
Noname manuscript No.
(will be inserted by the editor)

Efficient Solutions for Joint Activity Based Security
Games: Fast Algorithms, Results and a Field
Experiment on a Transit System1

Francesco M. Delle Fave2 · Eric Shieh2 ·
Manish Jain · Albert Xin Jiang ·
Heather Rosoff · Milind Tambe · John
P. Sullivan

Received: date / Accepted: date

Abstract In recent years, several security agencies have been deploying schedul-
ing systems based on algorithmic advances in Stackelberg security games
(SSGs). Unfortunately, none of the existing algorithms can scale up to do-
mains where benefits are accrued from multiple defender resources performing
jointly coordinated activities. Yet in many domains, including port patrolling
where SSGs are in use, enabling multiple defender resources to perform jointly
coordinated activities would significantly enhance the effectiveness of the pa-
trols.

To address this challenge, this paper presents four contributions. First,
we present Smart (Security games with Multiple coordinated Activities and
Resources that are Time-dependent), a novel SSG model that explicitly rep-
resents jointly coordinated activities between defender’s resources. Second,

1 An initial version of the work presented in this article has previously appeared in [34].
In this work, we extend this initial version with the following contributions: (i) we present a
large scale real-world experiment, describing in detail how a real-world security deployment
problem could be modeled using our Smart framework; (ii) within this experiment, we
provide the first head-to-head comparison between game-theoretic schedules (generated by
our algorithm SmartH) and human-generated schedules, presenting results showing some
of the benefits that game-theoretic scheduling can provide; (iii) we present new simulations
where we analyze the performance of TSP ordering heuristic developed to scale up SmartH
and (iv) where we evaluate the effectiveness of using OrigamiP to prune nodes of the branch-
and-price tree; (v) finally, we provide additional detailed examples and discuss significant
new related work and future work.

2 This article is the results of the joint effort of Francesco Maria Delle Fave and Eric
Shieh. Both of them should be considered first authors of this work.

Francesco M. Delle Fave, Eric Shieh, Heather Rosoff, Manish Jain, Albert Xin Jiang, Milind
Tambe
University of Southern California, CA 90089
E-mail: {dellefav,eshieh,rosoff,manishja,jiangx,tambe}@usc.edu

John P. Sullivan
Los Angeles County Sheriff’s Department
E-mail: jpsulliv@lasd.org

2 Francesco M. Delle Fave et al.

we present two branch-and-price algorithms, SmartO—an optimal algorithm,
and SmartH— a heuristic approach, to solve Smart instances. The two algo-
rithms present three novel features: (i) a novel approach to generate individual
defender strategies by ordering the search space during column generation us-
ing insights from the Traveling Salesman Problem(TSP); (ii) exploitation of
iterative modification of rewards of multiple defender resources to generate
coordinated strategies and (iii) generation of tight upper bounds for pruning
using the structure of the problem. Third, we present an extensive empirical
and theoretical analysis of both SmartO and SmartH. Fourth, we describe a
large scale real-world experiment whereby we run the first head-to-head com-
parison between game-theoretic schedules generated using SmartH against
schedules generated by humans on a one-day patrol exercise over one train
line of the Los Angeles Metro System. Our results show that game-theoretic
schedules were evaluated to be superior to ones generated by humans.

Keywords Game theory, Security, Stackelberg Games, Simulations, Field
Evaluation

1 Introduction

In recent years, research in Stackelberg Security Games (SSGs) has led to the
development of several decision aids which assist real-world security agencies
in security resource allocation, e.g., to deploy patrols and checkpoints to pro-
tect targets from terrorists and criminals [5, 11, 15, 31, 38, 41, 43]. Examples
include ARMOR and GUARDS for airport security [31, 32], IRIS for allocating
security personnel to international flights of US carriers [18], PROTECT for
randomizing the patrols for security of ports and passenger ferries in ports such
as New York, Boston, and Los Angeles [14, 33], and TRUSTS for patrolling
Metro trains in Los Angeles [44].

In all these applications, a SSG is used to model a two-player game between
a defender (the security agency) and an adversary which may be of multiple
types.1 The defender commits to a mixed strategy— a randomized resource
allocation specified by a probability distribution over deterministic schedules—
which takes into account the adversary’s best response to his observation of
the mixed strategy.

Most of the applications discussed above require generating mixed strate-
gies defined over an exponential number of defender schedules. Hence, gener-
ating an effective allocation of security resources is often a computationally
expensive task. For this reason, most applications depend heavily on the signif-
icant advances in fast algorithms for solving SSGs [17, 38]. For example, IRIS
requires the use of a branch-and-price approach to handle the exponentially-
many possible allocations of security resources to international flights of US
carriers [17]. Similarly, TRUSTS solves the patrol problem as a network flow

1 By convention in security games literature, the defender is referred to as “she” and the
adversary as “he”.

Efficient Solutions for Joint Activity Based Security Games 3

optimization problem, using a transition graph, to scale up to the number of
possible schedules to patrol a train line [20, 44].

However, despite all such significant advances, scaling up remains a signif-
icant issue in advancing the scope of SSGs. A major drawback of the current
algorithms is their failure to scale up to SSGs where multiple defender re-
sources explicitly perform joint activities, i.e., games where coordination in
space and time will provide the defender with additional benefits [17, 30, 41].
To date, neither general purpose SSG algorithms [12, 30], nor special pur-
pose SSG algorithms [17] can scale up to handle these joint activities. Yet,
joint activites are an important aspect of real-world security. For example, the
algorithm used in PROTECT [33] only focuses on one boat patrols. Yet, if
a single boat is, perhaps, 50% effective in detecting (and hence stopping) a
potential adversary attack, a second boat may increase the effectiveness sig-
nificantly to, perhaps, 80% as the adversary may be forced to react to this
second boat. PROTECT is unable to handle such coordination over multiple
boats. Similarly, when patrolling a train line, security resources such as explo-
sive detective canine (EK9) teams often patrol train lines in cooperation with
other resources. By doing so, their effectiveness is increased. In essence, the key
problem for most of the algorithms, discussed above, is that representing this
type of joint activity space significantly accelerates the growth in the number
of pure strategies, which severely impacts their ability to scale up in several
security domains (e.g., port security).

Furthermore, a key question raised for deployed applications of SSGs is
the evaluation of their performance in the field. Despite earlier attempts, the
actual evaluation of the deployed SSGs-applications in the field is still a major
open challenge [33]. A significant number of practical constraints (e.g., time
to train the officers, availability of personnel to organize, run and evaluate the
experiment) limits the ability of researchers to conduct head-to-head compar-
isons between SSGs-applications and human schedulers. Hence, a systematic
study that evaluates the benefits using a head-to-head comparison is still miss-
ing from the literature.

To address these shortcomings, this paper presents four contributions. The
first contribution is Smart, Security games with Multiple coordinated Activ-
ities and Resources that are Time-dependent , a model extending the frame-
work of security games to explicitly represent jointly coordinated activities.
The second contribution consists of two algorithms. We present SmartO, an
optimal algorithm to compute optimal defender strategies for Smart prob-
lems and SmartH, a heuristic iterative procedure to achieve further speed-up
over SmartO. Both SmartO and SmartH use a branch-and-price algorithm
– an algorithm composed of branch-and-bound and column generation – to
deal with the large strategy space of the domain [4]. These algorithms exploit
the structure of the joint coordinated activities to gain speed up, based on
the following key ideas: (i) use of insights from the Traveling Salesman Prob-
lem (TSP) to order the search space during column generation, especially in
SmartH, while maintaining coordination; (ii) efficient greedy computation of
patrols per resource via iterative modification of rewards to generate a joint

4 Francesco M. Delle Fave et al.

patrol, during column generation, and (iii) generation of tight upper-bounds
within the branch-and-bound component by exploiting scheduling constraints
to allow pruning of the search space based on the sub-modular property of
joint activities. Our third contribution is the analysis of the performance of
both SmartO and SmartH in solving instances of Smart. We analyze the
quality of the solutions generated by SmartH and evaluate both algorithms
in simulation comparing their runtime and solution quality.

Finally, our fourth contribution is the real-world evaluation of the game-
theoretic schedules generated using SmartH. This evaluation constitutes the
largest scale experiment evaluating the performance of SSGs in the field. We
present results from a massive transit full-scale exercise (FSE), a real-world
experiment whereby 80 security officers coordinated their activities to patrol
10 stations of a metro line for 12 hours. The purpose of the exercise was a head-
to-head comparison between SSG-based schedules, generated using SmartH,
against human-generated schedules. We were able to evaluate the schedule
generation process, as well as provide a thorough evaluation of the performance
of both schedules as conducted by a number of security experts located at each
of the ten stations during the entire length of the exercise. Our results show
that our game-theoretic approach, based on SmartH, was able to significantly
cut the schedule generation effort for humans compared to manual scheduling.
Yet, game-theoretic scheduling was able to generate schedules similar to the
ones generated by humans in terms of number of joint activities. In addition,
game-theoretic schedules were able to address the comprehensive security of
the train line by having the different teams patrol all the different levels of
the stations (e.g., the platform level, the street level and the mezzaning level).
Finally, the game-theoretic schedules allocated the more effective teams to
the more important stations. These last two factors, which were missing from
the human-generated schedules, led security experts to concur that the game-
theoretic schedules were more effective in providing security than the human-
generated schedules.

The overall conclusion from this real-world exercise is that our game-
theoretic schedules, generated by SmartH were able to perform at least equiv-
alently to (and in fact better than those) generated by human schedulers. This
indicates that we could save precious time so security experts could focus on
maintaining security rather than on generating schedules. Overall, the data
that we were able to collect constitutes a source of information which can be
used for evaluating the current status of research in SSGs, and to understand
new directions where to take such research.

The remainder of this paper is organized as follows. Section 3 presents
the Smart model for incorporating jointly coordinated activities into SSGs.
Section 4 presents SmartO, the optimal algorithm to solve Smart problem
instances. Section 5 then presents SmartH the heuristic that we developed
to increase the scalability over SmartO. Next, Section 6 discusses both our
simulation and our real-world experiment. Finally, Section 7 summarizes the
paper and introduces some future and ongoing work.

Efficient Solutions for Joint Activity Based Security Games 5

2 Related Work

Stackelberg security games (SSGs) have gathered significant attention in litera-
ture [5, 13, 22, 23, 24, 25, 26]. As discussed in the previous section, SSG models
and algorithms have been used to build decision aids including ARMOR [31],
IRIS [39], GUARDS [32], PROTECT [33], TRUSTS [44] and RaPtoR [42]. All
these decision aids have been developed to assist the security of transportation
infrastructure including ports, airports and train lines. However, most of these
decision aids do not model joint coordinated activities. The IRIS system mod-
els some of this coordination by assigning a negative infinite weight to the joint
action of two Federal Air Marshals (FAMS) taking the same flight, explicitly
restricting the maximum number of FAMS on any flight to one (see the work
of Jain et al. [17] for more details). This type of solution, however, does not
model more complex forms of joint effectiveness as we will do in the rest of this
paper. In fact, most decision aids, including ARMOR, GUARDS, PROTECT,
TRUSTS and RaPtoR, do not account for jointly coordinated activities. They
allocate security resources without considering the benefits that could be ac-
crued by different resources combining their effort. As a consequence, they are
generating schedules that are not as effective as they could be. Indeed, recent
work by Jiang et al. [19], analyzes the loss incurred by miscoordination be-
tween defender’s resources and derives theoretical bounds indicating that such
loss may be extremely high in several scenarios.

Current literature presents two gaps that limit the ability of the existing
SSG models and algorithms to address jointly coordinated activities between
defender’s resources. First, existing SSG models assume that a single resource
is 100% effective in protecting any single target [17, 21]. They do not consider
varying effectiveness of joint activities, i.e., they all assume that no benefits
can be accrued if the resources coordinate their activities. Second, from an
algorithmic perspective, even algorithms that are intended to achieve scale-
up in presence of constraints, such as ASPEN [17], cannot scale up to SSGs
incorporating joint activities due to the significant increase in the strategy
space.

Similarly, the challenge of deploying game-theoretic schedules in the field
has not been addressed by research in SSGs. Despite some initial evaluation
of the PROTECT system [33], a head-to-head comparison between game-
theoretic schedules and human generated schedules, the way in which most
security agencies allocate their resources, is still missing from literature. How-
ever, this type of study would be extremely useful to advance the state-of-the-
art of game-theoretic scheduling, because it would allow us to measure, for the
first time, the actual performance of such schedules when deployed in the real
world. From this perspective, our work shares many ideas with literature on
game theory in the field. This line of research has focused on showing equi-
librium concepts in the human and animal activities [8, 29]. Our work shares
their enthusiasm of taking game theory to the field, but fundamentally focuses
on algorithmic deployments and the impact of such algorithms. In addition,
this work shares some similarities with literature in crime prevention [9, 10].

6 Francesco M. Delle Fave et al.

Our idea is to evaluate a new form of policing of a transportation network
based on game-theoretic scheduling. We measure the performance of strategic
recommendations in the form of schedules that can be used to mitigate crime
and terrorism within areas such as ports or transit systems.

In addition to decision aids and security allocation, research in SSGs has
also addressed problems of multi-robot patrolling. More specifically, research
has developed the multi-robot adversarial patrolling games (MAPG) frame-
work, a restricted type of SSG, which considers the problem of coordinated
patrols of multiple robots around a closed area with the existence of an ad-
versary attempting to penetrate into the area [1, 2]. The penetration requires
time and the defender should identify the attacker during his attempt. Simi-
larly, the work from Sless et al. [36] requires the robots to physically inspect
penetration attempts for a given time period. More specifically, Sless et al.
[36] investigate the problem of coordinated attacks, in which the adversary
initiates two attacks in order to maximize its chances of successful penetra-
tion, assuming a robot from the team will be sent to examine a penetration
attempt. Such MAPGs patrols are frequency-based patrols in adversarial en-
vironments, but do not consider targets of varying importance and the impact
of joint activities [3, 27, 40].

3 The Smart Problem

A Smart problem is an instance of a SSG. A SSG, as discussed in detail in
the work of Kiekintveld et al. [21], is a two-player game involving a defender
d and an attacker a competing over a set of targets T . The defender has a
limited number of resources R and needs to select which targets to protect
considering that the attacker is going to conduct a thorough surveillance to
exploit any predictable pattern in the defender resource allocation. In a SSG,
each target t ∈ T is assigned a reward U cd(t) and a penalty Uud (t) to the
defender if t is covered and uncovered, respectively, by a defender’s resource.
Similarly, each target is assigned a reward U ca(t) and a penalty Uua (t) to the
attacker. As discussed by Kiekintveld et al. [21], the payoffs are defined such
that Uud (t) < U cd(t) and U ca(t) < Uua (t) ∀ t ∈ T . The purpose of each player
then is to maximize their expected payoffs defined in equations 4 and 5. In
an optimal solution of a SSG, the defender plays a mixed strategy, i.e., a
probability distribution over the different targets, which intelligently allocate
the defender resources given the importance of each target and considering
the behavior of the attacker [12].

In a Smart problem instance, each resource chooses an activity from the
set A = {α1, α2, . . . αK} for each target t ∈ T . Each resource r ∈ R is assigned
a graph Gr = (T,Er), where the set of vertices T represents the set of targets
to patrol and the set of edges Er represents the connectivity between such
targets. Each edge e ∈ Er is assigned a time value τ(e) representing the time
that it takes for one defender resource r to traverse e. Each graph encodes
the motion of different resources. For example, security assistants patrol the

Efficient Solutions for Joint Activity Based Security Games 7

R Number of defender resources,
subscripted by r

Gr = (T,Er) Graph of the input problem instance
T Set of targets
tb Home base

Er : {e(ti, tj)} Set of edges
τ(e(ti, tj)) Time required to traverse the edge e
τ(α) Time required to conduct activity α
eff(α) Effectiveness of activity α

eff(αi, αj) Effectiveness of joint activity 〈αi, αj〉
P Set of pure strategies of the defender

ωt(Pi) Effective coverage of t in Pi

Γr Maximum time allowed for an individual patrol for resource r
W Time window for a joint activity
X r The set of pure strategies for resource r

Table 1 Notation Table

stations of a train line by taking the trains. In contrast, sheriffs and EK9
units use a car. They can go from one end to the other of a train line without
having to cross each station. Similarly, aerial patrols can move freely and reach
any area of a port, whereas boat patrols might be constrained to take certain
routes. The notation used in Smart is described in Table 1.

The attacker’s pure strategy space is the set of all targets, T . A pure strat-
egy for the defender is a set of routes, one route Xi for each resource. Formally,
each patrol route is defined as an ordered list of 3-tuplesXi = [X1

i , . . . , X
j
i , . . .].

The jth 3-tuple Xj
i = (t, α, γ) represents a time-action segment for defender

resource i: she conducts and completes activity α at target t at time γ. Each
time-action segment is different since different activities might require differ-
ent amounts of time and have a different effect on the target to protect (as
discussed below).

Each patrol route starts and ends at the same, pre-defined, home base

tb ∈ T , i.e., X1
i .t = tb and X

|Xi|
i .t = tb. The total route length of each

resource’s patrol is upper bounded by a specific value Γr as follows:

traversal time time for activities︷ ︸︸ ︷
|Xi|−1∑
j=1

τ(e(Xj
i .t,X

j+1
i .t)) +

︷ ︸︸ ︷
|Xi|∑
j=1

τ(Xj
i .α) ≤ Γr ∀ Xi (1)

X r is defined as the set of pure strategies for resource r and the set of joint pure
strategies P is given by the cross-product of pure strategies for each resource,
i.e., P =

∏R
r=1{X r}.

Smart is unique since it explicitly models joint activities, or activities co-
ordinated in space and time between multiple defender resources. The defender
is said to conduct a joint activity 〈αi, αj〉 in her pure strategy if there exists
at least two tuples (ti, αi, γi) ∈ Xi and (tj , αj , γj) ∈ Xj in the defender’s pure
strategy such that ti = tj and |γi − γj | ≤ W . In other words, i.e., the two

8 Francesco M. Delle Fave et al.

activities are on the same target and are within a time window of width W .
Here, the time width W represents the minimum interval of time within which
two different activities have a joint effect. For instance, if one aerial and one
boat patrol explore the same area one after the other within a time frame of
10 minutes, their effectiveness will be much larger then if they were patrolling
one after the other but within a time frame of 30 minutes. In the former case,
it can be assumed that they were conducting a joint patrol action. In contrast,
in the second case, given the large temporal distance, the two actions can be
considered individually.

For each activity αi, eff(αi) represents the individual effectiveness2 of
the activity αi. This effectiveness ranges from 0% to 100%, and measures the
probability that the defender will be able to successfully prevent an attack on
target t if such an attack overlaps with the activity αi at t that the defender
is conducting . This is similar to what was done in PROTECT [33]. We de-
fine the effectiveness of the joint activity 〈αi, αj〉 as eff(αi, αj). While a joint
activity may be composed of two or more resources – and our experimental
results show the benefits of n-ary joint activities in Section 6.1 – in this sec-
tion we focus on joint activities composed of two resources for simplicity of
explanation. In this case, a joint activity composed of two resources receives
the maximum effectiveness and any additional resource visiting target t in the
time window will have no additional benefit.Thus, it is possible to define a total
order relation ≥ on A such that αi ≥ αj if and only if (1) eff(αi) ≥ eff(αj)
and (2) eff(αi, αk) ≥ eff(αj , αk),∀αk. In other words αi provides a greater
effectiveness than αj .

Given a set of activities S = {αi}i=1...k on a target within the same time
window, labeled so that αi ≥ αj for all i > j, we extend the notation of
eff such that eff({∅}) = 0, eff(S) = eff(α1) if S = {α1}, i.e., |S| = 1,
and eff(S) = eff(α1, α2) if S = {αi}i=1...k, i.e., |S| > 1. eff(S) represents
the maximum effectiveness of an individual or a joint activity over a set S of
activities performed at a target within the same time window. One interesting
aspect to understand about the operator eff() is whether it is submodular or
not. We define eff() as submodular if for all S1 ⊆ S2 and all αi the following
condition holds:

eff(S1 ∪ {αi})− eff(S1) ≥ eff(S2 ∪ {αi})− eff(S2) (2)

This means that each additional activity performed has diminishing gains in
effectiveness. The reason why we are interested in submodularity is that when-
ever it holds it becomes possible to define an approximate greedy algorithm,
SmartH, which provides performance guarantees on the quality of the solu-
tion that it calculates. More specifically, in Section 5, we formally demonstrate
that whenever eff() is submodular, the solutions generated by SmartH are
upper bounds to the optimal solutions of the problem (see Equation 26).

Therefore, the submodularity property is crucial from a practical perspec-
tive. Whenever it holds in a real-world domain, we can provide theoretical

2 We associate effectiveness with activities and not with targets, assuming that each ac-
tivity is equally effective at all targets.

Efficient Solutions for Joint Activity Based Security Games 9

guarantees on the performance of the deployed officers. One example of such
domain is port security, if one boat from the US Coast Guard is exploring a
specific area of a port, any additional boat is unlikely to provide additional
benefit in terms of deterrence effect or ability to capture criminals. In contrast,
submodularity will not hold in domains where the defender has two different
resources that only provide benefit when they are acting together. As we will
see in Section 6.2, this is the case of the train domain, where some security
resources (e.g., the EK 9) will be characterized by a null individual effective-
ness but a non-zero joint effectiveness. If the submodularity property does not
hold, the SmartH algorithm is still able to solve and generate an approximate
solution of the problem, however nothing can be said about such solution’s
quality.

The expected utilities Ud(Pi, t) and Ua(Pi, t) for both players, when the
defender is conducting pure strategy Pi (defined as a joint pure strategy for
multiple defender resources), and when the attacker chooses to attack target
t is given as follows:

ωt(Pi) = max
(t,α,γ)∈Pi

{(t,αl,γl),(t,αm,γm)}⊆Pi,|γl−γm|≤W

{eff(α), eff(αl, αm)} (3)

Ud(Pi, t) = ωt(Pi)U
c
d(t) + (1− ωt(Pi))U

u
d (t) (4)

Ua(Pi, t) = ωt(Pi)U
c
a(t) + (1− ωt(Pi))U

u
a (t) (5)

Here ωt(Pi) defined in Equation (3) represents the effective coverage of the
defender on target t when executing pure strategy Pi. This is computed by
taking the maximum effectiveness of either a single or joint activity performed
at target t at any time during the defender’s patrols. The justification here
is that in many domains the time that it takes to prepare and carry out a
complex attack on a target, is often longer than the time required to patrol.
Hence, we can safely assume that the attacker only cares about the maximum
effective activity or joint activity (nonetheless, the formulation could be ex-
tended to situations involving shorter attack durations by dividing a patrol
based multiple attack periods, a topic we leave for future work). Once the
effectiveness ωt(Pi) is computed from the pure strategy Pi, the defender and
attacker expected utilities Ud(Pi, t) and Ua(Pi, t) are calculated as defined in
Equation (4) and (5). The following example illustrates how the effectiveness
of each pure strategy is calculated.

Example 1 Consider the problem composed of 5 targets as given by the graph
in Figure 1. The travel time on the edges between targets ti and tj is denoted
as τij . Assume that the home base, tb = t1. Furthermore, consider that the
defender has 2 resources, each of which could conduct activities {α1, α2, α3},
such that α1 is a thorough inspection of the target premises, α2 is waiting
at the target looking for suspicious behavior and α3 just transiting through
the target area. Tables 2 and 3 give the time required for activity α and
the effectiveness eff for each individual as well as joint activity. The time at
each tuple is computed by summing the distance between the targets and the
activity time in Table 2.

10 Francesco M. Delle Fave et al.

t1
t5

t2

t4

t3

Fig. 1 Example graph of targets and edges

Activity α1 α2 α3

Effectiveness, eff(αi) 0.5 0.4 0.1
Time 2 1 0

Table 2 Effectiveness of a single activity at any target.

α1 α2 α3

α1 0.8 0.7 0.58
α2 0.7 0.55 0.45
α3 0.58 0.45 0.11

Table 3 Joint Effectiveness of each joint activity at any target.

An example of a pure strategy for the first defender resource is: X1 =
[(t1, α3, 0), (t5, α1, 3), (t1, α1, 6)]. In words, the strategy describes a patrol whereby
the first defender resource start at the home base target, t1, performs activity
α3, go to t5, performs activity α1 and then returns back to the base, t1 to
perform activity α1.

An example of a pure strategy of the second defender resource is: X2 =
[(t1, α3, 0), (t2, α3, 2), (t3, α3, 3), (t2, α3, 4), (t1, α2, 7)]. This strategy describes
a patrol where the second defender resource starts at t1 and travels to t2, t3,
t2, and then back to t1 performing activity α3 at all targets except at the
second visit target t1, performing activity α2.

The pure defender strategy considering all defender resources is defined as
P1 = (X1, X2). Assuming that the time window W = 2, then the effectiveness
of the defender’s pure strategy is computed by first determining the most
effective single activity for this target, which is α1 with eff(α1) = 0.5 for
target t1, as shown in Table 2. Looking at the schedule of the two defender
resources, we then find the maximum coordinated joint activity that are within
the time window W = 2. For t1, this is determined to be (t1,α1, 6) for resource
1 and (t1,α2, 7) for resource 2, which gives eff(α1, α2) = 0.7, from Table 3.
Thus, ωt1(P1) = max(0.7, 0.5) = 0.7, as defined in Equation (3). Similarly,
ωt2(P1) = 0.1, ωt3(P1) = 0.1, ωt4(P1) = 0.0, ωt5(P1) = 0.5.

Given pure strategy P1, the defender’s expected utility for target t1 is
computed using Equation (4), and is equal to 0.7 · U cd(t1) + 0.3 · Uud (t1). The
attacker’s expected utility for target t1 given pure strategy P1 is computed in
a similar fashion.

Efficient Solutions for Joint Activity Based Security Games 11

Problem Statement: The objective of the defender is to maximize her
expected utility in the Smart problem by computing the optimal mixed strat-
egy given that the attacker will best respond to the defender’s strategy.

4 SmartO: Optimal Branch-and-Price Solver

SmartO is an optimal algorithm to compute solutions for Smart problem
instances. It builds upon the ASPEN algorithm [17], an optimal algorithm to
solve SSGs based on the branch-and-price framework [4]. The two major novel-
ties of SmartO over ASPEN are the formulation of a slave component capable
of handling joint activities (in Section 4.1) and the improved upper bounds
on the quality of the solutions recovered by the algorithm (in Section 4.2).
The price SmartO pays for its optimality is its lack of scalability (as dis-
cussed later in Section 6.1). Nonetheless, it is useful to understand SmartO’s
functioning because it lays the foundation for SmartH, which is a more scal-
able algorithm. SmartO also allows us to measure SmartH’s performance on
smaller-sized problems.

4.1 Pricing component

The branch-and-price framework constructs a branch-and-bound tree, where
for each leaf of the tree, the attacker’s target is fixed to a different t′. The
objective of the pricing component is to find the best defender mixed strategy
x at that leaf, such that the best response of the attacker to x is to attack target
t′. Due to the exponential number of defender pure strategies, the best defender
mixed strategy is determined using column generation, which is composed of
a master and slave procedure, where the slave iteratively adds a new column
(defender strategy) to the master. Each component is defined as follows:

min
c,x
− Ud(t′, c) (6)

Ua(t′, c) ≥ Ua(t, c) ∀t 6= t′ (7)

ct −
∑
j∈J

ωt(Pj)xj ≤ 0 ∀t ∈ T (8)

∑
j∈J

xj = 1 (9)

xj ∈ [0, 1] ∀j ∈ J, ct ∈ [0, 1] ∀t ∈ T (10)

Master: The master LP, given in Equations (6) to (10), finds the optimal
defender mixed strategy x given a set of pure strategies J and assuming that
the pure strategy of the attacker is set to t′ (determined by the leaf node).3

3 For the sake of computation, we formulate the LP as a minimization problem (Equation
6); this will be explained in detail when we describe the slave procedure.

12 Francesco M. Delle Fave et al.

This is similar in formulation to the ERASER algorithm [21]. Ud(t
′, c) and

Ua(t′, c) are the utilities of the defender and the attacker respectively when
the defender’s effective marginal coverage is c and the attacker attacks t′. Both
Ud(t

′, c) and Ua(t′, c) are defined following Equations 4 and 5, e.g., Ud(t
′, c) =

ct′U
c
d(t′)+(1−ct′)Uud (t′). For each pure strategy Pj , ωt(Pj) is the effectiveness

on t.
Slave: Once the master LP is solved to optimality, the slave problem receives
the values of the duals of the master LP. The reduced cost cj associated with
column Pj is defined as follows:

cj =
∑
t

yt · ωt(Pj)− z, (11)

where z is the dual variable of Equation (9) and {yt} are the duals of Equation
family (8). The reduced cost of a column gives the potential change in the
master’s objective function when a candidate pure strategy is added to J . The
candidate pure strategy with the minimum reduced cost is likely to improve
our objective the most [7], since we are minimizing the master in Equation (6).

The objective for the slave problem is to find the column Pj with the least
reduced cost, to add to the current set of columns. In addition, if the least
reduced cost is greater or equal to 0, the current master solution is optimal for
the full LP. The best column is identified using a mixed-integer linear program
(MILP) formulation over the transition graph defined below, which captures
all the spatio-temporal constraints of the problem for handling joint activities
and avoids having to enumerate all pure strategies.

The transition graph Gr = (N ′r, E
′
r) contains nodes u = (t, γ) for each

target t and time instant γ ∈ [0, Γr] if it is possible for the defender to be at
target t at time instant γ (the time interval is discretized). Each edge in E′r is
associated with an activity α. An edge e(u,v,α) from node u to node v maps
to a defender patrol that starts from target tu at time γu, goes to target tv and
conducts activity α at target tv. Therefore, we can calculate γv as follows:

γv = γu + τ(tu, tv) + τ(α) (12)

where τ(tu, tv) is the time required to traverse from target tu to tv and τ(α)
is the time required to conduct activity α. The graph contains virtual source
and sink nodes that contain edges to/from the base target tb to ensure that
patrols start and end at tb.

Example 2 Figure 2 shows a sample transition graph related to the problem
presented in Example 1. Here, tb = t1 and the source has three edges, one
for each activity α1 – α3. Looking at node u = (t1, 0), target t1 is adjacent
to t2 and t5, so for each of these targets, three edges are added to represent
the travel and corresponding activity at that target. For example, if activity
α2 is then performed at target t2, then the new vertex would be at time
γ = 0 + τ(α2) + τ12 = 0 + 1 + 2 = 3, where τ12 = 2, and node v = (t2, 3) as
shown in Figure 2.

Efficient Solutions for Joint Activity Based Security Games 13

t1

t2

t5

0 1 2 3 5
Time Steps

Ta
rg

et
s

4

sink

source …

…

…

…

↵1
↵2

↵3

Legend

to-sink

Fig. 2 An Example for the Transition Graph

Slave Problem MILP: We now describe our mixed integer linear program-
ming formulation that identifies the pure strategy Pj . The MILP for the slave
problem is given in Equation (13) to (17). This novel MILP component of
SmartO solves for joint activities and generates the optimal defender pure
strategy.

min
∑
t∈T

yt ·max{gt, ht} (13)∑
e∈out(u)

f(er) =
∑

e∈in(u)

f(er) ∀ u, r (14)

gt = max
er∈IA(t),
∀r

{f(er) · eff(e.α)} (15)

ht = max
ei,ej∈JA(ri,rj ,t),

∀i,j ∈R

{(f(ei) + f(ej)− 1) · eff(ei.α, ej .α)} (16)

f(er) ∈ {0, 1} ∀er, gt, ht ∈ [0, 1] ∀t ∈ T (17)

This MILP uses one copy of the transition graph for each defender resource,
where f(er) represents the flow on edge e for resource r, and gt and ht represent
the effectiveness of the defender’s individual and joint activities on target t.
It only considers the maximum effective activity at target t (Equations (13),
(15), and (16)) in accordance with our assumption of the attacker’s decision
making. In all three equations, the maximum effectiveness is computed using
integer variables along with a large constant M . The resulting constraints are
similar to the ones used in the DOBSS algorithms [30].

Here, the set IA(d) represents the set of edges in the transition graph such
that they represent one resource performing an activity α on target d, and can
be represented as:

IA(d) = {in(ur)|ur.t = d,∀ur ∈ N ′r,∀r ∈ R}

where in(ur) represents all edges with the target node ur. Similarly, the set
JA(ri, rj , d) contains pairs of edges 〈ei, ej〉 such that both edges lead to the

14 Francesco M. Delle Fave et al.

Fig. 3 The structure of branch-and-price

same target d and are separated by a time window no larger than W , cor-
responding to when resources i and j perform a joint activity on target d.
Formally, JA(ri, rj , d) =

{〈ei = (u, v), ej = (u′, v′)〉|v.t = v′.t = d, |v.γ − v′.γ| ≤W}.

Both sets IA and JA are defined over all transition graphs.
The result from the slave MILP is a set of 0-1 integer flows for each defender

resource r. Given these flows, the defender pure strategy Pj and the effective
coverage ω(Pj) are generated, and then both are sent back to the master.

4.2 Branch-and-bound component

In our branch-and-price framework, we define a separate branch for each at-
tacker pure strategy, i.e. for each target t. Thus, the leaf node for target t̂
has qt = 1 for t = t̂ and 0 otherwise. The pricing procedure described ear-
lier is then used to compute the solution for this leaf node. This procedure is
repeated for each leaf, after which the best solution obtained thus far is re-
turned as the optimal solution.4 An example branch-and-bound tree is given
in Figure 3. The leaf (gray) nodes in the figure represent the pure strategies
of the attacker, i.e., where the pricing computation is performed. The non-leaf
(white) nodes represent the nodes for which upper bounds are obtained using a
branch-and-bound heuristic (the branch-and-bound heuristic also determines
the ordering of leaves, or attacker’s pure strategies, in this tree). The objective
of the branch and bound component is (i) to compute upper bounds for each
internal node of the tree such that leaf nodes can be pruned thereby requiring
less computation, and (ii) to determine an efficient ordering of leaves.

We generate these upper bounds using OrigamiP, a modification of Origami
[21] specifically designed to generate tighter upper bounds for Smart problem
instances by exploiting the structure of the domain.

4 Only considering pure-strategies for the attacker is not a limitation; Stackelberg games
always exhibit at least one Strong Stackelberg equilibrium where the attacker’s best response
is a pure strategy [30].

Efficient Solutions for Joint Activity Based Security Games 15

min
c,f(e)

k (18)

0 ≤ k − Ua(t, c) ≤ (1− qt) ·M ∀t ∈ T (19)∑
e∈out(source)

f(e) = R (20)∑
e∈in(sink)

f(e) = R (21)∑
e∈out(u)

f(e) =
∑

e∈in(u)

f(e) ∀u (22)

ct ≤
∑

e=(u,v)|v.t=t

f(e) · eff(αk) ∀t ∈ T (23)

ct ∈ [0, 1], qt ∈ {0, 1} ∀t ∈ T, f(e) ∈ [0, R] ∀e ∈ E (24)

OrigamiP uses the transition graph defined in the slave formulation (Sec-
tion 4.1). Equations (18)–(19) minimize the attacker’s maximum expected
utility, Ua(t, c) defined by Equation 5. This utility represents the attacker’s
utility given the defender’s effective marginal coverage is c and the attacker
attacks t. Since, the algorithm is used in the internal nodes of the branch-
and-price tree, the attacker’s target is fixed to a target t′. Thus, the integer
variables qt representing the attacker’s pure strategy are fixed (for target t̂,
qt = 1 for t = t̂ and 0 otherwise) and the original MILP is simplified into an
LP. Equations (20)–(22) define the flows of the edges and enforce the flow con-
servation property. Equation (23) limits the coverage of the defender based on
the amount of flow and the respective activity. We can show that OrigamiP
satisfies the following proposition:

Proposition 1 OrigamiP computes upper bounds of the defender expected
utility Ud() if eff() is submodular.

Proof OrigamiP estimates the effectiveness of a defender patrol on a target as
being the sum of the effectiveness of all individual activities on a target. This
is an over-estimate of the effectiveness (thereby providing an upper bound on
defender utility) if the effectiveness function eff is sub-additive, i.e., eff(αi) +
eff(αj) ≥ eff(αi, αj), which is the case when eff satisfies the submodularity
property in (2).

OrigamiP is an LP and therefore solvable in polynomial time. Once the
OrigamiP solution has been obtained, the defender’s expected utility Ud(t, c)
is computed for each target t. The targets are then ordered in decreasing order
of Ud(t, c). This ordering and computation of upper bounds is then exploited
to prune the nodes in the branch-and-price tree.

16 Francesco M. Delle Fave et al.

5 SmartH: Further scaling up Smart

We now present the SmartH heuristic to further scale up the computation
for Smart problem instances. As we will see in the following section, SmartO

fails to scale beyond 4 targets in our computational experiments. Hence, we in-
troduce SmartH which follows the same branch-and-price procedure discussed
before but uses a novel heuristic slave formulation.

In essence, SmartH is built on two intuitions related to coordination. The
first intuition is that joint patrols can be computed by considering individual
patrols iteratively, by using greedy policy optimization between iterations to
reflect the additive benefit of joint activities. The second intuition is that each
defender resource would like to visit as many targets as possible, and visiting
targets in accordance with an ordering based on a solution of the Traveling
Salesman Problem is likely to extract maximal benefit out of the resource while
still accounting for the spatio-temporal constraints needed for coordination.
As a result, the SmartH slave only needs to solve a set of linear programs (as
opposed to solving a MILP in SmartO’s slave).

5.1 Iterative Reward Modification

The slave in SmartH computes the joint patrol Pj of the defender by it-
eratively and greedily building up individual patrols Xr for each defender
resource r. The additional benefit of joint activities is considered by appro-
priately shaping the rewards for each resource based on the patrols of other
resources. Greedy policy optimization has been used in other reinforcement
learning contexts [37]; here we leverage this idea for coordination among mul-
tiple resources. This greedy approach allows SmartH to handle heterogeneous
defender resources with each iteration solving for a different resource r.

Algorithm 1 SmartH Greedy Slave
1: Input: y, G
2: Initialize Pj , µ
3: for all ri ∈ R do
4: Xi ← SolveSinglePatrol(y,µ,Gr)
5: Pj ← Pj ∪Xi

6: µ← ComputeCostCoef(Pj ,Gr)
7: ω(Pj)← ConvertToColumn(Pj)
8: return Pj ,ω(Pj)

SmartH uses a greedy algorithm, as outlined in Algorithm 1. This algo-
rithm takes the coefficients yt (refer Equation (11)) as input and builds Pj

iteratively in Lines 3–6. Line 4 computes the best individual patrol Xr for the
defender resource r (described in Section 5.2). Xr is then merged with the rest
of the defender’s pure strategy Pj (in Line 5). Line 6 computes µ, the poten-
tial effectiveness contribution from one resource to another given the current

Efficient Solutions for Joint Activity Based Security Games 17

pure strategy Pj . This is computed over each edge e(u,v,α) in the transition
graph, and measures the added benefit to the defender if the defender resource
was to travel from u.t to v.t at time u.γ performing activity e.α at target v.t.
These values of µ are used in the next iteration when computing an individual
patrol for the next defender resource.

To understand how close the solution of the greedy algorithm is to the op-
timal solution, we use some insights from [28], which states that greedy max-
imization of a non-negative submodular function achieves a constant-factor
approximation. Recall that the objective of the slave problem is to find a pure
strategy Pj that minimizes the reduced cost cj (see Equation 11). This is
equivalent to maximizing (since z in Equation 11 is a constant):

F (Pj) = −
∑
t∈T

ωt(Pj) · yt (25)

The duals y from the master are always negative in this formulation making
F (Pj) non-negative. ωt(Pj) is the effectiveness of pure strategy Pj at target
t as defined in (3).

If F (Pj) is submodular, and if P∗ is the optimal defender pure strategy,
then, as shown by Nemhauser et al. [28] the solution Pj of the greedy algorithm
satisfies

F (Pj) ≥
1

2
F (P∗) (26)

For the special case where the time window, W , is greater than or equal to
the maximum patrol time5, Γ , we show that F (Pj) is submodular. F (Pj) is
submodular if P1 and P2 are two sets of routes where P1 ⊆ P2 and F (P1 ∪
{X})− F (P1) ≥ F (P2 ∪ {X})− F (P2).

Theorem 1 F (Pj) is submodular in Pj if W ≥ Γ and eff() is submodular.

Proof Since W ≥ Γ and ωt(Pj) = eff(SPj
), where SPj

is the set of activities
of Pj on target t. To prove that F (Pj) is submodular, it suffices to show
that ωt(Pj) is submodular because F (Pj) is defined as a non-negative linear
combination of ωt(Pj). Considering Equation (2):

eff(SP1
∪ αX)− eff(SP1

) ≥ eff(SP2
∪ αX)− eff(SP2

)

we can write ωt(P1 ∪ X) − ωt(P1) ≥ ωt(P2 ∪ X) − ωt(P2), P1 ⊆ P2. Thus,
ωt(Pj) is submodular when the time window is greater than or equal to the
maximum patrol time.

In real life situations, W may be less than Γ . We show that even in this
situation, F (Pj) is submodular for 2 resources.

Theorem 2 F (Pj) is submodular in Pj for two resources if eff() is submod-
ular.

5 W ≥ Γ implies that two resources present at the same target at anytime during the
patrol are considered to conduct a joint activity.

18 Francesco M. Delle Fave et al.

Proof We prove that F (P1∪{X})−F (P1) ≥ F (P2∪{X})−F (P2) where P1 =
{∅} and P2 contains a single patrol {X2}. To do this, we show that ωt({X}) ≥
ωt({X2, X})−ωt({X2}), for each target t, based on the submodularity property
of eff() in (2). We proceed in two steps. First, we show that:

wt({X}) ≥ wt({X2, X})− wt({X2}) (27)

We use case-reasoning. If X2 and X are in the same window then the
same argument as Theorem 1 applies. Hence, we only need to demonstrate
the equation for the case where X2 and X are not in the same window. We
have wt({X2, X}) = max(eff(X2), eff(X)), then:

wt({X2, X})− wt({X2}) = max(0, eff(X)− eff(X2)) (28)

⇔ wt({X2, X})− wt({X2}) ≤ eff(X) = wt(X) (29)

Second, we show that Equation 27 is equivalent to wt(P1 ∪ {X})− wt(P1) ≥
wt(P2 ∪ {X})− wt(P2):

wt({X}) ≥ wt({X2, X})− wt({X2}) (30)

⇔ wt({∅} ∪ {X})− wt({∅}) ≥ wt({X2, X})− wt({X2}) (31)

⇔ wt(P1 ∪ {X})− wt(P1) ≥ wt(P2 ∪ {X})− wt(P2) (32)

This shows that ωt(Pj) is submodular. As a consequence, F (Pj) is also sub-
modular because it is a non-negative linear combination of ωt(Pj).

Qualifying this result for W < Γ for 2 resources is important since this
setup is used most frequently in the real world, e.g., the US Coast Guard. For
three or more resources, we can artificially construct counter-examples that
break submodularity. However, given actual domain geometries, time win-
dows, and operational rules, submodularity may hold even for larger number
of resources – e.g., Theorem 1 shows that relaxing the time window may lead
to such submodularity. Characterizing these spaces is a topic left for future
work.

5.2 TSP Ordering with Transition Graph

To achieve the approximation bound in Equation (26), we need to optimally
compute an individual patrol Xr for the defender resource r in line 5 of Al-
gorithm 1. This can be solved by an MILP of similar form to the slave MILP
(Equations (13)-(17)), but for a single patrol. The resulting MILP for a single
patrol has less variables than the MILP for all patrols, however this still fails
to scale up beyond 6 targets (Section 6).

Instead, we present a heuristic approach that achieves better scale-up by
exploiting the spatial structure of the domain, and is provably optimal in some
specific cases. Our approach is based on the following restricted version of the
problem: we define an ordering of the targets and restrict the sequence of target

Efficient Solutions for Joint Activity Based Security Games 19

visits to be increasing in this order. We construct the ordered transition graph
in the same way as described in Section Ḣowever, now, an edge from node u to
v is added only if target u.t appears before target v.t in the ordering. If there
does not exist a direct edge from u to v, an edge is added between these nodes
such that τu.t,v.t is equal to the shortest path from u.t to v.t. Traversing along
this edge does not impact the effectiveness of the intermediate targets. Instead
of computing the maximum effectiveness of the multiple edges per target, each
target is only visited once per patrol in the ordered transition graph. Since each
target in the patrol is counted only once, the max expressions in (13), (15),
and (16) can be replaced with linear expressions. The resulting problem is
equivalent to a min-cost flow, which has integer extreme points that allow us
to drop the integrality constraint (17), since a feasible solution of the resulting
LP is guaranteed to be an integer flow. Hence, these LPs are easier to solve
than the above MILPs, both in theory as well as in our experiments.

Fixing an ordering will exclude certain patrols. Therefore, we would like an
ordering such that the resulting patrol, which corresponds to a subsequence of
the ordering, will still be a sensible way to visit targets compared to patrols
with alternative orderings. To that end, SmartH uses an ordering based on
the solution of the traveling salesman problem (TSP). Given an input graph
of all targets, G = (T,E), the orderings are generated using a nearest neigh-
bour algorithm (as discussed by Gutin et al. [16]) which determines the order
to which the targets are visited in the patrol. Despite using an approximate
algorithm, we are still able show that under certain conditions, the TSP or-
dering can yield an optimal solution of the single-patrol problem. When such
conditions do not hold, it is likely that different orderings, based on more so-
phisticated TSP algorithms could result in a better solution. This could be a
very interesting empirical challenge. However, we decided to focus our analy-
sis on different aspects of the problem because in Section 6 we compare the
performance of both SmartO and SmartH and show that the TSP ordering,
despite being generated by an approximate algorithm, generates solutions that
are very close to the optimal ones.

We look at a tree structure because various domains in the real world can
be represented as a graph similar to a tree. For example, train lines can be
represented as a line where edges connect each station and each station is
connected to some other nodes representing the different levels of the station
(e.g., platform, mezzanine or parking level). Similarly, ports can be imagined
as a minimum spanning tree connecting all the locations within a port.

Theorem 3 Suppose the input graph G is a tree, and the time window for
joint effectiveness is greater than or equal to the maximum patrol time. Then
SmartH computes a patrol for a single unit that optimizes the objective for
the single unit problem in Algorithm 1.

Proof We first observe that the optimal TSP tour of G visits each edge of the
tree exactly twice. The TSP tour corresponds to a complete preorder traversal
of the tree.

20 Francesco M. Delle Fave et al.

SmartH outputs a patrol P on a subset of targets TP , corresponding to a
subsequence of the TSP ordering. We show that this patrol is a TSP tour of
the corresponding subgraph on Tp, denoted Gp. There are two cases:

1. If GP is a connected subtree of G then P is a preorder traversal of that
subtree, and therefore is a TSP tour of the subtree.

2. If GP is not connected, for each two targets in different connected com-
ponents of GP there is a unique path in the original tree graph G that
connects the two. By adding nodes on these paths to GP , we recover a
connected subtree G′P , an optimal TSP tour on which is also optimal for
GP . Then since P is a preorder traversal of the subtree G′P , it is a TSP
tour of GP .

Consider a patrol P ′ on TP that does not follow the TSP ordering. Let P
be the patrol we get by reordering targets of P ′ so that they are increasing
in the TSP ordering. Since P is a TSP tour of GP , if P ′ finishes within the
time limit then P also does. Furthermore, since the time window for joint
effectiveness is large, joint activities in P ′ will also be joint activities in P ,
and thus P achieves the same slave objective as P ′. Therefore, we never lose
optimality by considering only patrols that follow the TSP order.

When the graph is a tree but the time window is smaller than the patrol
time limit, the algorithm is not guaranteed to be optimal. However, as we show
in our experiments, SmartH generates optimal or near-optimal solutions for
Smart problem instances.

6 Experimental Results

The section presents our simulations and our real-world experimental results.
In Section 6.1, we extensively evaluate the performance of SmartH and SmartO

in solving instances of Smart. We show the impact of the different compo-
nents of our approach in terms of runtime and with respect to the difference
in solution quality of the optimal versus heuristic algorithm. In Section 6.2,
we describe our field experiment. This experiment constitutes the first real
world head-to-head comparison between game-theoretic and human generated
schedules. This comparison covers the effort to generate the schedules, the
evaluation of security within a train line by security experts and the coor-
dination between different deployed resources. This evaluation constitutes a
contribution to evaluation not only of joint coordinated activities in the real
world but also to the general evaluation of SSG-applications in the real world.

6.1 Simulations

In our simulations, we are not able to compare with previous algorithms [12, 17,
30, 41] due to the inability of these algorithms to scale up to the combinatorics

Efficient Solutions for Joint Activity Based Security Games 21

40

50

R
un

tim
e

(m
in

ut
es

)
30

40
R

un
tim

e
(m

in
ut

es
)

SMART-H

10

20

R
un

tim
e

(m
in

ut
es

)

SMART-O

0

10R
un

tim
e

(m
in

ut
es

)

SMART-O (out
of memory)

3 4 5 20
Number of Targets

Fig. 4 Runtime of SmartH vs SmartO

unleashed by joint activities. Hence, we compare different versions of SmartH

and SmartO.

In the results below, in each experiment, each data point shown is averaged
over 100 game instances, generated with random payoffs in the range [-10,10]
and two defender resources unless otherwise noted. All the figures contains er-
ror bounds indicating the standard error of the mean. Given, the large number
of instances, in some cases the bars are not shown, since they are too small to
be seen. All the results are tested for statistical significance using a Student
t-test (p = 0.05). All experiments were run on graphs constructed beginning
with a tree that spans the targets and then adding 10 random edges between
nodes to create some random cycles in the graph. The root of the tree corre-
sponded to the home base, tb. The idea is to simulate the typical topology of
a transportation hub or network, e.g., the areas of a port and the stations of a
train line as in the port of Los Angeles or the Metro train line in Los Angeles.
The time window was 30 minutes with 3 possible activities for the defender,
taking 0, 5, or 15 minutes. In most of the experiments described below, the
transition graph required to build the slave problem (see Section 4.1) was built
using a time discretization of 5 minutes, i.e., any two adjacent nodes of the
graph u1 = (t1, γ1) and u2 = (t2, γ2) were defined such that γ2 = γ1 + 5. In
contrast, in the experiments where we compared SmartO and SmartH, we
used a larger time discretization of 15 minutes. This discretization was used
for comparison purposes, i.e., SmartO would not run with the large transition
graph produced as a result of a larger discretization. In such a setting, one ac-
tivity had a duration of 0 minutes while the remaining two had a duration of
15 minutes. All experiments were run on a machine with a Dual core 2.0 GHz
processor and 4 GB of RAM. We present our results in the remainder of this
section.

6.1.1 SmartH vs. SmartO: Runtime

In this experiment, we compare SmartH and SmartO in terms of runtime to
solve different Smart problem instances. Each instance is generated consid-

22 Francesco M. Delle Fave et al.

SmartH SmartO
3 targets 1.298 1.298
4 targets -0.7135 -0.6930

Table 4 Solution Quality of SmartH vs. SmartO

ering an increasing number of targets. The results are shown in Figure 4. In
the figure, the number of target is shown on the x-axis while the runtime is
shown on the y-axis. We can see that SmartO is not able to scale to problem
instances with more than 4 targets. In contrast, SmartH takes seconds to scale
up to instances of 20 targets. As shown in the figure, when the number of tar-
gets increases to 5, SmartO runs out of memory and takes at least 40 minutes
to run before giving an out-of-memory error. In contrast, SmartH takes less
than a minute to solve problems consisting of up to 20 targets. This shows
that SmartH dramatically improves both runtime computation and memory
consumption compared to SmartO.

6.1.2 SmartH vs. SmartO: Solution Quality

In this experiment, we compare the solution quality, or defender expected util-
ity, of SmartH versus SmartO while varying the number of targets. The idea
is to understand the quality of the solutions recovered by the more “practical”
algorithm, SmartH, in comparison with the optimal solutions generated by
SmartO. We generate Smart instances by increasing the number of targets
(i.e., up to the maximum number of targets that can be solved by SmartO).

The results are shown in Table 4. The results for 3 targets indicate that
SmartH provides, in average, the same solution quality as SmartO for all
game instances. By increasing the number of targets to 4, we can see that
the average solution quality for SmartH becomes 0.0205 lower than SmartO

with there being only one game instance where SmartH computed a lower
defender expected utility than SmartO. In this one instance, the final result
of SmartH was -0.61685 while the final result for SmartO was 0.0625, or a
difference of 0.679. Hence, given our problem settings, SmartH computes a
solution which is, on average, very close to SmartO on all those instances that
can actually be solved by SmartO.

6.1.3 SmartH: Scalability using TSP ordering

In this experiment, we measure the ability of SmartH to scale up to large
problem instances while using the TSP ordering procedure described in Section
5.2 and while not using any ordering procedure. The idea is to measure the
benefits that ordering the nodes will do to the SmartH algorithm in terms of
its scalability. In the experiment, we consider one single defender resource.

Figure 5 shows the results of our experiment. In the figure, the x-axis is
the number of targets and the y-axis is the runtime. As shown in the figure,

Efficient Solutions for Joint Activity Based Security Games 23

20

30

40

50

R
un

tim
e

(m
in

ut
es

)

Ordered Non-ordered

-10

0

10

3 4 5 6R
un

tim
e

(m
in

ut
es

)

Number of Targets
Fig. 5 Using ordered nodes

12

R
un

tim
e

(m
in

ut
es

)

Pruning No Pruning

8
10

R
un

tim
e

(m
in

ut
es

)

4
6
8

R
un

tim
e

(m
in

ut
es

)

0
2
4

R
un

tim
e

(m
in

ut
es

)

0
20 25 30 35 40

R
un

tim
e

(m
in

ut
es

)

Number of TargetsNumber of Targets
(a) pruning vs. non-pruning

90

70
80
90

Pe
rc

en
ta

ge
 o

f N
od

es

50
60
70

Pe
rc

en
ta

ge
 o

f N
od

es

Pr
un

ed

20
30
40

Pe
rc

en
ta

ge
 o

f N
od

es

Pr
un

ed

0
10
20

Pe
rc

en
ta

ge
 o

f N
od

es

0
20 25 30 35 40

Number of TargetsNumber of Targets

(b) pruning vs. number of targets

Fig. 6 SmartH: benefits of pruning nodes

by using the MILP and not ordering the nodes, or allowing the defender to
visit any node at any order in the path, the runtime for 6 targets is over 40
minutes. For 7 targets, SmartH not using node ordering runs out of memory.
The impact of the TSP ordering heuristic is then significant: SmartH takes
seconds for solving problems with up to 7 targets. In fact, as we will see in
the next experiments, this heuristic allows the algorithm to scale up easily to
problems with up to 40 targets.

6.1.4 SmartH: Pruning

In this experiment, we analyze the benefits of generating tight upper bounds
to prune the branch-and-price tree. The idea is to show in detail, why SmartH

can scale up to large problem instances, while preserving memory.
Figure 6(a) shows the runtime (in minutes) required by the algorithm to

solve Smart problem instances either pruning nodes (using OrigamiP) or
not. The x-axis shows the number of targets and the y-axis shows the runtime.
As shown in the figure, the amount of time saved by pruning nodes increases
with the number of targets. We ran a student t-test (p=0.05) which confirmed
the statistical significance of these results. In larger problem instances, the
branch-and-price tree is bigger. Thus, a larger number of nodes will be pruned.

24 Francesco M. Delle Fave et al.

0.5

1

1.5

2

2.5

3

R
un

tim
e

(m
in

ut
es

)
20 targets
25 targets
30 targets
35 targets

0

0.5

2 3 4 5 6

R
un

tim
e

(m
in

ut
es

)

Number of Defender Resources

35 targets
40 targets

Fig. 7 Runtime with multiple defender coordinating

This will have an impact on runtime: by using OrigamiP, the algorithm will
require less time to solve bigger problem instances compared to simply solving
all the leaf-nodes of the tree (i.e., no pruning).

Figure 6(b) shows the percentage of nodes pruned by SmartH considering
Smart problem instances of different size. In the figure, the x-axis shows the
number of targets while the y-axis shows the percentage of the nodes in the
branch-and-bound tree that were pruned by SmartH. The figure confirms the
intuition behind the results in Figure 6(a), SmartH will prune more nodes
on larger problem instances, e.g., up to 70% of the nodes for instances of 40
targets.

6.1.5 SmartH: n-ary Joint Activities

In this experiment, we measure the ability of SmartH to solve large problem
instances of up to 40 targets and large joint activity spaces of up to 10 activities
at the same time. In Section 3, we defined the coverage effectiveness of a pure
strategy in Equation 3. We used a max operator which, however, accounts
only for the best single activity and joint couple of activities to calculate the
coverage effectiveness. In this experiment, we modify SmartH to handle n-
ary combinations of resources efficiently by re-defining the underlying utility
function as an additive joint activity function (capped at one). SmartH’s
iterative modification of reward then efficiently computes µ based on this new
utility function based on the n-ary interaction (line 6 of Algorithm 1).

Figures 7 depicts the results of the experiment. In the figure, the x-axis is
the number of defender resources. Each of such numbers is also associated with
a specific arity of joint actions (e.g., 3 resources with ternary interactions) and
the y-axis is the runtime. As we can see, SmartH can efficiently handle n-ary
interactions since, the runtime never exceeds 3 minutes, even for instances
consisting of 40 targets and 10 defender resources.

Efficient Solutions for Joint Activity Based Security Games 25

6 No Defender

5

6

So
lu

tio
n

Q
ua

lit
y

No Defender
Coordination
(Ratio=0)
SMART-H

3

4
So

lu
tio

n
Q

ua
lit

y SMART-H
(Ratio=1/6)

2

3

So
lu

tio
n

Q
ua

lit
y

SMART-H
(Ratio=2/6)

1

So
lu

tio
n

Q
ua

lit
y

SMART-H
(Ratio=3/6)

0
90 120 150 180

Maximum Patrol Time (minutes)

SMART-H
(Ratio=4/6)Maximum Patrol Time (minutes)

Fig. 8 Solution quality of SmartH versus algorithm with no joint activities

6.1.6 SmartH: Effectiveness of Joint Activities

In this experiment, we compare the quality of the solutions obtained by run-
ning SmartH on Smart problem instances where the resources have activities
with varying levels of joint effectiveness. The idea is to measure how SmartH

will allocate resources when the effectiveness of their joint activities increases.
We calculate the level of effectiveness as a ratio between the highest joint effec-
tiveness value and the highest single effectiveness value, considering the best
activity αmax:

eff(αmax, αmax)− eff(αmax)

eff(αmax)
(33)

For all test scenarios, eff(αmax) is held constant to a value of 0.6, while
varying the values of eff(αmax, αmax). For example, when eff(αmax, αmax) =
0.8, the subsequent ratio would be: (0.8 − 0.6)/0.6 = 0.2/0.6 = 2/6. The
individual and joint effectiveness, here, are calculated as discussed in Section
3. They receive the maximum effectiveness and any additional resource visiting
a target within the pre-defined time window will have no additional benefit
(see Equation 3).

The results are shown in Figure 8. In the figure, the y-axis shows the solu-
tion quality and the x-axis denotes the maximum patrol time. Considering the
experiment settings discussed at the beginning of this section, we can see that
when the patrol time is increased, a simple strategy with no defender coordi-
nation (no benefit to joint activities) provides very little benefit to the solution
quality while the improvement due to the coordination of multiple defender
resources can almost double the solution quality. In more detail, taking into
account joint activities between multiple defenders provides a solution quality
that is double (when the ratio is 4/6) than that of an approach that does not
handle defender coordination, i.e., when the ratio is 0.

26 Francesco M. Delle Fave et al.

6

7

S
ol

u
ti

on
 Q

u
al

it
y

4

5
S

ol
u

ti
on

 Q
u

al
it

y
3 Boats

2

3

S
ol

u
ti

on
 Q

u
al

it
y

3 Boats

2 Boats, 1 Aerial

2 Boats

0

1

90 120 150 180

S
ol

u
ti

on
 Q

u
al

it
y

1 Boat, 1 Aerial

90 120 150 180
Maximum Patrol Time (minutes)

Fig. 9 Heterogeneous defender resources: type A (TA) and type B (TB) for 30 targets.

6.1.7 Solution Quality against Hetergeneous Resources

In this experiment, we compare the quality of the solutions obtained by dif-
ferent versions of SmartH considering an increasing number of heterogeneous
resources with different abilities. The idea is to measure the impact that differ-
ent hetergeneous resources will have on the quality of the solutions recovered
by SmartH. We consider two type of resources: type A (TA) and type B (TB).
Resources of type A are different than resources of type B in the following
ways: (1) shorter transit times; (2) shorter patrol time; (3) lower effectiveness
values.

Figure 9 shows the results considering both type A and type B. The figure
shows the solution quality (i.e. the expected utility for the defender) obtained
varying the maximum patrol time, the number of resources, their type and
considering 30 targets. As we can see, increasing the number of resources lead
to a higher solution quality. More specifically, we can see that by considering
three resources instead of two, the expected utility increases from 1.77 to 3.46
(i.e., 50%) considering 90 minute patrols and from 4.31 to 5.69 (i.e., 25%)
considering 180 minute patrols. Hence, as the number of resources increases,
SmartH is able to allocate them effectively by exploiting their abilities to
improve the overall solution quality.

6.2 Real-world Experiment

We present in what follows a real-world experiment whereby we compared
the game-theoretic allocation of resources computed using SmartH against
a manual allocation, the standard methodology adopted by several security
agencies. Security agencies refer to this type of experiment as a mass transit
full scale exercise (FSE). It was important to perform this exercise in the real
world rather than purely on paper with imaginary units, in order to ensure
that the schedules generated by SmartH be compared to manual schedules
when getting executed in the real-world under real-world constraints with real
heterogeneous resource types.

Efficient Solutions for Joint Activity Based Security Games 27

Fig. 10 The 10 stations of the FSE

A FSE is a training exercise where multiple security agencies analyze the
way their resources cooperate to secure a specific area while simulating a
critical scenario. This scenario typically describes a “high level” threat, e.g.,
intelligence reports confirming that a terrorist attack might take place in the
Los Angeles Metro System. The FSE consists of simulating the response to this
threat, i.e., increasing the number of resources patrolling a train line on a daily
basis to improve the quality of the security. Nonetheless, in most real-world
settings, the number of resources deployed by the agencies is not sufficient
to cover all the different locations within a train line. For this reason, an
intelligent and unpredictable allocation of security resources, which leverages
their ability to work individually and cooperate together, is crucial to achieve
a more effective security.

All the above reasons make an FSE a very promising test-bed to run our
comparison between SmartH (SmartO would not scale to the dimensions of
the FSE, as discussed in Section 6.1) and manual schedules. In addition, it
would allow us to collect real-world data which we could use to analyze and
improve the current algorithm.

6.2.1 Organization of the FSE

The FSE consisted of patrolling 10 stations of one train line of the LA Metro
system for 12 hours. Each station on the train line is composed of three levels
(street level, platform level and mezzanine) except station 1 which is composed
of 5 levels (2 more platform levels). Figure 10 shows a graph illustrating the
10 stations.

The exercise involved multiple security agencies, each participating with a
number of resources. Overall, 80 security personnel were involved. These re-
sources were divided into 14 teams, each with different abilities. The resources
deployed in the FSE are described in Table 5.

The exercise was divided into 3 different “sorties”, each consisting of three
hours of patrolling and one hour of debriefing. Human-generated schedules
were used during the first sortie while SmartH schedules were used during
the second and the third sorties. To visualize the schedules generated using
SmartH, each team was given a android smartphone app to visualize the
game-theoretic schedule (see Figure 11).

28 Francesco M. Delle Fave et al.

Team Description
Acronym Name Deployed Teams

T Teams

T16
T27

High Visibility T38
Uniformed Patrol Teams T49

T510
T11

HVWT Teams
High Visibility HVWT12
Weapon Teams HVWT34

VIPR Team
Visible Intermodal VIPR
Interdiction Team

CRM Teams
CRM1

Crisis Response CRM2

Motors CRM3

EK9 Teams
Explosive EK91

K9 (canine) EK92

Table 5 Teams deployed during the FSE

Fig. 11 The smartphone application used to visualize the schedule of the CRM team

The first two sorties were used to run the head-to-head comparison. Hence,
the sorties were run under the same settings: the same number of officers had to
cover the 10 stations for a cumulative time of 450 minutes. The two sorties were
run during off-peak times (9h00 to 12h00 and 13h00 to 16h00, respectively),
hence the type and the number of riders of the train lines could be considered
to be, approximately, the same.

The purpose of Sortie 3 was to test whether the officers were capable of
following SmartH schedules for a longer period (900 minutes instead of 450)

Efficient Solutions for Joint Activity Based Security Games 29

and during peak time, i.e., when traffic and the number of people riding the
trains increases. We found out that the officers were actually able to follow
the schedules. Thus, since the purpose of this Sortie was unrelated to our
comparison, we will focus on Sorties 1 and 2 in the remainder of this section.

6.2.2 The Schedule Generation Process

Each type of schedule was generated as follows:

SmartH schedules: The schedules were generated by (i) instantiating a
Smart problem instance using the specifics of the FSE discussed earlier; (ii)
solving this problem instance using SmartH and (iii) sampling a pure strategy
to generate the patrol schedule for each of the different resources involved.

To define a problem instance we had to define three different sets of features
of the problem. The first sets of features are the graphs for each resource type.
By using the graph presented in Figure 10 as a baseline, we defined the graph
for each resource as follows:

– T teams, HVWT teams and VIPR teams move using the trains and patrol
all the different levels of a station. Hence, each resource type was assigned
the graph in Figure 10.

– CRM teams move using their bikes and patrol only one level (the street
/ parking level) of the stations. Their graph is then a line connecting ten
nodes, each representing the street level of a station.

– EK9 teams move using a car and patrol all levels. Their graph is defined
as in Figure 10 but edges connect the nodes representing the street level
instead of the platform level.

The second sets of features are the payoffs of the game.6 We defined the
payoffs for each target (32 in total) in discussions with security experts from
the Los Angeles County Sheriff’s Department (LASD). Each set of payoffs for
each station was based on the number of people using the station every day
and by the economic impact that losing this station would have on the city.
The different levels of a single station had slightly different payoffs which were
based on the number of persons present at each specific level of the station
every weekday.

The payoffs were defined so that the game was zero-sum, i.e., given a target
t, we defined U cd(t) = U ca(t) = 0 and Uud (t) = −Uua (t) = v where v ∈ [0, 10].
This choice of payoffs is reasonable for this setting because the key here is
the importance of stations, and the defender will lose exactly as much as the
attacker will gain if his attack is successful.

The third features are the activities for each resource type and the corre-
sponding single and joint effectiveness. Each team could perform a series of
two types of activities:

6 We are not able to reveal the value of these payoffs due to an agreement with the Los
Angeles County Sheriff Department (LASD).

30 Francesco M. Delle Fave et al.

Observe: This action consisted of observing a specific target for 15 minutes.
The officers had to explore the location (e.g., street level or platform) with
great accuracy to ensure that it was secure.

GoTo: This action consisted of moving from one target to another (e.g., by
using a car, by riding a train or using the stairs to move between targets
at the same station). The duration of this action was estimated based on
the train schedules, the traffic at the time of the day and the average time
to move from one level of a station to another.

Given these activities, the single and joint effectiveness parameters are
summarized in Table 6. In the table, the joint activities are represented as a
vector of two values, one for each joint activity between the action in the row
of the table and an observe action and a goto action, respectively. As we can
see, all GoTo actions are given a 0 effectiveness, since moving from one station
to another (i.e., riding the trains or taking the car) will not have any effect on
the security of the stations. Most teams are assigned the same positive individ-
ual effectiveness of 0.7, except the VIPR team which has a greater individual
effectiveness because it is composed of officers from multiple agencies carry-
ing heavy weapons. VIPR teams, T-teams and HVWT teams typically work
alone. Hence, to define their effectiveness values, their individual effectiveness
is positive while their joint effectiveness is null (any joint effectiveness value
below 0.7 would induce the same type of behavior, but we chose 0 since it is
a clear indicator of the type of behavior that we want to obtain). The CRM
teams are assigned a joint effectiveness greater then their individual effective-
ness because they can perform all type of activites, but, typically, they prefer
joint over individual activities. In contrast, EK9 teams typically work only in
cooperation with other teams, therefore they are assigned a null individual
effectiveness and a positive joint effectiveness of 0.75.7

Next, we defined the time window for a joint action to be effective as a 10
minutes interval. This value was chosen considering the time required by teams
to move from a station to another, from a level to another and by discussion
with the security agencies involved in the exercise. Finally, we decided the
discretization of the transition graph to correspond to the shortest duration
between the durations of all the actions available to the different resources
(i.e., the goto action to move between two levels).

After defining the Smart problem instance, we solved it using SmartH.
We run the algorithm considering 14 resources (the teams defined in Table 5),
and 32 targets (5 levels for station S1 and 3 levels for the 9 other stations).
To reach the cumulative time of 450 minutes, as required by the specifics of
Sortie 2, we defined the patrol time of each resource such that a total close to
450 minutes could be obtained. The mixed strategy provided by the algorithm

7 Whereas these estimates of individual and joint effectiveness could potentially be slightly
altered, the purpose of our exercise was comparison with human schedulers. Since the com-
parison was ultimately conducted by security experts who evaluated the game-theoretic
schedule to be superior to human-generated one, we may infer that the effectiveness val-
ues we obtained for the individual and joint activities in our SMART model for FSE were
reasonable.

Efficient Solutions for Joint Activity Based Security Games 31

Team Action Individual eff Joint eff

T-teams
Observe 0.7 [0.0, 0.0]
GoTo 0 [0.0,0.0]

HVWT teams
Observe 0.7 [0.0, 0.0]
GoTo 0 [0.0,0.0]

VIPR team
Observe 0.8 [0.0,0.0]
GoTo 0 [0.0,0.0]

CRM teams
Observe 0.7 [0.75,0.0]
GoTo 0 [0.0,0.0]

EK9 teams
Observe 0 [0.75,0.0]
GoTo 0 [0.0,0.0]

Table 6 Individual and joint activities

Fig. 12 The mixed strategy for the FSE

is shown in Figure 12. The figure shows the coverage ct for each target t as
defined by Equation 8 in the master in Section 4. In the figure, the levels of
the stations with a higher payoff are assigned a higher coverage.

As a final step, the mixed strategy is sampled to generate a pure strategy.
This pure strategy contains a schedule for each resource. It is shown in Table
11 in Appendix A.

Manual Schedules: The schedules were by human expert schedulers of the
LASD. They were generated using a two-step process. First, each station was

assigned a coverage duration of 45 minutes (i.e., 1
10

th
of the time). The idea was

to have the officers perform three observe actions at each station. Second, the
human expert schedulers assigned teams to each station so that each station
was covered for exactly 45 minutes. Joint team activities were used 6 times
in six different stations. The resulting allocation is shown in Table 10 in the
Appendix A. This simple two-step process was adopted to avoid the cognitive
burden involved with leveraging the effectiveness of each team to cover the
different stations individually or while coordinating with other teams. Despite
its simplicity, this process was difficult for the human expert schedulers. It
involved several discussions and required one entire day of work.

Having defined the two allocations, we can now analyze the results that we
obtained.

32 Francesco M. Delle Fave et al.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Manual 3 3 3 2 3 2 2 2 2 2
SmartH 2 2 3 3 2 2 2 3 3 2

Table 7 Count of Individual Activities

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Manual 0 0 0 1 0 1 1 1 1 1
SmartH 1 0 0 0 0 2 0 1 1 1

Table 8 Count of Joint Activities

6.3 Results

We first analyze the type of schedules generated as a result of using either
SmartH or manual scheduling. Then, we evaluate the results obtained by de-
ploying the schedules during Sorties 1 and 2 and measuring their performance
in the real world. The key is that if SmartH were to perform equivalently to
human schedulers, then it would indicate that we could save precious time so
security experts could focus on maintaining security rather than on generating
schedules.

6.3.1 Schedules Comparison

The allocation of resources generated by Manual scheduling and SmartH are
shown in Tables 10 and 11 in Appendix A. The numbers of individual and joint
activities for both schedules are shown in Tables 7 and 8. In both tables we
can see that the number of individual (IA) and joint (JA) activities for both
approaches are the same (IA: both 24; JA: both 6). All the joint activities in
the SmartH schedules are performed by CRM and EK9 teams, i.e., the teams
with a positive joint effectiveness. This is similar to the behavior of the manual
generated schedules, where joint activities are mostly performed by EK 9 and
CRM teams (once by the VIPR team). The remaining individual activities are
performed by the T team, the HVWT team and the VIPR team.

There are two important differences between the two types of schedules.
The first is that the game-theoretic scheduler sent the most effective VIPR
team to the most important stations – because its individual effectiveness is
greater than the effectiveness of other teams. This was not seen in the human
schedule. The second difference between the two types of schedules is that
the schedules generated using SmartH assign the different teams to cover all
the different levels of the different stations, whereas manual schedules do not
specify such levels. The reason for this is that human schedulers were not able
to reach this level of detail and thus they preferred to leave the decision of
which level to patrol to the teams once they were deployed. In addition to
accuracy, in SmartH, the human effort was confined to providing the indi-
vidual and joint effectiveness of available teams, and then the schedules were

Efficient Solutions for Joint Activity Based Security Games 33

Q1 “The security scheduling system (SSS) makes the station safer.”
Q2 “The SSS is efficient.”
Q3 “The SSS is an effective deterrent for adversaries.”
Q4 “The SSS results in some areas being patrolled more than needed.”
Q5 “The SSS decreases the number of attempts to infiltrate train stations.”
Q6 “The SSS appears to make securing train stations easier.”
Q7 “The SSS results in enough security at all three levels of the train station.”
Q8 “The SSS results in security officials having a strong presence throughout the station.”
Q9 “The SSS results in ALL areas being patrolled as much as needed.”
Q10 “The SSS did NOT prevent patrollers from taking or completing an action.”
Q11 “The SSS provides security officials with enough time to secure all areas of the station.”

Table 9 The 11 assertions used in the questionnaire during the FSE

automatically generated in just a couple of hours. Hence, the effort required to
generate the schedules using SmartH was much lower than the effort required
to generate manual schedules, which, as discussed above, required one day of
work due to its significant cognitive burden. Since typically such patrols would
be conducted day-in and day-out for several days in high-threat periods, the
savings of human effort achieved by game-theoretic schedulers are thus very
significant.

6.3.2 Evaluation by Securty Experts

Each type of security allocation (either manual or game-theoretic based on
SmartH) was evaluated by security experts. In this setting, individual and
joint activities between different resources played an important role.

For the purposes of this evaluation, a team of security experts (SEs) was
placed at each station for the entire length of the exercise. Their task was to
observe and evaluate the officers’ patrolling activity during each sortie, and
determine how their behavior was affecting the quality of the security within
each station. In what follows, we report the conclusions of their analysis. The
SEs did not know the type of schedules (so as to not bias their evaluation). To
translate the observers’ observations into a comparable value, each observer
was asked to fill out a questionnaire every 30 minutes. The objective was to
define a number of key sentences that could help to qualify the way in which
the security officers had been patrolling the station in the last 30 minutes.
Each questionnaire contained 11 assertions about the level of security within
the station. Table 9 summarizes the assertions used in the questionnaire. Each
assertion was a sentence defining a key aspect related to the security of a
station. The assertions were defined in collaboration with a team of SEs from
the LASD and with social scientists. Each SE had to determine his level of
agreement with each assertion. The level of agreement was defined in the
integer interval {0,6}, where 0 meant a strong disagreement, whereas 6 meant
a strong agreement.

Figures 13(a) and 13(b) show the results that we obtained. Figure 13(a)
shows the weighted average agreement obtained for each assertion calculated

34 Francesco M. Delle Fave et al.

(a) Assertions

(b) Stations

Fig. 13 Evaluation of the FSE: average agreement over the different questions and stations.

over all the stations (the average was calculated considering each station’s
corresponding weight). Figure 13(b) shows the average agreement obtained for
each station calculated over all the assertions. The error bars in both figures
show the standard error of the mean calculated for each specific assertion
(in Figure 13(a)) and station (in Figure 13(b)). As we can see the difference
between some data points of the two approaches do not seem to be statistically
significant. A student t-test confirmed this trend. This is expected, since we
were only able to collect data for few hours of a single day. Nonetheless, we
can still acquire some interesting information about the performance of game-
theoretic schedules in the field, by analyzing the results that are statistically
significant. In the next section then, we will discuss how running additional
experiments is a key challenge to confirm the trends presented here.

In Figure 13(a), we can see that SmartH schedules seem to yield a higher
level of agreement than manual schedules over all questions. As shown in the
figure, the difference is significant only for assertions Q1, Q2, Q8 and Q9. As
shown in Table 9, these four assertions correspond to very general statements
about the security at each station which address the efficiency of the schedules,

Efficient Solutions for Joint Activity Based Security Games 35

their ability to provide a strong feeling of safety and to allow the officers to
patrol each area as much as needed.

Similarly, in Figure 13(b), we can see that the average agreement is higher
for SmartH schedules over Manual schedules for stations S1, S2, S3, S4, S8, S9

and S10. Some of these stations (S1, S8 and S9) are the ones assigned a higher
set of payoffs, as discussed above (see Figure 12). Hence, they correspond to
the ones given a higher coverage by SmartH (see Figure 12).

These results indicate that game-theoretic schedules were evaluated as
more effective than manual schedules. Analysis reveals that whereas the game-
theoretic schedules were able to incorporate joint activities in a fashion com-
parable to the human schedules– and this was important to ensure security
effectiveness –the game-theoretic schedules were able to be more effective in
two key ways that showed the limitations of human schedulers. First, manual
schedules were generated by leaving the decision of which level of a station
to patrol to each deployed team. The officers then, were not able to prop-
erly coordinate over the different levels to patrol and therefore they ended up
patrolling the same levels. In do doing, the were not able to fully cover the
different stations. In contrast, as shown in Appendix A, SmartH produced
a schedule which tackled the comprehensive security of all the ten different
stations. The officers knew before-hand which levels they had to patrol and
therefore, it was unnecessary for them to coordinate their decisions during the
exercise.

Second, SmartH produced a schedule which more effectively scheduled the
VIPR team, i.e., the team with the highest effectiveness (0.8) for covering each
target. As we can see in Table 11, the schedule generated by SmartH had the
VIPR team patrol all the most important stations at key levels. In contrast,
manual schedules assigned the VIPR team, without accounting for its effec-
tiveness. This made an impact on the security evaluators. By observing the
VIPR at key locations, they considered the game-theoretic allocation more ef-
fective than the manual allocation, because it was using leveraging the abilties
of the resources in a way that human experts could not achieve.

Overall, these results show the potential of game-theoretic security alloca-
tion to solve real world problems. In the next section, we discuss our future
work, whereby we describe some new experiments that could be ran to further
strenghten the results presented here.

7 Conclusions

This paper addressed the challenge of solving security games where multiple
defenders resources receive benefits from performing joint coordinated activi-
ties. This challenge has not been addressed in previous work in security games.
However, incorporating such joint activities into the existing SSG framework
is critical for real-world applications.

To address this challenge, this paper presented four contributions. First,
we presented Smart, a new type of SSG which accounts for multiple defenders

36 Francesco M. Delle Fave et al.

performing joint activities. Second, we presented two branch-and-price based
approaches, SmartO and SmartH to solve Smart problem instances. SmartO

computes optimal solutions of Smart problem instances and uses a novel slave
formulation that captures coordination in both space and time. SmartH is an
heuristic approach based on reward shaping and TSP ordering to speed-up
the computation. Third, we provide proofs of theoretical properties of our al-
gorithms while also showing the improved performance of the key components
in simulation.

Fourth, we present the first head-to-head comparison between SSG based
schedules and manual schedules in the field. To the best of our knowledge,
this evaluation constitutes one of the largest evaluation of algorithmic game
theory in the field to date. In more detail, we present the results that we
obtained by organizing a large scale real-world experiment whereby 80 security
officers (divided into 23 teams) patrolled 10 stations of a metro line for one
day. In this experiment, we ran a head-to-head comparison between SSG-
based schedules, generated using SmartH, and human-generated schedules.
Our results were based on an analysis provided by a team of security experts
analyzing the performance of each type of schedule at each of the ten stations.
The results showed that in comparison with human schedulers, game-theoretic
schedules were able to reduce the effort to generate schedules, while improving
coordination and perception of security presence.

In terms of future work, we aim to address one key challenge, that of
execution uncertainty. In some security domains, the deployed resources may
sometimes be delayed. For instance, USCG officers might be delayed because
they need to board a boat. To address this challenge, our idea is to generalise
the current model into a decentralised Markov decision process (dec-MDP
[6]). Recently, this challenge was addressed by Shieh et al. [35]. In their work,
Shieh et al. [35] propose a new security game model where a Dec-MDP is used
to model execution uncertainty between different resources, i.e., situations
where one resource is delayed and cannot complete his schedules albeit all the
resources are still required to coordinate. The increase in complexity of the
new model, which blends a security game and a DecMDP, is addressed by
proposing a novel set of approximate algorithms which use column generation
in a manner similar to the one presented in our work.

Additionally, as shown by the results presented in this paper, we believe
that our work opens the door of applied research in security games to the realm
of field evaluation. Given the strong connection that research in SSGs shares
with real world security allocation problems, we argue that field evaluation
should become a key area for future research in security games.

8 Acknowledgements

The authors would like to acknowledge their appreciation for the collabora-
tion of the Los Angeles Sheriff’s Department (LASD), the Booz-Allen Hamil-
ton Company and the Transportation Security Administration’s (TSA) Inter-

Efficient Solutions for Joint Activity Based Security Games 37

modal Security Training and Exercise Program (I-STEP). The LASD provided
us with exceptional support and preparation which allowed us to organize our
experiments with great detail and accuracy. Booz-Allen managed TSA’s I-
STEP Los Angeles Mass Transit Full-Scale Exercise, conducted May 16, 2014,
thus allowing us to run experiments and collect data in very realistic and
practical conditions. This research was supported by the United States De-
partment of Homeland Security (DHS) through the National Center for Risk
and Economic Analysis of Terrorism Events (CREATE) at the University of
Southern California (USC) under Basic Ordering Agreement HSHQDC-10-A-
BOA19, Task Order No. HST02-12-J-MLS151. However, any opinions, find-
ings, and conclusions or recommendations in this document are those of the
authors and do not necessarily reflect views of the United States Department
of Homeland Security, or the University of Southern California, or CREATE.

Appendix A

This appendix presents two tables:

– Table 10 depicts the security allocation resulting from the manual alloca-
tion process

– Table 11 depicts the security allocation resulting from the game-theoretic
allocation process based on the SmartH algorithm.

38 Francesco M. Delle Fave et al.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

1
5
m
in

V
I
P
R

T
5
1
0

T
4
9

T
3
8

T
1
6

3
0
m
in

V
I
P
R

T
5
1
0

T
3
8

T
1
6

4
5
m
in

V
I
P
R

1
H
o
u
r

V
I
P
R

C
R
M

3

E
K

9
2

C
R
M

1

E
K

9
1

C
R
M

2

1
5
m
in

V
I
P
R

E
K

9
1

C
R
M

2

3
0
m
in

C
R
M

3
E
K

9
2

C
R
M

2

4
5
m
in

C
R
M

3
T
3
8

T
4
9

H
V
W
T
1
2

E
K

9
1

C
R
M

1

2
H
o
u
r
s

H
V
W
T
1
2

1
5
m
in

T
2
7

3
0
m
in

T
1
1

V
I
P
R

T
2
7

4
5
m
in

T
1
1

V
I
P
R

3
H
o
u
r
s

V
I
P
R

Table 10 The human-generated security allocation

Efficient Solutions for Joint Activity Based Security Games 39

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

1
5
m
in

T
5
1
0
(s

)

3
0
m
in

T
1
1
(m

)
V
I
P
R
(p

1
)

H
V
W
T
1
2
(p

)
T
3
8
(m

)
T
1
6
(m

)

4
5
m
in

T
1
1
(p

2
)

1
H
o
u
r

H
V
W
T
1
2
(p

)
T
3
8
(p

)
T
2
7
(p

)
T
5
1
0
(p

)
1
5
m
in

C
R
M

2
(s

)
V
I
P
R

(p
)

T
1
6
(p

)
T
4
9
(p

)

3
0
m
in

H
V
W
T
3
4
(p

)
C
R
M

1
E
K

9
1

(s
)

T
2
7
(m

)

4
5
m
in

V
I
P
R

(p
)

T
4
9
(m

)

2
H
o
u
r
s

C
R
M

3
(s

)
C
R
M

1
E
K

9
1

(s
)

1
5
m
in

H
V
W
T
3
4
(m

)
V
I
P
R

(p
)

C
R
M

2
E
K

9
2

(s
)

3
0
m
in

C
R
M

3
(s

)
C
R
M

1
E
K

9
1

(s
)

4
5
m
in

T
4
9
(m

)
V
I
P
R

(m
)

3
H
o
u
r
s

C
R
M

3
(s

)
C
R
M

2
E
K

9
2

(s
)

Table 11 Security allocation generated by SmartH: s represents the street level of a station,
m the mezzanine level and p the platform level.

40 Francesco M. Delle Fave et al.

References

1. N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol
in adversarial settings. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 2339–2345, 2008.

2. N. Agmon, G. A. Kaminka, and S. Kraus. Multi-robot adversarial pa-
trolling: facing a full-knowledge opponent. Journal of Artificial Intelli-
gence Research (JAIR), 42(1):887–916, 2011.

3. Noa Agmon, Vladimir Sadov, Gal A. Kaminka, and Sarit Kraus. The
Impact of Adversarial Knowledge on Adversarial Planning in Perimeter
Patrol. In AAMAS, volume 1, pages 55–62, 2008.

4. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance. Branch and price: Column generation for solving huge integer
programs. In Operations Research, volume 46, pages 316–329, 1994.

5. N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for
robotic patrolling in environments with arbitrary topologies. In Proceed-
ings of the Eight International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 57–64, 2009.

6. R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving Tran-
sition Independent Decentralized Markov Decision Processes. Journal of
Artificial Intelligence Research (JAIR), 22:423–455, 2004.

7. D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1994.

8. A. Brown, C. F. Camerer, and D. Lovallo. To review or not to review?
limited strategic thinking at the movie box office. American Economic
Journal: Microeconomics, 4(2):1–26, 2012.

9. R. V. Clarke. Preventing Mass Transit Crime - Crime Prevention Studies,
volume 6. Criminal Justice Press, 1996.

10. R. V. Clarke and Graeme Newman. Police and the prevention of crime.
Policing: A Journal of Policy and Practice, 1:9–20, 2007.

11. V. Conitzer. Computing game-theoretic solutions and applications to se-
curity. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 2106–2112, 2012.

12. V. Conitzer and T. Sandholm. Computing the optimal strategy to commit
to. In Proceedings of the Seventh ACM Conference on Electronic Com-
merce (EC), pages 82–90, 2006.

13. J. P. Dickerson, G. I. Simari, V. S. Subrahmanian, and Sarit Kraus. A
graph-theoretic approach to protect static and moving targets from ad-
versaries. In Proceedings of the Ninth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 299–306, 2010.

14. F. Fang, A. X. Jiang, and M. Tambe. Protecting moving targets with mul-
tiple mobile resources. Journal of Artificial Intelligence Research (JAIR),
48:583–634, 2013.

15. N. Gatti. Game theoretical insights in strategic patrolling: Model and
algorithm in normal form. In Proceedings of the European Conference on
Artificial Intelligence (ECAI), pages 403–407, 2008.

Efficient Solutions for Joint Activity Based Security Games 41

16. G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should not be
greedy: domination analysis of greedy-type heuristics for the tsp. Discrete
Applied Mathematics, 117:81–86, 2002.

17. M. Jain, E. Kardes, C. Kiekintveld, M. Tambe, and F. Ordonez. Security
games with arbitrary schedules: A branch and price approach. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
792–797, 2010.

18. M. Jain, J. Pita, J. Tsai, C. Kiekintveld, S. Rathi, F. Ordonez, and
M. Tambe. Software assistants for patrol planning at lax and federal
air marshals service. Interfaces, 40(4):267–290, 2010.

19. A. X. Jiang, A. D. Procaccia, Y. Qian, N. Shah, and Milind Tambe. De-
fender (mis)coordination in security games. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 199–206,
2013.

20. A. X. Jiang, Z. Yin, C. Zhang, M. Tambe, and S. Kraus. Game-theoretic
randomization for security patrolling with dynamic execution uncertainty.
In Proceedings of the Twelfth International Conference on Autonomous
Agents and Multiagent Systems, pages 207–214, 2013.

21. C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe.
Computing optimal randomized resource allocations for massive security
games. In Proceedings of The Eighth International Conference on Au-
tonomous Agents and Multiagent Systems, pages 233–239, 2009.

22. D. Korzhyk, V. Conitzer, and R. Parr. Security games with multiple at-
tacker resources. In Proceedings of the Twenty-second International Joint
Conference on Artificial Intelligence (IJCAI), pages 273–279, 2011.

23. D. Korzhyk, V. Conitzer, and R. Parr. Solving stackelberg games with
uncertain observability. In Proceedings of the Tenth International Con-
ference on Agents and Multi-agent Systems (AAMAS), pages 1013–1020,
2011.

24. J. Letchford and V. Conitzer. Solving security games on graphs via
marginal probabilities. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI), pages 591–597, 2013.

25. J. Letchford and Vorobeychik. Optimal interdiction of attack plans.
In Proceedings of the Twelfth International Conference of Autonomous
Agents and Multi-agent Systems (AAMAS)., pages 199–206, 2013.

26. J. Letchford, L. MacDermed, V. Conitzer, R. Parr, and C. L. Isbell. Com-
puting optimal strategies to commit to in stochastic games. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 1380–1386, 2012.

27. A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul. Multi-agent pa-
trolling: An empirical analysis of alternative architectures. In Proceedings
of the International Conference of Multi-Agent-Based Simulation, pages
155–170, 2003.

28. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions–I. Mathematical
Programming, 14(1):265–294, Dec 1978.

42 Francesco M. Delle Fave et al.

29. R. Ostling, J. Wang, J. Tao-yi, E. Y. Chou, and C. F. Camerer. Testing
game theory in the field: Swedish lupi lottery games. American Economic
Journal: Microeconomics, 3(3):1–33, 2011.

30. P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and
S. Kraus. Playing games for security: An efficient exact algorithm for
solving bayesian stackelberg games. In Proceedings of the Seventh In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 539–547, 2008.

31. J . Pita, M. Jain, C . Western, C. Portway, M. Tambe, F. Ordonez,
S. Kraus, and P. Paruchuri. Deployed armor protection: The application
of a game theoretic model for security at the los angeles international air-
port. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2008.

32. J. Pita, M. Tambe, C. Kiekintveld, S. Cullen, and E. Steigerwald.
GUARDS - Innovative Application of Game Theory for National Airport
Security. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 2710–2715, 2011.

33. E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule,
and G. Meyer. PROTECT: A Deployed Game Theoretic System to Protect
the Ports of the United States. In Proceedings of the Eleventh International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 13–20, 2012.

34. E. Shieh, M. Jain, A. X. Jiang, and M. Tambe. Efficiently solving joint
activity based security games. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 346–352, 2013.

35. E. Shieh, A. X. Jiang, A. Yadav, P. Varakantham, and M. Tambe. Unleash-
ing dec-mdps in security games: Enabling effective defender teamwork. In
Proceedings of the European Conference on Artificial Intelligence (ECAI),
2014. In press.

36. E. Sless, N. Agmon, and S. Kraus. Multi-robot adversarial patrolling:
Facing coordinated attacks. In Proceedings of the Thirteenth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1093–1100, 2014.

37. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

38. M. Tambe. Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press, 2011.

39. J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe. IRIS - a tool
for strategic security allocation in transportation networks. In Proceedings
of the Eight International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 831–839, 2009.

40. O. Vanek, B. Bosansky, M. Jakob, and M. Pechoucek. Transiting areas
patrolled by a mobile adversary. In IEEE Symposium on Computational
Intelligence and Games (CIG), pages 9–16. IEEE, 2010.

41. O. Vanek, M. Jakob, O. Hrstka, and M. Pechoucek. Using multi-agent
simulation to improve the security of maritime transit. In MABS, 2011.

Efficient Solutions for Joint Activity Based Security Games 43

42. P. Varakantham, H. Chuin Lau, and Z. Yuan. Scalable randomized pa-
trolling for securing rapid transit networks. In Proceedings of the Confer-
ence for Innovative Applications for Artificial Intelligence (IAAI), pages
1563–1568, 2013.

43. Y. Vorobeychik and S. Singh. Computing stackelberg equilibria in dis-
counted stochastic games. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 1478–1484, 2012.

44. Z. Yin, A. Jiang, M. Johnson, M. Tambe, C. Kiekintveld, K. Leyton-
Brown, T. Sandholm, and J. Sullivan. Trusts: Scheduling randomized
patrols for fare inspection in transit systems. In Proceedings of the Con-
ference on Innovative Applications for Artificial Intelligence (IAAI), pages
59–72, 2012.

