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Abstract. This paper introduces a new game-theoretic framework and algorithms
for addressing opportunistic crime. Stackelberg Security Game (SSG), focused on
highly strategic and resourceful adversaries, has become an important computa-
tional framework within multiagent systems. Unfortunately, SSG is ill-suited as a
framework for handling opportunistic crimes, which are committed by criminals
who are less strategic in planning attacks and more flexible in executing them
than SSG assumes. Yet, opportunistic crime is what is commonly seen in most
urban settings. We therefore introduce Opportunistic Security Game (OSG), a
computational framework to recommend deployment strategies for defenders to
control opportunistic crimes. Our first contribution in OSG is a novel model for
opportunistic adversaries, who (i) opportunistically and repeatedly seek targets;
(ii) react to real-time information at execution time rather than planning attacks
in advance; and (iii) have limited observation of defender strategies. Our second
contribution to OSG is a new exact algorithm EOSG to optimize defender strate-
gies given our opportunistic adversaries. Our third contribution is the develop-
ment of a fast heuristic algorithm to solve large-scale OSG problems, exploiting
a compact representation. We use urban transportation systems as a critical mo-
tivating domain, and provide detailed experimental results based on a real-world
system.
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1 Introduction

Stackelberg Security Game (SSG), an important computational framework within mul-
tiagent systems [1, 2], enables security resource allocations against highly strategic and
capable adversaries who conduct careful surveillance and plan attacks. While there are
undoubtedly such highly capable adversaries [1], they likely comprise only a small pro-
portion of the overall set of adversaries in the urban security domain.

This paper focuses on the majority of adversaries for urban security: criminals who
have little planning or surveillance before attacking [3, 4]. These adversaries capitalize
on locally opportunities and react to real-time information. Unfortunately, SSG is ill-
suited to model such criminals, as it attributes too much planning and little execution
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flexibility to adversaries. Therefore, based on modern criminological theory [3–5], this
paper introduces Opportunistic Security Game (OSG), a new computational framework
for addressing opportunistic crime. OSG fundamentally differs from SSG, and opens
the door to new research at the intersection of computational game theory and crimi-
nology.

This paper provides three key contributions in introducing OSG. First, OSG in-
cludes a model of opportunistic criminals who exhibit a stochastic pattern of movement
to search for crime opportunities. This movement, modeled as Quantal Biased Random
Movement, based on a previous model of criminal motion [6], is quite different from a
fixed route that an adversary is assumed to pursue in SSG. In OSG, criminals react to
real-time information about rather than committing to a single plan [7, 5]. Additionally,
OSG applies anchoring-bias [8] to model criminals’ limited knowledge. Our second
contribution is a new algorithm EOSG to generate patrol schedules that optimize the
defender’s expected utility against this new kind of adversary. OSG is similar to SSG:
the defender must commit to her patrol strategy first, after which the criminals will
choose targets to attack. However, there are two main differences. First, in OSG, crim-
inals react to real-time information. Second, after any attempt, criminals in OSG can
remain in the system and search for another opportunity. The third contribution is a fast
algorithm, Compact OPportunistic Security game states (COPS), to solve large scale
OSG problems.

In motivating this work, we focus on crime in urban transportation systems as it is
an important challenge across the world. Indeed, transportation systems are at unique
risk of crime because of the way in which they concentrate large numbers of people in
time and space [9–11]. The challenge in controlling this crime in transportation systems
can be seen as an OSG: police patrol to control crime while criminals hunt for crime
opportunities. Criminals are known to travel based on their knowledge of crime oppor-
tunities [12, 13], usually committing crimes such as thefts and snatches at stations –
where it is easy to escape if necessary [14]. These opportunistic criminals avoid targets
if security presence is observed there [15].

2 Motivating Domain

Crime in urban transportation systems — including buses, trams and metro trains – is
a critically important challenge in cities across the world. Transportation systems play
an important role in driving local crime patterns, and may themselves be at unique risk
of crime because of the way in which they concentrate large numbers of people in time
and space [9–11].

Given that a substantial portion of criminals use public transit as a primary mode
of transportation [14], it is reasonable to infer that a significant number of criminals
spend extended periods of time traveling through the transportation system seeking
to commit crimes. Deploying police to patrol is then one way to control such crime
in a transportation system. Thus, whereas the police move within the transportation
system in an attempt to dissuade crime, criminals move within this same system based
on their limited knowledge of the police strategy and their knowledge of how crime
opportunities may be distributed among target locations. These opportunistic criminals
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may continue to hunt for crime opportunities by, for example, traveling to a different
target location (station) when a security officer is observed at their current location.

In this work, we consider a metro rail system (e.g., the LA metro rail system) as a
specific example system and modeling objective. We consider two major components
in a metro rail system, stations and trains. As shown in crime data from the LA metro
system, criminals usually commit crimes such as thefts and snatches at stations – where
it is easy to escape if necessary.

3 OSG Framework

In OSG, the defender (“she”) – assisted by our algorithms – is modeled to be perfectly
rational. The criminal (“he”) is modeled with cognitive biases. Figure 1 illustrates the
OSG flowchart, with the numbers near variables referring to equations in this section;
useful notation is shown in Table 1.

π Defender’s Markov strategy csb Criminal’s belief of cs

Td Defender transition matrix ctb Criminal’s belief of ct

cs Defender stationary coverage TdbCriminal’s belief of Td

ct Defender coverage vector at time step t E The expected value of targets for
criminals

Ts Transition matrix for the OSG Markov
chain

p Criminal’s next strike probability
distribution

ObjDefender’s objective
Table 1. Notation

3.1 Player decision and actions in OSG

We consider as a generic example a metro rail system and its two major components,
stations and trains, which we collectively refer to as locations. We denote the number
of stations in the system as N . The stations are labeled 1, . . . , N . The train from station
i to its neighboring station j is denoted as i → j. We denote the number of locations
as Nl > N . We divide time equally into time steps so that trains arrive at stations at
the beginning of each time step. There are two phases in any time step. The first phase,
the decision phase, is the beginning period when trains are at stations. In this phase,
each passenger at each location can decide where to move next. There are two choices
available. Go i → j means that (i) if a passenger is at station i, he/she gets on the
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train i → j; (ii) if he/she is on a train arriving at station i, he/she gets off the current
train and gets on the train i → j unless the current train is i → j. Stay means that the
passenger stays at the station, so that if the passenger was on a train, then he/she gets
off. We denote by pi→jl and sl the probabilities of Go i → j and Stay for location l,
respectively.

At the end of each decision phase, during the action phase, trains depart in all pos-
sible directions from all stations. In this phase, trains are in motion from one station
to another. For simplicity we assume that the time it takes to travel between any two
adjacent stations is identical; this assumption can be relaxed by including dummy sta-
tions. This model matches metro systems in Los Angeles, where trains leave stations at
regular intervals in all directions. Next, we focus on two types of passengers: defenders
and criminals.

3.2 Modeling Defenders

A defender is a team of police officer using trains for patrolling to mitigate crime. We
start with a single defender and deal with multiple defenders later. The defender con-
ducts randomized patrols using a Markov Strategy π, which specifies for each location a
probability distribution over all available actions. Using a Markov strategy, rather than
explicitly representing each pure strategy, essentially implies that we use a compact
representation for defender strategies.

Example 1: Markov Strategy Figure 2 shows a simple scenario with 3 stations
(1, 2, 3) and 6 trains (1 → 2, 1 → 3, 2 → 1, 2 → 3, 3 → 1, 3 → 2), which is a fully
connected topology. A possible Markov strategy π for the defender is,

s1 = 0.2, p1→2
1 = 0.5, p1→3

1 = 0.3;

· · ·
s3→2 = 0.1, p2→1

3→2 = 0.8, p2→3
3→2 = 0.1;

s3→2 = 0.1, p2→1
3→2 = 0.8, p2→3

3→2 = 0.1 means that if the defender is on the train
from station 3 to station 2, then: she will have probability 0.1 to choose action Stay,
probability 0.8 to choose action Go 2 → 1, and probability 0.1 to choose action Go
2→ 3 at the next decision phase.

Given π, the defender’s movement is a Markov chain over the locations with de-
fender transition matrix Td, whose entry at column k, row l specifies the probability of
the defender going from location k to location l in one time step. We choose an index
such that i(i ∈ 1, . . . , N) represents station i; indexes larger than N represent trains.
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Example 2: For Example 1, Td is as follows:

1 2 · · · 2→ 33→ 13→ 2
1
2
3

1→ 2
1→ 3
2→ 1
2→ 3
3→ 1
3→ 2
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We denote the defender’s location coverage vector at time t as ct. Using Td and ct,

we can calculate the coverage vector at time step t1 > t through the formula

ct1 = (Td)
t1−t · ct . (1)

We restrict each element in π to be strictly positive so that Td is ergodic, meaning
it is possible to eventually get from every location to every other location in finite time.
For an ergodic Td, there is a unique stationary coverage cs, such that Td · cs = cs [16].
The dependence of cs on Td and hence on π is shown in Fig. 1. The defender’s initial
coverage, c1, is set to cs so that the criminal will face an invariant distribution whenever
he enters the system.

3.3 Modeling Opportunistic Criminals

Our model consists of three components: The opportunistic criminal’s probability
to commit a crime at the current time step: We ignore the possibility of crimes dur-
ing the decision phases because they are instantaneous. In action phases, crimes may
occur only at stations, as discussed in the Introduction, and occur with a probability
determined by two factors. The first is the attractivenes of each target station [6], which
measures the availability of crime opportunities at a station. Attractiveness measures
precisely how likely a criminal located at that station during an action phase will com-
mit a crime in the absence of defenders. Att is the N vector of station attractiveness.
The second factor is the presence of the defender. Specifically, if a criminal is at the
same station as a defender, he will not commit a crime. Thus, his probability of com-
mitting a crime at station i will be influenced by ct(i). Using this strategy, the criminal
will never be caught red handed by the defender, but may be forced toward a less at-
tractive target. Considering both factors, the probability of the criminal committing a
crime if located at station i during the action phase of time step t, denoted as qc(i, t), is
qc(i, t) = (1− ct(i))Att(i).

Criminal’s belief state of the defender: During the decision phase, the opportunis-
tic criminal decides the next target station and moves on a path directly to that station.
Hence, the criminal’s motion within the metro system can be distilled down to a se-
quence of stations where he is located during action phases; we refer to these instances
of attempted crime as Strikes. As shown in Fig. 3, only the time steps when the criminal
is at stations are counted as strikes.
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When making these target decisions, the criminal tends to choose stations with high
expected utilities. He uses his knowledge of π and his real-time observations to make
such decisions. Let Tdb, ctb and csb be his belief of Td, ct and cs respectively. As the
criminals are with limited surveillance capability, these beliefs may not be the same
as Td, ct, and cs. Therefore, we introduce the criminal’s surveillance imperfection via
anchoring bias, a cognitive bias that describes the human tendency to rely on a familiar,
but not necessarily relevant, reference point when making decisions [17, 8]. We denote
the level of the criminal’s anchoring bias with the parameter b, where b = 0 indicates
no anchoring bias, and b = 1 indicates complete reliance on such bias. We get Tdb =
(1− b) · Td + b · Tu, with corresponding stationary coverage csb , where Tu corresponds
to a strategy in which the defender picks each available action with uniform probability.

At any given time step t, the criminal may use his beliefs and observations to cal-
culate ctb. It is reasonable to assume that the opportunistic criminal does not perform a
perfect belief update using all observations; rather he only uses his current observation
and belief to estimate ctb. Specifically, if the criminal is at station i and the defender
is also there, then ctb is (0, 0, ..., 1, 0, ..., 0)T , where row i is 1 and all others are 0.
Otherwise the defender is not at i, and

ctb =
(csb(1), c

s
b(2), ..., 0, c

s
b(i+ 1), ..., csb(Nl))

T

[1− csb(i)]
, (2)

where row i is 0 and other rows are proportional to the corresponding rows in csb . Given
ctb and Tdb, the belief coverage vector at time step t1 (t1 > t), ct1b , is calculated via
Eq. 1.

We set the actual payoff for a crime to 1, but this can be generalized. The expected
payoff for the criminal to choose station j as the next strike, given that the current
strike is at station i at time step t, is qc(j, t + dt), where dt ≥ 1 is the time needed to
arrive at j from i. But, criminals are known to discount more distant locations when
choosing targets [7]. Therefore, the utility that the criminal places on a given payoff
is discounted over time. We implement this by dividing the payoff by the time taken.
Finally, the criminal must rely on his belief of the defender’s coverage when evaluating
qc(j, t+ dt). Altogether, station j has the expected utility E(j|i, ctb), which is:

E(j|i, ctb) =
(
1−

[
T dtdbc

t
b

]
(j)
)
Att(j)

dt
. (3)

The criminal’s probability distribution for each station being chosen as the
next target: Finally, we use Quantal Biased Random Movement (QBRM) to model the
criminal’s bounded rationality. Instead of always picking the station with highest ex-
pected utility, his movement is modeled as a random process biased toward stations of
high expected utility. Given the expected value for each station E(·|i, ctb), the probabil-
ity distribution for each being chosen as the next strike, p(·|i, ctb) is determined by the
equation

p(j|i, ctb) =
E(j|i, ctb)λ∑N
h=1E(h|i, ctb)λ

, (4)

where λ > 0 is a parameter that describes the criminal’s level of rationality. This is
an instance of the quantal response model of boundedly rational behavior [18]. The
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criminal may, as an alternative to choosing a further strike, leave the system at exit rate
α.

To summarize, as shown in Fig. 1, the opportunistic criminal is modeled as follows.
First, he commits a crime or not based on defender presence and attractiveness at cur-
rent station. Next, he uses Tdb and current observation to update ctb (Eq. 2). Finally,
we use QBRM to model his next attack (Eq. 4). Algorithm 1, in the online appendix
(http://osgcops.webs.com/), is a full mathematical description of the criminal’s move-
ment.

4 Exact OSG (EOSG) algorithm

Given the defender and criminal models, the EOSG algorithm computes the optimal
defender strategy by modeling the game as a finite state Markov chain. As all the crim-
inals behave identically, we can focus on the interaction between the defender and one
criminal without loss of generality.

Each state of the EOSG Markov chain is a combination of the criminal’s station
and the defender’s location. Here we only consider situations where the criminal is
at a station as states because he only makes decisions at stations. Since there are N
stations and Nl locations, the number of states is N · Nl. State transitions are based
on strikes rather than time steps. The transition matrix for this Markov chain, denoted
as Ts, can be calculated by combining the defender and criminal model. For further
analysis, we pick the element pS1→S2 in Ts that represents the transition probability
from state S1 to S2. Suppose in S1 the criminal is at station i while the defender is at
location m at time step t, and in S2, the criminal is at station j while the defender is at
location n at time step t+ dt. We need two steps to calculate this transition probability.
First, we find the transition probability of the criminal from i to j, p(j|i, ctb). Then,
we find the defender’s transition probability from m to n as described above, which is
ct+dt(n) =

(
T dtd · em

)
(n), where em is a basis vector for the current location m. The

transition probability pS1→S2 is therefore given by

pS1→S2 = p(j|i, ctb) · ct+dt(n). (5)

Since p(j|i, ctb) and ct+dt(n) are determined by π, pS1→S2 is also in terms of π (see
Figure 1), as is Ts.

Given this EOSG model, we can calculate the defender’s utility at each strike. For
each successful crime, the defender receives utility ud < 0. If there is no crime, she
receives utility 0. This is a non-zero-sum game because we do not consider the time
discount factor in the defender’s expected utility. Formally, we define a vector rd ∈
RN ·Nl such that entries representing states with both criminal and defender at the same
station are 0 while those representing states with criminal at station i and defender not
present are Att(i) ·ud. Then, the defender’s expected utility Vd(t) during strike number
t is Vd(t) = rd · xt, where xt is the state distribution at strike number t, which we can
calculate from the initial state distribution x1 as follows: xt = ((1−α) ·Ts)t−1x1. The
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defender’s total expected utility over all strikes is thus:

Obj = lim
`→∞

∑`

t=1
Vd(t)

= lim
`→∞

∑`

t=1
rd · ((1− α) · Ts)t−1x1

= rd · (I − (1− α)Ts)−1x1, (6)

where I is an identity matrix. In this equation we use the geometric sum formula and
the fact that the largest eigenvalue of Ts is 1, so that I − (1 − α)Ts is nonsingular for
0 < α < 1.

The objective is a function of the transition matrix Ts, which can be expressed in
terms of π via Eqs. (1), (3), (4), and (5). We have thus formulated the defender’s prob-
lem of finding the optimal Markov strategy to commit to as a nonlinear optimization
problem, specifically to choose π to maximize Obj (that is, minimize the total amount
of crime).

5 OSG for multiple defenders

If multiple defenders all patrol the entire metro, applying the same Markov strategy,
then they will often be at the same station simultaneously, and such duplication carries
no benefit. Instead, we construct our multiple-defender strategy by dividing the metro
up into K contiguous segments, and designating one defender for each segment, as
is the case in typical real-world Metro patrolling. Each defender will have a different
strategy that is particular to her segment.

Defenders: In k-th segment, the number of locations is nkl . Defender k patrols with
the Markov strategy πk. Her transition matrix is Tdk ∈ Rn

k
l ×n

k
l . Her coverage vector

at time t is ctk, and csk is the stationary coverage. Hence, defender k’s behavior is the
same as that in a single-defender OSG, while their collective behavior is described by
the Markov strategy π = (π1, π2, ..., πK). The transition matrix Td is as follows, where
we have dropped the trains between neighboring segments from the basis for Td:

Td =

Td1 . . . 0
...

. . .
...

0 . . . TdK

 . (7)

The coverage of all units at time step t is ct, and is defined as the concatenation of
coverage vectors (ct1; c

t
2; ...; c

t
K). ct sums to K since each ctk sums to 1. The vector ct

evolves to future time steps t1 in the same way as before, via Equation 1. The overall
stationary coverage is cs = (cs1; c

s
2; ...; c

s
K).

Opportunistic criminals: The previous model for criminals still applies. However,
any variables related to defenders (Td, ct, cs) are replaced by their counterparts for
the multiple defenders. Furthermore, the criminal in segment k at time t cannot ob-
serve defenders other than k. As a result, his belief of defender coverage is ctb =
(csb1; c

s
b2; ...; c

s
b(k−1);
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ctbk; c
s
b(k+1); ...; c

s
bK). That is, his belief of coverage for segment k, ctbk, is calculated

as in a single defender scenario, while his belief of coverage for other segments is the
stationary coverage. Algorithm 2 (online appendix) describes a criminal’s behavior in
multiple defenders settings.

Markov chain: In optimizing defender strategies via a Markov chain, each state
records the station of the criminal and the location of each defender. As a result, each
state is denoted as S = (i,m1, ...,mK), where the criminal is at station i and defender
k is at location mk. Since defender k can be at nkl different locations, the total number
of states is N · n1l · · ·nKl . To apply EOSG for multiple defenders, Ts is still calculated
using the defender and criminal models. The transition probability pS1→S2 from S1 =
(i,m1, ...,mK) at time t to S2 = (j, n1, ..., nK) at time t+ dt is

pS1→S2 = p(j|i, ctb)
∏

k
ct+dt(nk),

where ct+dt(nk) = (T dtd · em1,m2,...,mK
)(nk) and em1,m2,...,mK

is an indicator vector
with 1 at entries representing locations m1,m2, ...,mK and 0 at all other entries. The
state distribution x and revenue rd are both N · n1l · · ·nKl vectors. The defenders’ total
expected utility over all stations and strikes is given by Equation 6. Similarly, we are
faced with the problem of finding a π to maximize Obj.

6 The COPS Algorithm

Unfortunately, EOSG fails to scale-up due to the size of Ts in Equation (6), which is
N · Nl by N · Nl for one defender, and is much greater for multiple defenders. We
propose the Compact OPportunistic Security game state (COPS) algorithm to accel-
erate the computation by compactly representing the states. The size of the transition
matrix in COPS is 2N × 2N , regardless of the number of defenders, which is dra-
matically smaller than in EOSG. COPS is inspired by the Boyen-Koller(BK) algorithm
on Dynamic Bayesian Networks [19], but improves upon a direct application of this
algorithm.

In OSG with one defender, there are two components in each state, the criminal’s
station Stc and the defender’s location θtd, which are correlated when evolving. We intro-
duce an intermediate component, the criminal’s observationOtc, which is determined by
Stc and θtd. Given Stc and Otc, we can compute St+1

c . The evolution of θtd is independent
of Stc, as shown in Figure 4(a). This is an instance of a Dynamic Bayesian Network: Stc,
Otc, and θtd are the random variables, while edges represent probabilistic dependence.

A direct application of the BK compactly represents the states by the marginal dis-
tribution of Stc and θtd, denoted as Pr(Stc) and Pr(θtd) respectively, and then restores the
Markov Chain states by multiplying these marginal distributions. We set Pr(θtd) = cs

for all strikes; thus, we do not need θtd in the new state and the number of the new states
is just N . However, such an approximation throws away the strong correlation between
the criminal’s station and defender unit’s location — in our preliminary experiments,
this approximation led to low defender expected utility.

In contrast, our COPS algorithm compactly represents the original states with less
information lost. Instead of just considering the marginal distributions of each compo-
nent Pr(θtd) and Pr(Stc), we also include Otc in the approximate states. Otc is binary:
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Fig. 4. COPS algorithm

1 if the defender is at the same station with the criminal, 0 otherwise. The new ap-
proximate states, named COPS states, only keep the marginal probability distribution
of Pr(Stc, O

t
c). So, the new state space is the Cartesian product of the sets of Stc and Otc,

which has size 2N .
One subtask of COPS is that, given our state representation Pr(Stc, O

t
c), recover

the distributions over the full state space (Stc, θ
t
d). We cannot restore such distribu-

tion by multiplying Pr(θtd) and Pr(Stc) in COPS. This is because Stc, O
t
c, and θtd are

not independent. For example, in COPS state Stc = 2, Otc = 1, θtd can only be 2.
In other words, the defender’s location distribution Pr(θtd|Stc, Otc) is no longer cs. In-
stead, we approximate Pr(θtd|Stc, Otc) as follows. In each COPS state (Stc, O

t
c), the de-

fender’s estimated marginal distribution, P̂r(θtd|Stc, Otc), is found in a manner similar
to that for the criminal’s belief distribution ctb. Specifically, if Otc = 1, P̂r(θtd|Stc, Otc) =
(0, 0, ..., 1, 0, ..., 0)T , where the row representing station Stc is 1 and all others are 0; if
Otc = 0, then P̂r(θtd|Stc, Otc) is found through Eq. 2, but with the csb(j) replaced by cs(j).
Next we recover the estimated distribution over (Stc, θ

t
d), using P̂r(Stc, θ

t
d|Stc, Otc) =

P̂r(θtd|Stc, Otc). Estimated distributions evolve the same way as exact distributions do,
as described above. At the future strike, we can project the evolved estimated distribu-
tion to distributions over COPS states. Figure 4(b) shows the evolution of COPS states.
However, such a process appear to involve Ts, negating the benefit of the factored repre-
sentation; we avoid that by using a transition matrix TCOPS ∈ R2N×2N . Each element
of TCOPS , i.e., transition probability Pr(St

′

c , O
t′

c |Stc, Otc), can be calculated as follows:

Pr(St
′

c , O
t′

c |Stc, Otc) = Pr(St
′

c |Stc, Otc)
∑

θt
′

d

Pr(Ot
′

c |St
′

c , θ
t′

d )

·
∑

θtd
Pr(θt

′

d |St
′

c , S
t
c, θ

t
d) · P̂r(θtd|Stc, Otc), (8)

where Pr(St
′

c |Stc, Otc) and Pr(θt
′

d |St
′

c , S
t
c, θ

t
d) correspond to p(j|i, ct0b ) and ct0+dt(n),

respectively. Detailed derivation of Eq. 8 can be found in the online appendix.
The defenders’ total expected utility in COPS is calculated in a similar way as the

exact algorithm, which is

Obj = rd,COPS · (I − (1− α)TCOPS)−1x1,COPS , (9)

where rd,COPS , x1,COPS are the expected utility vector and the initial distribution for
COPS states. Similar to rd, rd,COPS(S) is 0 if in S the defender is at the same station
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Fig. 5. (a) and (b) shows COPS vs. EOSG; (c) and (d) shows performance of different patrol
strategies

with the criminal, else it is ud. COPS is faster than EOSG because the number of states
is reduced dramatically.

7 Heuristic Warm Start

Both the EOSG (9) and COPS are based on nonlinear optimization. We thus apply a
local optimization solver. The initial configuration for the local optimization solver,
which is the initial defenders’ Markov strategy, affects the quality of the final solution
obtained. Therefore, we propose a heuristic to generate good initial configurations. We
divide the N station train line into some sublines – say two – without overlapping sta-
tions. The sub-line on the left has N1 stations while the one on the right has N2, where
N1+N2 = N and |N1−N2| ≤ 1. For the left sub-line, we add an imaginary station on
the right end. The attractiveness of this imaginary station is the average attractiveness
over the N2 stations in the right sub-line. This imaginary station represents the effect
of the right sub-line on this left sub-problem. The strategy generated by solving this
N1+1 station sub-problem is used as the initial configuration for the left N1 stations; a
similar procedure is repeated for N2. By generating small enough partitions, the warm
start procedure can be run quickly.

8 Experiments

Settings: Motivated by metro system in Los Angeles and other cities, we deal with
scenarios where stations lie along a straight line in our experiments. We solve the non-
linear optimization in OSG using the FindMaximum function in Mathematica. This
function automatically chooses the best available local-optimization solver for the non-
linear problem instance. Possible solvers include Levenberg Marquardt, Newton, Quasi
Newton, and Interior Point. Each data point we report is an average of 30 different
problem instances, each based on a different attractiveness setting; these instances were
generated through a uniform random distribution from 0 to 1 for each station. For mul-
tiple patrol unit scenarios, we use segment patrolling except for Figure 6, in which we
show segment patrolling is better than full scale patrolling. The defender’s utility of a
successful crime was ud = −1. In our experiments, the criminal’s initial distribution
was set to a uniform distribution over stations, while the defenders’ initial distribution
was the stationary distribution cs, which can be computed from the transition matrix
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Td. We set the exit rate of the criminal α = 0.1. All key results involving COPS are
statistically significant (ρ < 0.01)

Results: First, we compare the performance for COPS against EOSG. Figures 5(a)
and 5(b) show the performance of three different algorithms – the COPS algorithm
with heuristic initial configuration, the exact algorithm with heuristic initial configura-
tion, and the exact algorithm with random initial configuration – in two metro settings.
In both, we set λ = 1. As stated previously, given our nonlinear problem, Mathematica
uses locally optimal solvers, and there is always a current best feasible solution avail-
able although the quality of the solution keeps improving as the algorithm iterates over
time. Therefore, one way to compare solutions is to provide a fixed run-time and check
the level of solution quality reached in that time. In Figure 5(a), we show results of 6
stations with 1 defender. The x-axis in this figure shows the fixed runtime in seconds,
which includes the runtime necessary to generate the warm start. The y-axis maps the
defenders’ average expected utility against a single criminal. Unsurprisingly, the heuris-
tic method generates significantly better initial configurations than using random initial
configurations. The figure also shows that COPS outperforms the EOSG for any run-
time within 100 s, even though COPS operates under an approximated version of the
exact algorithm. This is because COPS reaches the local optima much faster than the
exact algorithm. Further, even for runtime long enough to allow EOSG to reach its lo-
cal optimum, where it outperforms COPS, the difference in utility between EOSG and
COPS is less than 1%. Hence, by using COPS, we gain computational efficiency with-
out a significant loss in solution quality. In Figure 5(b), we show results of 12 stations
with 2 defenders. The conclusions are essentially the same as in Figure 5(a), but the
advantage of COPS is even more obvious in this larger scale problem. As shown in
Figure 5(b), in most instances of the 12-station problem, COPS reaches a local optimal
strategy in 800 s. Meanwhile, the output strategies of EOSG are the same as their initial
values even after 3200 s.

Figure 5(c) compares the performance of four different strategies against crimi-
nals with various levels of rationality. The first strategy is the uniform random strategy,
which is a Markov strategy with equal probability for all available actions at each lo-
cation; the second is a Strong Stackelberg equilibrium strategy, which is the optimal
strategy to commit to against a strategic attacker that picks a single target to attack;
the third is a COPS OSG strategy; the last is also an OSG strategy, but unlike the third
strategy, the defenders do not know the real rationality of the criminals, and set a fixed
λ = 1 during computation. λ = 1 for this last strategy was picked from a set of sampled
λ so that the OSG strategy with this fixed λ performs best against criminals with vari-
ous levels of rationality. The max runtime for each strategy is 1800 s, which is enough
time for most algorithms to reach a local optimum. In this set of experiments, criminals
have no anchoring bias (b = 0). Results with other b are similar and shown in the online
appendix. The system consists of 12 stations and 2 defenders. The x-axis shows λ, the
rationality level of the criminal in QBRM; λ = 0 means the criminal randomly picks
the next target, and as λ increases, the criminal is more biased toward the station with
higher expected utility.

As shown in Figure 5(c), the COPS OSG strategy outperforms the random and
Stackelberg strategies significantly for any λ. Even though the OSG strategy assuming
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λ = 1 performs slightly worse than that using the correct λ value, it is still better than
other strategies. We conclude that OSG is a better model against opportunistic criminals
even with an inaccurate estimation of λ.

The OSG strategy, the Stackelberg strategy, and the uniform random strategy are
compared in Figure 5(d) against criminals with different levels of anchoring bias. The
performance of the OSG strategy using an accurate value for anchoring bias and that
using a fixed assumption of anchoring bias b = 0.5 are both shown. b = 0.5 is also
picked from a set of sampled b so that the OSG strategy with this fixed b performs
best against criminals with various levels of anchoring bias. In this set of experiments,
λ is fixed to 1, but experiments with other λ generate similar results, and are shown
in the online appendix. The x-axis maps the anchoring bias b and the y-axis maps the
defender’s expected utility against a single criminal. Again, our COPS OSG strategy
outperforms the uniform random and Stackelberg strategies even with a fixed b. Thus,
OSG generates a better strategy even with an imprecise assumption of the criminal’s
anchoring bias.
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To show the scalability of COPS, we compare the perfor-
mance of COPS with different numbers of defenders in metro
systems with varying numbers of stations. 16 stations is very
comparable to stations patrolled at the LA Metro. Five differ-
ent configurations are compared in Figure 6: one defender, two
defenders with full length patrolling, four defenders with full
length patrolling, two defenders with segment patrolling, and
four defenders with segment patrolling. The x-axis shows the
number of stations and y-axis shows the average defender ex-
pected utility. The max runtime for each strategy is 1800 s. As
expected, within the same patrol techniques, more defenders
provide higher expected utility. But, with the same amount of
resources, segment patrolling outperforms full length patrolling, again with significance
ρ < 0.01 as with other results.

9 Summary and Related work

This paper introduces OSG, a new computational framework for opportunistic crime,
opening the door to a new research area at the intersection of game theory and crimi-
nology. In OSG, this paper contributes (i) a new model of an opportunistic criminal; (ii)
a new algorithm EOSG to compute defender patrol strategies; and (iii) an approximate
algorithm, COPS, to speed up defender allocation to real-world scale scenarios. Given
our experimental results, COPS is also deployed in the Los Angeles Metro systems
[20].

Before reviewing SSG and criminology, we note that pursuit evasion games (PEGs)
[21, 22] deal with similar problems in a graph setting. However, the pursuer’s goal is
only to capture the evader and not to minimize evader’s influence in PEGs, which makes
PEG not directly applicable in our scenario. Besides, the evader usually knows only the
current position of the pursuer but not its strategy in most PEGs. In recent research
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in PEGs, evaders are also equipped with perfect knowledge and rationality [23, 24].
However, neither of these assumptions can describe our opportunistic criminals.

Previously, the SSG framework has been successfully applied in security domains
to generate randomized patrol strategies, e.g., for counter-terrorism and fare evasion
checks on trains [25–27]. Recent work in SSG has begun to consider bounded ratio-
nality of adversaries [17] and incorporate some limited flexibility in adversary execu-
tion [28]. However, as discussed earlier, even though SSG can be extended to arbitrary
topologies [2], SSG model remains mostly focused on highly strategic adversaries and
fails to account for opportunistic criminals.

A second thread of previous research has modeled opportunistic criminal behavior,
and security forces deployment against such adversaries. In [6] burglars are modeled as
biased random walkers seeking “attractive” targets, and [29] follows up on this work
with a method for generating effective police allocations to combat such criminals.
However, these works make the extreme assumption that criminals have no knowledge
of the overall strategy of the police, and their behavior is only affected by their ob-
servation of the current police allocation. Also, in [29] police behave in a similarly
reactionary way, allocating their resources in an instantaneously optimal way in re-
sponse to the current crime rather than optimizing over an extended time horizon, and
there is also no notion of the “movement” of police — rather, police officers distribute
instantaneously. Our current approach is an attempt to generalize these two threads of
research.
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17. Pita, J., Jain, M., Ordóñez, F., Tambe, M., Kraus, S., Magori-Cohen, R.: Effective solutions

for real-world stackelberg games: When agents must deal with human uncertainties. In:
AAMAS. (2009)

18. McKelvey, R.D., Palfrey, T.R.: Quantal Response Equilibria for Normal Form Games.
Games and Economic Behavior 10(1) (1995) 6–38

19. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: UAI, Morgan
Kaufmann Publishers Inc. (1998) 33–42

20. : Reference under review. In: AAMAS. (2014)
21. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion in a polygonal environment.

Robotics, IEEE Transactions on (2005)
22. Vidal, R., Shakernia, O., Kim, H.J., Shim, D.H., Sastry, S.: Probabilistic pursuit-evasion

games: theory, implementation, and experimental evaluation. Robotics and Automation,
IEEE Transactions on (2002)

23. LaValle, S.M., Hinrichsen, J.E.: Visibility-based pursuit-evasion: The case of curved envi-
ronments. Robotics and Automation, IEEE Transactions on (2001)

24. Hespanha, J.P., Prandini, M., Sastry, S.: Probabilistic pursuit-evasion games: A one-step
nash approach. (2000)

25. Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm,
T., Sullivan, J.: Trusts: Scheduling randomized patrols for fare inspection in transit systems.
In: IAAI. (2012)

26. Jiang, A.X., Yin, Z., Zhang, C., Tambe, M., Kraus, S.: Game-theoretic randomization for
security patrolling with dynamic execution uncertainty. In: AAMAS. (2013)

27. Varakantham, P., Lau, H.C., Yuan, Z.: Scalable randomized patrolling for securing rapid
transit networks. In: IAAI. (2013)

28. Vorobeychik, Y., Singh, S.P.: Computing stackelberg equilibria in discounted stochastic
games. In: AAAI. (2012)

29. Zipkin, J.R., Short, M.B., Bertozzi, A.L.: Cops on the dots in a mathematical model of urban
crime and police response. (2013)


