in Current Use (Watt)

T, Desired Temperature (°F)

Tsa Temperature of Supply Air (°F) 60.0°F

T osa Temperature of Outside Air

SG Solar Gain

Wi Specific Weight of Air (Ib/ft?) 0.07495 1b/ft?
HCy, Heat Capacity Dry Air (BTU/IbF) 0.24 BTU/IbF
H Ceiling Height (ft) 10.0 ft

AT Temperature change (°F/hr)

-

-—

-

SnAfr A=A mAf==r -

-

Figure 2.5: RGL Floor Plan (2 & 3" floors of the testbed building)
the University of Southern California (Figure 2.5) obtained from the facility management system.

Specifically, Tables 2.1 & 2.2 show the parameter values I used for the above energy calculation.
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Table 2.2: Parameter Values for Energy Calculation

Zone LW (kWh) A (sqft) A, (sqft)

1 0.384 260 44.8
2 0.48 352 87.2
3 0.544 332 64.8
4 0.432 349 64.8
5 0.192 138 44.8
6 0.576 414 64.8
7 0.384 274 64.8
8 0.384 274 64.8
9 0.192 163 44.8
10 0.448 320 0.0

11 0.192 136 44.8
12 0.192 115 44.8
13 0.288 236 44.8
14 0.576 497 79.1
15 0.288 197 44.8
16 0.384 260 44.8
17 0.192 125 0.0

18 0.87 313 79.1

19 2.256 669 135.8
20 0.464 435 0.0

21 0.786 298 22.4
22 0.576 411 67.2
23 0.576 411 44.8
24 3.22 1318 0.0

2.4.2 Human Occupants

I built two types of human occupants in my simulation using the agent behavior framework.
Permanent occupants stay in their offices or follow their regular schedules. Temporary occupants
stay in the building for classes and leave once classes end.

Each occupant has access to a subset of the six available behaviors according to her/his type —
wander, attend class, go to meeting, teach, study, and perform research — any one of which may

be active at a given time, where the behavior is selected based on class and meeting schedules.
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Figure 2.6: Actual Temperature Preference
Occupants also have a satisfaction level based on the current environment, modeled as a percentage
between 0 and 100 (0 is fully dissatisfied, 100 is fully satisfied).

To model the satisfaction level in this simulation, I use a Gaussian distribution N(u, o) for each
occupant. The mean (u) of each individual Gaussian is drawn from actual occupant preference data
shown in Figure 2.6 (e.g., for 18% of permanent occupants, u=76°F). This data was gathered from
40 permanent occupants and 202 temporary occupants in RGL over two weeks in the spring of
2011. T use this actual data instead of the ASHRAE standard, which fails to account for individual
preferences. The standard deviation (o) of each Gaussian is selected uniformly randomly from a
range of 3—-5°F [Khalifa et al., 2006]. Based on the constructed Gaussian model for each occupant,

the satisfaction level is computed as follows:

100, ifr=pu

S@) = 2.13)
JAO) :
Fim) X 100, ift + M
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Figure 2.7: Energy Consumption Validation
where S (¢) is the satisfaction function, f(x) is the probability density function of N(u, o), and ¢ is

the current temperature.

2.4.3 Validation

Before testing agents including SAVES, TESLA and THINC in simulation, I validate the simulation
testbed. Specifically, I first compare the energy consumption calculated in the simulation testbed
with actual energy meter data using the 3" floor of the actual testbed building (RGL).

Figure 2.7 shows that daily energy use comparison data (y-axis) measured for 30 sample
weekdays throughout different seasons (x-axis; 3 weekdays in 2011 Spring, 10 weekdays in 2011
Summer, 17 weekdays in 2011 Fall). The energy consumption includes the amount consumed by
HVAC S, lighting devices and appliances. My work uses measured parameter values such as solar
gain and outdoor temperature and real parameter values for the building obtained from the facility

management system. I set the starting indoor temperature using real data. The likelihood value for
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Table 2.3: Energy consumption validation (kWh)

\% Regular semester (Spring/Fall) | Summer break | Average

Actual energy consumption 740.2 289.6 546.7
Simulated energy consumption 721.3 255.1 521.1
Average error (%) 2.6 11.9 4.7

human occupants to “turn oft” lights and appliances when they leave their offices is 76%, based
on a survey of the testbed building. Students follow 2010 Fall, 2011 Spring and 2011 Fall class
schedules, and faculty, staff and students follow their meeting schedules.

As shown in the figure, the difference between actual energy meter data and energy use from
the simulation testbed was between 0.17% — 8.71% (mean difference: 3.37%), which strongly
supports my claim that the simulation testbed is realistic.

To evaluate TESLA and THINC, I then compared the energy consumption calculated in
the simulation testbed with actual energy meter data from the testbed building (library) at the
University of Southern California in 2012. As shown in Table 2.3, the average difference between
actual energy meter data and energy use from the simulation testbed was 4.7%, which strongly
supports my claim that the simulation testbed is realistic. This validated simulation environment is
used to evaluate TESLA and THINC with real meeting data. In addition, I also test TESLA on
buildings at Singapore Management University. SMU has a centralized web-based system that
allows users to schedule meetings and events in over 500 conference/meeting rooms across eight
buildings. More details regarding the data sets from USC and SMU to test TESLA and THINC

are provided in the next section.
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(a) Meeting frequency data (b) Distribution of total meeting requests per day

Figure 2.8: Real data analysis (USC)

Table 2.4: Meeting request arrival distribution

Time period Likelihood (%)
1 day before 55.73
1-2 days before 18.40
2-3 days 8.72
3-4 days 5.52
4-5 days 3.68
5-6 days 3.05
6-7 days 3.35
> 7 days 1.56

2.5 Data Analysis

In collaboration with building system managers, I have been collecting data specifying the past
usage of group study rooms, which are collected for 8 months (January through August in 2012) at
USC. The data for each meeting request includes the time of request, starting time, time duration,
specified room, and group size. The data set contains 32,065 unique meetings, and their average
meeting time duration is 1.78 hours.

Figure 2.8(a) shows the actual meeting frequency (y-axis) over time (24 hours, x-axis) of

sampled 4 locations at USC (out of 35 rooms) based on the collected meeting request data. This
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Figure 2.9: Real data analysis (SMU)
figure shows the preferred slots of time and location (e.g., late afternoon (2—-5pm) for time & 2

floor (201A, 202E) compared to the basement for location). Then, the system will be able to
predict future situations based on this frequency data while scheduling requests as they arrive.
Figure 2.8(b) shows the probability distribution over total meeting requests per day. The x-axis of
the figure indicates the total number of meeting requests per day (ranging from O to about 350)
and the y-axis shows how likely the system will have the given number of total meeting requests
(x-axis) on one day. One can see that the probability of having 50 or fewer meetings is 42.92%
and the probability of having 250 or more meetings is 30.04%. These are used to estimate the
model of future meetings in my scheduling algorithm that will be presented in Chapter 4.

Table 2.4 shows how early meeting requests were made. In the table, column 2 indicates the
percentage of meetings that were requested within the given time period (column 1). For instance,
55.73% of all meeting requests were made within 1 day before the actual meeting day. This
analysis would be helpful in understanding how my algorithm could achieve significant energy

savings in this domain.
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While evaluating my work, I also consider another data set from SMU. The data set contains
over 80,000 meetings that have been collected for three months (August through October) in
2011 at SMU, which gives a sense regarding how my algorithm will handle energy-oriented
scheduling problems in large buildings. Similar to Figure 2.8, Figure 2.9(a) shows the actual
meeting frequency (y-axis) over time (24 hours, x-axis) of sampled 4 locations at SMU (out of
over 500 rooms) based on the collected meeting request data. This figure shows the preferred slots
of time and location. Figure 2.9(b) shows the probability distribution over total meeting requests
per day. The x-axis of the figure indicates the total number of meeting requests per day (ranging
from O to about 1200) and the y-axis shows how likely the system will have the given number of

total meeting requests (x-axis) on one day.
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Chapter 3: SAVES

In this chapter, I first describe the key components of SAVES and how to optimally plan negotia-

tions with groups of occupants to conserve energy in the real-world application.

3.1 Agentsin SAVES

At the heart of SAVES are two types of agents: room agents and proxy agents (Figure 3.1).

There is a dedicated room agent per office and conference room, in charge of reducing energy

2 .
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Sensor: Light Sensor

Figure 3.1: Agents & Communication Equipment in SAVES. An agent in SAVES sends feedback
including energy use to occupants.
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consumption in that room. It can access sensors to retrieve information such as the current lighting
level and temperature and energy use at different levels (building-level, floor-level, zone-level, and
room-level) and impact the operation of actuators. A proxy agent [Scerri et al., 2002] is on an
individual occupant’s hand-held device and it has the corresponding occupant’s preference and
behavior models. Proxy agents communicate on behalf of an occupant to the room agent. Such
proxy agents’ adjustable autonomy — when to interrupt a user and when to act autonomously — is
recognized as a major research issue [Scerri et al., 2002; Schurr et al., 2009], but since it is not my
focus, I use preset rules instead. Room agents may directly communicate with occupants without
proxy agents if needed. Finally, different room agents coordinate among themselves via proxy
agents, e.g., if two separate conference room agents wish to move a meeting to one occupant’s
office, the proxy of that occupant allows one of the room agents to proceed, blocking the other’s
request (see Figure 3.1).

Room agent reasoning is based on a new model called Bounded parameter Multi-objective
MDPs (BM-MDPs), which is one of the contributions of this research. BM-MDPs are a hybrid
of MO-MDPs [Chatterjee et al., 2006; Ogryczak et al., 2011] and BMDPs [Givan et al., 2000].
BM-MDPs are responsible for planning simple and complex tasks. Simple tasks include turning on
the HVAC before a class or a meeting, and do not need the full power of the BM-MDPs. Complex
tasks were why BM-MDPs were created; these include negotiating with groups of individuals
to relocate meetings to smaller rooms to save energy, negotiating with multiple occupants of a
shared office to reduce energy usage in the form of lights or HVACs, and others. Before describing
BM-MDPs in depth, I motivate their use by elaborating on the meeting relocation negotiation

scenario.
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Group Meeting Relocation Negotiation Example Consider a meeting that has been scheduled
with two attendees (P; and P») in a large conference room that has more light sources and
appliances than smaller offices. Since the meeting has few attendees, the room agent can negotiate
with attendees to relocate the meeting to nearby small, sunlit offices, which can lead to significant
energy savings. The room agent handles this negotiation based on BM-MDPs. There are three
objectives (i.e., three separate reward functions) that the room agent needs to consider during this
negotiation: (i) energy saving (Rp), (ii) P;’s comfort level change (R;), and (iii) P,’s comfort level
change (R3). The room agent first checks the available offices. Assuming there are two available
offices A and B, the room agent asks each attendee if she or he will agree to relocate the meeting
to one of the available offices. In asking an attendee, the room agent must consider the uncertainty
of whether an attendee is likely to accept its offer to relocate the meeting. Since asking incurs
a cost (e.g., cost caused by interrupting people), the room agent needs to reason about which
option is preferable considering P; and P;’s likelihood to accept each option (A or B) and the
reward functions for each option to reduce the required cost and maximize benefits. Assuming
A is preferable, the optimal policy of the agent is “ask P; first about A”—“if P; accepts, ask P,

LR INY3

about A”—"“if P; does not reply, ask P about A again”—“repeat the process with B”—*if both agree,
relocate the meeting”—““if both disagree, find other available options.” While this is a simplified
example, in practice the problem is more difficult, as there may be more than two attendees in a
meeting. The room agent must also first communicate with the proxies of the owners of offices A
and B and there may be uncertainty in their agreement to have a meeting in their office; further

adding to the challenge of sequential decision making under uncertainty. In addition, the agent

must decide if it should ask P; first and use that result to influence P,, etc.
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Thus, BM-MDPs must reason with multiple objectives, but simultaneously must reason with
the uncertainty in the domain. In fact, in a complex domain such as mine, the probabilities of
attendees’ or others’ acceptance of the room agent’s offer, or the probabilities of other outcomes
may not be precisely known — we may only have a reasonable upper and lower bound over such
probabilities. Indeed, precisely knowing the model is very challenging, and I ended up building
BM-MDPs to address both these challenges and requirements. However, before explaining

BM-MDPs, I first explain MO-MDPs on which BM-MDPs are built.

3.2 Multi-objective MDPs

The negotiation scenarios described earlier require SAVES to consider multiple objectives simul-
taneously: energy consumption and satisfaction level of multiple individuals. To handle such
multiple objectives, MDPs have been extended to take into account multiple criteria assuming
no model uncertainty. Multi-Objective MDPs (MO-MDPs) [Chatterjee et al., 2006; Ogryczak
et al., 2011] are defined as an MDP where the reward function has been replaced by a vector of
rewards. Specifically, MO-MDPs are described by a tuple (S, A, T, {R;}, p), where R; is the reward
function for objective i and p denotes the starting state distribution (p(s) > 0). In the meeting
relocation example shown in Section 3.1, specifically, the multiple reward functions, {R;}, include
energy consumption (which is the reduction in energy usage in moving from a conference room to
a smaller office), and comfort level defined separately for each individual (based on data related to
their temperature comfort zones).

The key takeaway from MO-MDPs towards BM-MDPs is an understanding of how to generate

a policy in the presence of such multiple objectives that are not aggregated into one single value.
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The key principle I rely on, given the current domain of non-residential buildings is one of fairness;
we wish to reduce energy usage, but we cannot sacrifice any one individual’s comfort entirely in
service of this goal. To meet this requirement, I focus on minimizing the maximum regret instead
of maximizing the reward value based on a min-max optimization technique [Osyczka, 1978] to
get a well-balanced solution.

To minimize the maximum regret, I first need to compute the optimal value for each objective

using the MDP framework relying on the following standard formulation:

min V*(s) (3.1

st. V()2 R(s,@) +y ) T(s,a,5) - V(s), (3.2)
s’eS

0<y<l (3.3)

where V™ is an optimal value, and vy is a discount factor.

I define the regret in MO-MDPs as following:

Definition 1. Let H (s) be the regret with respect to a policy a for objective i and state s. Formally,
HY(s) = VI (5) = V2(s), (3.4)

where Via? () is the value of the optimal policy, a;, and Vi(s) is the value of the policy a for

objective i and state s.

Therefore, I can minimize the maximum regret in MO-MDPs using the following optimization

problem:
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min D 3.5

st. D> Z p(s)- [Vi(s) = Vis)] . Vi e, (3.6)
seS
Vis) = ) als,a)|Ri(s,a) +y ) T(s,a,5") - Vi(s')| 3.7)
acA s’eS
Yats,ay=1,¥seS,  0<y<lI (3.8)
acA

where V! is the constant value pre-calculated by (2) of the MDP formulation using the reward
function for objective i, R;, and [ is a set of objectives.

Unfortunately, in BM-MDPs, I have an upper and lower bound on transition probabilities and
rewards, and thus this optimization problem cannot be directly used. Nonetheless, it helps us
understand the key difference in minimizing max regret between MO-MDPs and BM-MDPs —
specifically in addressing such upper and lower bounds in BM-MDPs, we end up with different
transition probabilities 7; for each objective i, as discussed below, and hence rely on a different

approach to compute regret.

3.3 BM-MDPs

I now extend MO-MDPs, using ideas from BMDPs [Givan et al., 2000], to create BM-MDPs.
BMDP (represented by tuple (S, A, T, R, p)) is an extension to the standard MDP, where upper
and lower bounds on transition probabilities and rewards are provided as closed real intervals. In
addition to representation of uncertainty over transition probabilities and rewards, a key takeaway

for BM-MDPs from BMDPs is the algorithm to generate policies. This algorithm is based on the
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notion of Order-Maximizing MDPs [Givan et al., 2000], which selects transition probabilities from
the given intervals. Order-maximizing MDPs crucially take the order of states as an input — this
order is ascending for a pessimistic policy (based on lower bound values), and it is descending
for an optimistic policy (based on upper bound values). More specifically, using this order as an
input, order-maximizing MDPs construct the transition function, and generate a policy as an output
relying on value iteration. I rely on order-maximizing MDPs to generate policies in BM-MDPs as
well (but manipulate the order of states input). To provide some intuition behind the operations
of the order-maximizing MDPs, I provide a simple example to show how transition values are
assigned from their intervals using the given order in the following example. For more details,

please refer to [Givan et al., 2000].

Example of Order Maximizing MDPs Consider a BMDP with two states: s; and s,. The
transition ranges are 7(s1, a, s1) = [0.5, 0.9], T(s1,a, s2) =[0.2, 0.6]. Let us assume that the upper
bound of value is V,;;(s1) = 3 and V,;;,(s2) = 2 at a certain iteration of order-maximizing MDP value
iteration. In BMDP, the intuition is that for calculating the optimistic value, it requires movement
to s; as much as possible within the given range of transition probability (since it has a higher
upper bound value). Therefore to create an optimistic policy, the input to the order-maximizing
MDPs is to sort the states in a descending order based on the upper bounds. Given this input, the
transition probabilities in the order-maximizing MDP for calculating optimistic value would be
T’(s1,a,s1) = 0.8 because T’(s1, a, s7) should be at least 0.2, and T’(s1, a, s2) = (1 - 0.8). Based
on these transition probabilities, I obtain a new set of expected values via value iteration, generate

a new descending order, and iterate until convergence.
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Similar to BMDPs, the transition and reward functions in BM-MDPs have closed real intervals.
Whereas BMDPs are limited to optimizing a single objective case (i.e., the BMDP model requires
one unified reward function), BM-MDPs can (i) optimize over multiple objectives (i.e., a vector of
reward functions) with (ii) different degrees of model uncertainty. Specifically, BM-MDPs are

described by a tuple (S, A, T, {R;}, p), where R; represents the reward function for objective i.

Algorithm 1 SoLveBMMDP()
:fori=1€ldo

(V; " Viub) — SolveBMDP(BMDP;)
{Viph — 00 {Vip) <0
while |{V;,1b} —{Vin}l > edo

Vin) < (Vi)

fori=1€¢ldo

O, « SortIncreasingOrder({V; ;})
M; « ConstructOrderMaximizingMDP(O);

9: {V;’lb} < SolveMOMDPPessimistic({V; 5}, {Vzlb}, {M;})
10: @pes < ObtainPessimisticPolicy({V;})
11: {V, )}« 005 {Vi} < 0
12: while |{Vz/',ub} —{Viuw}l > edo
13 {Viw) & (Vi)
14: fori=1€ldo
15: O; « SortDecreasingOrder({V; .»})
16: M; « ConstructOrderMaximizingMDP(O);
17: {V;‘ub} — SolveMOMDPOptimistic({V;us}, {V; ;1 {M;})
18: a,p < ObtainOptimisticPolicy({V; ,»})
19: return {<apes,aom>}

—_

To solve BM-MDPs, I introduce a novel algorithm that is a hybrid of BMDPs and MO-MDPs.
Specifically, my algorithm marries the minimization of max regret idea from MO-MDPs with
that of order maximizing MDPs to handle uncertainty over transition function and rewards. The
overall flow is described in Algorithm 1. At a higher level, there are three stages: (i) computing
the optimal value bounds <Vl* Ib? Vj."ub> for each objective i using BMDPs (lines 1-2), (ii) using
the MO-MDP idea to optimize multiple objectives based on a min-max formulation (lines 3-9 &

11-17), and (iii) obtaining a policy a based on the final value functions ({V; s}, {Vi.»}) (lines 10
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& 18). The output of this algorithm is in the form of two policies (pessimistic and optimistic), and
I leave it to the user to determine which one is used.

I now describe the computation of the pessimistic policy (lines 3—10). The optimistic policy
(lines 11-18) is similarly computed. The pessimistic policy minimizes the maximum regret with
respect to the optimal lower bound values of all objectives ({VZlb}) over all states; this computation
is iteratively performed in line 9. For each objective i, I first get an ascending order of states using
the current lower bound values V;, (line 7) to construct the order-maximizing MDP (line 8). This
set of order-maximizing MDPs, {M;}, is an input to the function SolveMOMDPPessimistic() to
optimize multiple objectives by directly computing regret on line 9. This computation is performed
by Eq. (3.5) with a different transition probability function 7; in the given M; instead of 7'. This
in turn influences the sorting order of states, and the process continues until the expected values

{Vi} converge.

3.4 Evaluation of SAVES

In this section, I provide three sets of evaluations: two sets of results tested in the simulation

testbed and a set of results tested in the real-world.

3.4.1 Simulation: Overall Evaluation

I evaluate the performance of SAVES using both 2"/ and 3¢ floors of RGL in the simulation
environment. I test BM-MDPs using a pessimistic setting and compare it with two other control

heuristics discussed below.
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Manual Control: The manual control strategy is the baseline system that represents the current
strategy operated by the facility management team in the real testbed building (RGL). In this
strategy, temperature is regulated by the facility managers according to two set ranges for occupied
(70°F-75°F) and unoccupied periods (50°F-90°F) of the day. In this control setting, HVACs
always attempt to reach the pre-set temperature regardless of the presence of occupants and their
preferences in terms of temperature. Lighting and appliance devices are controlled by human
occupants. The same likelihood value for human occupants to “turn oft” lights and appliances was
used as in Section 2.4.
Reactive Control: I consider the reactive control heuristic for comparison purposes since it can
be easily implemented using cheap sensors in the real building, and recently, some buildings have
already started adopting this simple heuristic to reduce energy use. The lighting and appliance
devices are now automatically controlled and turned on and off according to the presence of
people. Additionally, as in [Jazizadeh et al., 2011], appropriate temperature set points of HVACs
are computed based on the average preference of human occupants. HVACs automatically turn on
and off according to the presence of people and temperature set points.

I focus on measuring two different criteria — total energy consumption (kWh) and average
satisfaction level of occupants (%). The experiments were run on Intel Core2 Duo 2.53GHz CPU
with 4GB main memory. All techniques were evaluated for 100 independent trials throughout this

section. I report the average values.

3.4.1.1 Result: Total Energy Consumption

I compared the cumulative total energy consumption measured during 24 hours for all control

strategies. Figure 3.2(a) shows the cumulative total energy consumption on the y-axis in kWh

39



350 w w ‘ ‘ 100

=) —
< 300 S
= =
9]
S 250- %
o —
§ 200 S
5 ks
O 1501 7]
> 4]
o -A-Manual n
2 100r =R . o
i eactive >
T 500 -©-SAVES E a0l -H-Reactive
8 7 SAVES-IDEAL < |-©-SAVES |
0 : : 30 s ‘ ‘ ‘ ‘
8 MM 14 17 20 23 2 5 8 8 11 14 17 18
Time (8:00am~, 24hrs) Time (8:00am~7:00pm)
(a) Total Energy Consumption (b) Average Satisfaction Level

Figure 3.2: Performance Evaluation of SAVES
and time on the x-axis. I report the average total energy consumption measured over the same 30

weekdays used in Figure 2.7. As shown in the figure, the manual control strategy showed the worst
result since it does not take into account behaviors or schedules of human occupants and building
components simply follow the predefined policies. The reactive control strategies showed lower
energy consumption than the manual setting by 16.06%. SAVES showed the best results compared
to other control heuristics and statistically significant improvements (t-test; p < 0.01) in terms of
energy used in the testbed building. Specifically, my algorithm with the ideal compliance rate (i.e.,
SAVES-IDEAL: occupants always accept the suggestions provided by the SAVES room agents
to conserve energy) reduced the energy consumption by 42.45% when compared to the manual
control strategy. If I use the compliance rate (68.18%) of human subjects shown in Table 3.3 (as
measured in the real-world experiments), SAVES achieved energy savings by 31.27% (40% of the
savings due to SAVES came out of group tasks, such as reducing energy consumption in shared
offices, relocating meetings, and others) as compared to the manual setup. This is double the rate

of the reactive approach.
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3.4.1.2 Result: Average Satisfaction Level

Here, I compare the average satisfaction level of human occupants under different control strategies
in the simulation testbed. Figure 3.2(b) shows the average satisfaction level in percentage on
the y-axis and time on the x-axis. As shown in the results, the manual setting and my novel
algorithm showed the best results. This is because the manual setting makes HVACs attempt to
reach the desired temperature set point as soon as possible while disregarding the resulting energy
consumption, and my method plans ahead of the schedules; thus, these two can achieve the desired
comfort level faster than the reactive control strategy.

The manual strategy, however, is very sensitive to the given temperature range. In the experi-
ment, the temperature set point was set by the facility management team (e.g., 70-75°F) based
on the average preference model, thus it achieved high comfort level in the testbed. However, if
the actual preferred temperature in the building is different from the average model, it fails to
meet the occupant’s desired level. This phenomenon can be seen when occupants stay during the
unoccupied time (after typical working hours). As can be seen at 18 on the x-axis (i.e., 6pm) in
the figure, the average comfort level drops significantly. Due to the delayed effects in temperature
change, the reactive control strategy showed significantly lower satisfaction results than other
methods. For instance, it has a satisfaction level below 60% at 14 on the x-axis (i.e., 2pm). Thus,
SAVES not only provides superior energy savings, but also avoids the reduction in comfort level

that a reactive strategy may cause.

3.4.2 Simulation: Multi-objective Optimization

In this section, I perform more analysis on my novel algorithm. Table 3.1 shows the average

maximum regret comparison tested in 5 different problem sets between the standard MDP with
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Table 3.1: Average Maximum Regret Comparison

Problem Set | MDPs | BM-MDPs | Difference
my 168.62 4.72 163.90
nmy 359.44 164.17 195.27
ms 448.15 164.97 283.18
my 291.27 138.59 152.68
ms 143.32 95.88 47.44

Table 3.2: Example of the Meeting Relocation Negotiation

Max. Regret
Objective MDPs | BM-MDPs
Energy Savings 443.54 162.83
Py’s Comfort Lv. Change | 15.34 162.84
Py’s Comfort Lv. Change | 15.34 97.58

a unified reward based on the weighted sum method [ Yoon and Hwang, 1995] and BM-MDPs
(in this case, I assume no transition or reward uncertainty). The uniform weight distribution was
applied to the weighted sum method. My goal is to show that BM-MDPs give lower maximum
regrets, which indicates well-balanced solutions as discussed earlier.

Each problem is an instance of the meeting relocation negotiation task, having its own reward
structure but the same transition function. The problem instances are divided into five groups
(problem sets m—ms) based on the percentage of objectives that have positive rewards in all
objectives. Recall that in the meeting relocation scenario, the different objectives include energy
reduction and change in comfort level of individual participants. Specifically, in problem set m,
relocating a meeting leads to positive rewards in over 75% of objectives (76—100%) and negative
rewards in the rest of objectives, problem set m, has 51-75% of objectives with positive rewards,
and similarly for the remaining sets, so that in problem set ms, all objectives have negative rewards
if the meeting is relocated. Each problem set has 100 independent problem instances. I then

measured the average maximum regret of each method in each problem set. As shown in Table 3.1,
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BM-MDPs always showed lower maximum regrets (column 3) compared to the MDP with uniform
weight (column 2), which suggests that my method gives well-balanced solutions regardless of
reward characteristics.

The next question is what the well-balanced solution means in energy domains. Let us take the
meeting relocation example with two attendees (P and P,) discussed in Section 3.1. In Table 3.2,
column 1 shows three objectives (energy savings and two attendees’ comfort level change) and
columns 2-3 indicate the maximum regret from MDPs and BM-MDPs, respectively. As shown
in the table, MDPs generated a policy that almost entirely disregards energy-savings, leading to
significantly large regrets (row 3, column 2). BM-MDPs, on the other hand, were able to achieve
small regrets over all objectives (rows 3-5, column 3).

Lastly, I test my BM-MDP algorithm considering different degrees of model uncertainty.
Figure 3.3 shows the average maximum regret tested over 100 different problem instances on the
y-axis. I choose 1 problem from each problem set (i, mo, - - -, ms) from the previous test. The
noise of each model is proportional (20%) to the mean reward value and transition probability.
MDPs and MO-MDPs generate policies ignoring the model’s uncertainty and BM-MDPs generate
two types of policies (BM-MDP-Pes: pessimistic, BM-MDP-Opt: optimistic) that explicitly
account for the uncertainty. I then randomly generate 20 different instances within the range for
each problem (e.g., for my, I generate my 1, - - -, mj 20). Each generated policy is evaluated over
those 20 problem instances and the average maximum regret is computed for each algorithm.

For the other 4 problems (my, - - -, ms), I repeat the same procedure and report the overall
average value. As shown in the figure, BM-MDPs have the best performance (i.e., lowest average
maximum regret), which means BM-MDPs are capable of generating more robust and well-

balanced solutions compared to previous work when there is model uncertainty. However, the
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Figure 3.3: Performance of BM-MDPs
solution quality between the pessimistic and optimistic BM-MDPs was not significantly different

and their performance is domain dependent. Note that the results shown in Figure 3.3 are average
maximum regrets over all problem instances, and in some particular instances, MO-MDP might
outperform either BM-MDP-Pes or BM-MDP-Opt (but not both even in this case). 1 leave this

issue for future investigation.

3.4.3 Real-world Test: Human Experiments

As areal-world test, I design and conduct a validation experiment on a pilot sample of participants
(staff on campus). I conduct this investigation: (i) to verify if SAVES can lead to changes in
occupants’ behaviors and to reduce energy consumption in commercial buildings, (ii) to validate
the parameter values used during the negotiation process such as the acceptance/compliance rate
for the suggestion and (iii) to understand what types of feedback are most effective to affect

occupants’ energy-related decisions.
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In this study, I consider two test conditions: (i) feedback without motivation (Test Group I)
(e.g., please reduce the lighting level in your office), and (ii) feedback with motivation including
participant’s own energy use, and environmental motives (Test Group II) (e.g., if you reduce your
lighting for working hours, the annual energy savings at the building level are 26000kWh on
average, which is equivalent to the reduction of CO, emissions of 2.2 homes for one year). From
this experiment, I answer the following question by comparing change in energy behavior patterns

and possible estimated energy consumption between test groups I and II.

Hypothesis 1. More informed feedback (provided to subjects in Test Group IlI) will be more

effective to conserve energy than feedback without motivation (Test Group I).

I tested the hypothesis above as follows: I first recruited 22 staff from 7 buildings at the
University of Southern California who are over 18 years old. Subjects were tested under two
different conditions, and each test group had 11 individuals respectively, each of whom has her/his
own office. Since I tested using a simple lighting negotiation scenario, each participant must
be able to adjust the lighting levels in her/his office. With participants’ agreements, I installed
lighting sensors (Figure 3.1) in their offices. During the experiment, participants were supposed to
stay in their own offices and do their regular work. I then measured the baseline energy behavior
and energy consumption, and SAVES provided feedback via emails based on sensed lighting
level (two times per day, at 11am and 2pm, for three consecutive weekdays). In each message,
participants received a simple suggestion for lighting level with a certain type of feedback (e.g.,
please reduce the lighting level in your office). I systematically observed and logged their energy
behavior during the entire experiment using the light sensors. At the end of the experiment, each

participant was required to take a short survey (i.e., the reasons why they agree or disagree with a
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Table 3.3: Lighting Negotiation Results (*: p < 0.05)

Avg. Accep. Rate (%) | User Rating (Max: 5.0)
Group 1 28.79 (11.03) 3.82 (0.26)
Group II 68.18 (9.65) 4.18 (0.18)
Mean Diff. 39.39* 0.36

provided suggestion). I conducted this study for two weeks in the fall of 2011 and collected data
from human subjects using multiple sensors and routers.

In Table 3.3, column 2 displays the average acceptance rate in percentage (0—100%) of two
test groups, and column 3 represents the average user rating of the provided feedback during the
experiment. The range of ratings is between 0 and 5, and O indicates that the feedback was not
helpful at all, and 5 means that the feedback was extremely helpful. In both columns, values
in parentheses indicate the standard errors. The last row shows a mean difference between two
groups for each value.

Table 3.3 shows that when I provided more informed feedback including environmental
motives (Group II), occupants showed statistically significantly higher compliance acceptance rate
(68.18%), which provides strong evidence for the above hypothesis (t-test; p < 0.05). In addition,
human subjects in Group II felt that the provided feedback was more helpful during the negotiation
process. However, the difference in user ratings between two groups was not significant, and
thus I took a quick survey from participants at the end of the experiment to further analyze their
decisions. In contrast with Group I, in Group II, the main reason why participants who agreed
to reduce the lighting level in their offices (over 80% of conformers in Group II) was because
the feedback significantly improved awareness of energy use. In addition, more than half of all

participants strongly believed that this study will be very helpful by encouraging occupants to
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think about energy usage. This discrepancy in average user ratings and acceptance rates remains
an issue for future work.

In this trial study, I have learned that although occupants in commercial buildings do not have
a direct financial incentive in saving energy, proper motivations can achieve a higher compliance
rate for the energy-related suggestion. This study specifically provides the insights that there is a
significant potential to conserve energy by investigating effective and tailored methods to improve

occupants’ motivation to conserve energy.

47



Chapter 4: TESLA

In this chapter, I describe the overall architecture of TESLA and how to optimally schedule

meetings in real-world situations to conserve energy in commercial buildings.

4.1 TESLA Architecture

TESLA is a goal-seeking (to save energy), continuously running autonomous agent. TESLA

performs on-line energy-efficient scheduling while considering dynamically arriving inputs from

A TESLA, a continuously 7
running agent ’

(i) Energy-efficient (ii) Identification of
scheduling key meetings

(iii) Learning of (iv) Communication
user preferences with users

F 4
(i) & (i) %

Web

Proxy interface

agent

Figure 4.1: TESLA architecture: TESLA is a continuously running agent that supports four key
features: (i) energy-efficient scheduling; (ii) identification of key meetings; (iii) learning of user
preferences; and (iv) communication with users.
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users; these dynamic inputs make the scheduling complex and TESLA needs to learn a predictive

model for users’ inputs and preferences (see Figure 4.1). More specifically, TESLA :

o takes inputs (i.e., preferred time, location, the number of meeting attendees, etc.) from

different users and their proxy agents at different times

e autonomously performs on-line energy-efficient scheduling as requests arrive while balanc-

ing user comfort

e autonomously, on own initiative, interacts with different users based on identified problem-
atic key meetings in order to avoid bother cost to users while persuading them to change

meeting flexibility
e bases its non-myopic optimization on learned patterns of meetings

As shown in Figure 4.1, meeting requests are the information I get from the interface of TESLA
via the web interface (or via a proxy agent [Scerri et al., 2002] on an individual user’s hand-held
device, in case the users have proxy agents, who have the corresponding users’ preferences and
behavior models with a certain level of adjustable autonomy). TESLA focuses on minimizing
unnecessary interactions by detecting a small number of key meetings while negotiating with
people to adjust their flexibility. TESLA may interact with users’ proxy agents instead of the users

themselves.

4.2 TESLA Algorithms

The objective of this work is to come up with energy efficient schedules in commercial buildings

with a large number of meetings while considering (i) flexibility in meeting requests over time,
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location and deadline; and (ii) user preferences with respect to energy and satisfaction. To account
for these two constraints, I provide two types of algorithms, which are at the heart of TESLA. First,
I provide algorithms that compute a schedule for known and predicted meeting requests which
have flexibility in time, location and deadline. Second, based on the schedule obtained, I provide
algorithms that detect meeting requests which if modified (to increase flexibility) can result in

significant energy savings.

4.2.1 Scheduling algorithms

Before describing my scheduling algorithms, I formally describe the scheduling problem. Let T'
represent the entire set of time slots available and L represent the set of available locations each
day. A schedule request r; is represented as the tuple: r; =< a;, T}, L;, 0;, d;, n; >, where: q; is the
arrival time of the request, 7; C T is the set of preferred time slots for the start of the event and
L; c Lis a set of preferred locations. d; is the deadline by which the time and location for the
meeting should be notified to the user, 9; is the duration for the event and finally, n; is the number
of attendees.

The flexibility of the meeting request 7; is a tuple denoted by «a;: < aiT, cxiL, cxf >.!

) a/l.T: time flexibility of meeting i. a/l.T = :;jl—__éli x 100 (|IT| > ¢;; i.e., |T| is 24 hours per day).

o o location flexibility of meeting i. X = {51 x 100 (L] > 1).

. cyl‘.’ : deadline flexibility of meeting i. al‘.’ = j;;:fl"_ x 100, where d; is the latest notification

time (e.g., midnight on the meeting day) (d; > a;). 0 < af <100

'Flexibility is already present in the meeting request as its constraints, and @ is a measure of such constraints.
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Figure 4.2: Disjoint sets of R
For instance, given only one time slot (|7} = 1), al.T = 0 and all available time slots (|T;| =

|T|—6; + 1), al.T = 100. Assuming that people give T; = 4-7pm on Monday and their meeting time
duration is 2 hours, then a/l.T = (4-1)/(24-2) x 100 = 13.64%. Likewise, given only one location
slot (|L;] = 1), a/l.L = 0 and given all available locations (|L;| = |L|), al.T = 100.

I now define specific disjoint sets of meeting requests, R, that characterize different types of

scheduling algorithms, where ¢ is the time to schedule a given set of requests R.

RS(t) = {i : d; = t and a; < t}: a set of requests that have to be scheduled at time ¢

RA(t) = {i : d; < t and a; < t}: a set of requests that were assigned before time ¢

RK(#) = {i : d; > t and g; < t}: a set of known future requests, which arrived before time ¢,

but will be scheduled in the future

RY(t) ={i: d; > t and q; > t}: a set of unknown future requests

As a simple example (shown in Figure 4.2), let us consider that we have 4 meeting requests
(r1, 12, r3, and r4), which are supposed to be scheduled on the same day. The current time is .
According to the definition, R® (f) = {r}, RA(t) = {r1}, RK(t) = {r3}, and RV (¢) = {ry)}.

Given a set of requests, R, I provide a two-stage stochastic mixed integer linear program

(SMILP) to compute a schedule that minimizes the overall energy consumption. Stochastic
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programming has provided a framework for modeling optimization problems that involve un-
certainty [Beale, 1955; Dantzig, 1955; Kall and Wallace, 1994; Shapiro et al., 2009]. Whereas
deterministic optimization problems are formulated with known parameters, real world problems
almost invariably include some unknown parameters. In particular, my scheduling problem aims to
optimally schedule incrementally/dynamically arriving requests, and thus I should consider uncer-
tainty in terms of future requests, which makes deterministic optimization techniques inapplicable.
To address this challenge, I specifically formulate my scheduling problem as a two-stage stochastic
program. Here the decision variables are partitioned into two sets. The first stage variables are
decided before the actual realization of the uncertain parameters are known. Afterward, once the
random events have exhibited themselves, further decisions can be made by selecting the values
of the second stage. The second stage decision variables can be made to minimize penalties that
may occur as a result of the first stage decision. This SMILP will be run every time a new meeting
request arrives (or after a batch of meeting requests arrive in close succession).

The notation that will be employed in the SMILP is as follows:

. xﬁ . 1s the first stage binary variable that is set to 1 if meeting request r; is scheduled in

location [ starting at time ¢.

. E; . 1s a constant that is computed for a meeting request r; if it is scheduled in location / at

time ¢ using the HVAC energy consumption equations.

e C is a constant that indicates the reduction in energy consumption because of scheduling a
meeting in the previous time slot. Although I assumed that C is a constant for simplicity in

this work, it depends on different factors of previous meetings in practice.
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i

e ¢

. 1s a continuous variable that corresponds to the energy consumed because of scheduling
meeting i in location / at time ¢. The value of this variable is affected based on whether
there is a meeting scheduled in the previous time slot (# — 1), i.e., the reduction that would

occur at location / at time ¢ if a meeting was scheduled at location [ at time ¢ — 1. 2

N e A
e =% Bl = Zrerviy X, - €

LN ; . 1s a value that indicates the satisfaction level obtained with users in meeting request r;
for scheduling the meeting in location / at time ¢. B is a threshold on the satisfaction level

required by users.
e M is an arbitrarily large positive constant.

o (O(x,¢) is the value function of future energy consumption, where ¢ represents uncertainty
over the second stage problem (i.e., future meeting situations in the problem). ¢ determines

a vector of parameters, (w, q).

. w{ . 1s the second stage binary variable that is set to 1 if meeting request r; in a future meeting

request set is scheduled in location / starting at time .

. q{ . 1s a continuous second stage variable that corresponds to the future energy consumed

because of scheduling meeting j in location / at time ¢.

I first provide the SMILP and a detailed explanation of the constraints.

zej , gets affected by a meeting in the previous time slot in the same location. This is because adjacent meetings
affect the indoor temperature, which makes HVACs operate differently to maintain the desired temperature level.
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min e+ E[Q(x, &)] 4.1

S.t.

{Choose the optimal first stage variables that minimizes the sum of first stage costs

and the expected value of the second stage}

ex > > e, (4.2)

ieR\RU 1€T leL

{Computing the first stage cost e}

e,=x, E,- Y A, -C  VieR\R',IeLreT 4.3)
’€R\RY\{i}

{Computing energy consumption while considering the back-to-back meeting effect}

€,20, VieR\RY,IeLt1eT 4.4)
> > xS, 2B VieR\RY (4.5)
teT el

{Checking if the computed schedule maintains the given comfort level B}

> oxj, <1, VieLteT (4.6)
i€eR\RV
t+6;—1
> D A, <MU-x), VieLieR\R'teT 4.7)
"ER\RV\(i} 1=t

{Checking the allocation restrictions that for each assignment slot, only one meeting
can be scheduled considering the given time duration of meeting}
xj, €{0,1}, VieR\RY,leLteT (4.8)

{The first stage binary variable}

0xO= Y > >, (4.9)

JERV leL teT

{Computing the second stage cost O}
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b ) J ] i
., =wy, By - Z Xy C = Z M1 Z W -G, (4.10)

i€R\RY i€ER\RV J'€RV\{j}

{Computing energy consumption while considering the back-to-back meeting effect

caused by the first and second stage variables}

qlt>0 VjeRV,leLteT 4.11)
dowl <1, VleLteT (4.12)
JERY

t+0;-1
> Z wi, <M(1-xi), VieLieR\RU eT (4.13)
JjERY 1=

{Checking the allocation restrictions against the first stage assignment slots}

t+6;-1
> D wl,<M(U-w]), VieLjeRteT (4.14)
JERU\(j) 1=t

{Checking the allocation restrictions against the second stage assignment slots}

w! €10,1}, VjeRV,leLteT (4.15)

lt

{The second stage binary variable}

The objective of the SMILP above is to choose the optimal first stage variables (i.e., the optimal

assignment of meeting requests to locations and time slots that is characterized by the solution,

xft). The optimal first stage variable, x*, is selected in a way that the sum of first stage costs e (i.e.,

the energy consumption when the current meeting request is scheduled) and the expected value of

the second stage or recourse costs E[Q(x, £)] (i.e., the expected energy consumption that will be

realized by future meeting requests) is minimized. In this formulation, at the first stage I have to
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make a decision before the realization of the uncertain data &, which is viewed as a random vector
that determines future meeting requests, is known. At the second stage, after a realization of &
becomes available, I optimize a behavior by solving an appropriate optimization problem.

Constraints (4.2) — (4.8) are a set of enforcement for deciding first stage variables, and con-
straints (4.9) — (4.15) enforce conditions for second stage variables. More specifically, constraint
(4.3) is for computing energy consumption considering the back-to-back meeting effect. In par-
ticular, I subtract from the energy consumed by this meeting indexed by i at time ¢, the impact
due to meetings (indexed by i), that were scheduled at the prior time slot # — 1. Constraint (4.5)
is for checking if the computed schedule maintains the given comfort level B. Constraints (4.6)
and (4.7) are the allocation restrictions that for each assignment slot, only one meeting can be
scheduled considering the given time duration of meeting. In particular, M in constraint (4.7) is an
arbitrarily large positive constant to enforce only one meeting is scheduled at a location during the
duration of the meeting. If meeting i is assigned to location / and time ¢ (x;" . = 1), then any other
meeting requests cannot be assigned to the same slot. If xi . = 0, the constraint does not block any
other meeting requests from being assigned to that slot as the right-hand side of the equation is
not bounded due to an arbitrarily large constant of M. Constraint (4.9) is to compute the optimal
value of the second stage problem while satisfying constraints (4.10) — (4.15) which are similar to
constraints (4.3) — (4.8). Specifically, constraint (4.10) is for computing the energy reduction that
would occur if there are any consecutive meetings among the requests in RY (i.e., check with w)
and if any future meetings have this back-to-back effect with either already assigned meetings or
ones that have to be scheduled in R \ RY (i.e., check with x).

I now describe the sample average approximation (SAA) method [Ahmed et al., 2002; Pagnon-

celli et al., 2009] to solve the given SMILP. The main idea of the SAA approach to solve stochastic
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programs is as follows. A sample &', ..., &V realizations of the random vector ¢ is generated, and
consequently the expected value function E[Q(x, £)] in the stochastic program (1) is approximated
by the weighted average function ZnNzl pY Q(x, &M, where pY is the likelihood that &" is realized.
Recall that ¢ is the random vector that determines future meeting requests in my formulation (i.e.,
each realization £" has a different number of future meeting requests and corresponding request
tuples). More specifically, a probability distribution p’ over the possible range of total meeting
requests per day is given (shown in Figures 2.8(b) & 2.9(b)). Then, the likelihood that k more
meetings will arrive on the same day assuming we currently have s meetings so far is equivalent to
the likelihood that £" is realized with k unknown future requests: p,Ll/ (k) = pT (s + k). For those k
future meeting requests in RV, I generate random request tuples (specifically, T; & L;) based on
the actual distribution over the assignment spots as shown in Figures 2.8(a) & 2.9(a). Then, for a

sample n (1 < n < N), the original SMILP is reformulated as follows:
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N
min e+ > plOx,£"

n=1

{Using SAA, the expected value of the second stage cost is approximated by
the weighted average function. Then, I still choose the optimal first stage
variable that minimizes the sum of the first and second stage costs}

S.t.

Constraints (4.2) — (4.8),

ez Y 3 N,

jeRY leL teT

n _ '
Gire =Wine Ejir = Z Xig-1+C— Z Xigee1 - C — Z Wi G

ieR\RU i€R\RU JE€RY\{j)

q;,,20, VjeR]leLteT

Yo, <1, VieLteT
JjerY
t+6;—1
Z Z Wy <M -xy), VleLieR\RV1eT
jERY U=t ‘
t+0;-1

DD W <M =W, VieLjeR teT

JERNGY 1=t

wh €101}, VjeR]leLteT

N
>l =1
n=1

{ p,ﬁ/ is the likelihood that £" is realized, where £ is a random variable that

determines future meeting requests U}

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

58



The obtained sample average approximation (4.16) of the stochastic program is then solved
using a standard branch and bound algorithm such as those implemented in commercial integer
programming solvers such as CPLEX.

As benchmark algorithms for comparison purposes, I provide two optimization heuristics:
myopic and full-knowledge. I have the myopic optimization algorithm, which obtains a schedule
by considering the following request set: R = (RA(r) U RS (£) U RX(1)). A schedule and energy
consumption are obtained without accounting for future unknown meetings. Thus, the myopic
heuristic only considers the first stage decision variables in my SMILP. In the full-knowledge
method, I compute the final schedule while assuming that the entire set of meeting requests R is
given, which is ideal. Thus, for the full-knowledge method, I have one actual realization with
probability 1.0 for computing the second stage costs in the SMILP. The performance comparison

results will be provided in Section 4.3.

4.2.2 Identifying key meetings

TESLA computes the optimal schedule considering the given flexibility (or scheduling constraints)
of meetings. It can obtain more energy-efficient schedules by increasing flexibility (i.e., relaxing
those constraints). I now provide an algorithm that finds meeting requests, which if made more

flexible will reduce energy consumption significantly.

Algorithm 2 IpenTIFYKEYMEETINGS (R)
1: U0
2: {Initialize a set of key meetings}

: for allI c 2R do

{R is a set of requests.}

if IsSaviNGgCaNDIDATE (I) then
U~ Uul

P RND>INAW

9: return U
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Algorithm 3 IsSAvINGCANDIDATE (/)
1: V; « CALEXPENERGYSAVINGS(a;, {a},l, ey a/},k})
2: {ay is an initially given flexibility of meetings in /, and oz}’k is one of the desired flexibility options for
meetings in /. CALEXPENERGYSAVINGS computes energy gains, V;, by relaxing flexibility of meeting
requests in 1.}

3:

4: if |I| = 1 then

5. if V; > 7 then

6: {If the computed energy gains V; is higher than a given threshold value 7, it is considered as a key
meeting.}

7: return TRUE

8:  else

9: return FALSE

10: elseif |I| > 1 then

11:  {Recursively call IsSavingCANDIDATE With possible subsets}

12: forallie/do

13: I « I\{3}

14: V< CALEXPENERGYSAVINGS(//, {a}/,p R a},,k})

15: if Vi-Vp > 0 then

16: {Only if the energy savings are monotonically increasing by adding a meeting request i (or

monotonically decreasing by excluding a meeting request i), proceed}
17: return IsSAVINGCANDIDATE (1)

Algorithm 2 describes the overall flow of the algorithm. I first initialize a set that will contain
key meetings identified by the algorithm (line 1). For each subset of the power set of meeting
requests R, I then examine whether or not the current meeting set [ is a key meeting set by relying
on Algorithm 3 (line 6).

Algorithm 3 recursively determines if the given meeting set / is a candidate set that gives
significant potential energy savings. The meeting set / is detected as a key meeting set only if the
expected energy savings of meeting requests in / are monotonically increasing and show higher
energy improvements than the given threshold value (7; a certain level of additional energy savings
that we desire to achieve with the selected key meetings) by relaxing their flexibility. To handle
this, I first compute the expected energy savings of the meeting set / when its flexibility level is
changed from the initial level @; to the desired level a; assuming the other meetings’ flexibility

levels are fixed (line 1). The expected energy saving value of meeting set I, V; = (Eo, — Eq1)/Eq,
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(0 < Vy £ 1), where E,, is the current total energy consumption with the given level of flexibility

ay, and Ey is the reduced total energy consumption if the meeting set Is flexibility is changed

’

to one of k possible options, @/ ,,

while others keep their given flexibility levels. In this work, I
consider a heuristic for setting the threshold value to investigate whether or not the current meeting

set I is an energy saving candidate set: a fixed single threshold value 7 (line 5; e.g., 0.4 as a

universal threshold).

4.3 Empirical Validation

I evaluate the performance of TESLA and experimentally show that it can conserve energy by
providing more energy-efficient schedules in commercial buildings. At the end of this section,
I provide actual survey results that I have conducted on schedule flexibilities of real users. The
experiments were run on Intel Core2 Duo 2.53GHz CPU with 8GB main memory. I solved the
MILP formulations using CPLEX version 12.1. All techniques were evaluated for 100 independent
trials and I report the average values. Energy consumption was computed using the simulator

described earlier in Section 2.4.

4.3.1 Simulation Results

In this section, I provide the simulation results (i) to verify if flexibility really helps TESLA
compute energy-efficient schedules; (ii) to extensively evaluate the overall performance of the
SAA method while varying the sample size and flexibility; and (iii) to measure energy saving

benefits by identifying key meetings and by considering the cancellation rate.
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Figure 4.3: Energy savings: Actual - the amount of energy consumed in simulation based on the
past schedules obtained from the current manual reservation system; Random - energy consumption
while randomly perturbing the starting time and location of meeting requests from the same past
schedules while keeping meeting time duration; Optimal - Energy consumption measured in
simulation based on optimal schedules computed from an SMILP with the fully known meeting
request set and full flexibility

4.3.1.1 Does flexibility help?

As an important first step in deploying TESLA , I first verified if the agent could save more energy
with more flexibility while scheduling given meeting and event requests. To that end, I compared
the energy consumption of three different approaches using the real-world meeting data mentioned
in Section 2.5: (i) the current benchmark approach in use at the testbed building; (ii) a random
method that randomly assigns time and location for meetings; and (iii) the optimal method using
the full-knowledge optimization technique described in Section 4.2.

Figure 4.3 shows the average daily energy consumption in kWh computed based on schedules
from the three algorithms above. In the figure, the consumption is the amount of energy consumed
based on the past schedules obtained from the current manual reservation system, which shows a

very similar performance to the random approach. The optimal method assuming the full amount

62



Evaluation w/ M = 1000

25

1600

1400¢

N
N
o
o

1000}
800¢
600t

Average error (%)

400¢

Average runtime (secs)

200¢

20 40 60 80 100 20 50 100
Sample size (N) Sample size (N)

(a) Scalability: runtime (b) Accuracy: average error

Figure 4.4: Scalability and accuracy while varying the number of samples (N)
of flexibility (i.e., 24 hours for a’, 35 rooms for a’ and delay the deadline before which the final

schedule should be informed for a“) achieved statistically significant energy savings of 50.05%
compared to the current energy consumption at the testbed site. These savings are practically
significant, and also statistically significant (paired-sample t-test; p < 0.01). These savings are
equivalent to annual savings of about $18,600 considering an energy rate of $0.193/kWh [U.S.
Department of Labor, 2012] and CO, emissions from the energy use of 5.5 homes for one year.

Thus, flexibility can help save energy.

4.3.1.2 Online scheduling method with flexibility: Determining the sample size in the

TESLA SMILP

In this section, I first investigated the runtime and solution qualities for solving the SMILP while
varying the number of samples (see Figure 4.4). Figure 4.4(a) shows the results of the runtime
analysis in seconds (y-axis) for sample sizes N = 10 to 100 (x-axis). As shown in the figure, the

runtime increases in an exponential fashion as the sample size N increases. However, Figure 4.4(b)
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Figure 4.5: Energy savings while varying flexibility (USC)
shows that its solution quality also increases (y-axis) (i.e., the estimated optimality gap decreases)

as the number of samples N increases. For evaluating the generated solution for each of sample
size N, I generated M independent samples (i.e., replications) of the uncertain parameters, and
evaluated the obtained solution in each m € M replication. In this work, I specifically used 1,000
independent replications for measuring the estimated optimality. The percentage error is obtained
by comparing the full-knowledge schedules based on actual realization of each of the 1000 samples
with the schedule from the SMILP. Based on this result, throughout the paper, I set N = 50 to solve
the SAA problem. This sample size has a reasonable runtime without a significant compromise in

solution quality.

4.3.1.3 Performance of online scheduling method with flexibility

I next compared solution qualities of the three scheduling algorithms in TESLA presented in
Section 4.2.1. Figure 4.5 shows that how much each algorithm saves when compared to the optimal

value (i.e., full-knowledge optimization assuming the full flexibility) while varying the time and
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Table 4.1: Performance comparison between SAA and myopic

Max Min | Average

Optimality difference | 57.89% | 0.50% | 12.73%

location flexibility level (assuming 0% deadline flexibility). The flexibility in my model represents
a 3-dimensional space (time, location and deadline), which I have thoroughly explored. 1 show
results exploring deadline flexibility later.

The optimality percentage on the y-axis of Figure 4.5 is computed as follows: (E, — E.)/(E, —
E,). Here E,, is the actual energy consumption without any flexibility, £, is the optimal energy con-
sumption, and E. is the computed energy consumption using three different scheduling algorithms
that I compare using the real meeting data.

Figure 4.5 shows the average optimality in percentage of each algorithm (M: myopic, P:
predictive non-myopic (SAA) and F: full-knowledge) while varying the location flexibility (a’;
x-axis) and time flexibility (o’ ; each graph assumed the different amount of o’ as indicated in the
legend). In the figure, for each pair of flexibility values (a’, a%), I report the average optimality in
percentage (i.e., 100% indicates the optimal value, and 0% means that there was no improvement
from the actual energy consumption). For instance, when flexibility (a”, a%) = (31.5%, 58.8%),
the myopic method achieved an optimality of 50.8%. In the figure, higher values indicate better
performance.

As shown in Figure 4.5, as users provide more flexibility, TESLA can compute schedules
with less energy consumption. The gain in optimality from myopic to predictive non-myopic
(SAA) is because the latter can leverage user flexibility to put a meeting in a suboptimal spot at

the meeting request time to account for future meetings, yielding better results at the actual day
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of meetings. For example, a flexible meeting request can be moved away from a known popular
time-location spot. I conclude that (i) the predictive non-myopic (SAA) method is superior to
the myopic method. Table 4.1 shows the average performance comparison results between the
predictive non-myopic (SAA) method and the myopic technique. As shown in the table, the
maximum and average optimality differences between the two methods (i.e., optimality of the
SAA - optimality of the myopic) are 57.89% and 12.73%, respectively, which are significant. In
addition, for 12.50% of cases, the predictive non-myopic (SAA) optimization showed over 20%
higher optimality than the myopic method; (ii) the predictive non-myopic (SAA) method performs
almost as well as the full-knowledge optimization (about 98%) 3 and (iii) full flexibility is not
required to start accruing benefits of flexibility.

In the real-world, it is hard to imagine that all people will simply comply and change their
flexibility to achieve such optimality. Thus, I provide one additional result shown in Table 4.2
which varies the percentage of meetings that will have flexibility (py). I show o’ along the rows
and o along the columns. In particular, the value of row 10 and column 5 (highlighted in the table)
shows the optimality achieved by the predictive method assuming that 20% of meetings (randomly
selected) have (a’, at) = (0%, 23.5%) flexibility and the remaining 80% have no flexibility. My
main conclusions are: (i) if py increases, a higher optimality can be achieved; and (ii) flexibility in
a small number of meetings can lead to significant energy reduction. This motivates considering
more intelligent identification of key meetings to change their flexibility (described in the next

section).

3The average performance of the predictive non-myopic (SAA) optimization depends on the prediction method
of future requests. I, thus, additionally tested a more sophisticated prediction method considering the time factor that
is one of key features determining the overall trend of requests (i.e., when the meeting requests arrive at the system
to be scheduled; e.g., regular semester vs. summer/ winter break). With this additional consideration, the predictive
non-myopic (SAA) method improved the overall performance of the predictive method by 1.1%.
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Table 4.2: % of optimal energy savings: varying o, a*, and pr (USC)

Location flexibility (a®)

[Alg. [ py [ 235 [47.1 [ 706 [ 94.1

0] 66 | 6.7 | 178 ] 233

M |08 56 60 | 145|212

051 49 | 49 | 138|182

021 33| 38 | 84 | 120

10 97 | 9.8 [ 227 | 248

0 p || 08 86| 93 1209|232
051 64 | 69 | 156 186

02142 | 49 | 98 | 129

1.0 99 | 10.1 | 23.6 | 258

08| 83 | 86 | 207|240

T. flex. (a”) Flos!| 671 69 | 169 19.1
021 49 | 51 [ 113|136

M || 1.0 || 46.3 | 465 | 55.8 | 61.4

P || 1.0 || 48.1 | 485 | 62.1 | 62.7

315 1.0 |[49.0 | 492 [ 63.0 | 63.1
g | 08419433555 | 576

0.5 || 29.9 | 30.7 | 43.9 | 44.5

02| 16.1 ] 167 | 269 | 272

M || 1.0 || 81.8 | 82.5 | 89.6 | 96.0

P || 1.0 || 84.4 | 863 | 954 | 96.8

675 1.0 || 863 | 86.8 | 96.0 | 97.5
p || 08 73.3] 735879 | 913

0.5 || 53.7 | 54.4 | 65.0 | 67.8

0.2 |/ 29.4 | 306 | 382 | 41.4

(M: myopic, P: predictive non-myopic (SAA), F: full-knowledge)

Table 4.3: Percentage of optimal energy savings: varying a? (USC)

a?

Al 0.0

22.2

44.4

66.7

88.9

M 82.5
P 86.3
F 86.8

834
86.4
86.8

84.0
86.7
86.8

84.2
86.7
86.8

84.2
86.8
86.8

(M: myopic, P: predictive non-myopic (SAA), F: full-knowledge)

I also compared the performance of the three algorithms while varying the deadline flexibility,

a“. In Table 4.3, columns indicate different amounts of deadline flexibility and values are the
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Figure 4.6: Energy savings while varying flexibility (SMU)
optimality of each algorithm assuming a fixed time and location flexibility (a’, a%) = (67.5%,

47.1%). As I increase the deadline flexibility, both myopic and predictive non-myopic (SAA)
methods converge to the full-knowledge optimization result. This is because as the deadline
flexibility increases, scheduling can be delayed until more information is available. In this
particular case of @’ and %, I do not necessarily see significant benefits by providing more deadline
flexibility since the myopic and predictive non-myopic (SAA) methods already achieved fairly
high optimality compared to the full-knowledge method. While the optimality percentage changes
are small, given the vast amount of energy consumed by large-scale facilities, these reductions can
lead to significant energy savings. I am investigating conditions where my algorithms get more
benefits by deadline flexibility.

The same types of analysis are performed with another data set from SMU and results are
presented in Figure 4.6. The figure shows the average optimality in percentage of each algorithm
(M: myopic, P: predictive non-myopic (SAA) and F: full-knowledge) on the y-axis while varying

the time flexibility (a” ; each graph assumed the different amount of @’ as indicated in the legend)
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Table 4.4: Percentage of optimal energy savings: varying a¢ (SMU)

d
00 | 222 | 444 | 667 | 889
Alg.
M 8530 | 87.22 | 89.02 | 89.41 | 90.06
P 93.01 | 93.05 | 94.56 | 94.87 | 95.14
F 95.21 | 9521 | 9521 | 95.21 | 95.21

(M: myopic, P: predictive non-myopic (SAA), F: full-knowledge)

Table 4.5: Energy improvement of identified key meetings (%)

» 10235 | (0,47.1) | (0,70.6) | (31.5,23.5) | (31.547.1)
(0,23.5) _ _ _ _ _
0,47.1) | 16.08 - - - -
(0,70.6) | 30.08 | 29.17 - - -

(31.5,23.5) | 32.05 - - - -

(31.547.1) | 46.18 | 36.27 _ 29.17 _

(31.5,70.6) | 4652 | 3833 | 34.36 31.07 26.08

and location flexibility (’; x-axis). I assume the deadline flexibility (a?) of 0%. Similar to earlier
results, the predictive method achieved about 97% optimality compared to the full-knowledge
optimization and showed higher value than the myopic approach. I also compared the performance
of the three algorithms while varying the deadline flexibility. In Table 4.4, values are the optimality
of each algorithm assuming a fixed time and location flexibility, (31.5%, 47.1%). Here I see more

pronounced energy savings at SMU as a? increases compared to the USC results.

4.3.1.4 Performance of identifying key meetings

I evaluated the performance of the algorithm to identify key meetings for energy reduction. In
the tests, I selected 10 meetings individually using the algorithm presented in Section 4.2.2 and

calculated the average energy savings if those selected meetings changed their flexibility.
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Table 4.5 shows the average energy savings as described for various flexibility transitions.
Columns indicate the initial level of flexibility (@ = (a’, a’)) and rows show the requested level
of flexibility (o’ = (¢’T, a’")). For instance, the value in row 4 and column 3 (highlighted in the
table) indicates a 29.17% average energy savings improvement if flexibility of 10 key meetings
are changed from (0%, 47.1%) to (0%, 70.6%). An important interpretation of that results is
that changing the flexibility of key meetings, when those ones are from an appropriately chosen
set, contributed to significant energy savings. I also tested how much energy can be saved if key
meetings are chosen simultaneously rather than independently. Assuming the current flexibility
is (0%, 23.5%) (column 2 in Table 4.5), if I choose 10 key meetings at the same time using the
same algorithm presented in Section 4.2.2, the average energy savings were improved by 10.3%
(i.e., 44.48% of energy saving improvements on average). In the future, I will investigate another
heuristic to set a feasible threshold value based on a learned profile of user likelihood of changing

meeting flexibility.

4.3.1.5 Considering the cancellation rate

According to the real meeting data collected for eight months (January through August in 2012)
at USC, about 10.12% (3,245 out of 32,065) of the total meeting requests were canceled, which
gives me another insight to achieve further energy savings by utilizing this feature. To incorporate
this feature into my SMILP formulation 41 change constraint (7) as follows:

Pr(Sierguyiy 2o xo e < M(L=x110)) > 1 -

The constraint above is given in the form of the chance constrained programming that relaxes

the allocation restrictions (i.e., with a probability of a,, the given allocation restrictions can be

“Note that canceled meetings were not considered while scheduling meetings in the earlier results.
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Figure 4.7: Average energy improvement while considering the cancellation rate of meeting
requests

violated). In this work, I tested how much additional energy savings can be achieved by allowing
the system to overbook meeting rooms that are taken by meeting requests that may be canceled,
which is systematically controlled by the cancellation rate (a.) in the stochastic program. If any
schedule conflicts occur by TESLA, TESLA greedily finds the currently available best slots in
terms of energy savings for resolving conflict in meetings.

A result is provided in Figure 4.7. The y-axis in the figure indicates the average energy saving
improvements in percentage while varying the cancellation rate (@) on the x-axis. These average
values were measured over 100 independent trials. As shown in the figure, as I set a higher «.,
the overall average energy savings increase. In particular, with 10.12% cancellation rate that was
obtained from the real-world data, the expected energy saving improvement was about 14.78%,

which is fairly significant.
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Figure 4.8: Energy savings by TESLA: the percentage of energy savings per each energy consumer
and factor

4.4 Analysis: Savings due to TESLA

There are three major components that affect energy consumption in commercial buildings: HVACs
(accounting for 35% of the entire energy consumption in commercial buildings), lighting (27%),
and electronic devices (about 10%) [U.S. Department of Energy, 2010]. TESLA focuses on
these three energy consumers to save energy by computing energy-efficient schedules that exploit
key factors that affect energy consumption of each building component. Figure 4.8 shows the
percentage of energy savings per each energy consumer and factor in TESLA assuming an actually
measured time and location flexibility (o, o) = (25.34%, 16.05%) from surveys of real users.
For instance, as shown in the figure, 47.4% of energy savings by TESLA is achieved through
more energy-efficient operations of HVACs. More specifically, TESLA shifts meetings to suitable
smaller offices or non-peak time and packs meetings together, and those strategies result in a

significant energy reduction for HVACs.

44.1 HVAGCs

Key assumptions The following assumptions are made in TESLA :
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Figure 4.9: Energy saving analysis: room size
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Figure 4.10: Energy savings only by HVACs (Non-peak Time)
e HVAC:s are centrally regulated by the university facility management team to satisfy two

pre-defined temperature ranges: occupied time zone (8am to 6pm: 70-75F) and unoccupied

time zone (rest of the hours: 60-80F).

e While optimizing schedules, the threshold of people’s comfort level was set to 50%, which

is a configurable parameter.
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Factors impacting HVAC energy As shown in Figure 4.8, given the above assumptions, HVACs
accounted for 47.4% of the overall energy savings. Numbers in the parentheses below indicate the

amount of energy savings by each of the following three factors:

e Room Size: TESLA focuses on assigning meetings to smaller spaces while considering
the number of meeting attendees, since a larger room requires more energy than a smaller
room when occupied for the same amount of time (38.3%). Figure 4.9 shows the actual
and optimal usage density and the physical size (y-axis) of 35 different rooms (x-axis) in
the testbed building at USC. As shown in the figure, TESLA generates the schedule that
uses 18.16% less space compared to the actual schedule, which clearly proves that TESLA

provides more energy-efficient schedules by assigning meetings to smaller spaces.

e Non-peak Time: TESLA avoids the peak time in terms of energy and popularity considering
the given constraints/flexibility. Since an unoccupied time zone requires less energy than
occupied time zone when the same room is occupied for the same amount of time, TESLA
focuses on assigning meetings under an unoccupied time zone as much as possible (29.5%).
However, since an unoccupied time zone has a wider regulated temperature range, this
optimization may cause a drop in the average comfort level of people. While this flexibility
of holding the meeting at non-peak time is assumed to be part of the meeting request, this
drop in comfort level is worth further investigation. The first point to note is that the amount
of energy savings achieved by the non-peak time factor itself is less significant (i.e., 13.93%)
compared to other factors. Thus, in Figure 4.10, I provide a result that shows how the non-
peak time factor affects the overall energy savings (y-axis) while varying the unoccupied

time zone temperature (x-axis). As shown in the figure, as I reduce a temperature range
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for the unoccupied time zone, the amount of energy savings by the non-peak time factor
decreases, but TESLA can still achieve meaningful energy savings while satisfying the given
comfort level constraint. Furthermore, TESLA provides a flexible architecture that allows

people to configure the temperature value accordingly under different situations.

e Packing Meetings: TESLA focused on packing meetings together in terms of the time
interval between meetings in the same room. When a meeting ends, the room is conditioned
to a pre-defined environment. This built-up thermal momentum can benefit later meetings
scheduled in the same room in close proximity by reducing the number of changes of HVAC

operations, which saves much more energy (32.2%).

4.4.2 Lighting

Key assumptions The following assumptions are made in TESLA :

o The standard nominal values were used for the lighting configuration in spaces.

e When the room was occupied, the full (100%) lighting level was considered.

e When the room was unoccupied, 0% lighting level was considered.

Factors impacting lighting energy As shown in Figure 4.8, given the above assumptions, the
lighting sources accounted for 37.5% of the overall energy savings. The entire energy savings
are caused by different room size; specifically, TESLA focuses on assigning meetings to smaller
spaces while considering the number of meeting attendees, since a larger room requires more

energy than a smaller room when occupied for the same amount of time (see Figure 4.9).
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4.4.3 Electronics
Key assumptions The following assumptions are made in TESLA :

o Assumed average number of devices in each room was considered to calculate the correct

energy consumption. >

e When the room was occupied, 80% of the devices were used.
o When the room was unoccupied, 0% of the devices were used.

Factors impacting electronics energy As shown in Figure 4.8, given the above assumptions,
the electronics accounted for 15.1% of the overall energy savings. The entire energy savings
are caused by different room size; specifically, TESLA focuses on assigning meetings to smaller
spaces while considering the number of meeting attendees, since a larger room has more devices
in the testbed building, and thus it requires more energy than a smaller room when occupied for

the same amount of time (see Figure 4.9).

4.5 Human Subject Experiments

The goal of human subject experiments is to support the results provided in the previous section
by answering several questions: (i) are people flexible in real situations?; (ii) how flexible are
people in modifying their requests?; (iii) will people in the identified key meetings actually agree
to change their flexibility to contribute energy savings?; and (iv) what would be an effective way
for an agent to persuade people? To answer these, I measure the amount of reported flexibility

change while varying feedback about the energy usage.

SWhile evaluating TESLA, I considered the assumed average number of electronic devices including the actual
number of devices existing in each room as well as the average number of devices that people bring with them.
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Q1. For each day of the week, please specify your available range of
starting times for the meeting.

Q2. What possible locations would you consider for your meeting?

Mon: 8am-3pm

Sun: 7am-9am

201A 201B 201C 201E 201F 202G

202A B-3D B-3E P-3B BL-3Z B-3X

Figure 4.11: Screenshot of online survey: people were asked to indicate their meeting requests
and flexibility.
I conducted two surveys on a pilot sample of participants (students on campus): (i) an online

survey to understand flexibility of those who are using the testbed building; and (ii) a survey to

measure flexibility change due to messaging.

4.5.1 Survey for initial flexibility

I conducted an online survey to understand the flexibility of meeting attendees (shown in Fig-
ure 4.11). The procedure to conduct this survey is as follows: I recruited 32 students who have
used the meeting reservation system at the tested building and their facilities. They filled out a
survey, indicating meeting requests and flexibility. I analyzed their profile including the details of
their meeting requests and their flexibility in terms of time and locations considering their real
constraints. Tables 4.6 & 4.7 show a list of detailed questions in the questionnaire used during the

survey.
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Table 4.6: Basic Profile Questionnaire

] Question \ Answer (Scale)
0;. Gender? Male / Female
0>. Position at USC? Undergraduate / Graduate / Staff / Faculty

20 or under / 21-25 / 26-30 / 31-35/

0
Q3. Age? 36-40/ 41 or above

Q4. Average frequency to use

USC Leavey collaborative workrooms per week? 010 or more

QOs. Average meeting attendees? 1 — 10 or more

(Oe. Average meeting time duration? (in hour) 1 -5 or more

Q7. How much do you consider energy savings

while requesting scheduling meetings? I (Notatall) -7 (Extremely)

QOs. I consider myself an environmentalist. 1 (Disagree) — 7 (Agree)

Table 4.7: Survey I: Questionnaire

Let us assume that you would like to schedule a meeting next week
Assumption (A) | using the central meeting reservation system, which is currently used
at USC Leavey library.

Q1. What is your preferred time range to start the meeting on each
day of the week? (Note: Consider your actual class and other meeting
constraints while answering this.)

Question (Q) (0». What locations do you prefer for your meeting among the rooms
that you chosen? For your information, the number in the parentheses
indicates the maximum capacity of each room. (Note: Please try to
answer this based on your past experience at USC Leavey library.)

Figure 5.8 shows the distribution of the time and location flexibility. The x-axis shows the
discretized flexibility level and their corresponding frequency in percentage is provided on the
y-axis. People reported varied levels of time and location flexibility. The average time flexibility
(a@”) was 25.34% and the measured minimum and maximum time flexibility were 9.86% and
42.86%, respectively. The average location flexibility (a’) was 16.05% and its range was O to
38.24%. This survey result clearly shows that people have fairly diverse flexibility levels and
provides the insight that there is a significant potential to conserve energy by exploiting scheduling

flexibility in TESLA.
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Figure 4.12: Diversity of people’s flexibility
4.5.2 Survey for requested flexibility

I conducted a second survey to understand what types of feedback are most effective to change
flexibility while scheduling meetings. I consider two test conditions: (i) feedback without moti-
vation (Test Group I) (e.g., if necessary, do you think you will be able to provide more options
in terms of time and location?), and (ii) feedback with motivation including average flexibility
provided, and environmental motives (Test Group II) (e.g., on average, people who are using this
system give 3—4 hour range for their available time on each day and 5-6 rooms for their available
locations. This helps the system to compute more energy-efficient schedules that lead to energy
savings by about 30% at the testbed building, which is equivalent to $5,765 per year. Do you think
you will be able to provide more options in terms of time and location?). A more detailed list of

questions is shown in Table 4.8.

Hypothesis 2. More informed feedback (provided to subjects in Test Group IlI) will be more

effective to conserve energy than feedback without motivation (Test Group I).
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To test the hypothesis above, I recruited 22 students with the same requirement of the earlier
survey. Subjects were randomly tested under two different conditions when they accessed the
online survey, and each test group had 11 individuals respectively.

Table 4.9 shows the average flexibility change in percentage (0—100%) of two test groups. Thus,
higher values indicate that more participants comply and increase their scheduling flexibility to
higher levels. When I provided more informed feedback including environmental motives (Group
II), participants tripled their flexibility increase percentage (17.12%). In Group I, participants
only increase their flexibility level by 5.15% on average. The difference is statistically significant
and provides strong evidence for the hypothesis (t-test; p < 0.01). This study shows that we can
conserve energy by investigating methods to improve motivation to conserve energy by adjusting
their flexibility.

In this trial study, I have learned that although occupants in commercial buildings do not have a
direct financial incentive in saving energy, proper motivations can achieve a higher compliance rate
for the energy-related suggestion with a specific focus on their flexibility. This study specifically
provides the insights that there is a significant potential to conserve energy by investigating effective
and tailored methods to improve occupants’ motivation to conserve energy while handling energy-
efficient scheduling problems. However, at the same time, in order to deploy my TESLA system
in the real-world while keeping people in the loop, there are a number of research challenges that
have to be addressed. Most notably, in a commercial setup where people do not have a direct
financial incentive to save energy, a different incentive mechanism to effectively motivate them
and keep them as active participants in energy saving activities might potentially be required;
determining the importance of such mechanisms or if they are needed in the first place is a topic

for future work [Abrahmase et al., 2005; Anderson et al., 2012; Carrico and Riemer, 2011; Faruqui
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et al., 2010; Wood and Neal, 2009]. Over time, people will be able to observe the impact of their
input (e.g., flexibility) while scheduling meetings and whether or not people engaged with TESLA
on a day-to-day basis will provide flexibility to the extent they could remains to be determined.
Thus, while this paper has provided a critical first step in flexibility-based energy savings, and
provided algorithms to accomplish such savings, a future implementation will need to take the

next step to investigate topics such as motivation and incentives.
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Table 4.8: Survey II: Questionnaire

Let us assume that you would like to schedule a meeting next week using the central
meeting reservation system, which is currently used at USC Leavey library.

Group I (Simple)

Q1. What is your preferred time range to start the meeting on each day of the week?
(Note: Consider your actual class and other meeting constraints while answering this.)

0». What locations do you prefer for your meeting among the rooms that you chosen?
For your information, the number in the parentheses indicates the maximum capacity
of each room. (Note: Answer this based on your past experience at USC library.)

On the previous page, you were asked about your preferred time and locations to
schedule meetings. Given your choice, please answer following questions.

Q3. If necessary, will you be able to provide more options in terms of time?
If so, for each day of the week, what will be your extended available time range

for your meeting? If you will not be able to provide additional options, please skip this.

(Note: Consider your actual class and other meeting constraints while answering this.)

Qa. Likewise, what additional locations would you consider for your meeting?

If you do not think you will be able to provide additional options, please skip this.
For your information, the number in the parentheses indicates the maximum capacity
of each room. (Note: Answer this based on your past experience at USC library.)

Group II (Complex)

Q1. What is your preferred time range to start the meeting on each day of the week?
(Note: Consider your actual class and other meeting constraints while answering this.)

0». What locations do you prefer for your meeting among the rooms that you chosen?
For your information, the number in the parentheses indicates the maximum capacity
of each room. (Note: Answer this based on your past experience at USC library.)

On the previous page, you were asked about your preferred time and locations to
schedule meetings. Given your choice, please answer following questions.

Q3. If necessary, will you be able to provide more options in terms of time?
If so, for each day of the week, what will be your extended available time range

for your meeting? If you will not be able to provide additional options, please skip this.

On average, people who are using this system give 3—4 hr range for their available
time on each day. This helps the system to compute more energy-efficient schedules
leading to energy savings by about 30% at USC Leavey library (about $5,765/year).
(Note: Consider your actual class and other meeting constraints while answering this.)

Qa. Likewise, what additional locations would you consider for your meeting?
If you will not be able to provide additional options, please skip this.
The number in the parentheses indicates the maximum capacity of each room.

On average, people who are using this system choose 5-6 rooms for their available
locations. This helps the system to compute more energy-eflicient schedules that
lead to energy savings by about 20% at USC Leavey library (about $3,845/year).
(Note: Answer this based on your past experience at USC Leavey library.)
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Table 4.9: Flexibility manipulation with various feedback (%)

Group I

Group II

Average amount of flexibility change

5.15

17.12
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Chapter 5: THINC

THINC is made up of three specific algorithms (as shown in Figure 5.1): (i) the scheduling
algorithm described in Chapter 4, (ii) novel approximation algorithms that efficiently compute fair
individual allocations based on the Shapley value, and (iii) a new robust algorithm that reschedules

user meetings under uncertainty.

5.1 Fair Division of Credit

In my problem, users indicate their flexibility which determines their marginal contributions to the

total energy savings. Given the energy savings, the idea is to allocate some energy credit (e.g., a

Energy-efficient
Scheduling

Rescheduling User
Activities

Fair Division of

Energy Credit

Figure 5.1: THINC architecture
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significant portion of the savings) to individual users. In allocating credit, equal allocation may not
be perceived as fair as shown in [Abrahmase et al., 2005; Hassett and Metcalf, 1995] and my survey
results (Section 5.3.1). Furthermore, proportional allocation based on flexibility fails in practice
because the amount of flexibility does not necessarily reflect users’ true contributions to energy
savings. For example, out of two users A and B, let A offer 80% flexibility late at night, while
B offers 40% flexibility during peak hours. Since B requests a meeting at a peak time/location
(where given individual flexibility can be jointly exploited with others for more energy savings,
e.g., back-to-back effect described in Section 4.2) and A at an off-peak time/location, flexibility of
B may lead to more energy savings as compared to A due to the exploitation of joint flexibility.
Therefore, flexibility of B has a greater effect in this case and hence B’s compensation should be
higher. If we used proportional allocation, A would get higher compensation which will not be
perceived as fair.

My energy-cost minimizing scheduling problem can be framed as a coalitional game, (N, v),

where:

e N is a finite set of players, indexed by i. In my case, N indicates the set of meeting requests.

e S is a coalition C N. In my case, it is a subset of meeting requests that provide flexibility.'

So a coalition is formed from meetings that provide flexibility.

e v : 2V R is a characteristic function. In my case, v(S) is the total energy-savings
obtained when requests in S are flexible and requests in N \ S are not flexible. Formally:
v(S) = e(S) — e(S), where e(S) is the energy consumption when meeting requests in §

provide flexibility and &(S) is the energy consumption when requests in S do not provide

I'This definition can be easily extended to the case where each separate coalition is defined based on a discretized
level of flexibility.
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Tl T2 T3 T4 T5

L1 ry's ‘ rys flex. rs’s r5’s flex.
flexibility i | flex |
L2

ry’s flexibility

Figure 5.2: Tllustrative example: L; & T; mean available rooms and time slots, respectively. Each meeting
request #; has a set of preferred locations and time, which indicates location and time flexibility.
flexibility, while requests in N \ S are held constant as not providing flexibility (i.e., requests

not providing flexibility are considered to be fixed to most preferred time/location as

determined by data collected on all meetings).?

For this game, I appeal to the Shapley value [Shapley, 1953] solution concept for guidance on
how to fairly allocate credit. The Shapley value is computationally complex (2" X 2 x O(v) for
each player), where O(v) is the complexity of the characteristic function [Shapley, 1953]. The
computational challenge for computing the Shapley value in THINC is actually two-fold. First,
computing the Shapley value for a single meeting request is challenging because we need to know
the marginal contribution to all possible coalitions (Equation (2.4)). Second, we need to solve
the MILP (Eq. (4.2)—(4.8) in Chapter 4) many times for computing the characteristic function
values, and it is difficult to scale up this computation to a large number of meeting requests. For
instance, as shown in Figure 5.2, let us assume that there are five meeting requests ry, 72, ...,
rs with flexibility. Even in this small example, to compute the exact Shapley value for each
meeting request, we are required to repeatedly compute v(S) 64 (= 23 x 2) times in total, which is

computationally expensive. Given these difficulties, I turn to approximation methods.

2¢(S) is computed using the MILP in Section 4.2.

86



5.1.1 Approximate Shapley computation

I efficiently approximate the Shapley value using: (i) sampling and (ii) graph partitioning.
Sampling: Random sampling can be used to approximate the Shapley value [Castro et al., 2009;
Fatima et al., 2008; Mann and Llyod, 1960; Owen, 1972]. In particular, Castro et al. [Castro
et al., 2009] presented the ApproShapley algorithm, a sampling mechanism for polynomial-
time approximation of the Shapley value. In ApproShapley, the characteristic function value is
repeatedly computed (m X 2) times per each player, where m is the number of samples. In the
above example, for each meeting request, we now only need to compute v(S) 20 (= 10 X 2) times
with 10 samples, which is smaller than the exact Shapley value computation.

Graph Partitioning: In addition to using ApproShapley, we can partition the entire meeting
request set into multiple independent subsets, which reduces the overall computational burden.
This idea is justified by the inessential axiom defined below. The entire meeting request set R can
be represented as an unweighted undirected graph denoted G = (V, E). As shown in Figure 5.2,
each vertex in V represents a meeting request in R. If the flexibility ranges of any two meeting
requests overlap, then those meeting requests are connected as an unordered pair in the graph
defining the edge set E (with edge weight defined by the amount of overlap). For example,
in Figure 5.2, r, and r3 overlap, defining an edge between them. We can define a notion of
independence between two meeting request subsets R, and R,,, where R,,, R, C R, as follows. Two

important technical lemmas then follow:

Definition 2. Independence: R, and R, are independent if e(R,, U R,) = e(R,;) + e(R,), where

e(R) is the energy consumption of the given meeting request set R.>

3Please note that we need to run the MILP to test for independence.
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Lemma 1. The characteristic function v for independent meetings in my coalitional game is

inessential [Hamiache, 2001 ].

Proof. (Sketch) Let us assume that two meeting request subsets R; and R, (C R) are independent.
Recall that, in my problem, v(R) indicates energy savings caused by a joint flexibility in R: v(R) =
é(R) — e(R). In addition, due to the independence between R; and R, e(R; U Ry) = e(R}) + e(R»)

(i.e., satisfies the inessential property both with (e) and without flexibility (&)).

V(RiURy) =e(Ri URy) —e(R{ UR»)
= [e(R)) + e(Ry)] — [e(R1) + e(Ry)] (. e, e: inessential)
= [eé(R1) — e(R1)] + [é(R2) — e(Ry)]

=v(R1) + v(Rp).

Lemma 2. Assume that two meeting request subsets Ry and R, (C R) are independent. If meeting

request i is in Ry, then the Shapley value satisfies: ¢;(R1 U Ry, v) = ¢i(Ry, V).

Proof. (Sketch) Let § = §; U S,, where 1 C R; and S, C R;. Since R; and R; satisfy

independence, S| and S, also hold the same property. Then, the equation (2.4) can be rewritten as
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follows:

n—1 n—1—s)
sl(n s)! y

iRy URy,») = ) V(S 1 US2 U i) = v(S1 US2)

n!
s=0 §=81US2CRIUR\{i},IS |=s
n—1
sln—1-s5)! .
Sy ook > V(S 1 U {iD+V(S2)]=[W(S 1) +(S2)]
s=0 - S=S1US2CR1UR\{i}IS |=5

(. the inessential property of v(R] URy) & S1 U {i} € R1,S2 € Ry)

-1 = )
:Z <” 9)! S S Ui - vs)

s=0 ! S=S1CRI\{i}IS|=s

= ¢i(Rl’ V).

Based on these two properties, the graph G can be partitioned and the Shapley value for meet-
ings in each partition can be computed separately — thus partitioning can speed up computation
of Shapley value. Please note that only when there are non-overlapping meetings (i.e., complete
independence), we can partition without loss in accuracy of Shapley value, as shown in Lemma
2. However, as shown in Figure 5.2, if there are partitions that cut across an edge, some loss in
accuracy occurs; but we can minimize this loss by finding partitions that minimize the number of
edges cut. This trade-off in number of partitions and accuracy will be discussed in the evaluation

section.
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5.1.2 Approximate characteristic value computation

In my work, the characteristic function, v(S), itself is computationally intensive because it is an
MILP. To compute the Shapley value, we need to solve multiple instances of these MILPs. Thus, I
introduce efficient methods to approximate the characteristic value computation by relying on (i)
caching and (ii) LP relaxation.

Caching: This technique exploits the following property:

Definition 3. Exchangeability: v is exchangeable if, for every permutation w of S C N, v(S) =

v(r(S)) [Aldous, 1985].

v(S) in my problem is exchangeable. Thus, we can further speed up the Shapley value
computation by storing evaluations of v(§). In this way, the characteristic function value of each
coalition and all its permutations is computed only once.

LP Relaxation: It is natural then to use MILP relaxation to approximately compute v(S). I
specifically relax the integrality constraint (4.8) in (MILP) to O < x;;, < 1 for getting a linear
program (LP). The optimal solution of (LP) is a lower bound on the optimal value of (MILP). I

empirically show the strength of the LP relaxation for my specific MILP in the evaluation section.

5.2 THINC Rescheduling Algorithm

While THINC performs energy-efficient scheduling, it may perceive that shifting some carefully
selected meetings can lead to significant energy savings. THINC then makes suggestions to
involved users on how to best reschedule their meetings while ensuring a balance between energy
savings and user comfort (hence, multi-objective MDP). We cannot know the exact likelihood

that users will comply with suggestions, and we may also be uncertain about the reward from
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energy-savings and user comfort (hence the model uncertainty). I provide new algorithms for
BM-MDPs in THINC in addressing these challenges.

As a concrete example of how THINC can reschedule meetings, suppose two meeting requests
(r1 and rp), which are originally scheduled in (10am, Room A) and (10am, Room B) respectively,
are identified for rescheduling. THINC’s policy may suggest r; and r, to be rescheduled to
different times but the same location as r3 (12pm, Room B). This way, the agent can consolidate
all three meetings (r; — r3) together in a smaller room B which is less expensive to heat/cool.
Now, assuming that r; can only be scheduled either at 10am or 12pm, the best scenario is to
reschedule r| to (10am, Room B) and r; to (11am, Room B) so that all three meetings only use
Room B from 10am to 12pm, sequentially. Let us also assume that the r, is less likely to agree to
reschedule, and the likelihood of | and r3 is high. In this situation, if r, does not comply (given
low likelihood) then THINC’s computed policy needs to provide an alternative action given r;’s
refusal, while considering the likelihood of acceptance for this alternative. In particular, THINC
instead suggests rescheduling r3 to (11am, Room B) and r; to (12pm, Room B), which is highly
likely to be accepted by users. In addition, if an unexpected new meeting request (r4) arrives and
is identified as an energy-consuming meeting to be rescheduled, then the rescheduling policy may
need to change.

I thus provide two novel algorithms in this work: (i) a robust multi-objective MDP algorithm
for solving BM-MDPs which allows for stochasticity in user response at planning time and (ii)
replanning methods to handle execution-time uncertainty (e.g., due to the arrival of r4). I first
discuss my robust multi-objective MDP algorithm. Earlier work [Kwak et al., 2012a] provides
“optimistic” or “pessimistic” heuristics to solve BM-MDPs, but without any performance guarantee.

Instead, my present robust BM-MDP can be solved exactly by finite horizon value iteration. First,
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the robust optimal expected value is computed using the robust value iteration [Bagnell et al.,
2001] for each objective. Next, given an optimal robust value for each objective, the regret across
all objectives is computed. Lastly, a robust policy that minimizes the regret is chosen.

STEP I: Computing the robust optimal value for each objective: I denote the (finite) state
space (set of meeting requests) by S and the (finite) space of actions by A (i.e., the set of energy-
efficient meeting rescheduling suggestions by THINC). I fix a finite time horizon T = {0, 1,...,T},
i.e., my work always uses a T period lookahead policy when (re)planning. Let [ index a set
of reward functions ' : § X A — R to allow for multiple objectives. These include energy
efficiency and comfort of different users. We let 7 (j|s, a) denote the transition probabilities, the
probability of transitioning to state j € S given (s, a). For each state and action, we let R’ (s, a)
denote the uncertainty set for reward 7/, and we let 7 (s, @) denote the uncertainty set for 7. The
uncertainty set defines possible realizations of the uncertain parameters, e.g., uncertainty set of
reward for comfort may be the interval say 1-5. For emphasis, both of these uncertainty sets
depend on the current state-action pair. We let 7 = {7 (s,a)}, , and R = {Ri (s, a)}w be the
collections of these uncertainty sets. For fixed i € I, I want to maximize the worst-case reward,
1.€., MaXgea minTeT’ vicRi BX [Zszo Y r (s,)] , where ET [-] explicitly indicates the dependence on the
transition probabilities and the policy, and s, is the state at time ¢. Because the uncertainty sets
only depend on the current state-action pair, the Bellman equation for the above robust MDP can
be written as follows:

Vti (s) =max min I ()+y ZT(ﬂS, a) VtiJrl )

€A rer(s,a), reR(s,a) ies
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where V! is the time 7 value function. The values {V,’ (s)} can be computed through maximin

seS, teT
value iteration since we have a finite time horizon [Bagnell et al., 2001].

STEP II: Computing the regret across all objectives: Because my problem is multi-objective,
I want a policy that accounts for all objectives i € I. So, I introduce a notion of regret that
accounts for all objectives. I will use a vector-valued value function {W,},cr C R where W, (s) =
(W,i (s))l_el ,Vt € T. For a given policy  (which is different from the policy that computed V in
Step ), the quantity

max min r(s)+y Z T (jls, a) Wti+1 (N-Vi(s)

i€l rer(s,a), rieR!(s,a) es

is the regret at time 7 in state s € S for action a, where V for each objective i is given as a constant
from Step I. Notice that this definition takes the minimum over all reward functions. The quantity
F)+y Y jes T(Jls, a) Wti +1 (J) is the value for objective i, and Vti (s) is the optimal value for
objective i.

STEP III: Choosing the robust policy that minimizes the regret: In state s at time ¢ I choose

a regret minimizing action

m; (s) € arg min max min r(s)+y Z T(jls, @) Wiy () = Vi ()
acA i€l rer(s,a), iR (s,a) jes
and then I set
Wi (s) = min F(s)+y Z T(Jls. 7 () Wiy (D, (Vs €S, Vi),

rer(s,7i(s)), reR (s, (5)) jes
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The optimal action is chosen in consideration of all objectives i € I, and then each component of
W; is updated separately assuming the same optimal action is taken in each update. The resulting
policy n* = (7}),cy is the optimal regret minimizing policy.

During the execution of such a policy, THINC sometimes encounters unexpected situations,
e.g., in the example above r4 arrived when it was not part of the initial BM-MDP state-space and
was an energy-consuming meeting in need of rescheduling. THINC’s key insight is to continue
to use the current BM-MDP policy to the extent possible, replanning only when new meetings
are seen to potentially interfere with that policy. One alternative approach is to avoid BM-MDP
planning altogether and only react to the current state. Another alternative is to stay completely
committed to the original policy until completion while ignoring the new meetings. THINC rejects
both of these extreme approaches and occupies a middle ground: it does use a BM-MDP policy,
but when new meetings arrive, it checks if they interfere with the current policy. Specifically, the
majority of incoming meeting requests propose locations and times that do not affect the current
policy, allowing THINC to accrue the benefits of its optimal planning (carried out to completion)
in majority of cases; but THINC will occasionally compute a new policy if the new meetings are
seen to potentially interfere. Using real meeting arrival data in a large university building, THINC
demonstrates that this “middle-ground” approach outperforms the two extreme approaches in my

domain (Section 5.3.2).

5.3 Empirical Validation

I evaluate THINC in this section. For the evaluation, I built upon the simulation testbed developed

in [Kwak et al., 2012a] by using a large data set of real meeting requests and building statistics
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collected from the testbed building. For experiments with meetings, I selected data from the library,
where 100 meetings may arrive per day. The experiments were run on Intel Core2 Duo 2.53GHz
CPU with 8GB memory. I solved MILPs using CPLEX version 12.1. I ran all algorithms for 100

independent trials and report average values.

5.3.1 Shapley Value Evaluation

5.3.1.1 Fair Division: Why Shapley Value?

The Shapley value gives a theoretically fair allocation and has been previously applied in energy
domains [Alam et al., 2013; Stein et al., 2012]. However, I wished to check user reactions in my
own domain, i.e., whether people believe that the Shapley value produces fair allocations of energy
credits. So, I launched a survey on Amazon Mechanical Turk (AMT) and collected data for 53
unique samples. I showed survey participants two different allocations: one based on Shapley
value and the other based on equal division. I then asked survey participants to rate fairness of
each allocation scheme on a scale of 1 to 7 while varying information, where 7 indicates high
fairness. I found that people perceive Shapley value based allocations to be more fair than those
based on equal division. The average fairness rating over all users for Shapley based allocation is
5.2, as compared to 3.6 for equal division and this result is statistically significant (paired t-test; p

<0.04).

5.3.1.2 Approximation

We already know that the Shapley value is computationally expensive for the setting used in my
work. As shown in Figure 5.3 for the illustration purpose, as the number of meetings (x-axis)

increases from 5 to 100, the average runtime (y-axis) of the Shapley value computation increases
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Figure 5.3: Runtime comparison — S: Sampling (# of samples), C: Caching, P: Partitioning (# of
partitions), L: LP Relaxation

Table 5.1: Runtime Comparison (hours) — In conjunction with caching & LP relaxation (# of meetings:
100)

# of partitions 5 10 0
# of samples
20 0.19 0.07 0.04
50 049 0.17 0.11
100 0.97 033 0.20

exponentially — in fact the computation was not completed within a reasonable amount of time.
As shown in the figure, the overall runtime could be significantly improved (sped up by orders of
magnitude) by combining my approximation methods.

As I provide a set of different Shapley approximation algorithms, it is essential to understand
the contribution of different combinations of my approximation methods. In particular, it is
important to derive settings that would allow the right tradeoff between solution quality and
efficiency for my actual setting involving 100 meeting inputs per day. I thus evaluated potential
speed-up by using graph partitioning on top of ApproShapley in conjunction with caching and LP

relaxation. To perform graph partitioning, my work relied on the METIS library*, an open-source

“http://glaros.dtc.umn.edu/gkhome/views/metis
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library for partitioning graphs based on the multilevel recursive-bisection and multi-constraint
partitioning schemes. I tested the performance of my approximation algorithms using real meeting
data while varying the number of samples and partitions. Table 5.1 shows the average runtime
when a large number of meeting requests are given (100). Even with a large number of meeting
requests, I was able to complete the overall computation in a timely fashion.

I next investigated the solution quality while keeping the same condition that was used during
the runtime comparison. Figure 5.4 plots the average error (i.e., the average relative variance)
(y-axis) against the number of partitions (5-20; x-axis) with a fixed number of samples (100) for
ApproShapley.We see that as the number of partitions increases, the overall runtime decreases
(Table 5.1) while the average error increases (Figure 5.4). I conclude that the combination of 100
samples and 5 partitions provides a reasonable solution (about 10% error) in a timely fashion
(within 1 hour) when a large number of meeting requests arrive.

So far, I analyzed two different layers of approximations presented in my work. The question
now is that how close my approximate solutions are to the true Shapley value with different

combinations of these approximations. Thus, I measured the average deviation of a combination
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of my approximation algorithms (i.e., sampling, caching with partitioning using 20 samples and 2
partitions; ¢§OC’§J) from the exact Shapley value (¢5s). I conducted this experiment on 20 sampled
days selecting 5 meetings per day, from real meeting data. I used a small number of meetings (5)
in this test as the exact Shapley value cannot scale up beyond that.

Figure 5.5 shows the average deviation of qﬁi(g, in percentage (y-axis) on 20 sampled days
(x-axis). As shown in the figure, my approximation method generally followed the exact Shapley
allocations, and the average deviation of ¢§OC from ¢g was 7.73% (6.18-9.43%), which was fairly
small.

It is important to verify that my approximation methods are still able to generate solutions close
to theoretically fair allocations even when the problem size increases. Given the limited scalability
of Shapley value, I instead focus on showing what properties out of the four that axiomatize
fairness in the Shapley value are satisfied by my approximations. My approximate allocations
automatically satisfy the additivity and dummy player properties, but they do not always guarantee
satisfaction of the efficiency and symmetry properties.” We can test empirically how often my

approximation algorithms violate the efficiency and symmetry properties.

The formal proof is provided in Appendix A.
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Figure 5.6 shows the likelihood that allocations computed from a graph partitions violate
efficiency (in percentage) on the y-axis while varying the number of partitions on the x-axis.
Intuitively, as the number of partitions increases, the likelihood that the efficiency property is
violated also increases. However, the overall likelihood was still less than 8%. In particular, when
5 partitions are used, the likelihood was less than 3%. With respect to the symmetry, the maximum
violation rate was less than 9.2% when the number of partitions varied from 0 to 20. These results

show that my allocations approximately satisfy the properties that axiomatize fairness.

5.3.2 Performance of replanning BM-MDP

In this section, I first tested if my robust multi-objective MDP algorithm that solves BM-MDPs
could generate robust well-balanced solutions (i.e., lower average regret) as compared to the
standard MDP with a unified reward based on the weighted sum method and the average model
from uncertainty sets, and the pessimistic heuristic for solving BM-MDPs [Kwak et al., 2012a].
The uniform weight distribution was applied to the weighted sum method. 50 different instances
were used.® Each problem is based on real meeting data. On average, the MDP showed the
worst result among three (2.13 times higher regret than my method) and the pessimistic heuristic
achieved 1.19 times higher regret than mine, which clearly shows that my method is even more
robust than the best known algorithm for solving BM-MDPs.

I then evaluated the performance of the replanning BM-MDP against three approaches while
rescheduling meetings under uncertainty at both planning and execution time: (i) full-online
replanning: it chooses the local best action at every time point (i.e., greedy approach), (ii)

full-offline BM-MDP: it commits to the original policy until completion while ignoring the

T generate different problem instances while varying the level of uncertainty (0-100%).
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Figure 5.8: Measured users’ flexibility
new meetings, and (iii) TESLA [Kwak et al., 2013a] that assumes users would always agree

to reschedule their meetings. I compared these four approaches on 100 different instances in
simulation and reported the average performance.

Figure 5.7 shows the normalized performance (y-axis) of each algorithm compared to the aver-
age regret achieved by THINC’s MDP. As the figure shows, the offline BM-MDP achieved about
1.38 times higher regret as compared to the replanning MDP performance, and the reactive strategy
achieved about 1.63 times higher regret. TESLA showed the worst result (i.e., highest average
regret), and it can be arbitrarily bad as it does not consider any uncertainty while rescheduling user

meetings. My replanning BM-MDP strategy is most robust as compared to the others.

5.3.3 Deployed Application

I deployed my integrated agent THINC as a pilot project at the Doheny library at the University of
Southern California. The objective of this deployment is to test the performance of THINC in this
smaller building first before deploying it at a much bigger building where there are indeed hundreds

of meetings per day. 45 students used THINC during the pilot deployment. Figure 5.8 shows the
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Table 5.2: Rescheduling real meetings: uncertainty in user reactions

% of no-response | % of rejection
First suggestion 35.0 48.0
Second suggestion 26.5 40.5
Third suggestion 20.7 39.8

students’ reported time and location flexibility. The x-axis shows the discretized flexibility level
and the corresponding frequency is reported on the y-axis. Participants reported varying levels of
time and location flexibility. The average time flexibility was 27.05%, and time flexibility ranged
between 0.0% and 68.18%. The average location flexibility was 42.48%, and location flexibility
ranged from 0.0 to 100.0%. This shows that, in practice, people are willing to provide a reasonable
amount of flexibility allowing significant energy savings.

As part of the pilot deployment, I identified 20 key meeting requests for rescheduling. THINC’s
BM-MDP policy suggested different slots (i.e., a pair of time and location) every 6 hours. As
shown in Table 5.2, the measured uncertainty while interacting with users for rescheduling their
meetings was significant, which emphasizes that previous work [Kwak et al., 2013a] cannot
be applied in real situations. On average, my work achieved the compliance rate of 45% for
successfully rescheduling them with 3.6 interactions per user. This result clearly shows that
BM-MDP for rescheduling identified key meetings is useful rather than simply assuming users
will blindly accept every suggestion.

I then divide a portion of energy savings based on the Shapley value. To test if the users of
THINC perceived my credit allocation scheme to be fair, I asked the same participants to rate
fairness and their willingness to participate in energy savings on a scale of 1 to 7, where 7 denotes
a high rating for fairness and willingness to participate. The average fairness rating is 5.24 and

the average willingness to participate rating is 6.0. Thus we can see that users of the system
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perceive the Shapley based allocation scheme to be highly fair. This average fairness rating is also
consistent with the result from the AMT survey, which further supports the use of Shapley value

as a fair allocation method.
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Chapter 6: Related Work

Recent years have seen a rise of interest in the development of multiagent systems in energy
domains that inherently have uncertain and dynamic environments with limited resources. In
discussing related work, a key point I wish to emphasize is the uniqueness of my work [Kwak
et al., 2012a,b, 2013a,b] in combining research on multiagent systems, specifically (i) fair division
of credit for energy savings in the context of cooperative game theory; (ii) robust MDP algorithms
that handle multi-objective optimization under uncertainty; and (iii) comfort-based energy-efficient
incremental scheduling in an innovative application for energy savings. It is this specific combi-
nation of attributes that sets my work apart from previous research. Furthermore, a key novelty
as an agent-based system for energy savings is that, my work is evaluated on real building and
meeting/event data that have been collected from more than 500 rooms in ten educational buildings
at USC and SMU.

In this chapter, I will describe research related to my thesis in the following categories: (i)
agent-based systems in energy, (ii) robust MDP and multi-objective techniques, (iii) resource
allocation and scheduling, (iv) fair division in cooperative game theory, and (v) social influence in

human subject studies.
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6.1 Agent-based Systems in Energy

Agent-based systems have been considered to provide sustainable energy for smart grid manage-
ment. Chalkiadakis et al. [Chalkiadakis et al., 2011] suggested Cooperative Virtual Power Plants
(CVPPs) for achieving the cost-efficient integration of the many distributed energy resources by
relying on a game-theoretic approach. Voice et al. [Voice et al., 2011] provided a game-theoretic
framework for modeling storage devices in large-scale systems where each storage device is owned
by a self-interested agent that aims to maximize its monetary profit. In addition, [Kamboj et al.,
2011] addressed research challenges to integrate plug-in Electric Vehicles (EVs) into the smart
grid. Stein et al. [Stein et al., 2012] also introduced a novel online mechanism that schedules the
allocation of an expiring and continuously-produced resource to self-interested agents with private
preferences while focusing on the fairness using pre-commitment in smart grid domain, which
is not directly applicable in commercial buildings. Miller et al. [Miller et al., 2012] investigated
how the optimal dispatch problem in the smart grid can be framed as a decentralized agent-based
coordination problem and presented a novel decentralized message passing algorithm. Their work
was empirically evaluated in large networks using real distribution network data.

The rise in energy consumption in buildings can be attributed to several factors such as
enhancement of building services and comfort levels [Gao et al., 2010; Perez-Lombard et al.,
2008; Santamouris et al., 1994; Sun and Lee, 2006]. To model and optimize building energy
consumption, Ramchurn et al. [Ramchurn et al., 2011] considered more complex deferrable loads
and managing comfort in the residential buildings. Rogers et al. [Rogers et al., 2011] addressed the
challenge of adaptively controlling a home heating system in order to minimize cost and carbon

emissions within a smart grid using Gaussian processes to predict the environmental parameters.
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Abras et al. [Abras et al., 2006], Conte et al. [Conte and Scaradozzi, 2003] and Roy et al. [Roy
et al., 2006] have employed multiagent systems to model home automation systems (or smart
homes) and simulating control algorithms to evaluate performance. More recently, Mamidi et
al. [Mamidi et al., 2012b] conducted research on smart sensing and adaptive energy management
system in commercial buildings. They implemented a multi-model sensor agent using various
types of sensors to estimate the number of occupants in each room and predict future occupancy
using machine learning techniques. This prediction can be potentially used for efficient HAVC
operations in the building. Jazizadeh et al. [Jazizadeh et al., 2013a,b] recently focused on building
a human-building interaction framework for understanding personalized thermal comfort models
in office buildings. Research by Li et al. [Li et al., 2012a,b] focused on understanding building
occupancy with RFID on hand-held devices and demand-driven HAVC operations based on the
measured occupancy. My work is different in focusing on energy savings in commercial buildings
by relying on different representation and approaches from previous work, which allows consumers
(i.e., occupants) to play a part in optimizing the operation in the building instead of managing the

optimal demand on buildings.

6.2 Robust MDP and Multi-objective Optimization Techniques

There has been a significant amount of work done on multi-objective optimization. Stadler and
Dauer [Stadler, 1987, 1988; Stadler and Dauer, 1992] provide extensive discussions on the funda-
mental concepts and ideas in this field. In contrast to single-objective optimization, there is no
single global solution while optimizing the multiple criteria, and the most predominant concept in

defining optimal solutions is Pareto Optimality [Pareto, 1906]. Vincent and Grantham [Vincent

105



and Grantham, 1981] and Miettinen [Miettinen, 1999] have been discussing theoretical necessary
and sufficient conditions to formally qualify Pareto Optimality. As alternative to the idea, Saluk-
vadze [Salukvadze, 1971a,b] also proposed a compromised solution concept, which generates a
single solution.

In terms of solution methods, The most common approaches to multi-objective optimization are
to find Pareto optimal solutions by using the weighted sum method to aggregate multiple objectives
using a prior preference [ Yoon and Hwang, 1995] or by considering the weighted min-max (or
Tchebycheff) formulation that provides a nice theoretical property in terms of sufficient/necessary
conditions for Pareto optimality [Koski and Silvennoinen, 1987; Messac et al., 2000a,b; Miettinen,
1999]. It has been proven that if all weight values are positive, this method gives Pareto optimal
solutions [Zadeh, 1963]. However, previous research [Athan and Papalambros, 1996; Das and
Dennis, 1997; Koski, 1985; Messac et al., 2000a,b; Stadler, 1995] discuss about weaknesses of this
method. Despite all these limitations, I use this method as a benchmark method for comparison
purposes since it is still widely used in this field.

Chatterjee et al. [Chatterjee et al., 2006] considered MDPs with multiple discounted reward
objectives. They theoretically analyzed the complexity of the proposed approach and showed that
the Pareto curve can be approximated in polynomial time. Wiering and Jong [Wiering and De Jong,
2007] described a novel algorithm to compute Pareto optimal policies for deterministic multi-
objective sequential decision problems. Authors proved that the algorithm converges to the Pareto
optimal set of value functions and policies for deterministic infinite horizon discounted multi-
objective Markov decision problems. Ogryczak et al. [Ogryczak et al., 2011] focused on finding a
compromise solution in multi-objective MDPs for a well-balanced solution. They compared their

approach relying on the Tchebycheff scalarizing function to the weighted sum method. On the
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other hand, there has been some significant advances to handle model uncertainty on standard
MDPs including [Delgado et al., 2009; Givan et al., 2000]. Recently, Soh and Demiris [Soh and
Demiris, 2011] extended the previous work and considered the multiple-reward POMDPs. They
presented two hybrid multi-objective evolutionary algorithms that generate non-dominated sets
of policies. My work is different from them as I assume model uncertainty while simultaneously

optimizing multiple criteria in MDPs.

6.3 Resource Allocation and Scheduling

There has been some work focusing on scheduling of home appliances considering user pref-
erences [Bapat et al., 2011; Sou et al., 2011; Xiong et al., 2011]. In particular, they consider
inferred user’s preferred usage profile while scheduling home appliances in residential buildings,
which is considered as a fixed constraint. My work is different as it does not only maximize
energy savings while considering users’ preferences, but also effectively interacts with users to
change their flexibility to achieve further energy savings. More recently, there has been some
work focusing on energy-aware scheduling in commercial buildings [Majumdar et al., 2012]. The
authors only consider the HVAC systems and ignore other significant energy consumers such as
lighting and electronics in commercial buildings while optimizing schedules based on the given
fixed constraints. My thesis work is different by focusing on an energy-oriented scheduling while
considering major energy consumers (HVACs, lighting and electronics) together in commercial
buildings. I also identify key meetings for flexibility change, an aspect that is missing in this

previous work.
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In a multiagent community, there has been a significant amount of work that has focused
on meeting/event scheduling based on the distributed constraint optimization (DCOP) formu-
lation [Maheswaran et al., 2004; Sultanik et al., 2007]. They provide distributed scheduling
frameworks that are limited to dynamic scheduling problems. In addition, they focused on schedul-
ing meetings without energy considerations. My work differs from their work as it explicitly
aims to conserve energy while scheduling incrementally/dynamically arriving requests. Wainer et
al. [Wainer et al., 2007] also presented a set of protocols for scheduling a meeting among agents
that represent their respective user’s interests and evaluated the suggested protocols while handling
meeting scheduling problems. The objective in their work is to find the optimal protocol to reach
agreement among agents, which does not explicitly account for energy.

Online scheduling techniques have been investigated to handle incremental requests consid-
ering temporal flexibility [Gallagher et al., 2006; Policella et al., 2004]. My work is different by
focusing on energy-oriented scheduling in commercial buildings while allowing people to play a

part in optimizing the operation in the building.

6.4 Fair Division in Cooperative Game Theory

6.4.1 Cooperative Game Theory in Energy Systems

Alam et al. [Alam et al., 2013] investigated the exchange of energy between homes in a community
to reduce the overall battery usage, and showed that agents (acting on the behalf of households)
can coordinate and regulate the exchange of energy between homes which leads to two surpluses:
reduction in the overall battery usage and reduction in the energy losses. To ensure a fair distri-

bution of these surpluses among agents, each agent’s contribution to both surpluses is computed
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using the Shapley value and an approximation method is used to speed up this computation. Khan
et al. [Khan and Ahmad, 2009] applied the concept of Nash Bargaining Solution (NBS) from co-
operative game theory to minimize energy consumption and response time in computational grids
and showed that the solution is guaranteed to be Pareto-optimal. Zima et al. [Zima-Bockarjova
et al., 2010b] apply cooperative game theoretic concepts to the problem of energy supply system
planning to maximize profit earned by market participants. They find the Shapley value for each
agent to divide additional gains among the coalition participants. Sereno [Sereno, 2012] used
cooperative game theory to develop a framework for energy-aware policies in cellular networks.
[Sereno, 2012] also discusses fair division of benefits derived from cooperating agents based
on the Shapley value solution concept. [Kattuman et al., 2001; Hsieh, 2006; Zima-Bockarjova
et al., 2010a] also discuss the application of Shapley value to solve the loss allocation problem in
electricity markets and for sharing of profit obtained from coordinated operation in hydro and wind
power production domains. My work is different in that it provides an integrated agent that focuses
on fair credit allocations, based on novel efficient Shapley value computation while exploiting the
domain properties. This is for incentivizing users to participate in this energy saving process in

commercial buildings.

6.4.2 Shapley Value and Approximation Techniques

[Bachrach et al., 2013] focuses on showing how various cooperative game-theoretic solution
concepts can be used in a network connectivity scenario (particularly network communication
reliability domain). In particular, they investigated Shapley value, Banzhaf power indices, the
core and the epsilon core. This paper includes a good amount of literature review and polynomial

algorithms for the restricted domain where the graph has a tree structure. Although I construct a
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flexibility-based influence graph, which is similar to a connectivity graph used in this work, I use a
given general graph mainly for speeding up the computation by considering partitions.

Various methods of approximating the Shapley value can be found in literature. Mann et
al. [Mann and Llyod, 1960] proposed a Monte-Carlo simulation technique for approximating the
Shapley value and applied it to analyze the US electoral-voting system. Owen’s [Owen, 1972]
multilinear extension method for approximating the Shapley value in weighted voting games is
linear in the number of players. Fatima et al. [Fatima et al., 2008] also provided an approximation
method for the Shapley value which is linear in the number of players for k-majority games.
However, the approximation error for their method was relatively low as compared to Owen’s.
They also empirically evaluated the approximation error and analyzed how various parameters of
a voting game, like the number of players and the quota, affect the error. Aadithya et al. [Aadithya
et al., 2010] explored efficient ways of calculating the Shapley value for network centralities.
Besides deriving closed-form expressions for the Shapley values based on the underlying network
structure and the game defined over the network, they also provide exact and polynomial time
Shapley value approximation algorithms based on them. Bachrach er al. [Bachrach et al., 2010]
includes a thorough literature survey of methods to approximate power indices such as the Banzhaf
and Shapley-Shubik power indices. They also suggest and analyze approximation algorithms for
these power indices and provide lower bounds for both deterministic and randomized algorithms
to calculate these indices. They also noted that the Shapley-Shubik power index approximation
method suggested in [Bachrach et al., 2010] can be adapted to efficiently compute the Shapley
value by using proper bounds for the Hoeftding inequality and thus use it to compute an individual’s
relative contribution to the 1Q of a group in [Bachrach et al., 2012]. My approximation technique is

different from previous work as I exploit domain properties to integrate a novel graph partitioning
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algorithm, caching technique, and an LP relaxation method to approximate the Shapley value and
simultaneously speed up its computation. In addition, my work integrates this technique within an

agent that (re)schedules meetings.

6.5 Social Influence in Human Subject Studies

I leverage lessons and insights from social psychology in understanding and designing reliable
and accurate human behavior models to compute robust strategies in the real-world. Wood and
Neal [Wood and Neal, 2007, 2009] have studied the potential of interventions to reduce energy
consumption and they have shown that it is not only to change workplace energy consumption
but also to establish energy use habits that maintain over time. Abrahmase et al. [Abrahmase
et al., 2005] reviewed 38 interventions aimed to reduce household energy consumption, and
they showed that information campaigns often improve knowledge but have limited influence
on behavior or energy savings in residential buildings. According to their study, when monetary
rewards were given for energy savings, energy consumption decreased in the short-run but not in
the longer-term after the rewards were terminated, and they concluded that normative feedback
about energy use is the most promising strategy for reducing and maintaining low consumption.
However, it focused on residential environments, which is different from my work. In a recent
study, Carrico and Riemer [Carrico and Riemer, 2011] provided monthly normative feedback via
email to occupants of a commercial building about their own buildings’ energy use in comparison
with and other, similar buildings. Unfortunately, the study only relied on self-reporting to assess
the behaviors. Instead, my work relies on both real sensors to observe their energy behavior in

real-time and self-reporting. Faruqui et al. [Faruqui et al., 2010] reviewed past experiments and
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pilot projects to evaluate the effect of in-home displays (IHDs) on energy consumption. My work
is different because I simultaneously consider multiple criteria including energy consumption and
occupant comfort level. Research by Fahrioglu et al. [Fahrioglu and Alvardo, 2000], Mohsenian-
Rad et al. [Mohsenian-Rad et al., 2010] and Caron et al. [Caron and Kesidis, 2010] provide
incentive compatible mechanisms for distribution of energy among interested parties. This thread
of research is complementary, especially in designing incentives for humans to reveal their true
energy preferences. However, these approaches assume a centralized controller with whom all the
members interact, which is not present in my domain. Instead, there are peer-to-peer negotiations
between humans regarding their energy consumption and comfort level.

In social psychology, there has been a significant deal of work to figure out the correlation
between irritation/distraction factors and persuasion. McCullough and Ostrom [McCullough and
Ostrom, 1974], Cacioppo and Petty [Cacioppo and Petty, 1989] and Nordhielm [Nordhielm, 2002]
discussed that message repetition would increase positive attitudes in a situation where highly
similar communications are used and showed that there is a positive relationship between the
number of presentations and attitude from general social psychology perspectives. Focusing on a
commercial advertisement, Pechmann and Stewart [Pechmann and Stewart, 1988], Schumann et
al. [Schumann et al., 1990] and Calder and Sternthal [Calder and Sternthal, 1980] predicted the
effectiveness of different strategies on advertising and examined the effects of message repetition
on attitude changes. In addition, Baron et al. [Baron et al., 1973], Bither [Bither, 1972] and Regan
and Cheng [Regan and Cheng, 1973] discussed that distractions affect behavior decisions, but
they are more or less effective in increasing persuasion depending upon whether people can easily

ignore the distraction.
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Chapter 7: Conclusions

The rapid growth in energy usage has made the need for systems that aid in reducing energy
consumption a top priority. To that end, researchers in multiagent community have been developing
multiagent systems to conserve energy for deployment in the smart grid and buildings [Kamboj
etal., 2011; Mamidi et al., 2012a; Miller et al., 2012; Ramchurn et al., 2011; Rogers et al., 2011;
Gerding et al., 2011; Chalkiadakis et al., 2011; Voice et al., 2011]. Despite the recent success to
forge a new area of agent-based systems for energy conservation, their work has been done with a
particular focus on residential buildings, and does not directly apply to commercial buildings. For
successfully developing real-world energy systems to conserve energy in commercial buildings,
three unique research challenges should be simultaneously addressed. First, algorithms should
be able to handle massive meetings/events schedules while focusing on conserving energy and
considering the given human models. Second, there are different types of energy-related behaviors
in commercial buildings from residential ones. They require agents to negotiate with groups of
people for guiding their behaviors to conserve energy while ensuring a balance of energy savings
and comfort under uncertainty over people’s behavior preferences. Third, the systems should
also ensure that proper credit is given based on people’s true contribution in energy savings for

effectively motivating people.
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Given the huge growth of recent research interest at the intersection between computer science,
civil engineering, social psychology, architecture, and facility management, my thesis focused
on presenting new agent-based models and algorithms aiming to conserve energy in commercial
buildings. My thesis, specifically, contributed along two dimensions. Firstly, I developed new
models and algorithms to address the combinations of research challenges described above and to
provide robust solutions for such real-world problems. Secondly, my thesis also integrated novel

models and algorithms within agents dedicated to energy efficiency.

7.1 Contributions

e My thesis handled online predictive scheduling of massive numbers of dynamically arriving
and uncertain meetings/events while considering flexibility, which is a novel concept for
capturing generic user constraints. More specifically, I provided the following algorithmic
contribution: a two-stage stochastic mixed integer linear program (SMILP) for energy-
efficient scheduling of incrementally/dynamically arriving meetings and events. I compared
the simulation results in energy savings achieved by the proposed predictive scheduling
algorithm against real-world data. These results showed that my predictive scheduling
algorithms could potentially offer significant saving benefits in general scheduling domains

where schedule flexibility plays a key role for such savings.

e My thesis provided a robust MDP (Markov Decision Problem) model and algorithms to
effectively reschedule group activities such as meetings/events for saving energy while
considering multiple objectives as well as uncertainty both at planning and execution time.

Specifically, I presented a novel model and robust algorithms:
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— BM-MDP (Bounded-parameter Multi-objective MDP) that explicitly models multiple

criteria as well as uncertainty over people’s preferences

— robust algorithms to solve BM-MDPs and dynamic replanning methods for handling

uncertainty at execution time

I showed that BM-MDPs with replanning generated robust solutions while considering

multiple criteria and model uncertainty at both planning and execution time.

My thesis addressed fair division of credit using concepts of cooperative game theory. In
particular, I appealed to cooperative game theory and specifically to the concept of Shapley
value for this fair division. Unfortunately, scaling up this Shapley value computation is a
major hindrance in practice. Therefore, I presented a novel algorithmic contribution for

scaling up the overall computations:

— approximation algorithms to efficiently compute the Shapley value based on sampling

and partitions

— an LP (linear program) relaxation method to speed up the characteristic function

computation

These approximations allowed efficient computations of fair individual allocations in a
large-scale saving game in the real-world. I also showed that different combinations of these
approximations can be chosen under particular circumstances while considering the tradeoff

between solution quality and runtime.

My algorithmic contributions have been successfully integrated within agents dedicated to

energy efficiency: SAVES, TESLA and THINC. SAVES provided several key novelties:
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jointly performed with the university facility management team, SAVES was based on
actual occupant preferences and schedules, actual energy consumption and loss data,

real sensors and hand-held devices, etc.

— it addressed novel scenarios that require negotiations with groups of building occupants

to conserve energy.

— it focused on a non-residential building, which requires a different mechanism to

effectively motivate occupants.

— SAVES used a novel algorithm for generating optimal MDP policies that explicitly
consider multiple criteria optimization as well as uncertainty over occupant preferences

when negotiating energy reduction.

I showed that SAVES substantially reduced the overall energy consumption compared to
the existing control method while achieving comparable average satisfaction levels for

occupants. Next, TESLA provided two key contributions:

— it presented online scheduling algorithms, which are at the heart of TESLA, to solve a
stochastic mixed integer linear program (SMILP) for energy-efficient scheduling of

incrementally/dynamically arriving meetings and events.

— it included an algorithm to effectively identify key meetings that lead to significant

energy savings by adjusting their flexibility.

Lastly, THINC provided two key contributions:

— it used novel algorithmic advances for efficient computation of Shapley value.
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— it included a novel robust algorithm to optimally reschedule identified key meetings

addressing user interaction uncertainty.

TESLA and THINC were evaluated on data gathered from over 110,000 meetings held at
nine campus buildings during an eight month period in 2011-2012 at USC and SMU. These
results and analysis showed that, compared to the current systems, they could substantially
reduce overall energy consumption. In addition, Finally, THINC was deployed in the real-
world as a pilot project at the Doheny library at USC and presented results illustrating the

benefits in saving energy.

7.2 Future Work

As described in the earlier section, my work provided three key algorithmic contributions in-
cluding (i) energy-efficient scheduling of user meeting requests while considering flexibility, (ii)
rescheduling of key energy-consuming meetings for more energy savings, and (iii) efficient fair
credit allocations based on Shapley value to incentivize users for their energy saving activities.
These new models and methods have not only advanced the state of the art in multiagent algo-
rithms, but have actually been successfully integrated within agents dedicated to energy efficiency,
clearly demonstrating the potential of agent technology to assist human users in saving energy in
commercial buildings.

However, there exist some remaining open challenges which can be explored for building

real-world energy applications going forward:

e My present dynamic replanning MDP methods provide a reasonable way to handle uncer-

tainty both at planning and execution time; however, the further investigation regarding the
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trigger points deciding when to keep the existing policy or when to regenerate the policy

from the scratch.

e Scalability could be further investigated to further speed up the characteristic function

computation by adopting the decomposition methods such as a Lagrangian decomposition.

o Although real building data of the Leavey library including the actual floor flan, lighting
specifications, etc., were used, the energy consumption validation on the library building

has not been thoroughly conducted in the simulation environment.'

e In practice, it is challenging to know the exact human behavior models while interacting
with users to reschedule their activities under different circumstances. So far, in this work, I
relied on sparse samples from surveys (conducted in RGL and Amazon Mechanical Turk
(AMT)) to construct the behavior models and applied the same models to different buildings

(e.g., Leavey and Doheny libraries), which results in potential noises on results.
e Human subject experiments were conducted in a limited fashion:

— AMT, which I have used for conducting human subject experiments, is limited to
provide participants with the exact context in detail as it often assumes hypothetical

situations which might not be realized in practice.

— The human subject experiments conducted at USC with staff and students relied upon
self-reports which may not reflect actual circumstances, and long-term effects were

not observed.

'The energy consumption validation has been thoroughly performed on the RGL building while ignoring the heat
transfer effect between spaces for HVACs.
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— Human subject experiments were conducted under a specifically controlled environ-

ment, which may result in biased results from human participants.

o Although the Shapley value has been widely adopted for mathematically computing fair
individual allocations, human conceptions of its fairness to actual users in my domain have

not yet been explored.

o The proposed algorithms were mainly evaluated in simulation, and the integrated agent has
been only deployed at the Doheny library as a pilot project in a limited fashion. Although the
simulation results clearly support the argument that the proposed methods have significant
potential in saving energy, the full-scale deployment will be eventually required to verify

the end-to-end operations of my agent in real commercial buildings.

e So far, the effects of social norm-based feedback and monetary-based feedback on changing

people’s (habitual) behaviors have not been investigated thoroughly in this energy domain.

e The social norm-based feedback on groups of human users has not been explored in my

work.
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Appendix: Properties of Shapley Value to Axiomatize Fairness

In Chapter 5, I mentioned that my approximation algorithms theoretically satisfy the dummy
player and additivity properties. I thus provide a formal proof to show that in this appendix.

Let us recall that the Shapley value can be expressed in terms of all possible orders of the
playersin N. Let O : {1,...,n} — {1,...,n} be a permutation that assigns to each position k the
player O(k). Let us denote by m(N) the set of all possible permutations with player set N. Given
a permutation O, let us denote by P/(O) the set of predecessors of the player i in the order O
(i.e., PI(0) = {0(1), ...,O(k — 1)}, if i = O(k)). Thus, the Shapley value can be expressed in the
following way:

1 N
HNV) = Y —A(@). i=Tln (1)
Oen(N)
where A/)(i) = v(P{(0) U i) — v(P(0)), which is the marginal contribution of player i given a
permutation O.

Proposition 1. Dummy player: Consider a coalitional game (N, v). If a player i € N is a dummy,
then ¢;(N,v) = 0.

Proof. Take an arbitrary permutation O. We have W(PI(0) U i) = v(P{(0)) as player i is a dummy.
Thus, A},(i) = 0. As this holds for any O € 7(N), we have ¢;(N,v) = 0.

For ApproShapley, we now consider m sampled permutations r,,(N) € 7(N). Likewise, since
the same property holds for any O € r,,,(N), we still have ¢;(N,v) = 0.

For graph partitioning, let S and S, are partitions (i.e., independent) of N (i.e., N = S| U
S$2,851NS2,=0,51 #S»). If playeri € S| is a dummy, then

#i(N,v) = ¢i(S1US,,v) (. by definition)
=¢;(S1,v) (.81 and S, are independent; Lemma 2)
=0 (. for any permutation O € n1(S 1), A, (i) = 0)

Likewise, if player i € S, is a dummy, ¢;(N,v) = ¢i(S1 U S2,v) = ¢i(S2,v) = 0.
Thus, any combination of our approximation methods hold the dummy player property. O

Proposition 2. Additivity: Consider two characteristic functions v and v, over the same set of
players N. Then for any player i € N, we have ¢;(N,vi + v2) = ¢i(N,v1) + ¢i(N, v2).
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Proof. Let v* be the characteristic function v; + v,. Given a player i € N and a permutation O, let
Aj (i) = vH(P(0) U i) — v'(P'(0)). Then,

AL =vH(P(0) U i) — v (P'(0))
= [Vi(P'(0) U i) + »a(PH(0) U i)] = [vi(P(0)) + va(P(0))]
= [Vi(P'(0) U i) = vi(P(O)] + [v2(P'(0) U i) = va(P(0))]
= AL () + A (0).

Thus, we obtain

1
BiN,vi +v2) = i(N,v) = — > AH(0)
e Oen(N)

1 ,
— D A+ AG@)

" Oen(N)
$i(N,v1) + ¢i(N,v2).

For ApproShapley, we now consider m sampled permutations r,,(N) € m(N). Similarly, for
any O € ,(N), A5(0) = A (i) + A (i). Thus,

1 .
$i(N,vi +v2) = — Z AL(D)
" Oemn(N)

1
— D A5+ Az

" OEmm(N)
¢i(N,v1) + ¢i(N,v2).

For graph partitioning, let S| and S, are partitions (i.e., independent) of N (i.e., N = S| U
S$,,51NS,=0,51 #8»,). If playeri € §1, then

$i(N,vi +v2) = ¢i(S1US2,vi +v2) (. by definition)
= ¢i(S1,v1 +v2) (. §1and S, are independent; Lemma 2)
= ¢i(S1,v1) + ¢i(S1,v2) (- forany O € n(S1), Ap() = Ay (i) + Ag (D)
=¢i(S1US2,v)+¢;(S1US2,v) (.81 and S, are independent; Lemma 2)
= ¢i(N,v1) + ¢i(N,v2) (. by definition)

Likewise, if player i € So, ¢;(N,vi + v2) = ¢i(N,v1) + ¢;(N, v2).
Thus, any combination of our approximation methods hold the additivity property. O
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