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Abstract
Recent work has shown that diverse teams can outper-
form a uniform team made of copies of the best agent.
However, there are fundamental questions that were not
asked before. When should we use diverse or uniform
teams? How does the performance change as the action
space or the teams get larger? Hence, we present a new
model of diversity for teams, that is more general than
previous models. We prove that the performance of a
diverse team improves as the size of the action space
gets larger. Concerning the size of the diverse team,
we show that the performance converges exponentially
fast to the optimal one as we increase the number of
agents. We present synthetic experiments that allow us
to gain further insights: even though a diverse team out-
performs a uniform team when the size of the action
space increases, the uniform team will eventually again
play better than the diverse team for a large enough ac-
tion space. We verify our predictions in a system of Go
playing agents, where we show a diverse team that im-
proves in performance as the board size increases, and
eventually overcomes a uniform team.

Introduction
Team formation is crucial when deploying a multi-agent
system (Nair and Tambe 2005; Liemhetcharat and Veloso
2012). Many researchers emphasize the importance of di-
versity when forming teams (LiCalzi and Surucu 2012;
Lamberson and Page 2012; Hong and Page 2004; Marcol-
ino, Jiang, and Tambe 2013). However, there are many im-
portant questions about diversity that were not asked before,
and are not explored in such models.

LiCalzi and Surucu (2012) and Hong and Page (2004)
propose models where the agents know the utility of the so-
lutions, and the team converges to the best solution found by
one of its members. Clearly in complex problems the utility
of solutions would not be available, and agents would have
to resort to other methods, such as voting, to take a common
decision. Lamberson and Page (2012) study diversity in the
context of forecasts, where the solutions are represented by
real numbers and the team takes the average of the opinion
of its members. Domains where the possible solutions are
discrete, however, are not captured by such a model.
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Marcolino, Jiang, and Tambe (2013) study teams of
agents that vote in discrete solution spaces. They show that a
diverse team of weaker agents can overcome a uniform team
made of copies of the best agent. However, this phenomenon
does not always occur, and they do not present ways to know
when we should use diverse teams. They also lack a formal
study of how the performance of diverse teams change as the
number of agents and/or actions increase.

In this paper we shed a new light into this problem, by
presenting a new, more general model of diversity for teams
of voting agents. Our model captures better than the previ-
ous ones the notion of a diverse team as a team of agents that
tend not to agree on the same actions, and allows us to make
new predictions. Our main insight is based on the notion
of spreading tail (ST) and non-spreading tail (NST) agents.
As we will show, a team of ST agents has a diverse behav-
ior, i.e., they tend to not agree in the same actions. Hence,
we can model a diverse team as a team of ST agents, and
show that the performance improves as the size of the action
space gets larger. We also prove upper and lower bounds on
how fast different teams converge. The improvement can be
large enough to overcome a uniform team of NST agents,
even if individually the ST agents are weaker. As it is gen-
erally hard to find good solutions for problems with a large
number of actions, it is important to know which teams to
use in order to tackle such problems. Moreover, we show
that the performance of a diverse team converges to the op-
timal one exponentially fast as the size of the team grows.
We show synthetic experiments that provide even further in-
sights about our model. Even though the diverse team over-
comes the uniform team in a large action space, the uniform
team eventually will again play better than the diverse team
as the action space keeps increasing if the best agent does
not behave exactly like an NST agent.

Finally, we test our predictions by studying a system of
voting agents, in the Computer Go domain. We show that a
uniform team made of copies of the best agent plays better
in smaller board sizes, but is overcome by a diverse team as
the board gets larger. Moreover, we analyze the agents and
verify that weak agents have a behavior closer to ST agents,
while the best agent is closer to an NST agent. Therefore, we
show that the predictions are verified in a real system, and
can effectively be used while forming a multi-agent team.



Related Work
We have already discussed models of diversity in team for-
mation in the previous section, so here we start with other
models of team formation in the multi-agent literature.

In classical team formation research, the team with max-
imum expected utility is chosen, based on a model of the
capabilities of each agent (Nair and Tambe 2005; Guttmann
2008). However, in many domains we do not have such a
model. The study of “ad-hoc” teamwork deals with multi-
agent teams with absence of information (Barrett et al. 2013;
Agmon and Stone 2012). They focus, however, on how a
new agent must decide its behavior in order to cooperate
with agents of unknown type, not on picking the best team.

Concerning voting, this paper is related to the view of
voting as a way to discover an optimal choice (or ranking).
Classical models study this view of voting only for teams of
identical agents (List and Goodin 2001; Conitzer and Sand-
holm 2005). However, more recent works are also consider-
ing agents with different probability distribution functions.
Caragiannis, Procaccia, and Shah (2013) study which voting
rules converge to a true ranking as the number of agents (not
necessarily identical) goes to infinity. In Soufiani, Parkes,
and Xia (2012) the problem of inferring the true ranking is
studied, assuming agents with different pdfs, but drawn from
the same family. Even though recent works on voting are not
assuming identical agents, they still do not provide a way to
find the best teams of voting agents.

More related works can be found in the study of ensemble
systems. These are the construction of a strong classifier by
combining multiple weak classifiers, for example by voting
(Polikar 2012). An important problem is how to form the
ensemble system, i.e., how to pick the classifiers that lead to
the best predictions (Fu et al. 2012). Our model, based on
the notion of spreading tail and non-spreading tail agents
allow us to make many predictions about teams as the action
space and/or number of agents change, and also compare the
rate of change of the performance of different teams. To the
best of our knowledge, there is no model similar to ours in
the ensemble system literature.

Model for Analysis of Diversity in Teams
Consider a problem defined by choosing an action a from
a set of possible actions A. Each a has an utility U(a), and
our goal is to maximize the utility. We always list the actions
in order from best to worst, therefore U(aj) ≥ U(aj+1) ∀j
(a0 is the best action). This does not mean that newly added
actions have lower utility, as we can always reorder the ac-
tions. In some tasks (like in Section Experimental Analysis),
a series of actions are chosen across different states, but here
we focus on the decision process in a given state.

Consider a set of agents, voting to decide over actions.
The agents do not know the utility of the actions, and vote
for the action they believe to be the best according to their
own decision procedure, characterized by a probability dis-
tribution (pdf). We write as pi,j the probability of agent i
voting for action aj . We denote by pi,j(m), when we ex-
plicitly talk about pi,j for an action space of size m. If the
pdf of one agent is identical to the pdf of another agent,

they will be referred to as copies of the same agent. The ac-
tion that wins by plurality voting is taken by the team. Ties
are broken randomly, except when we explicitly talk about
a tie breaking rule. Let Dm be the set of suboptimal actions
(aj , j 6= 0) assigned with a nonzero probability in the pdf
of an agent i, and dm = |Dm|. We assume that there is
a bound in the ratio of the suboptimal action with highest
probability and the one with lowest nonzero probability, i.e.,
let pi,min = minj∈Dmpi,j and pi,max = maxj∈Dmpi,j ;
there is a constant α such that pi,max ≤ αpi,min ∀ agents i.

We define strength as the expected utility of an agent
and/or a team. The probability of a team playing the best
action will be called pbest. We first consider a setting where
U(a0)� U(aj)∀j 6= 0, hence we can use pbest as our mea-
sure of performance. We will later consider more general
settings, where the first r actions have a high utility.

We define team formation as selecting from the space of
all agents a limited number of agents that has the maximum
strength by voting together to decide on actions. We study
the effect of increasing the size m of the set of possible ac-
tions on the team formation problem. Intuitively, the change
in team performance as m increases will be affected by how
the pdf of the individual agents i change whenm gets higher.
As we increase m, dm can increase or not change. Hence,
we classify the agents as spreading tail (ST) agents or non-
spreading tail agents (NST).

We define ST agents as agents whose dm is non-
decreasing on m and dm → ∞ as m → ∞. We consider
that there is a constant ε > 0, such that for all ST agents i,
∀m, pi,0 ≥ ε. We assume that pi,0 does not change with m,
although later we discuss what happens when pi,0 changes.

We define NST agents as agents whose pdf does not
change as the number of actions m increases. Hence, let
mi0 be the minimum number of actions necessary to define
the pdf of an NST agent i. We have that ∀m,m′ ≥ mi0,
∀j ≤ mi0 pi,j(m) = pi,j(m

′), ∀j > mi0 pi,j(m) = 0.
We first give an intuitive description of the concept of di-

versity, then define formally diverse teams. By diversity, we
mean agents that tend to disagree. In Marcolino, Jiang, and
Tambe (2013), a diverse team is defined as a set of agents
with different pdfs. Hence, they disagree because of hav-
ing different probabilities of playing certain actions. In this
paper, we generalize their definition to capture cases where
agents disagree on actions, regardless of whether their pdfs
are the same or not. Formally, we define a diverse team to
be one consisting of a set of ST agents (either different ST
agents or copies of the same ST agent). In our theoretical
development we will show that this definition captures the
notion of diversity: a team of ST agents will tend to not
agree on the same suboptimal actions. We call uniform team
as the team composed by copies of an NST agent. This is
an idealization to perform our initial analysis. We will later
discuss more complex domains, where the agents of the uni-
form team also behave like ST agents.

A Hard Problem to a Diverse Team
We start with an example, to give an intuition about our
model. Consider the agents in Table 1(a), where we show
the pdf of the agents, and pbest of the uniform team (three



(a) With 2 actions, the uniform team plays bet-
ter than the diverse team

Agents Action 1 Action 2
Agent 1 0.6 0.4
Agent 2 0.55 0.45
Agent 3 0.55 0.45

Uniform pbest: 0.648
Diverse pbest: 0.599

(b) When we add one more action, the diverse team plays
better than the uniform team

Agents Action 1 Action 2 Action 3
Agent 1 0.6 0.4 0
Agent 2 0.55 0.25 0.2
Agent 3 0.55 0.15 0.3

Uniform pbest: 0.648
Diverse pbest: 0.657

Table 1: The performance of a diverse team increases when
we increase the number of available actions.

copies of agent 1) and the diverse team (one copy of each
agent). We assume agent 1 is an NST agent, while agent 2
and 3 are ST agents. In this situation the uniform team plays
better than the diverse team. Now let’s add one more action
to the problem. Because agent 2 and 3 are ST agents, the
probability mass on action 2 scatters to the newly added ac-
tion (Table 1(b)). Hence, while before the ST agents would
always agree on the same suboptimal action if they both did
not vote for the optimal action, now they might vote for dif-
ferent suboptimal actions, creating a tie between each sub-
optimal action and the optimal one. Because ties are bro-
ken randomly, when this happens there will be a 1/3 chance
that the tie will be broken in favor of the optimal action.
Hence, pbest increases when the probability of the ST agents
agreeing on the same suboptimal actions decreases, and the
diverse team now plays better than the uniform team, even
though individually agents 2 and 3 are weaker than agent 1.

We now present our theoretical work. First we show that
the performance of a diverse team converges whenm→∞,
to a value that is higher than the performance for any other
m.

Theorem 1. pbest(m) of a diverse team of n agents con-
verges to a certain value p̃best as m → ∞. Furthermore,
p̃best ≥ pbest(m), ∀m.

Proof. Let pi,min = minj∈Dm pi,j , pi,max =
maxj∈Dm pi,j and T be the set of agents in the team.
By our assumptions, there is a constant α such that
pi,max ≤ αpi,min for all agents i. Then, we have that
1 ≥ 1 − pi,0 =

∑
j∈Dm

pi,j ≥ dmpi,min. Therefore,
pi,min ≤ 1

dm
→ 0 as dm tends to ∞ with m. Similarly,

αpi,min → 0 as dm → ∞. As pi,j ≤ αpi,min we have
that ∀j pi,j → 0 as dm → ∞. We show that this implies
that when m → ∞, weak agents never agree on the
same suboptimal action. Let i1 and i2 be two arbitrary
agents. Without loss of generality, assume i2’s dm (d(i2)m )

is greater than or equal i1’s dm (d(i1)m ). The probability
(σi1,i2 ) of i1 and i2 agreeing on the same suboptimal action
is upper bounded by σi1,i2 =

∑
aj∈A\a0 pi1,jpi2,j ≤

d
(i2)
m pi1,maxpi2,max ≤ d

(i2)
m αpi2,minpi1,max ≤ αpi1,max

(as d(i2)m pi2,min ≤ 1). We have that αpi1,max → 0 as
pi1,max → 0, because α is a constant. Hence the probability
of any two agents agreeing on a suboptimal action is∑

i1∈T
∑

i2∈T,i2 6=i1
σi1,i2

2 ≤ n(n−1)
2 maxi1,i2 σi1,i2 → 0, as

n is a constant.
Hence, when m → ∞, the diverse team only chooses a

suboptimal action if all agents vote for a different subopti-
mal action or in a tie between the optimal action and subop-
timal actions (because ties are broken randomly). Therefore,
pbest converges to:

p̃best = 1−
n∏
i=1

(1−pi,0)−
n∑
i=1

(pi,0

n∏
j=1,j 6=i

(1−pj,0))
n− 1

n
, (1)

that is, the total probability minus the cases where the best
action is not chosen: the second term covers the case where
all agents vote for a suboptimal action and the third term
covers the case where one agent votes for the optimal action
and all other agents vote for suboptimal actions.

When m is finite, the agents might choose a suboptimal
action by agreeing over that suboptimal action. Therefore,
we have that pbest(m) ≤ p̃best ∀m.

Let puniformbest (m) be pbest of the uniform team, withm ac-
tions. A uniform team is not affected by increasingm, as the
pdf of an NST agent will not change. Hence, puniformbest (m)
is the same, ∀m. If p̃best is high enough so that p̃best ≥
puniformbest (m), the diverse team will overcome the uniform
team, when m → ∞. Therefore, the diverse team will be
better than the uniform team when m is large enough.

In practice, a uniform team made of copies of the best
agent (the one with highest expected utility) might not be-
have exactly like a team of NST agents, as the best agent
could also increase its dm as m gets larger. We discuss this
situation in Section Experimental Analysis. In order to per-
form that study, we derive in the following corollary how
fast pbest converges to p̃best, as a function of dm.
Corollary 1. pbest(m) of a diverse team increases to p̃best
in the order of O( 1

dmin
m

) and Ω( 1
dmax
m

), where dmaxm is the
highest and dminm the lowest dm of the team.

Proof. We assume here the notation that was used in the pre-
vious proof. First we show a lowerbound on pbest(m). We
have that pbest(m) = 1− ψ1, where ψ1 is the probability of
the team picking a suboptimal action. ψ1 = ψ2 +ψ3, where
ψ2 is the probability of no agent agreeing and the team picks
a suboptimal action and ψ3 is the probability of at least two
agents agreeing and the team picks a suboptimal action.
Hence, pbest(m) = 1−ψ2−ψ3 = p̃best−ψ3 ≥ p̃best−ψ4,
where ψ4 is the probability of at least two agents agreeing.
Let σmax = maxi1,i2 σi1,i2 , and i∗1 and i∗2 are the agents
whose σi∗1 ,i∗2 = σmax. We have that pbest(m) ≥ p̃best −
n(n−1)

2 σmax ≥ p̃best − n(n−1)
2 d

(i∗2)
m pi∗1 ,maxpi∗2 ,max ≥



p̃best − n(n−1)
2 d

(i∗2)
m αpi∗1 ,minαpi∗2 ,min ≥ p̃best −

n(n−1)
2 α2 1

d
(i∗1)
m

(as pi,min ≤ 1
dm

). Hence, pbest(m) ≥

p̃best − n(n−1)
2 α2 1

dmin
m
 p̃best − pbest(m) ≤ O( 1

dmin
m

).
Now we show an upper bound: pbest(m) = p̃best −

ψ3 ≤ p̃best − ψ5, where ψ5 is the probability of at
least two agents agreeing and no agents vote for the
optimal action. Let σmin = mini1,i2 σi1,i2 ; i∗1 and i∗2
are the agents whose σi∗1 ,i∗2 = σmin; and pmax,0 =
maxi∈T pi,0. Without loss of generality, we assume that
d
(i∗2)
m ≥ d

(i∗1)
m . Hence, pbest(m) ≤ p̃best − n(n−1)

2 σmin(1 −
pmax,0)n−2 ≤ p̃best − n(n−1)

2 d
(i∗1)
m pi∗1 ,minpi∗2 ,min(1 −

pmax,0)n−2 ≤ p̃best − n(n−1)
2 d

(i∗1)
m

pi∗1 ,maxpi∗2 ,max

α2 (1 −
pmax,0)n−2 ≤ p̃best − n(n−1)

2 α−2 1

d
i∗2
m

(1 − pmax,0)n−2 ≤

p̃best − n(n−1)
2 α−2 1

dmax
m

(1 − pmax,0)n−2  p̃best −
pbest(m) ≥ Ω( 1

dmax
m

).

Hence, agents that change their dm faster will converge
faster to p̃best. This is an important result when we consider
later more complex scenarios where the dm of the agents of
the uniform team also change.

Note that p̃best depends on the number of agents n (Equa-
tion 1). Now we show that the diverse team tends to always
play the optimal action, as n→∞.
Theorem 2. p̃best converges to 1, as n→∞. Furthermore,
1 − p̃best converges exponentially to 0, that is, ∃ constant
c, such that 1 − p̃best ≤ c(1 − ε

2 )n, ∀n ≥ 2
ε . However, the

performance of the uniform team improves as n → ∞ only
if ps,0 = maxj ps,j , where s is the best agent.

Proof. By the previous proof, we know that when m → ∞
the diverse team plays the optimal action with probability
given by p̃best. We show that 1 − p̃best → 0 exponen-
tially as n → ∞ (this naturally induces p̃best → 1). We
first compute an upper bound for

∑n
i=1(pi,0

∏n
j=1,j 6=i(1 −

pj,0)):
∑n
i=1 pi,0

∏n
j=1,j 6=i(1 − pj,0) ≤

∑n
i=1 pi,0(1 −

pmin,0)n−1 ≤ npmax,0(1 − pmin,0)n−1 ≤ n(1 − ε)n−1

for pmax,0 = maxipi,0, pmin,0 = minjpj,0.
Since

∏n
i=1(1 − pi,0) ≤ (1 − ε)n, thus we have that 1 −

p̃best ≤ (1 − ε)n + n(1 − ε)n−1. So we only need to prove
that there exists a constant c such that (1 − ε)n + n(1 −
ε)n−1 ≤ c(1 − ε

2 )n, as follows: (1−ε)n+1+(n+1)(1−ε)n
(1−ε)n+n(1−ε)n−1 =

(1 − ε) 1−ε+n+1
1−ε+n = 1 − ε + 1−ε

1−ε+n ≤ 1 − 1
2ε, if n ≥ 2

ε (by
setting 1−ε

1−ε+n ≤
ε
2 ). Hence, ∃c, such that (1− ε)n + n(1−

ε)n−1 ≤ c(1− ε
2 )n when n ≥ 2

ε . Therefore, the performance
converges exponentially.

For the uniform team, the probability of playing the ac-
tion that has the highest probability in the pdf of the best
agent converges to 1 as n → ∞ (List and Goodin 2001).
Therefore, the performance only increases as n → ∞ if the
optimal action is the one that has the highest probability.

Now we show that we can achieve further improvement
in a diverse team by breaking ties in favor of the strongest
agent.

Theorem 3. When m → ∞, breaking ties in favor of the
strongest agent is the optimal tie-breaking rule for a diverse
team.

The proof is available in the appendix (avail-
able at http://teamcore.usc.edu/people/
sorianom/aaai14-ap.pdf). We just state here that
if we break ties in favor of an agent s, the probability of
voting for the optimal action is given by:

p̃best = 1−
n∏
i=1

(1−pi,0)− (1−ps,0)(

n∑
i=1
i6=s

pi,0

n∏
j=1

j 6=i,j 6=s

(1−pj,0))

(2)
It is clear that Equation 2 is maximized by choosing agent s
with the highest ps,0. In our proof we show that Equation 2
is always higher than Equation 1 if s is the strongest agent.
That is, we show that p̃best is higher if we break ties in favor
of the strongest agent than breaking ties randomly.

Next we show that with one additional assumption, not
only the diverse team converges to p̃best, but also pbest
monotonically increases with m. Our additional assumption
is that higher utility actions have higher probabilities, i.e., if
U(aj) ≥ U(aj′), then pi,j ≥ pi,j′ .
Theorem 4. The performance of a diverse team monoton-
ically increases with m, if U(aj) ≥ U(aj′) implies that
pi,j ≥ pi,j′ .

The proof of this theorem is also available in the appendix.

Generalizations
In the previous theorems we focused on the probability of
playing the best action, assuming that U(a0)� U(aj)∀j 6=
0. We show now that the theorems still hold in more general
domains where r actions (Ar ⊂ A) have a significant high
utility, i.e., U(aj1) � U(aj2)∀j1 < r, j2 ≥ r. Hence, we
now focus on the probability of playing any action in Ar.
We assume that our assumptions are also generalized, i.e.,
pi,j ≥ ε ∀j < r, and the number dm of suboptimal actions
(aj , j ≥ r) in the Dm set increases with m for ST agents.
Theorem 5. The previous theorems generalize to settings
where U(aj1)� U(aj2) ∀j1 < r, j2 ≥ r.

Proof Sketch. We give here a proof sketch. We just have
to generate new pdfs p′i,j , such that p′i0 =

∑r−1
j=0 pi,j , and

p′i,b = pi,b+r−1, ∀b 6= 0. We can then reapply the proofs of
the previous theorems, but replacing pi,j by p′i,j . Note that
this does not guarantee that all agents will tend to agree on
the same action in Ar; but the team will still tend to pick
any action in Ar, since the agents are more likely to agree
on actions in Ar than on actions in A \Ar.

Now we discuss a different generalization: what happens
when pi,0 decreases as m increases (∀ agents i). If pi,0 →
p̃i,0 as m → ∞, the performance in the limit for a diverse
team will be p̃best evaluated at p̃i,0. Moreover, even if pi,0 →
0, our conclusions about relative team performance are not
affected as long as we are comparing two ST teams that have
similar pi,0: the same argument as in Corollary 1 implies that
the team with faster growing dm will perform better.
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Figure 1: Comparing diverse and uniform when uniform also
increases dm.

Experimental Analysis
Synthetic Experiments
We present synthetic experiments, in order to better under-
stand what happens in real systems. We generate agents by
randomly creating pdfs and calculate the pbest of the gener-
ated teams. The details are available in the appendix.
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Figure 2: pbest of a diverse
team as the number of agents
increases.

As we said earlier,
uniform teams com-
posed by NST agents is
an idealization. In more
complex domains, the
best agent will not be-
have exactly like an NST
agent, its dm will also
increase. We perform
synthetic experiments to
study this situation. We
consider that the best
agent is still closer to
an NST agent, therefore
it increases its dm at
a slower rate than the agents of the diverse team. We can
see the average result for 200 random teams in Figure 1,
where in Figure 1(a) we show the difference between the
performance in the limit (p̃best) and the actual pbest(m) for
the diverse and the uniform teams; in Figure 1(b) we show
the average pbest(m) of the teams. As can be seen, when the
best agents increase their dm at a slower rate than the agents
of the diverse team, the uniform teams converge slower to
p̃best. Even though they play better than the diverse teams
for a small m, they are surpassed by the diverse teams as m
increases. However, because p̃best of the uniform teams is
actually higher than the one of the diverse teams, eventually
the performance of the uniform teams get closer to the
performance of the diverse teams, and will be better than
the one of the diverse teams again for a large enough m.

This situation is expected according to Theorem 1. If the
dm of the best agent also increases as m gets larger, the uni-
form team will actually behave like a diverse team and also
converge to p̃best. p̃

uniform
best ≥ p̃diversebest , as the best agent has

a higher probability of playing the optimal action. Hence, in
the limit the uniform team will play better than the diverse
team. However, as we saw in Corollary 1, the speed of con-

vergence is in the order of 1/dm. Therefore, the diverse team
will converge faster, and can overcome the uniform team for
moderately large m.

As Theorem 2 only holds when m→∞, we also explore
the effect of increasing the number of agents for a large m.
The p̃best of a team of agents is shown as the dashed line in
Figure 2. We are plotting for agents that have a probability
of playing the best action of only 10%, but as we can see the
probability quickly grows as the number of agents increases.
We also calculate pbest for random teams from 2 to 6 agents
(shown as the continuous line), when there are 300 available
actions. As can be seen, the teams have a close performance
to the expected.

Computer Go
We show now results in a real system. We use 4 different
Go software: Fuego 1.1 (Enzenberger et al. 2010), GnuGo
3.8, Pachi 9.01 (Baudiš and Gailly 2011), MoGo 4 (Gelly
et al. 2006), and two (weaker) variants of Fuego (Fuego∆
and FuegoΘ), in a total of 6 different, publicly available,
agents. Fuego is considered the strongest agent among all
of them. The description of Fuego∆ and FuegoΘ is avail-
able in the appendix. All our results are obtained by playing
either 1000 games (to evaluate individual agents) or 2000
games (to evaluate teams), in a HP dl165 with dual dodeca
core, 2.33GHz processors and 48GB of RAM. We com-
pare results obtained by playing against a fixed opponent.
Therefore, we evaluate systems playing as white, against the
original Fuego playing as black. We removed all databases
and specific board size knowledge of the agents, including
the opponent. We call Diverse as the team composed of all
6 agents, and Uniform as the team composed of 6 copies
of Fuego. Each agent is initialized with a different random
seed, therefore they will not vote for the same action all the
time in a given world state, due to the characteristics of the
search algorithms. In the graphs we show in this section, the
error bars show the confidence interval (99% of confidence).

We evaluate the performance of the teams over 7 differ-
ent board sizes. We changed the time settings of individual
agents as we increased the board size, in order to keep their
strength as constant as possible. The average winning rates
of the team members, and also the winning rates of the indi-
vidual agents, is available in the appendix. 1

We can see our results in Figure 3 (a). Diverse improves
from 58.1% on 9x9 to 72.1% on 21x21, an increase in win-
ning rate that is statistically significant with p < 2.2×10−16.
This result is expected according to Theorem 1. The Uni-
form team changes from 61.0% to 65.8%, a statistically
significant improvement with p = 0.0018. As we saw be-
fore, an increase in the performance of Uniform can also
be expected, as the best agent might not be a perfect NST
agent. A linear regression of the results of both teams gives

1In our first experiment, Diverse improved from 56.1% on 9x9
to 85.9% on 19x19. We noted, however, that some of the diverse
agents were getting stronger in relation to the opponent as the
board size increased. Hence, by changing the time setting to keep
the strength constant, we are actually making our claims harder to
show, not easier.
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Figure 3: Winning rate in the real Computer Go system.

a slope of 0.010 for the diverse team (adjusted R2: 0.808,
p = 0.0036) and 0.005 for the uniform team (adjusted R2:
0.5695, p = 0.0305). Therefore, the diverse team improves
its winning rate faster than the uniform team. To check if
this is a significant difference, we evaluate the interaction
term in a linear regression with multiple variables. We find
that the influence of board size is higher on Diverse than
on Uniform with p = 0.0797 (estimated coefficient of “size
of the board * group type”: −10.321, adjusted R2: 0.7437).
Moreover, on the 9x9 board Diverse is worse than Uniform
(p = 0.0663), while on the 21x21 board Diverse is better
with high statistical significance (p = 1.941 × 10−5). We
also analyze the performance of the teams subtracted by the
average strength of their members (Figure 3 (b)), in order
to calculate the increase in winning rate achieved by “team-
work” and compensate fluctuations on the winning rate of
the agents as we change the board size. Again, the diverse
team improves faster than the uniform team. A linear re-
gression results in a slope of 0.0104 for Diverse (adjusted
R2: 0.5549, p = 0.0546) and 0.0043 for Uniform (adjusted
R2: 0.1283, p = 0.258).
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Figure 4: Winning rates for
4 and 6 agents teams.

We also evaluate the
performance of teams of
4 agents (Diverse 4 and
Uniform 4). For Diverse
4, we removed Fuego∆
and FuegoΘ from the Di-
verse team. As can be
seen in Figure 4, the
impact of adding more
agents is higher for the
diverse team in a larger
board size(21x21). In the 9x9 board, the difference between
Diverse 4 and Diverse 6 is only 4.4%, while in 21x21, it is
14%. Moreover, we can see a higher impact of adding agents
for the diverse team, than for the uniform team. These results
would be expected according to Theorem 2.

As can be seen, the prediction of our theory holds: the
diverse team improves significantly as we increase the ac-
tion space. The improvement is enough to make it change
from playing worse than the uniform team on 9x9 to playing
better than the uniform team with statistical significance on
the 21x21 board. Furthermore, we show a higher impact of
adding more agents when the size of the board is larger.
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Figure 5: Verifying the assumptions in the real system.

Analysis
To test the assumptions of our model, we estimate a pdf for
each one of the agents. For each board size, and for each one
of 1000 games from our experiments, we randomly choose
a board state between the first and the last movement. We
make Fuego evaluate the chosen board, but we give it a
time limit 50x higher than the default one. Therefore, we use
this much stronger version of Fuego to approximate the true
ranking of all actions. For each board size, we run all agents
in each board sample and check in which position of the ap-
proximated true ranking they play. This allow us to build a
histogram for each agent and board size combination. Some
examples can be seen in the appendix.

We study how the pdfs of the agents change as we increase
the action space. Our hypothesis is that weaker agents will
have a behavior closer to ST agents, while stronger agents to
NST agents. In Figure 5(a) we show how many actions re-
ceive a probability higher than 0. As can be seen, Fuego does
not behave exactly like an NST agent. However, it does have
a slower growth rate than the other agents. A linear regres-
sion gives the following slopes: 13.08, 19.82, 19.05, 15.82,
15.69, 16.03 for Fuego, Gnugo, Pachi, Mogo, Fuego∆ and
FuegoΘ, respectively (R2: 0.95, 0.98, 0.94, 0.98, 0.98, 0.98,
respectively). It is clear, therefore, that the probability mass
of weak agents is distributed into bigger sets of actions as
we increase the action space; and even though the strongest
agent does not behave in the idealized way, it does have a
slower growth rate.

We also verify how the probability of playing the best ac-
tion (pi,0) changes for each one of the agents as the number
of actions increase. Figure 5(b) shows that even though pi,0
decreases for all agents, it does not decrease much (on aver-
age, they decreased about 25% from 9x9 to 21x21).

Conclusion
We present a new model to analyze diversity in teams. It
allows us to show that the performance of diverse teams in-
crease as the size of the action space gets larger, and also
that diverse teams converge faster than uniform teams. Be-
sides, in large action spaces the performance of a diverse
team converges exponentially fast to the optimal one as the
number of agents increases. Experimental results with real
Computer Go agents match the predictions of our theory.
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