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Abstract. Among the many deployment areas of Stackelberg Security games, a
major area involves games played out in space and time, which includes appli-
cations in multiple mobile defender resources protecting multiple mobile targets.
Previous algorithms for such spatio-temporal security games fail to scale-up and
little is known of the computational complexity properties of these problems.
This paper provides a novel oracle-based algorithmic framework for a systematic
study of different problem variants of computing optimal (minimax) strategies
in spatio-temporal security games. Our framework enables efficient computation
of a minimax strategy when the problem admits a polynomial-time oracle. Fur-
thermore, for the cases in which efficient oracles are difficult to find, we propose
approximations or prove hardness results.

Keywords: Security Games, Zero-Sum Games, Minimax Equilibrium, Oracle, Equi-
libria Computation.

1 Introduction

Among the multiple deployment areas of Stackelberg Security games [15, 16, 2, 3], a
recent major application area involves games played out in space and time, which we
refer to as spatio-temporal security games. This class of security games is particularly
valuable for security of major transportation systems, where multiple mobile resources
protect multiple mobile targets. For example, spatio-temporal security games are in use
to generate patrol patterns for US Coast Guard patrol boats for the Staten Island ferries
(mobile targets)—ferrying 60000 passengers a day, this system is considered a major
terrorist target [6]. However, this is just one of many possible ferry systems around the
world that require security. Other potential applications include protecting refugee aid
convoys with overhead UAVs and protecting vessels from pirate activity [1].

Unfortunately, current algorithms for such spatio-temporal security games suffer
from lack of scalability. For example, [1] provide a formulation with non-linear con-
straints that faced scaling problems with a single defender resource. [6] provide a linear
? A preliminary version of this work is under review for AAAI 2014. The paper might be
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program with better scalability properties for such games, but their formulation suffers
from exponential slowdown with increasing number of defender resources; indeed it is
seen to fail to scale up beyond three defender resources for 13 time steps. Addition-
ally, little is known of the computational complexity properties of such spatio-temporal
security game problems.

At a high level, the main challenge for scaling up spatio-temporal security games is
their exponential growth of defender pure strategies. This exponential blow-up is due to
two factors: first, the defender has multiple resources, and needs to pick a patrol sched-
ule for each resource; second, each defender resource’s set of patrol schedules grows
exponentially in the number of time steps. As a result, the number of pure strategies is
exponential in the number of resources and the number of time steps. Existing works
in security games helps alleviate such exponential numbers of pure strategies via incre-
mental strategy generation in security games [4, 17, 13] and use of compact marginal
representations [9, 10, 8]. Unfortunately, these approaches fail to provide a systematic
understanding of complexity properties of spatio-temporal security games or provide
efficient algorithms that exploit the special structure of different variants of the game.

To address these challenges, we provide the following contributions: (i) We present
the first systematic study of computational complexity of computing optimal (minimax)
strategies in spatio-temporal security games. We consider several variants in the game
setting; for the general setting, we provide an approximation algorithm. For several im-
portant restricted settings, we provide polynomial-time algorithms, while for another
variant we give strong theoretical evidence that the problem is hard. (ii) Our experi-
mental results based on a ferry-protection domain show that our algorithms scale-up
significantly beyond what is achievable by [6]. For many of our theoretical results, we
use an oracle-based algorithmic framework that reduces the minimax problem to a com-
binatorial optimization problem. An overarching theme in our solution techniques for
the various settings is the exploitation of spatio-temporal structure, which allows us to
formulate and solve these problems using graph-based techniques, often making use of
additional geometric properties of the domain.

2 Settings and Notation

We study algorithms for scheduling resources in a discretized temporal and 1-D spatial
domain (Figure 1) to protect weighted moving targets. They are motivated by the do-
main of ferry protection [6], where multiple mobile patrollers protect ferries carrying
passengers. In the grid in Figure 1, the x-axis denotes a discretized temporal domain of
N + 1 time points and the y-axis denotes a discretized 1-D spatial domain of M + 1
positions.

There are T moving targets. We use a pair (t, n) to denote a target t at time n. Let
htn be the position (i.e., height) of the pair (t, n) (shown as stars in Figure 1). The
targets need not land on the discretized positions, i.e., htn are not necessarily integers.
The defender has K homogeneous (i.e., indistinguishable) resources. Resources can
only land on the discretized positions and have maximum speed∆ (a constant). That is,
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Fig. 1. Discretized Grid.

a move from mn at n to mn+1 at n+ 1 is feasible if and only if 3 |mn+1 −mn| ≤ ∆.
Note that we do not require any assumption on the speed of the targets.

We use [M ], [N ], [K], [T ] to denote the set of discretized spatial positions, set
of discretized time points, set of resources and set of targets, respectively. A patrol
schedule is simply a set consisting of positions that a resource would land on at each
time. From now on, we call this a patrol path. We use a vector v = (m0,m1, ...,mN )
to denote a patrol path in which the resource lands on position mn at time n for any
n ∈ [N ]. We say path v′ = (m′0,m

′
1, ...,m

′
N ) is weakly (strictly) under path v =

(m0,m1, ...,mN ) if m′n ≤ (<)mn for all n ∈ [N ], and weakly (strictly) above is
defined similarly. A patrol path is feasible if every individual move is feasible. It is
easily observed that the number of feasible patrol paths is exponential inN , the number
of time layers. A pure strategy for the defender consists of K feasible patrol paths,
denoted as {vk}k∈[K].

Resources have a protection radius, within which any target will be protected. We
assume protection by multiple resources is equally efficient as protection by one re-
source. In Figure 1, the dashed arrow describes part of a patrol path and thickened
segments along the spatial dimension denote the protected ranges. An attacker’s pure
strategy is a target-time pair (t, n), meaning that he attacks once, at time n, the target t.
The Attacker’s utility by attacking the pair (t, n) is its weight wtn if it is not protected,
and 0 otherwise. The weight of the same target can be different at different times, i.e.,
wtn1 6= wtn2 (for example, a ferry may not always carry the same number of people).
We assume this is a zero-sum game and aim to compute the defender’s minimax mixed
strategy. Our results are summarized in Table 1. Some of our proofs are omitted in this
paper due to the space limitations.

3 A New Algorithmic Framework

We provide a novel algorithmic framework to theoretically analyze the complexity of
computing minimax strategy for the spatio-temporal security games introduced in the

3 Here, we do not consider any acceleration limit. In a later section, we will further study the
case with limited acceleration.
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Table 1. Table of Solvability Status

CASES SOLVABILITY

Constant Number of Resources (K) poly time (Fang et al. 2013)

Constant Number of Time Layers (N ) poly time (Theorem 2)

Non-overlapping Protection Range poly time (Theorem 3)

Homogeneous Targets poly time (Theorem 4)

General (1-1/e)-approx oracle (Observation 1)

General+Acceleration Limit NP-hard oracle (Theorem 6)

previous section. This framework differs significantly from [6]; we provide an LP and
reduce it to a combinatorial optimization problem, for which it is easier to analyze
complexity results.

We first formalize the minimax strategy problem as an LP. Instead of {vk}k∈[K], we
use an alternative representation to denote pure patrol strategies. Specifically, let vector
e = (..., etn, ...) ∈ {0, 1}TN denote a pure strategy of the defender in the following
way: given a pure strategy, etn = 1 if and only if this pure strategy protects the pair
(t, n), etn = 0 otherwise. Let E denote the set of all pure strategies and Pw = ConvE,
the convex hull of set E, be the set of mixed strategies.

Notice that, Pw is also the set of marginal probabilities of protecting target-time
pairs (t, n) that correspond to mixed strategies. The defender’s optimal strategy in a
zero-sum game can be formulated as the following LP (LPg):

min u

s.t x ∈ Pw
(1− xtn)wtn ≤ u,∀ t ∈ [T ], n ∈ [N ]

Now we reduce LPg to a combinatorial optimization problem by two steps of re-
ductions. First, let the polyhedron Pg = {(x, u) : x ∈ Pw, (1 − xtn)wtn ≤ u,∀t, n}
denote the feasible set for LPg , then LPg can be solved in polynomial time with the
ellipsoid method, as long as Pg admits an efficient separation oracle—that is, an algo-
rithm that decides, for any (x, u), whether it is in Pg and returns a violated constraint if
not. The following key lemma connects the polyhedron Pg and Pw.

Lemma 1. Separation oracles for Pw and Pg reduce to each other in poly(T,N) time.

Proof. Pw ⇒ Pg: given a separation oracle Ow for Pw, one can construct a separation
oracle for Pg by simply checking the TN extra constraints (1− xtn)wtn ≤ u.
Pg ⇒ Pw: let u0 = maxt,n wtn. For any x0 ∈ RTN , x0 ∈ Pw if and only if

(x0, u0) ∈ Pg . Furthermore, if x0 6∈ Pw, any hyperplane aTx + bu = c separating
(x0, u0) from Pg gives a hyperplane aTx = c− bu0 separating x0 from Pw.

Unfortunately, Pw is defined by a set of constraints with exponential size. So our
second step of reduction connects the oracle problem for Pw to another optimization
problem.
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Lemma 2. The separation oracle problem for Pw reduces to the following LP (LPw)
in polynomial time:

max
∑

t∈[T ],n∈[N ]

wtnxtn

s.t. x ∈ Pw

for arbitrary weight profile {wtn}.
As a result, LPg reduces to LPw in polynomial time.

The separation oracle problem for LPg reduces to the following LP (LPw) in polyno-
mial time:

max
∑

t∈[T ],n∈[N ]

wtnxtn

s.t. x ∈ Pw

for arbitrary weight profile {wtn}.

Proof. We are following an argument from [7]; proof is provided for completeness.
Assume we are given an oracleO that computes LPw. Consider another polyhedron

P◦w = {y : yTx ≤ 1,∀x ∈ Pw}. For any y, we can decide whether y ∈ P◦w by solving
an instance of LPw: max yTx, s.t. x ∈ Pw. This can be computed by oracle O and
output an optimal solution x∗. If yTx∗ ≤ 1, then y ∈ P◦w, otherwise yTx∗ = 1 is a
hyperplane separating y from P◦w.

Until now, we have constructed a separation oracle for P◦w using O. Therefore,
we can maximize any linear function over P◦w in polynomial time, again by ellipsoid
method. Then, similar arguments as above implies that we can construct a separation
oracle for P◦◦w = {x : yTx ≤ 1,∀y ∈ P◦w} = Pw. This proves that the separation
oracle problem for Pw reduces to LPw.

Then we have, LPg reduces by ellipsoid method to the separation oracle problem
for Pg , which again reduces to the separation oracle problem for Pw (by Lemma 1),
which then reduces to LPw.

LPw picks a mixed patrol strategy to maximize the sum of weights it covers. So we
call LPw the Weight collection problem, while LPg the Game theoretic min-max prob-
lem. A key observation here is that, as a linear program, LPw has an optimal vertex
solution on Pw, which corresponds to a pure strategy that collects the maximum sum
of weights. Therefore, LPw can be thought of as the following combinatorial problem:
given the weight wtn and position htn for each pair (t, n), finding K feasible paths in
the grid that covers the most weights. This is also the defender’s best response problem
for an arbitrary attacker mixed strategy, by regarding wtn as the loss of the pair (t, n)
under attacker’s mixed strategy, i.e., the weight of pair (t, n) multiplied by the probabil-
ity of attack at (t, n). As we will see later, this problem admits efficient combinatorial
algorithms in some important special cases.

Before ending this section, we describe a technical lemma capturing the structure
of the optimal vertex solutions of LPw, which plays a key role in our latter arguments.
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Lemma 3. There exists an optimal vertex solution for LPw corresponding to a de-
fender pure strategy, say {vk}k∈[K], in which vk is strictly under vk−1 for all k.

The proof of this lemma is not particularly insightful, so we omit it. The basic idea is
to adjust a given optimal solution to another optimal solution satisfying the conditions in
Lemma 3. The adjustments maintaining feasibility are intuitively explained in Figure 2.

Fig. 2. Two kinds of adjustment. Left: when two paths are crossing; Right: when two paths over-
lap.

4 When Any Parameter Is Constant

In this section, we show that when any of the parametersM ,N ,K, T is a constant, com-
puting a minimax strategy admits polynomial-time algorithms. The interesting cases are
M > K and T > K, because the defender can use resources to cover all the discretized
positions ifM ≤ K and can dedicate a separate resource to follow each target if T ≤ K
(assuming targets are not faster than resources). So, we only consider the cases where
either K or N is a constant, because M or T being a constant would only be of interest
when K is constant.

The LP formulation in [6] has size O(NM2K), which is polynomial in M and N
assuming K is constant. So we consider another case where the number of time layers
N is constant. Specifically, we show the following.

Theorem 1. There is a polynomial-time algorithm for LPg when N is constant.

Using our algorithmic framework, Lemma 1 and the following Lemma 4 together
yield a proof of Theorem 2.

Lemma 4. If N is a constant, Algorithm 1 runs in polynomial time and outputs an
optimal vertex solution for LPw, for any weight profile {wtn}.

Proof. Lemma 3 guarantees there is always an optimal pure strategy in which paths do
not cross or touch. Algorithm 1 computes such an “ordered” optimal pure strategy using
dynamic programming. This algorithm is polynomial-time because N is a constant,
therefore the number of states OPT (v; k) is poly(M,K).

5 Solving Large-Scale Cases

For large-scale problems, we show that two important special cases admit polynomial-
time algorithms, the general problem admits a (1-1/e)-approximation oracle and the
oracle problem for a slightly extended version is NP-hard.
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Algorithm 1 Dynamic Programming for Weight Collection
Input: position htn and weight wtn, ∀ t ∈ [T ], n ∈ [N ].
Output: optimal objective value and corresponding pure strategy.
1: State OPT (v; k) denotes the maximum objective value using k resources when the highest

patrol path is v; S(v; k) denotes the corresponding optimal pure strategy.
2: For all feasible v, compute OPT (v; 1) equaling the total weight covered by v and let
S(v; 1) = {v}.

3: ∀v, let path set P(v) = {u : u is strictly under v}.
4: for k=2 to K do
5: for all feasible v do
6: Compute OPT (v; k)

= max
u∈P(v)

{OPT (u; k − 1) + C(v \ u)}

where C(v \ u) is the sum of weights covered by v but not by u.
7: S(v; k) = S(u∗; k − 1) ∪ {v} where u∗ is a path achieving “max” in Step 6.
8: end for
9: end for

10: Output maxv OPT (v;K) and corresponding S(v∗;K).

5.1 Non-overlapping Protection Range

In this section, we consider the special case where the protection ranges of distinct
discretized points n1 and n2 never overlap. That is, the protection radius of a resource
is at most 1

2d∆ where d∆ is the distance between two spatial discretized points. We
assume that targets are located close enough to the spatial discretized points such that
each target can be covered by at least one grid point.

We show that for this case, there is a polynomial time algorithm by showing that we
can obtain an optimal vertex solution for LPw in polynomial time. Since the protection
ranges do not overlap, for any point, we can say that the targets within its protection
range “belong” to that point and the sum of the weights of targets within its protection
range is the “reward” of covering that point. Now any pure strategy can be thought of
as a flow over the grid points that collects rewards. However, a potentially problematic
discrepancy in reducing this to a standard flow problem is that, if multiple patrol paths
pass through the same grid point, LPw counts the reward at that point only once, but
a standard reward-collecting flow formulation would count the reward once for every
unit of flow through the point. Fortunately, Lemma 3 guarantees that, to find an optimal
pure strategy for LPw, it suffices to find an optimal pure strategy under the additional
constraint that paths do not overlap. We can do this by slightly modifying the grid and
adding capacity constraints to the network flow formulation (Figure 3). Then, by the
integrality of network flows, optimal solutions to the network flow problem constitute
optimal pure strategies for LPw.

Theorem 2. If the protection ranges at different grid points do not overlap with each
other, then an optimal vertex solution to LPw can be found in polynomial time. There-
fore, LPg admits a polynomial-time algorithm.



8 Xu et al.

. . . 
. . . 

. . . 
. . .  

.  .  . 

.  .  . 

0 1 N

. . . 
. . . 

S T

. . . 
. . .  

.  .  . 

.  .  . 

0

added 

1 N

Fig. 3. Left: Original Grid; Right: Constructed Network in which all the edges have capacity 1.
Only the added purple edges have non-zero weights, with the weight of such an edge equaling
the sum of all the target weights covered by the corresponding grid point.

5.2 Homogeneous Targets

Oftentimes in practice targets are homogeneous, i.e., ∃w, such that wtn = w,∀t, n.
Examples include defending cargo ships. For this case, we provide a polynomial-time
algorithm to compute an optimal solution to LPg directly.

Note that if all the targets have the same weight, LPg degenerates to the following
form: max u satisfying x ∈ Pw and xt,n ≥ u. In other words, it seeks a probabilis-
tic coverage of all the targets, such that the minimum probability over all targets is
maximized. We relate this probabilistic coverage problem (PC) to the following deter-
ministic coverage problem (DC): given the positions of all the targets at different times
(i.e., htn), DC seeks to find the minimal number of resources such that they can cover
all the targets surely at any time, i.e., with probability 1.

We show PC admits a polynomial-time algorithm by the following two steps: 1.)
there is a “duality” relationship between PC and DC, and the optimal solution of PC
can be recovered from that of DC efficiently (Theorem 4); 2.) DC admits a greedy
polynomial-time algorithm (Algorithm 2).

Algorithm 2 Greedy Algorithm for Deterministic Coverage Problem (DC)
Input: the position of t at time n (htn), ∀ t ∈ [T ], n ∈ [N ];
Output: Optimal value K0 and path set P .
1: Initialization: K0 = 0, P = ∅.
2: while there are pairs (t, n) not covered do
3: K0 = K0 +1; construct path vK0 to be the time-wise lowest path that does not leave any

pair (t, n) above its protection range uncovered;4add vK0 to P .
4: end while

4 A straightforward construction is as follows: starting from a path v = (m1, ...,mN ) that is
above any uncovered pair (t, n), we then set mn = mn − 1 whenever there is an n such that
v = (m1, ...,mn − 1,mN ) is feasible and there is no uncovered target above the protection
range of mn − 1.
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We use OPT (PCK) and OPT (DC) to denote the optimal objective values of
problem PC (with K resources) and problem DC, respectively. The following lemma
plays a key role in our “duality” argument.

Lemma 5. OPT (PCK) ≥ K
K0

ifOPT (DC) = K0; andOPT (DC) ≤ K
p ifOPT (PCK) =

p.

Lemma 5 yields the following “duality” relation between PC and DC.

Theorem 3. OPT (PCK) = K/OPT (DC). Furthermore, the optimal solution of
PCK can be generated from that of DC efficiently.

Proof. The first part of Lemma 5 yields OPT (PCK)OPT (DC) ≥ K, while the sec-
ond part yields OPT (PCK)OPT (DC) ≤ K. So OPT (PCK) = K/OPT (DC).

Next, we prove that a solution to PC can be obtained from a solution to DC as
follows. Given the optimal path set [K0] for DC, we can sample a combination of K
paths (i.e., a pure strategy for the defender) from [K0] uniformly at random. This can
be easily done in poly(K0) time. Any target is covered by a resource with probability
CK−1K0−1 ×

1
CKK0

= K
K0

where CKK0
means K0 choose K.

We now show that DC admits a polynomial-time algorithm (Algorithm 2). Clearly,
Algorithm 2 runs in polynomial time and outputs K0 feasible paths covering all targets.
The following theorem guarantees the optimality of Algorithm 2.

Theorem 4. The K0 output by Algorithm 2 is optimal.

5.3 General Case

In this section we consider the general problem. Our basic idea is still to follow the
oracle-based algorithmic framework. The first observation is that finding an optimal
vertex solution for LPw in the general case is a submodular maximization problem
with an exponential-sized universe set.

Specifically, let A denote the set of all the feasible patrol paths, so that A has expo-
nential size. Define a non-negative function w : 2A → R+ as follows: ∀B ⊆ A, w(B)
equals the sum of weights covered by all the paths in the subset B. It is easy to see that
w(B) is a non-negative monotone submodular function.

Our problem can be stated as maximizing w(B) subject to the cardinality con-
straint |B| = K, which is NP-hard for many classes of submodular functions, e.g.,
for weighted coverage function [12]. Fortunately, a simple greedy algorithm for non-
negative monotone submodular function maximization that achieves an (1 − 1

e ) −
approximation [11] applies to our problem with a bit of further analysis. The straight-
forward implementation of this greedy algorithm runs in poly(|A|,K), in which |A|
is exponentially large in our case. We note that |A| shows up in the complexity bound
because, at each step, the straightforward implementation needs to enumerate all the
elements in A to decide which element covers the most additional value if added at the
current step. However, in our case, this element can be computed efficiently without
enumerating all the elements in A. That is, we first set all the covered weights to 0 and
then compute the path that covers the most weight in the current weight profile, which
can be done easily, e.g., by a flow formulation.
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Observation 1 Algorithm 3 is an (1 − 1
e )-approximation for LPw for arbitrary

weight profile {wtn}.

A constant-factor approximation to LPw theoretically does not imply the same
constant-factor approximation to LPg . However, as a heuristic method, column gen-
eration using Algorithm 3 as an approximate oracle performs very well in practice.

We describe the algorithm as follows (Algorithm 3) and summarize its performance
in Observation 1.

Algorithm 3 Greedy Weight Coverage
Input: htn and wtn, ∀ t ∈ [T ], n ∈ [N ];
Output: path set {uk}k∈[K].
1: for k = 1 : K do
2: compute the path, say uk, that covers the most weight with respect to current weight

profile.
3: Set wtn = 0 if t is covered by uk at n.
4: end for

5.4 General Case with Acceleration Limit

In this section, we show solving the oracle problem for LPw is NP-hard in a slightly
extended case, specifically, when resources have a limit on their acceleration. We first
model acceleration as follows.

Definition 1. (Acceleration) For any triple of positions (mn−1,mn,mn+1) at 3 adja-
cent time layers (n − 1, n, n + 1), define An = |mn+1 + mn−1 − 2mn| to be the
acceleration at time n.

Intuitively, one can regard mn+1 −mn as the speed within the time unit between n
and n+ 1, so (mn+1 −mn)− (mn −mn−1) = mn+1 +mn−1 − 2mn would be the
speed change between two adjacent time units, and can be viewed as the acceleration at
time n.

The speed limit naturally gives an upper bound on An, i.e., An ≤ 2∆. We show
that if resources have a slightly stricter limit on acceleration, namely any feasible move
must satisfy An ≤ 2(∆− 1), then LPw is NP-hard.

Lemma 6. LPw is NP-hard, if An ≤ 2(∆− 1) for any n.

Proof. We prove this by reducing from vertex cover.
Construct the following special case: set ∆ = 3, set patrol radius r = 2

3d∆, i.e., the
protection range is (m− 2

3d∆, m+ 2
3d∆) at positionm. Here d∆ is the distance between

two neightboring spatial points. Therefore, the position m + 1
2d∆ can be covered by a

resource either at m or at m+ 1, but the position m can only be covered by a resource
at m.
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First, the following vertex cover problem (VC) is known to be NP-hard: given inte-
ger K and any graph G = (V,E), finding a subset V0 ⊆ V that maximizes the number
of edges it covers subject to |V0| = K. We reduce VC to LPw.

Given K and any graph instance G = (V,E), we construct an LPw instance as
follows. Create |V | targets, each one corresponding to a node in V . The moving paths
for these |V | targets are constructed as path 1,2,3, etc. in the left of Figure 4. Generally,
two neighboring paths differ by a horizontal translation of 4 time layers. These paths
are constructed in such way that each pair of targets cross each other exactly once and
all the crossings have the same local geometry as shown in the right of Figure 4. Any
pair of targets does not occupy the same discretized position at any time. We set the
weight of each target to be 1 at any time layer.

Now, for any edge in E, we add a “tiny” target with small enough weight. Specifi-
cally, ∀e = (u, v) ∈ E, let ne denote the discretized time when path u and v are closest,
and une

and vne
denote the position of path u and v at time ne.5 We put a tiny target

with weight ε at the time ne on the point in the middle between une
and vne

(see the
position of ε in Figure 4). Note that a resource can capture this ε weight at either une or
vne . One may think of this as a tiny target e that has weight ε only at this specific time
and has weight 0 otherwise. We set ε small enough to satisfy ε < 1

|E| , so that sum of
all the tiny weights is still less than 1, i.e., |E|ε < 1. This completes the construction of
the LPw instance.

Our first observation is that any optimal vertex solution to LPw must first optimally
capture the weights from the target set V , because |E|ε < 1, meaning that the loss of
failing to cover any target corresponding to a node in V cannot be recovered even by
covering all the ε tiny targets.

Now we show the only way to collect weights optimally from those |V | targets is
to pick any K targets and follow their paths precisely. The reason is that K resources
can capture at most K targets at any time layer because of limited protection radius and
non-overlapping paths. So capturing a sum of weights of KN is the best one can do
and following any K targets achieves this. The reason that these are the only optimal
strategies is that the only time when a resource can switch to another path is when the
current path is about to intersect that path, however the switch at that time is infeasible
because it needs an acceleration of 2∆− 1, greater than the limit 2(∆− 1).

As a result, maximizing the collected weights is equivalent to choosing a target set
[K] ⊆ V to follow, such that the number of covered tiny targets is maximized. Note that
a tiny target e = (u, v) can be covered if and only if one of its end points corresponds to
a path in [K]. So, an optimal vertex solution (i.e., optimal pure strategy) to LPw gives
an optimal solution to the original VC problem instance. SinceG = (V,E) is arbitrarily
chosen, LPw is NP-hard.

Lemma 1 and Lemma 6 together yield the following theorem.

Theorem 5. The separation oracle problem for LPg is NP-hard, if An ≤ 2(∆− 1) for
any n.

5 In a slight abuse of notation, here we use u, v to denote both nodes inG and paths correspond-
ing to these nodes.
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Fig. 4. Left: enumerated target paths; example position to put an ε tiny targets; Right: local inter-
section geometry, tiny target position and infeasible acceleration.

Theorem 6 does not imply that solving LPg is also NP-hard. Still, this rules out
perhaps the most natural approach to showing that LPg is easy to solve.

6 Experiments

We compare both solution quality and time performance of proposed algorithms in real
data. All algorithms being tested are list as follows: (i) LP: linear programming formu-
lation in [6]. (ii) DP: dynamic programming for LPw (Algorithm 1). (iii) NonOverlap:
network flow assuming non-overlapped protection range for LPw. (iv) Hom: greedy
algorithm assuming homogeneous targets (Algorithm 2). (v) OrderGreedy: greedy
weight coverage algorithm for LPw (Algorithm 3). The algorithms NonOverlap and
Hom could be easily adopted as heuristic algorithms for the general case by pretending
the protection ranges do not overlap or all the targets are homogeneous. Algorithms
DP, NonOverlap, and OrderGreedy need to reduce from LPg to LPw by the ellipsoid
method, which often suffers from numerical instability and poor performance in prac-
tice. We instead implemented these algorithms using column generation [5], which re-
places the ellipsoid method (see online appendix for details). Although the number of
iterations can be exponential in the worst case, this method is empirically efficient and
thus is adopted here for testing the algorithms.

0 0.5 1
4

6

8

10

d − distance

U
 −

 u
til

ity

Fig. 5. Ferry utility

���������	
 � � � � �

�����

��� � � �� � ���

�����

��� � � � � ����

�����

��� � � � � �

�����

�

�
���

� � �� � ���

�
������
�� � �� � �� �

Fig. 6. Main Parameters



Computing Minimax Strategy for Spatio-Temporal Security Games 13

1 2 3 4 5
0

0.5

1

1.5

2

A
ttE

U
 R

at
io

1 2 3 4 5
0

5

10

Number of Resources

lo
g 

R
un

tim
e

 

 

LP OrderGreedy NonOverlap Hom

(a) Increase K

2 3 4 6 7
0

0.5

1

1.5

A
ttE

U
 R

at
io

2 3 4 6 7
0

5

10

Number of Time Steps

lo
g 

R
un

tim
e

 

 

LP DP OrderGreedy NonOverlap Hom

(b) Increase N
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(c) Increase Re
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Fig. 7. Experimental Results For Small Scale Practical Settings in Ferry Domain

We test our algorithms in both practical settings in the ferry protection domain and
randomly generated settings. Practical settings are generated based on domain descrip-
tion in [6]. Ferry’s utility depends on its position between two terminals, and usually
appears as a U-shape in practice (see Figure 5). For randomly generated settings, we
randomly choose the moving path and utility of each target. Results are shown in Fig-
ure 7 and 8. In each figure, the y-axis of the upper plot shows the solution quality of
different algorithms. The objective of LPg is the attacker’s maximum expected utility,
denoted as AttEU. The defender aims to minimize AttEU, and thus a lower AttEU in-
dicates a higher solution quality. For each instance, we calculate the ratio of AttEU of
any algorithm to the best value among all tested algorithms. When the best value is 0,
we add 0.001 to all values to get rid of the 0 denominator. The solution quality is the
AttEU ratio averaged over 20 sampled instances. The y-axis of the lower plot shows the
natural logarithm of runtime in milliseconds to make the comparison more clear. The
minimum runtime is set to 1 millisecond.

Small scale experiments. We first focus on small scale data to evaluate the optimal-
ity of algorithms and their performance when the corresponding optimality assumptions
are violated. All main parameters used are listed in Figure 6.

Figure 7(a) shows the performance of the baseline strategy (LP) as the number of
resources (K) increases. LP is ensured to be optimal, however the runtime increases
exponentially when K increases. When K ≥ 4, LP runs out of memory and fails to
return a solution. So LP – the state of the art [6] – can only run if K ≤ 3 and number
of time steps is just 13. Figure 7(b) shows that DP always achieves the optimal solution.
When the number of time steps is small enough (e.g., N ≤ 3), DP runs much faster
than LP. As N increases, the advantage diminishes and can be even slower than the
baseline algorithm when N ≥ 6. So DP is especially useful for cases with small N .
Figure 7(c) shows that NonOverlap achieves the optimal solution when the protection
radius is small (r < d∆/2 = 1/(2(N − 1)) = 0.083) and it outperforms the baseline
LP in runtime significantly. Even when the non-overlapping assumption is violated, this
algorithm still provides a good approximation of the optimal solution, especially when
the protection radius is close to d∆/2. Figure 7(d) shows the performance of Hom as the
utility range increases. Utility range is defined as the difference between the maximum
and minimum utility of the targets. When utility range equals 0, all targets are homoge-
neous. From the figure, we know Hom runs orders of magnitude faster than the baseline
LP. It obtains optimal solution when utility range is 0. As the utility range increases, the
solution quality of Hom degrades but it still provides a reasonable approximation.
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In all these experiments, we also tested the heuristic algorithm OrderGreedy. Sur-
prisingly, it achieves optimal or near-optimal solution in most cases, while outperform-
ing LP and DP significantly in runtime, which indicates it to be a good heuristic algo-
rithm in many different settings. We also tested these algorithms on small scale ran-
domly generated instances and the results are similar (see online appendix).

Large scale experiments. Figure 8 shows the performance of the heuristic algo-
rithms for general case when the scale of the problem is large. The utility range is ran-
domly chosen from [0, 100] and the protection radius is randomly chosen from [0, 0.05]
(d∆/2 = 0.0167). Figure 8(a) is based on practical settings in ferry domain and Figure
8(b) is based on randomly generated settings. It can be seen that different algorithms
achieve best performance in different samples as none of the algorithms keep an AttEU
ratio of 1. However, OrderGreedy achieves best solution quality in many cases, espe-
cially for practical settings. In terms of runtime, Hom is significantly faster than the
other two algorithms and NonOverlap is the slowest. Notice that NonOverlap runs out
of memory when the scale gets larger (K = 8, N = 31).
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(b) Random settings

Fig. 8. Experimental Results For Large Scale Problems

7 Conclusions

This paper: (i) systematically studied computational complexity properties of spatio-
temporal security games; (ii) proposed novel polynomial-time algorithms or proved ap-
proximations and hardness results for different variants of these game; (iii) examined all
the proposed algorithms experimentally based on a real domain and showed significant
improvements over previous best known algorithm for these games [6].
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