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Abstract The burgeoning area of security games has focused on real-world domains where
security agencies protect critical infrastructure from a diverse set of adaptive adversaries.
In such domains, decision makers have multiple competing objectives they must consider
which may take different forms that are not readily comparable including safety, cost, and
public perception. Thus, it can be difficult to know how to weigh the different objectives
when deciding on a security strategy. To address the challenges of these domains, we pro-
pose a fundamentally different solution concept, multi-objective security games (MOSG).
Instead of a single optimal solution, MOSGs have a set of Pareto optimal (non-dominated)
solutions referred to as the Pareto frontier, which can be generated by solving a sequence of
constrained single-objective optimization problems (CSOP). The Pareto frontier allows the
decision maker to analyze the tradeoffs that exist between the multiple objectives. Our con-
tributions include: (i) an algorithm, Iterative-ε-Constraints, for generating the sequence of
CSOPs; (ii) an exact approach for solving an MILP formulation of a CSOP; (iii) heuristics
that achieve speed up by exploiting the structure of security games to further constrain the
MILP; (iv) an approximate approach for solving a CSOP built off those same heuristics, in-
creasing the scalability of our approach with quality guarantees. Additional contributions of
this paper include proofs on the level of approximation, detailed experimental evaluation of
the proposed approaches and heuristics, as well as a discussion on techniques for visualizing
the Pareto frontier.1
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1 Introduction

Game theory is an increasingly important paradigm for modeling security domains which
feature complex resource allocation [4,10]. Security games, an important class of attacker-
defender Stackelberg games, are at the heart of several significant deployed decision-support
applications. Such systems include ARMOR at the Los Angeles International Airport (LAX)
[20], IRIS deployed by the US Federal Air Marshals Service [20], GUARDS developed
for the US Transportation Security Administration [3], and PROTECT used at the Port of
Boston by the US Coast Guard [3].

While multiple objectives may have been present in these domains, the games are mod-
eled as having the defender optimizing a single objective as the necessary solution concepts
did not exist. However, there are domains where the defender has to consider multiple ob-
jectives simultaneously. For example, the Los Angeles Sheriff’s Department (LASD) needs
to protect the city’s metro system from ticketless travelers, common criminals, and terror-
ists.2 From the perspective of LASD, each one of these attacker types presents a unique
threat. Fare evaders are directly responsible for lost revenue by not purchasing the appropri-
ate tickets, criminals can commit crimes against property and persons which undermine the
perceived safety of the metro system, and terrorists can inflict massive casualties, causing
long-term system-wide disruptions, and spreading fear through the general public. Given
that preventing these threats yield different types of benefit, protecting against each type of
attacker could correspond to an objective for LASD.

With a diverse set of attacker types, selecting a security strategy is a significant chal-
lenge as no single strategy can maximize all of the objectives. Thus, tradeoffs must be made
as increasing protection against one attacker type may increase the vulnerability to another
attacker type. However, it is not clear how LASD should weigh the objectives when deter-
mining the security strategy to use. One could attempt to establish methods for converting
the benefits of protecting against each attacker type into a single objective. However, this
process can become convoluted when attempting to compare abstract notions such as safety
and security with concrete concepts such as ticket revenue.

Bayesian security games [3,11,20,22,32] have been used to model domains where the
defender is facing multiple attacker types. The threats posed by the different attacker types
are weighted according to the relative likelihood of encountering that attacker type. How-
ever, there are three potential factors limiting the applicability of Bayesian security games:
(1) the defender may not have information on the probability distribution over attacker types,
(2) it may be impossible or undesirable to directly compare the defender rewards for differ-
ent attacker types, and (3) only one solution is given, hiding the trade-offs between the
objectives from the end user.

We propose a new game model, multi-objective security games (MOSG), which com-
bines game theory and multi-objective optimization. Such a model is suitable for domains
like the LASD metro system, as the threats posed by the attacker types (ticketless travelers,
criminals, and terrorists) are treated as different objective functions which are not aggre-
gated, thus eliminating the need for a probability distribution over attacker types. Unlike
Bayesian security games which have a single optimal solution, MOSGs may have a set of
Pareto optimal (non-dominated) solutions which is referred to as the Pareto frontier. By pre-
senting the Pareto frontier to the end user, they are able to better understand the structure
of their problem as well as the tradeoffs between different security strategies. As a result,
end users are able to make a more informed decision on which strategy to enact. For in-

2 http://sheriff.lacounty.gov
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stance, LASD has suggested that rather than having a single option handed to them, they
would be interested in being presented with a set of alternative strategies from which they
can make a final selection. Overall, there has been a growing trend towards multi-objective
decision making in a wide variety of areas, including transportation [5] and energy [34]. We
are pursuing along in the same direction but now from a game-theoretic perspective.

Our key contributions include (i) Iterative-ε-Constraints, an algorithm for generating the
Pareto frontier for MOSGs by producing a sequence of constrained single-objective opti-
mization problems (CSOP); (ii) an exact approach for solving a mixed-integer linear pro-
gram (MILP) formulation of a CSOP (which also applies to multi-objective optimization in
more general Stackelberg games); (iii) heuristics that exploit the structure of security games
to speed up solving the MILPs; and (iv) an approximate approach for solving CSOPs, which
greatly increases the scalability of our approach while maintaining quality guarantees. Addi-
tionally, we provide analysis of the complexity and completeness for all of our algorithms,
detailed experimental results evaluating the effect of MOSG properties and algorithm pa-
rameters on performance, as well as several techniques for visualizing the Pareto frontier.

The structure of this article is as follows: Section 2 motivates our research by providing
a detailed description of the LASD domain. Section 3 formally introduces the MOSG model
as well as multi-objective optimization concepts such as the Pareto frontier and Pareto op-
timality. Section 4 explores the related work on the leading multi-objective optimization
techniques. Section 5 introduces the Iterative-ε-Constraints algorithm for solving a series of
CSOPs to generate the Pareto frontier. Section 6 presents the MILP formulation for solv-
ing each CSOP. Section 7 proposes heuristics which can be used to constrain our MILP
formulation, including three algorithms (ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-
MIN-COV) for computing on lower bounds defender coverage. Section 8 introduces an
approximate algorithm (ORIGAMI-A) for solving CSOPs based on the defender coverage
heuristics. Section 9 provides experimental results for all of our algorithms and heuristics
as well as analysis on the properties of the MOSG model. Section 10 discusses a number of
approaches for visualizing the Pareto frontier as a step in the decision making process for
selecting a security policy to implement. We conclude this paper and outline future research
directions in Section 11.

This article is an extension of [7] and features a significant amount of new material.
First, Section 7 now includes two new heuristic algorithms for computing lower bounds on
defender coverage which can be used in both our exact and approximate CSOP solvers.
ORIGAMI-M-BS expands the attack set using binary search, while DIRECT-MIN-COV
avoids having to precompute the attack set but instead computes multiple defender coverage
vectors. Second, Section 9 has been enhanced with additional experiments and analysis. We
have added experiments on objective function clustering which looks at the effect of payoff
similarity between a subset of objectives. We also include experiments on constraint com-
putation which examines how often ORIGAMI-M violates a constraint that it has previously
satisfied. Another experiment analyzes a CSOP pruning heuristic which further exploits the
concept of Pareto dominance. The last set of experiments compares performance between
ORIGAMI-M, ORGAMI-M-BS, and DIRECT-MIN-COV when either the number of tar-
gets or the ratio of targets to defender resources is varied. Third, we have included an en-
tirely new section (Section 10) on different approaches and issues relating to visualizing the
Pareto frontier. Fourth, Section 2 now has a more detailed description of our LASD domain
which serves as motivation for the MOSG model. Finally, Section 4 has been significantly
expanded, providing additional references as well as overview of the different approaches
for solving multi-objective optimization problems.
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Fig. 1 Los Angeles rail system.

2 Motivating Domain

There are a variety of real-world security domains in which the defender has to consider
multiple, and potentially conflicting, objectives when deciding upon a security policy. In this
section, we focus on the one specific example of transportation security, in which LASD is
responsible for protecting the Los Angeles metro system, shown in Figure 1.3 The metro sys-
tem consists of 70 stations and maintains a weekday ridership of over 300,000 passengers.
The LASD is primarily concerned with protecting the metro system from three adversary
types: ticketless travelers, criminals, and terrorists. A significant number of the rail stations
feature barrier-free entrances that do not employ static security measures such as metal de-
tectors or turnstiles. Instead randomized patrols and inspections are utilized in order to verify
that passengers have purchased a valid ticket as well as to generally maintain security of the
system. Thus, LASD must make decisions on how best to allocate their available security
resources as well as on how frequently to visit each station.

Each of the three adversary types are distinct and present a unique set of challenges
which may require different responses by LASD. For example, each adversary may have
different preferences over the stations they choose to target. Ticketless travelers may choose

3 http://www.metro.net/riding metro/maps/images/rail map.pdf
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to fare evade at busier stations thinking that the larger crowds decrease the likelihood of hav-
ing their ticket checked. Whereas, criminals may prefer to commit crimes at less frequented
stations, as they believe the reduced crowds will result in a smaller security presence. Fi-
nally, terrorists may prefer to strike stations which hold economic or cultural significance,
as they believe that such choice of targets can help achieve their political goals.

LASD may also have different motivation for preventing the various adversary types.
It is estimated that fare evasion costs the Los Angeles metro system over $5 million in lost
revenue each year [18]. Deploying security policies that target ticketless travelers can help
to recuperate a portion of this lost revenue as it implicitly encourages passengers to purchase
tickets. Pursuing criminals will reduce the amount of property damage and violent crimes,
increasing the overall sense of passenger safety. In 2010, 1216 “part one crimes” were re-
ported on the metro system, which includes homicide, rape/attempted rape, assault, robbery,
burglary, grand theft, and petty theft.4 Most significantly, the rail system experienced its first
and only slaying when a man was fatally stabbed on the subway in August 2011. Finally,
due to the highly sensitive nature of the information, statistics regarding the frequency and
severity of any terrorist threats targeting the transit system are not made available to the
public. However, the city of Los Angeles is well known to be a high priority target given
the much publicized foiling of attempted terrorist attacks at LAX in 2000 and 2005. Addi-
tionally, trains and subway systems are common targets for terrorism, as evidenced by the
devastating attacks on Madrid in 2004 and London in 2005. Thus, despite the relatively low
likelihood of a terrorist attack, security measures designed to prevent and mitigate the effects
of terrorism must always remain a priority, given the substantial number of lives at risk.

LASD is required to simultaneously consider all of the threats posed by the different
adversary types in order to design effective and robust security strategies. Thus, defending
against each adversary type can be viewed as an objective for LASD. While these objec-
tives are not strictly conflicting (e.g. checking tickets at a station may lead to a reduction
in crime), focusing security measures too much on one adversary may neglect the threat
posed by the others. As LASD has finite resources with which to protect all of the stations
in the city, it is not possible to protect all stations against all adversaries at all times. There-
fore, strategic decisions must be made such as where to allocate security resources and for
how long. These allocations should be determined by the amount of benefit they provide to
LASD. However, if protecting against different adversaries provides different, incomparable
benefits to LASD, it may be unclear how to specify such a decision as maximizing a sin-
gle objective for automated analysis (as in ARMOR and similar systems). Instead, a more
interactive process whereby the decision support system presents possible solutions to the
decision-makers for further analysis and human judgment may be preferable

For a domain such as the Los Angeles metro system, an MOSG model could be of use,
as it can capture the preferences and threats of the adversary types as well as the benefit
to LASD of preventing these threats. Solving the MOSG produces a set of candidate solu-
tions with each solution corresponding to a security policy and a set of expected payoffs
for LASD, one for each adversary. Thus, different solutions can be compared to better un-
derstand the trade-offs between the different objectives. LASD can then select the security
policy they feel most comfortable with based on the information they have available. For
this type of evaluation process to occur, we must be able to both generate and visualize the
Pareto frontier. Our research focuses primarily on developing efficient algorithms for solv-
ing MOSGs and generating the Pareto frontier (Sections 5 through 8), but we also touch on
issues relating to visualization (Section 10).

4 http://thesource.metro.net/2011/09/21/statistics-on-crime-on-metro-buses-and-trains/
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3 Multi-Objective Security Games

A multi-objective security game (MOSG) is a multi-player game between a defender and n
attacker types.5 The defender tries to prevent attacks by covering targets T ={t1, t2, . . . , t|T |}
using m identical resources which can be distributed in a continuous fashion amongst the
targets. The MOSG model adopts the Stackelberg framework in which the defender acts
first by committing to a strategy that the attackers are able to observe and best respond. The
defender’s strategy can be represented as a coverage vector c ∈ C where ct is the amount
of coverage placed on target t and represents the probability of the defender successfully
preventing any attack on t [22]. This formulation assumes that the covering of each target
costs the same amount of resources, specifically one defender resource. It is this assumption
that allows for the equivalence between the amount of resources placed on a target and the
probability of that target being covered. Thus, given a budget of m resources, the defender
could choose to fully protect m targets. However, given the Stackelberg paradigm, such a
deterministic strategy would perform poorly, as the attackers can easily select one of the
targets that are known to be unprotected. Therefore, the defender has incentive to consider
mixed strategies where resources are allocated to a larger set of partially protected targets.
While an attacker is still able to observe this mixed strategy, when the MOSG is actually
played there is uncertainty on the attacker’s part as to whether a target will be covered or
not. More formally, C={〈ct〉|0 ≤ ct ≤ 1,

∑
t∈T ct ≤ m} describes the defender’s strategy

space. The mixed strategy for attacker type i, ai=〈ati〉, is a vector where ati is the probability
of attacking t.

U defines the payoff structure for an MOSG, withUi defining the payoffs for the security
game played between the defender and attacker type i. Uc,di (t) is the defender’s utility if t
is chosen by attacker type i and is fully covered (ct = 1). If t is uncovered (ct = 0), the
defender’s penalty is Uu,di (t). The attacker’s utility is denoted similarly by Uc,ai (t) and
Uu,ai (t). A property of security games is that Uc,di (t) > Uu,di (t) and Uu,ai (t) > Uc,ai (t)
which means that placing more coverage on a target is always beneficial for the defender
and disadvantageous for the attacker [22]. For a strategy profile 〈c,ai〉 for the game between
the defender and attacker type i, the expected utilities for both agents are given by:

Udi (c,ai)=
∑
t∈T

atiU
d
i (ct, t), Uai (c,ai)=

∑
t∈T

atU
a
i (ct, t)

where Udi (ct, t)=ctU
c,d
i (t)+(1−ct)Uu,di (t) and Uai (ct, t)=ctU

c,a
i (t)+(1−ct)Uu,di (t) are

the payoff received by the defender and attacker type i, respectively, if target t is attacked
and is covered with ct resources.

The standard solution concept for a two-player Stackelberg game is Strong Stackelberg
Equilibrium (SSE) [39], in which the defender commits first to an optimal strategy based
on the assumption that the attacker will be able to observe this strategy and then choose an
optimal response, breaking ties in favor of the defender. We denote Udi (c) and Uai (c) as the
payoff received by the defender and attacker type i, respectively, when the defender uses the
coverage vector c and attacker type i attacks the best target while breaking ties in favor of
the defender.

5 The defender may actually face multiple attackers of different types, however, these attackers are not
coordinated and hence the problem we address is different than in [24].
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With multiple attacker types, the defender’s utility (objective) space can be represented
as a vector Ud(c)=〈Udi (c)〉. An MOSG defines a multi-objective optimization problem:

max
c∈C

(
Ud1 (c), . . . , U

d
n(c)

)
We associate a different objective with each attacker type because, as pointed out in Section
2, protecting against different attacker types may yield types of payoff to the defender which
are not directly comparable. This is in contrast to Bayesian security games, which uses prob-
abilities to combine the objectives into a single weighted objective, making the assumption
about identical units of measure for each attacker type.

Solving such multi-objective optimization problems is a fundamentally different task
than solving a single-objective optimization problem. With multiple objectives functions
there exist tradeoffs between the different objectives such that increasing the value of one
objective decreases the value of at least one other objective. Thus for multi-objective opti-
mization, the traditional concept of optimality is replaced by Pareto optimality.

Definition 1 (Dominance). A coverage vector c ∈ C is said to dominate c′ ∈ C if Udi (c) ≥
Udi (c

′) for all i=1, . . . , n and Udi (c) > Udi (c
′) for at least one index i.

Definition 2 (Pareto Optimality) A coverage vector c ∈ C is Pareto optimal if there is no
other c′ ∈ C that dominates c. The set of non-dominated coverage vectors is called Pareto
optimal solutions C∗ and the corresponding set of objective vectors Ω = {Ud(c)|c ∈ C∗}
is called the Pareto frontier.

This paper gives algorithms to find Pareto optimal solutions in MOSGs. For many multi-
objective optimization problems, the Pareto frontier contains a large or even infinite number
of solutions. In these situations, it is necessary to generate a subset of Pareto optimal so-
lutions that can approximate the true Pareto frontier with quality guarantees. The methods
we present in this paper are a starting point for further analysis and additional preference
elicitation from end users, all of which depends on fast approaches for generating the Pareto
frontier. This analysis can include creating a visual representation of the Pareto frontier, a
topic we discuss in Section 10.

4 Related Work

MOSGs build on both security games as well as multi-objective optimization. We have al-
ready reviewed (in Section 1) the relationship of MOSGs to previous work in security games
and in particular Bayesian security games. In this section, we primarily review the research
on multi-objective optimization. The techniques for solving multi-objective optimization
problems can be broken down into three categories [16]: a priori, interactive, and a poste-
riori methods. This classification is determined by the phase in which the decision maker
expresses their preferences.

If the preferences of the decision maker are known a priori [35,41] then this information
can be incorporated into the solution process by assigning each objective i a weight wi
according to its relative importance and then solving the maximization problem

max
c∈C

n∑
i=1

wiU
d
i (c).
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This weighted summation technique [8] effectively turns a multi-objective optimization
problem into a single-objective optimization problem which implies the existence of a sin-
gle optimal solution. However, it is often difficult for the decision maker to both know and
articulate their preferences, especially if prior knowledge as to the shape of the solution
space is limited. Bayesian security games are solved using this formulation with the weights
in w representing the probability distribution over attacker types. Another issue is that not
all preferences over multiple objectives can be expressed as simple weighted summations,
more complex preferences may be desired.

Interactive methods [2,30,36] involve alternating between computation and dialogue
phases. In the computation phase, a set of solutions are computed and presented to the
decision maker. In the dialogue phase, the decision maker is asked about their preferences
over the set of solutions. The decision maker can thus guide the search process with their
responses toward a preferable solution. By using preference elicitation, only a subset of the
Pareto frontier needs to be generated and reviewed. The drawback is that the decision maker
never has the opportunity to view the entire Pareto frontier at once and could potentially
miss out on a more preferable solution. In addition, solutions must be computed in an online
manner which also requires synchronization between the system and the decision maker.

Finally, there will be instances where the preferences of the decision maker are only
known a posteriori. In this situation, the entire Pareto frontier (or a representative subset) is
generated and presented to the decision maker. While this approach is the most expensive
computationally, it provides the most information, enabling the decision maker to make an
informed decision. The a posteriori techniques are also known as generative methods and
will be the focus of this paper. The three most common generative approaches are weighted
summation [23], evolutionary algorithms [9], and the ε-constraint method [15].

When weighted summation [8] and its successors are used as a generative approach, the
true weights of the decision maker are not known. Thus, it is necessary to sample many
different combinations of weights in order to generate the Pareto frontier. Solving for one
assignment of weights, w, produces a Pareto optimal solution. Since the weight vector is
an artificial construct which may not have any real meaning in the optimization problem,
it is difficult to know how to update the weights in order to generate different solutions on
the Pareto frontier. Another limitation of weighted summation is that it is only guaranteed
to find Pareto-optimal solutions in the convex region of the Pareto frontier. The weighted
p-power method [28] and the weighted minimax method [27] were introduced as improved
versions of weighted summation capable of handling nonconvex problems.

Another approach for generating the Pareto frontier which has seen significant applica-
tion [1,14,37] is multi-objective evolutionary algorithms (MOEA) [12]. This class of algo-
rithms is inspired by biological concepts such as reproduction, mutation, recombination, and
selection. A population of candidate solutions is maintained and evolved over multiple gen-
erations, where the likelihood of survival for individual solutions is determined by a fitness
function. A key advantage of evolutionary algorithms such as NSGA-II [13], SPEA-2 [42],
and GDE3 [25] is that there is no need to solve optimization problems as the assignment
of decision variables are passed down genetically from generation to generation. However,
due to the stochastic nature of evolutionary algorithms, the solutions returned by these ap-
proaches are not Pareto-optimal but rather approximate solutions. Additionally, it is not
possible to bound this level of approximation, making evolutionary algorithms unsuitable
for the security domains on which we focus, where quality guarantees are critical.

The third approach is the ε-constraint method in which the Pareto frontier is generated
by solving a sequence of CSOPs. One objective is selected as the primary objective to be
maximized while lower bound constraints are added for the other secondary objectives. By
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varying the constraints, different solutions on the Pareto frontier can be generated. The orig-
inal ε-constraint method [8] discretizes the objective space and solves a CSOP for each grid
point. This approach is computationally expensive since it exhaustively searches the high-
dimensional space formed by the secondary objectives. There has been work to improve
upon the original ε-constraint method. In [26], an adaptive constraint variation scheme is
proposed which is able make use of information obtained from previously computed sub-
problems. However, the exponential complexity of O(kn−1), where k is the number of so-
lutions in the Pareto frontier, limits its application as the Pareto frontier can be large or even
continuous for many real world optimization problems. Another approach, the augmented
ε-constraint method [31] reduces computation by using infeasibility information from pre-
vious CSOPs. However, this approach only returns a predefined number of points and thus
cannot bound the level of approximation for the Pareto frontier.

Security domains demand both efficiency as well as solution quality guarantees when
providing decision support. Given these requirements, our approach for solving an MOSG
utilizes and improves upon the ε-constraint method. Iterative-ε-Constraints, which will be
expanded upon in Section 5, combines the following innovations: (1) using a recursive, tree-
based algorithm to search the objective space instead of a predefined grid, (2) dynamically
generating CSOPs using adaptive constraints from previously computed CSOPs, and (3)
exploiting infeasibility information to avoid unnecessary computation. As a result, our ap-
proach only needs to solve O(nk) CSOPs and can provide approximation bounds. Also,
our work is one of the first to consider multi-objective optimization in the context of game
theory, where the decision maker needs to predict the response of multiple adversaries to
evaluate the objectives.

5 Iterative-ε-Constraints

Using the ε-constraint method, we translate a multi-objective optimization problem into the
following constrained single-objective optimization problem (CSOP) by transforming all
but one of the optimizations into a set of constraints b.

max
c∈C

Ud1 (c)

Ud2 (c) ≥ b2
Ud3 (c) ≥ b3

. . .

Udn(c) ≥ bn

This allows for the use of standard optimization techniques to solve for a single Pareto
optimal solution, which is a vector of payoffs v = (Ud1 (c), . . . , U

d
n(c)). The Pareto frontier

is then generated by solving multiple CSOPs produced by modifying the constraints in b.
This section presents Iterative-ε-Constraints (Algorithm 1), an algorithm for systemat-

ically generating a sequence of CSOPs for an MOSG. After each CSOP is generated, it is
passed to a solver Φ and if a solution is found that information is used to generate additional
CSOPs. In Section 6, we present a MILP approach which guarantees the Pareto optimality
of each CSOP solution. While in Section 8, we introduce a faster, approximate approach for
solving CSOPs.
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Fig. 2 Pareto frontier for a bi-objective MOSG.

We have made the code for all of our algorithms available to the community for down-
load.6 In addition to our algorithms, this code base also provides a framework for imple-
menting new multi-objective domains and solvers.

5.1 Algorithm for Generating CSOPs

Iterative-ε-Constraints uses the following four key ideas: (1) The Pareto frontier for an
MOSG can be found by solving a sequence of CSOPs. For each CSOP, Ud1 (c) is selected
as the primary objective, which will be maximized. Lower bound constraints b are then
added for the secondary objectives Ud2 (c), . . . , U

d
n(c). (2) The sequence of CSOPs can be

iteratively generated by exploiting previous Pareto optimal solutions and applying Pareto
dominance. (3) It is possible for a CSOP to have multiple coverage vectors c that maximize
Ud1 (c) and satisfy b. Thus, lexicographic maximization is needed to ensure that the CSOP
solver Φ only returns Pareto optimal solutions. (4) It may be impractical (even impossible)
to generate all Pareto optimal points if the frontier contains a large number of points or is
continuous. Therefore, a parameter ε is used to discretize the objective space, trading off
solution efficiency versus the degree of approximation in the generated Pareto frontier.

We now present a simple MOSG example with two objectives and ε = 5. Figure 2 shows
the objective space for the problem as well as several points representing the objective payoff
vectors for different defender coverage vectors. In this problem, Ud1 will be maximized while
b2 constrains Ud2 , meaning that the utility of the second objective Ud2 should be no less than
b2. The initial CSOP is unconstrained (i.e., b2 = −∞), thus the solver Φ will maximize Ud1
and return solution A=(100,10). Based on this result, we know that any point v = {v1, v2}
(e.g., B) in the objective space is not Pareto optimal if v2 < 10, as it would be dominated
by A. We then generate a new CSOP, updating the bound to b2 = 10 + ε. Solving this
CSOP with Φ produces solution C=(80, 25) which can be used to generate another CSOP

6 http://teamcore.usc.edu/people/mattheab/multi/

http://teamcore.usc.edu/people/mattheab/multi/
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with b2 = 25 + ε. Both D=(60,40) and E=(60,60) satisfy b2 but only E is Pareto optimal.
Lexicographic maximization ensures that only E is returned and dominated solutions are
avoided (details in Section 6). The method then updates b2 = 60+ε andΦ returns F=(30,70),
which is part of a continuous region of the Pareto frontier from Ud2 = 70 to Ud2 = 78.
The parameter ε causes the method to select a subset of the Pareto optimal points in this
continuous region. In particular this example returns G=(10,75) and in the next iteration
(b2 = 80) finds that the CSOP is infeasible and terminates. The algorithm returns a Pareto
frontier of A, C, E, F, and G.

Iterative-ε-Constraints systematically updates a set of lower bound constraints b to gen-
erate the sequence of CSOPs. Each time we solve a CSOP, a portion of the n−1 dimensional
space formed by the secondary objectives is marked as searched with the rest divided into
n−1 subregions (by updating b for each secondary objective). These n−1 subregions are
then recursively searched by solving n−1 CSOPs with updated bounds. This systematic
search forms a branch and bound search tree with a branching factor of n−1. As the depth
of the tree increases, the CSOPs are more constrained, eventually becoming infeasible. If a
CSOP is found to be infeasible, no child CSOPs are generated because they are guaranteed
to be infeasible as well. The algorithm terminates when all of the leaf nodes in the search
tree are infeasible, meaning the entire secondary objective space has been searched.

Algorithm 1: Iterative-ε-Constraints(b={b2, . . . , bn})
1 if b /∈ previousBoundsList then
2 append(previousBoundsList,b) ;
3 c← Φ(b) ;
4 if c is a feasible solution then
5 v← {Ud1 (c), . . . , Udn(c)};
6 for 2 ≤ i ≤ n do
7 b′ ← b;
8 b′i ← vi + ε ;
9 if b′ 6≥ s, ∀s ∈ infeasibleBoundsList then

10 Iterative-ε-Constraints(b′) ;

11 else append(infeasibleBoundsList,b) ;

Figure 3 shows the type of search tree generated by Iterative-ε-Constraints. In this simple
example, there are three objectives and thus the search tree has a branching factor of 2. The
number at the top of each node represents the order in which the nodes were processed.
Along each branch, we show information about b and v being passed down from parent
to child. This information is used to create the set of lower bound constraints for the child
CSOP which is then passed to the solver Φ. In total, seven CSOPs are computed with three
feasible CSOPs (Iterations 1, 2, and 4) and four infeasible CSOPs (Iterations 3, 5, 6, and 7).
Figure 4 shows the process taking place within a CSOP with four objectives, where a vector
v of n−1 objective lower bounds is used to formulate the constraints of a CSOP which
maximizes the remaining, primary objective. This CSOP is then passed to CSOP solver Φ
which produces a vector v of n objective payoff values.
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Fig. 3 Example Iterative-ε-Constraints search tree for three objectives.

Fig. 4 Internal process for an example CSOP with four objectives.

5.2 Search Tree Pruning

By always going from less constrained CSOPs to more constrained CSOPs, Iterative-ε-
Constraints is guaranteed to terminate. However, there are several issues which can cause
the algorithm to be inefficient. The first issue is redundant computation caused by multiple
CSOPs having identical sets of lower bound constraints. When this occurs, the set of child
CSOPs generated for each duplicate parent CSOP would also be identical. Given the recur-
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sive nature of the algorithm, these duplicate CSOPs can result in an exponential increase in
the number of CSOPs that are solved. This issue can be addressed by recording the lower
bound constraints for all previous CSOPs in a list called previousBoundsList and pruning
any new CSOP which matches an element in this list. The second issue is the unnecessary
computation of CSOPs which are known to be infeasible based on previously computed
CSOPs. This can be achieved by recording the lower bound constraints for all CSOPs pre-
viously found to be infeasible in a list called infeasibleBoundsList and pruning any new
CSOP for which all lower bounds constraints are greater than or equal to the lower bound
constraints of a CSOP in the list. These two heuristics form the baseline pruning rules that
are used when evaluating Iterative-ε-Constraints in Section 9.

It is possible to further exploit the concept of Pareto dominance in order to create a
more effective pruning heuristic. For example, it is possible for two sets of lower bound
constraints, b1 and b2, to result in the same vector of objective payoffs v. This situation
is obviously undesirable not only due to the time spent on the CSOPs corresponding to b1

and b2 but also because both CSOPs will have a full set of child CSOPs that need to be
processed. While generating some duplicate solutions is unavoidable, steps can be taken
to reduce their occurrence. Solving a CSOP creates a mapping of constraints to payoffs,
Φ(b)→ v. Each such mapping provides useful information as it creates a dominated region
in which no additional CSOPs need to be solved. Specifically, if we have a mapping Φ(b)→
v, then we can prune any CSOP corresponding to b′ such that b′ ≥ b and b′ ≤ v. This
is the case because for any such b′ the payoffs found by solving the CSOP are guaranteed
to be v. Since b′ ≥ b, b′ is inherently at least as constrained as b. Given that the CSOP
is a maximization problem, if b maps to v then a more constrained problem b′ ≤ v must
also map to v. Thus, in Iterative-ε-Constraints, we can record all of the constraint-payoff
mappings in solutionsMap. Then before attempting to solve a CSOP corresponding to b̂,
we first check to see if b̂ resides within any of the dominated regions defined by any of
the mappings in solutionsMap. We compare this more sophisticated pruning rule to the
baseline pruning rule in Section 9.5.

5.3 Approximation Analysis

When the Pareto frontier contains a large or infinite number of points, it may be undesirable
or impossible to produce the entire Pareto frontier. Thus, the set of solutions returned in such
situations is an approximation of the true Pareto frontier. In this section, we prove that the
solutions found by Iterative-ε-Constraints are Pareto optimal, if Φ is exact, and then provide
formal bounds on the level of approximation in the generated Pareto frontier. We refer to the
full Pareto frontier as Ω and the set of solutions found by Iterative-ε-Constraints as Ωε.

Theorem 3 Solutions in Ωε are non-dominated, i.e., Ωε⊆Ω.

Proof Let c∗ be the coverage vector such that Ud(c∗) ∈ Ωε and assume that it is dominated
by a solution from a coverage vector c̄. That means Udi (c̄) ≥ Udi (c

∗) for all i = 1, . . . , n
and for some j, Udj (c̄) > Udj (c

∗). This means that c̄ was a feasible solution for the CSOP
for which c∗ was found to be optimal. Furthermore, the first time the objectives differ, the
solution c̄ is better and should have been selected in the lexicographic maximization process.
Therefore c∗ 6∈ Ωε which is a contradiction.

We have just shown that each solution in Ωε is indeed Pareto optimal. However, the use
of ε introduces a degree of approximation in the generated Pareto frontier. Specifically, by
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not generating the full Pareto frontier, we are approximating the shape of Ω. One immediate
question is to characterize the efficiency loss caused by this approximation. Here we define
a bound to measure the largest efficiency loss as a function of ε:

ρ(ε) = max
v∈Ω\Ωε

min
v′∈Ωε

max
1≤i≤n

(vi − v′i)

This approximation measure is widely used in multi-objective optimization (e.g. [6]). It
computes the maximum distance between any point v ∈ Ω\Ωε on the frontier to its “closest”
point v′ ∈ Ωε computed by our algorithm. Here, the distance between two points is the
maximum difference of different objectives.

Theorem 4 ρ(ε) ≤ ε.

Proof It suffices to prove this theorem by showing that for any v ∈ Ω \Ωε, there is at least
one point v′ ∈ Ωε such that v′1 ≥ v1 and v′i ≥ vi − ε for i > 1.

Algorithm 2 recreates the sequence of CSOP problems generated by Iterative-ε-Constraints
by ensuring the bounds b ≤ v throughout. Since Algorithm 2 terminates when we do not
update b, this means that v′i + ε > vi for all i > 1. Summarizing, the final solution b and
v′ = Ud(Φ(b)) satisfy b ≤ v and v′i > vi− ε for all i > 1. Since v is feasible for the CSOP
with bound b, but Φ(b) = v′ 6= v then v′1 ≥ v1. �

Given Theorem 4, the maximum distance for every objective between any missed Pareto
optimal point and the closest computed Pareto optimal point is bounded by ε. Therefore, as
ε approaches 0, the generated Pareto frontier approaches the complete Pareto frontier in the
measure ρ(ε). For example if there are k discrete solutions in the Pareto frontier and the
smallest distance between any two is δ then setting ε = δ/2 will make Ωε = Ω. In this
case, since each solution corresponds to a non-leaf node in our search tree, the number of
leaf nodes is no more than (n− 1)k. Thus, our algorithm will solve at most O(nk) CSOPs.
This is a significant improvement over [26], which solves O(kn−1) CSOPs as a result of
recomputing each cell in an adaptive grid every time a solution is found. Our approach
limits recomputing regions of objective space through our pruning heuristics and by moving
from less constrained to more constrained CSOPs.

Algorithm 2: For v ∈ Ω \ Ωε, find v′ ∈ Ωε satisfying v′1 ≥ v1 and v′i ≥ vi − ε for
i > 1
1 Let b be the constraints in the root node, i.e., bi = −∞ for i > 1 ;
2 repeat
3 c← Φ(b), v′ ← Ud(c), b′ ← b;
4 for each objective i > 1 do
5 if v′i + ε ≤ vi then
6 bi ← v′i + ε ;
7 break;

8 until b = b′;
9 return Φ(b) ;
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6 MILP Approach

In Section 5, we introduced a high level search algorithm for generating the Pareto frontier
by producing a sequence of CSOPs. In this section we present an exact approach for defining
and solving a mixed-integer linear program (MILP) formulation of a CSOP for MOSGs. In
Section 7, we go on to show how heuristics that exploit the structure and properties of
security games can be used to improve the efficiency of our MILP formulation.

As stated in Section 5, to ensure the Pareto optimality of solutions, lexicographic maxi-
mization is required to sequentially maximize all the objective functions while still respect-
ing the constraints in b. Thus, for each CSOP we must solve n MILPs, where each MILP is
used to maximize one objective. For the λth MILP in the sequence, the variable dλ is max-
imized, which represents the defender’s payoff for security game / objective λ. This MILP
is constrained by having to maintain the maximized values d∗j for 1 ≤ j < λ found by
previous MILPs in the sequence as well as satisfy lower bound constraints bk for λ < k ≤ n
corresponding to the remaining uncomputed MILPs in the sequence.

We present our MILP formulation for a CSOP for MOSGs in Figure 5. This is similar to
the MILP formulations for security games presented in [22] and elsewhere with the excep-
tion of the key Equations 4 and 5. Equation 1 is the objective function, which maximizes the
defender’s payoff for objective λ, dλ. In Equations 2 and 3, M is a large constant relative
to the maximum payoff value for any objective. Equation 2 defines the defender’s expected
payoff di for each objective i based on the target selected by attacker type i. The constraint
places an upper bound of Udi (ct, t) on di, but only for the attacked target. For every other
target, M on the right hand side causes the constraint to be arbitrarily satisfied.

Similarly, Equation 3 defines the expected payoff ki for attacker type i based on the
target selected for attack. The first part of the constraint specifies that ki − Uai (ct, t) ≥ 0,
which implies that ki must be at least as large as the maximal payoff for attacking any target.
The second part forces ki − Udi (ct, c) ≤ 0 for the target selected by attacker type i. If the
selected target is not maximal, this constraint is violated.

Taken together, Equations 1-3 imply that the strategies for both the defender and attacker
type λ are best-responses with respect to each other. However, the same cannot be said about
the defender’s strategy with respect to all of the other attacker types because the defender’s
payoffs for those objectives are not included in the objective function. It is for this reason
that lexicographic maximization is necessary, ensuring that defender strategy is the best
response with respect to all attacker types and the constraints in b.

Equation 4 constrains the feasible region to solutions that maintain the values of ob-
jectives maximized in previous iterations of the lexicographic maximization. Equation 5
guarantees that the lower bound constraints in b will be satisfied for all objectives which
have yet to be optimized.

If a mixed strategy is optimal for the attacker, then so are all the pure strategies in the
support of that mixed strategy. Thus, we only consider the pure strategies of the attacker
[32]. Equations 6 and 7 constrain attackers to pure strategies that attack a single target.
Equations (8) specifies that the coverage for each target ct is in the range [0,1]. Finally,
Equation 9 ensures the amount of defender coverage used is no greater than the total number
of defender resources, m.

As noted earlier, this MILP is a modified version of the optimization problem formulated
in [22] and is specific for security games. Similar modifications can be made to more generic
Stackelberg games, such as those used for the Decomposed Optimal Bayesian Stackelberg
Solver (DOBSS) [32], giving a formulation for generalized multi-objective Stackelberg
games beyond security games.
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max dλ (1)

1 ≤ i ≤ n, ∀t ∈ T : di − Udi (ct, t) ≤M(1− ati) (2)

1 ≤ i ≤ n, ∀t ∈ T : 0 ≤ ki − Uai (ct, t) ≤M(1− ati) (3)

1 ≤ j < λ : dj = d∗j (4)

λ < k ≤ n : dk ≥ bk (5)

1 ≤ i ≤ n, ∀t ∈ T : ati ∈ {0, 1} (6)

∀j ∈ A :
∑
t∈T a

t
i = 1 (7)

∀t ∈ T : 0 ≤ ct ≤ 1 (8)∑
t∈T ct ≤ m (9)

Fig. 5 Lexicographic MILP formulation for a CSOP.

Variable Definition Dimension
λ Current Objective −
m Number of Defender Resources −
n Number of Attacker Types −
Z Huge Positive Constant −
T Set of Targets |T |
a Attacker Coverage atj n× |T |
b Objective Bounds bj (n− 1)× 1
c Defender Coverage ct |T | × 1
d Defender Payoff dj n× 1
d∗ Maximized Defender Payoff d∗j n× 1

k Attacker Payoff kj n× 1
Ud Defender Payoff Structure Udj (ct, t) n× |T |
Ua Attacker Payoff Structure Uaj (ct, t) n× |T |

Fig. 6 MILP formulation definitions.

7 Improving MILP Efficiency

Once the MILP has been formulated as specified in Section 6, it can be solved using an
optimization software package such as CPLEX. It is possible to increase the efficiency of the
MILP formulation by using heuristics to constrain the decision variables. A simple example
of a general heuristic which can be used to achieve speedup is placing an upper bound
on the defender’s payoff for the primary objective. Assume d1 is the defender’s payoff for
the primary objective in the parent CSOP and d′1 is the defender’s payoff for the primary
objective in the child CSOP. As each CSOP is a maximization problem, it must hold that
d1 ≥ d′1 because the child CSOP is more constrained than the parent CSOP. Thus, the value
of d1 can be passed to the child CSOP to be used as an upper bound on d′1.

In addition to placing bounds on the defender payoff, it is possible to constrain the
defender coverage in order to improve the efficiency of our MILP formulation. Thus, we
introduce three approaches for translating constraints on defender payoff into constraints
on defender coverage. These approaches (ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-
MIN-COV) achieve this translation by computing the minimum coverage needed to satisfy
a set of lower bound constraints b such that Udi (c) ≥ bi, for 1 ≤ i ≤ n. This minimum
coverage is then added to the MILP in Figure 5 as constraints on the variable c, reducing the
feasible region and leading to significant speedup as verified in experiments.
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Fig. 7 Example of ORIGAMI-M incrementally expanding the attack set by increasing coverage.

7.1 ORIGAMI-M

ORIGAMI-M (Algorithm 3), is a modified version of the ORIGAMI algorithm [22] and
borrows many of its key concepts. The “M” in the algorithm name refers to the fact that
ORIGAMI-M is designed for security games with multiple objectives. At a high level,
ORIGAMI-M starts off with an empty defender coverage vector c, a set of lower bound con-
straints b, and m defender resources. The goal is to update c such that it uses the minimum
amount of defender resources to satisfy the constraints in b. If a constraint bi is violated,
i.e., Udi (c) < bi, ORIGAMI-M updates c by computing the minimum additional coverage
necessary to satisfy bi. Since we focus on satisfying the constraints one objective at a time,
the constraints for other objectives that were satisfied in previous iterations may become
unsatisfied again. The reason is that the additional coverage may alter the targets selected
for attack by one or more attacker types, possibly reducing the defender’s payoff for those
objectives below their once satisfied constraints. Therefore, all of the constraints in b must
be checked repeatedly until there are no violated constraints. If all m defender resources are
exhausted before b is satisfied, then the CSOP is infeasible.

The process for calculating the minimum coverage for a single constraint bi is built on
two assumption of security games [22]: (1) the attacker chooses the target that is optimal
with respect its own payoffs; (2) if multiple targets are optimal, the attacker breaks ties by
choosing the target that yields the highest defender payoff. The first property intuitively
establishes that the attacker is a fully rational decision maker. The second property may
seem less intuitive given the adversarial nature of the defender and the attacker. In theory, the
player acting first in a Stackelberg game may force the adversary to play specific inducible
actions in the follower’s optimal set of actions by the threat of a slight perturbation of the
optimal strategy, as described in [39]. In practice, the assumption that the attacker breaks ties
in favor of the defender has been used in a number of real-world applications of Stackelberg
security games. There has been work to remove these assumptions with models that consider
uncertainty about the attacker, such as the imperfect rationality of human decision making
[33,40]. However, we focus on the base model with standard assumptions for our initial
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multi-objective work and leave extensions for handling these types of uncertainty to future
work.

The set of optimal targets for attacker type i, given coverage c, is referred to as the attack
set, Γi(c). Accordingly, adding coverage on target t /∈ Γi does not affect the attacker type
i’s strategy or payoff. Thus, if c does not satisfy bi, we only consider adding coverage to
targets in Γi. Γi can be expanded by increasing coverage such that the payoff for each target
t ∈ Γi is equivalent to the payoff for the target t′ /∈ Γi with the highest payoff as defined by
Uai (ct′ , t

′). Adding an additional target to the attack set can only benefit the defender since
the defender receives the optimal payoff among targets in the attack set.

Figure 7 shows a simple example of ORIGAMI-M with four targets. The vertical axis
is the payoff for attacker type i, Uai (c), while each target t is represented as the range
[Uc,ai (t), Uu,ai (t)]. The blue rectangles depict the amount of coverage placed on each target.
Before Iteration 1, the targets are sorted in descending order according to Uai (c), resulting
in the ordering t1 > t2 > t3 > t4 as well as Γi = {t1}. After Iteration 1, enough coverage
has been added to t1 that Uai (c1, t1)=Uu,ai (t2), meaning Γi has been expanded to include
t2. In Iteration 2, coverage is placed on both t1 and t2 in order to push attacker type i’s
payoff for these targets down to Uu,ai (t3), adding t3 to Γi. The process is again repeated in
Iteration 3 with coverage now being added to t1, t2, and t3 until t4 can be induced into Γi.

The idea for ORIGAMI-M is to expand the attack set Γi until bi is satisfied. Targets
are added to Γi in descending order according to attacker payoff, Uai (ct, t), which requires
sorting the list of targets (Line 3). The attack set Γi initially contains only the first target
in this sorted list, while the variable next represents the size that the attack set will be
expanded to. In order to add the next target to Γi, the attacker’s payoff for all targets in Γi
must be reduced to Uai (cnext, tnext) (Line 12). However, it might not be possible to do this.
Once a target t is fully covered by the defender, there is no way to decrease the attacker’s
payoff below Uc,ai (t). Thus, if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) (Line 8), then it is

impossible to induce attacker type i to choose target tnext. In that case, we can only reduce
the attacker’s payoff for targets in the attack set to max1≤t<next U

c,a
i (t) (Line 9) and set

the noninducibleNextTarget flag (Line 10). Then for each target t ∈ Γi, we compute
the amount of additional coverage, addedCov[t], necessary to reach the required attacker
payoff (Line 14). If the total amount of additional coverage exceeds the amount of remaining
coverage (Line 15), denoted by variable covLeft, then the resourcesExceeded flag is set
(Line 16) and addedCov is recomputed with each target in Γi being assigned a ratio of the
remaining coverage so as to maintain the attack set (Line 18).

Once the addedCov vector has been computed, we check to see if c + addedCov
satisfies bi (Line 19). If it does, there may exist a coverage c′ which uses less defender
resources and still satisfies bi. To determine if this is the case, we developed a subroutine
called MIN-COV, described in detail below, to compute c′ (Line 20). If c′ = null, then
c + addedCov is the minimum coverage which satisfies bi (Line 24), otherwise c′ is the
minimum coverage (Line 22). In either case, c is updated to the new minimum coverage and
then compared against b to check for violated constraints (Line 2).

If c + addedCov does not satisfy bi, we know that further expansion of the attack
set is necessary. Thus, c is updated to include addedCov (Line 29), the amount of cov-
erage in addedCov is deducted from the running total of remaining coverage covLeft
(Line 30), and next is incremented (Line 31). However, if either the resourcesExceeded or
noninducibleNextTarget flag have been set (Line 26), then further expansion of the attack
set is not possible. In this situation, bi as well as the CSOP are infeasible and ORIGAMI-M
terminates. If the attack set is expanded to include all targets (Line 32), i.e., next = |T |+1,
then it may be possible to satisfy bi if there is still defender resources remaining. Thus, we
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Algorithm 3: ORIGAMI-M(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 covLeft←m−

∑
t∈T ct;

5 next← 2;
6 while next ≤ |T | do
7 addedCov[t]← empty coverage vector;
8 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

9 x← max1≤t<next U
c,a
i (t);

10 noninducibleNextTarget← true;
11 else
12 x← Uai (cnext, tnext);

13 for 1 ≤ t < next do
14 addedCov[t]← x−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

− ct;

15 if
∑
t∈T addedCov[t] > covLeft then

16 resourcesExceeded← true;
17 ratio[t]← 1

U
u,a
i (t)−Uc,ai (t)

, ∀1 ≤ t < next;

18 addedCov[t] =
ratio[t]·covLeft∑
1≤t≤next ratio[t]

, ∀1 ≤ t < next;

19 if Udi (c+ addedCov) ≥ bi then
20 c′ ←MIN-COV(i, c,b, next);
21 if c′ 6= null then
22 c← c′;

23 else
24 c← c+ addedCov;

25 break;

26 else if resourcesExceeded ∨ noninducibleNextTarget then
27 return infeasible;

28 else
29 c← c+ addedCov;
30 covLeft −=

∑
t∈T addedCov[t];

31 next++;

32 if next = |T |+ 1 then
33 if covLeft > 0 then
34 c←MIN-COV(i, c,b, next);
35 if c = null then
36 return infeasible;

37 else
38 return infeasible;

39 return c ;

update c to the output generated by calling MIN-COV. If c= null, then bi is unsatisfiable
and ORIGAMI-M returns infeasible, otherwise c is the minimum coverage.

If c∗ is the coverage vector returned by ORIGAMI-M then Equation (8) of our MILP
formulation can be replaced with c∗t ≤ ct ≤ 1, ∀t ∈ T . If, instead, ORIGAMI-M returns
infeasible then there is no feasible solution that satisfies b and thus there is no need to
attempt solving the CSOP with Φ.
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Algorithm 4: MIN-COV(i, c,b,next)

1 Input: Game index i, initial coverage c, lower bound b, size of expanded attack set next;
2 c∗ ← null;
3 minResources← m;
4 baseCov←

∑
t∈T ct;

5 for 1 ≤ j < next do
6 feasible← true;
7 c′ ← c ;

8 c′j ←
bi−U

u,a
i (tj)

U
c,a
i (tj)−U

u,a
i (tj)

;

9 c′j ← max(c′j , cj);
10 if c′j > 1 then
11 break;

12 covSoFar← baseCov + c′j − cj ;
13 for 1 ≤ k ≤ |T | do
14 if j 6= k ∧ Uai (c′tk , tk) > Uai (c

′
tj
, tj) then

15 c′k =
Uai (c′tj

,tj)−U
u,a
i (tk)

U
c,a
i (tk)−U

u,a
i (tk)

;

16 if c′k < ck ∨ c′k > 1 then
17 feasible← false;
18 break;

19 covSoFar+= c′k−ck;
20 if covSoFar ≥ minResources then
21 feasible← false;
22 break;

23 if feasible then
24 c∗ ← c′;
25 minResources← covSoFar ;

26 return c∗

When MIN-COV (Algorithm 4) is called, we know that the coverage c induces an attack
set of size next−1 and does not satisfy bi, while c+addedCov induces an attack set of size
next and satisfies bi. Thus, MIN-COV is designed to determine if there exists a coverage c∗

that uses more coverage than c and less coverage than c + addedCov while still satisfying
bi. This determination can be made by trying to induce a satisfying attack on different targets
and comparing the resulting coverage vectors. As c + addedCov is the minimum coverage
needed to induce an attack set of size next, we only need to consider attacks on the first
next−1 targets. Thus, for each target tj , 1≤ j < next (Line 5), we generate the coverage
vector c′ that induces an attack on tj and yields a defender payoff of at least bi. MIN-COV
returns c∗ (Line 26), which represents the c′ that uses the least amount of defender resources
while satisfying bi. The variable minResources denotes the amount of coverage used by the
current minimum coverage and is initialized to m, the total number of defender resources.

For each coverage c′, we initialize c′ with c (Line 7) and then compute the coverage
cj on target tj needed to yield a defender payoff of bi (Line 8). We can never remove any
coverage that has already been placed, so we ensure that c′j ≥ cj (Line 9). If c′j > 1, then
no valid coverage of tj could satisfy bi and thus there is no need to compute c′ for tj .
Otherwise, we update the coverage for every other target tk, 1≤ k≤ |T | j 6= k. Placing c′j
coverage on tj yields an attacker payoff Uai (c

′
j , tj). Since our goal is to induce an attack

on tj , we must ensure that the attacker payoff for every tk is no greater than for tj , i.e.,
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Uai (c
′
j , tj) ≥ Uai (c

′
k, tk), by placing additional coverage (Line 15). If either c′k < ck or

c′k > 1 (Line 16) then no feasible coverage c′ exists for tj . The variable covSoFar tracks
the amount of resources used by c′, if at any point this value exceeds minResources then
c′ for tj cannot be the minimum defender coverage (Line 20).

If the coverage for all targets tk is updated successfully then we know that: (1) c′ satisfies
bi and (2) c′ is the current minimum coverage. For (1), we have ensured tj is in the attack set
Γi. By the properties of security games, the attacker will select the target t ∈ Γi that yields
the highest defender payoff. Thus, in the worst case from the defender’s perspective, t= tj
and gives the defender a payoff of at least bi. Since covSoFar is compared to minResources
everytime the coverage for a target is updated, (2) is inherently true if all targets have been
updated. Having found a new minimum coverage, we update c∗←c′ and minResources←
covSoFar.

7.2 Binary Search ORIGAMI-M

The ORIGAMI-M algorithm expands the attack set Γi one target at a time until either the
current lower bound constraint is satisfied or determined to be infeasible. If the satisfying
attack set is large, it may become computationally expensive to incrementally expand and
evaluate the satisfiability of Γi. Thus, we introduced a modified version of ORIGAMI-M
called ORIGAMI-M-BS (Algorithm 5)which uses binary search to find the minimum cov-
erage vector c which satisfies the lower bound constraints in b. Intuitively, for a violated
constraint i, we are performing binary search to find the size of the smallest attack set which
satisfies the lower bound constraint bi. The natural range for the size of Γi is between 1 and
|T |, therefore we use the respective bounds lower= 0 and upper= |T | + 1 for our binary
search. The size of the attack set to be evaluated is determined by next=(upper+lower)/2.
We record the size of the smallest satisfying attack set with µ, which is initially set to |T |+1.
The coverage vector corresponding to the smallest satisfying attack set is c+ and is initial-
ized to null.

For an attack set of a given size, the procedure for placing coverage on targets is identical
to the procedure in ORIGAMI-M. The set of targets is sorted in descending order according
to attacker payoff,Uai (ct, t) (Line 3). Then it is necessary to compute the vector of additional
coverage, addedCov, that must be added to the first next−1 targets so that Γi is expanded
to include tnext. There are three possible scenarios when evaluating an attack set: (1) An
attack set of size next cannot be induced due to either an insufficient amount of defender
resources (Line 19) or a noninducible target (Line 12). Therefore, the smallest satisfying
attack set must be smaller than size next so we update upper = next (Line 24). (2) An
attack set of size next can be induced but it does not satisfy the lower bound constraint bi.
Thus, we know that if a satisfying attack set exists it must be larger than size next so we
update lower=next (Line 31). (3) An attack set of size next can be induced and satisfies
the lower bound constraint bi (Line 25). While the current attack set is a satisfying attack
set, it may be possible to find a smaller attack set which also satisfies bi. Thus, we update
upper = next (Line 26) and if the current attack set is the smallest satisfying attack set
found so far we update c+=c+addedCov (Line 27) and µ=next (Line 28).

The binary search loop is repeated while upper−lower>1 (Line 9). After loop termi-
nation, if c+ = null and upper< |T |+1 (Line 32), then the constraint bi is not satisfiable
and the CSOP is infeasible (Line 39). We know this because upper is updated whenever
an attack set either satisfies bi (Line 26), exceeds the available resources (Line 24), and/or
contains a noninducible target (Line 24). Thus, upper< |T |+1 would indicate that at least
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Algorithm 5: ORIGAMI-M-BS(b)
1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 covLeft←m−

∑
t∈T ct;

5 lower← 0;
6 upper← |T |+ 1;
7 µ← |T |+ 1;
8 c+ ← null;
9 while upper− lower > 1 do

10 next = (upper + lower)/2;
11 addedCov[t]← empty coverage vector;
12 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

13 x← max1≤t<next U
c,a
i (t);

14 noninducibleNextTarget← true;
15 else
16 x← Uai (cnext, tnext);

17 for 1 ≤ t < next do
18 addedCov[t]← x−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

− ct;

19 if
∑
t∈T addedCov[t] > covLeft then

20 resourcesExceeded← true;
21 ratio[t]← 1

U
u,a
i (t)−Uc,ai (t)

, ∀1 ≤ t < next;

22 addedCov[t] =
ratio[t]·covLeft∑
1≤t≤next ratio[t]

, ∀1 ≤ t < next;

23 if resourcesExceeded ∨ noninducibleNextTarget then
24 upper = next;

25 if Udi (c+ addedCov) ≥ bi then
26 upper = next;
27 if next < µ then
28 c+ ← c+ addedCov;
29 µ← next;

30 else
31 lower = next;

32 if c+ 6= null ∨ upper = |T |+ 1 then
33 c′ ←MIN-COV(i, c,b, µ);
34 if c′ 6= null then
35 c← c′;

36 else
37 c← c+;

38 else
39 return infeasible;

40 return c;

one attack set was found to exceed defender resources or contain a noninducible target,
but no satisfying attack set was found given that c+ = null. However, if c+ = null and
upper= |T |+1, then it is still possible that a coverage satisfying bi exists because it means
the attack set has been expanded to the full set of targets and there is still remaining cover-
age. In this situation, as well as when c+ 6=null, MIN-COV is called to produce a coverage
c′ (Line 33). If c′ 6=null, then c′ is the minimum coverage which satisfies bi and we update
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c ← c′ (Line 35). Otherwise, the coverage c+ found during the binary search is the mini-
mum coverage and we update c← c+ (Line 37). The updated c is then checked for violated
constraints (Line 2 ) and the entire process is repeated until either all constraints are satisfied
or b is determined to be infeasible.

7.3 Direct MIN-COV

Both ORIGAMI-M and ORIGAMI-M-BS rely on the MIN-COV subroutine which is called
when the smallest satisfying attack set is found. However, it is not necessary to first com-
pute the satisfying attack set before calling MIN-COV. The only benefit of precomputing
the attack set is to reduce the number of coverage vectors that must be computed in MIN-
COV. The minimum coverage for satisfying b can be computed directly using MIN-COV,
if we set the size of the attack set to be |T | + 1. In this way, MIN-COV will generate, for
every target t, the coverage necessary to induce a satisfying attack on t. These coverages
will be compared and the smallest, feasible, satisfying coverage will be selected. Thus, we
introduced DIRECT-MIN-COV (Algorithm 6) which bypasses computing the smallest sat-
isfying attack set and uses MIN-COV to compute the minimum coverage c needed to satisfy
b. Additionally, due to every target being considered for an attack there is no need to sort
the targets by Uai (ct, t), as in ORIGAMI-M and ORIGAMI-M-BS. In all three algorithms
(ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-MIN-COV), MIN-COV is called only once
for each violated constraint, the only difference being the number of coverage vectors com-
puted. Despite DIRECT-MIN-COV having to generate more coverages via MIN-COV than
either ORIGAMI-M or ORIGAMI-M-BS, the intuition is that there could be potential com-
putational savings in not having to first compute Γi. As we show in Section 9, the fastest
algorithm for computing lower bounds on the defender coverage depends on the specific
properties of the MOSG such as the number of resources and targets.

Algorithm 6: DIRECT-MIN-COV(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 c←MIN-COV(i, c,b, |T |+ 1);
4 if c = null then
5 return infeasible;

6 return c ;

8 Approximate Approach

In the previous section, we showed heuristics to improve the efficiency of our MILP ap-
proach. However, solving MILPs, even when constrained, is computationally expensive.
Thus, we present ORIGAMI-A (Algorithm 7), an extension to these heuristics which elimi-
nates the computational overhead of MILPs for solving CSOPs. The key idea of ORIGAMI-
A is to translate a CSOP into a feasibility problem which can be solved using any one
of the three algorithms described in Section 7. We will use Ψ to refer to whichever algo-
rithm (ORIGAMI-M, ORIGAMI-M-BS, or DIRECT-MIN-COV) is used as the subroutine
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in ORIGAMI-A. A series of feasibility problems is generated using binary search in order
to approximate the optimal solution to the CSOP. This decomposition of the CSOP provides
computational savings as we have developed efficient algorithms for solving the individual
feasibility problems. Each of the three algorithms that can be used as a subroutine (Ψ ) in
ORIGAMI-A are polynomial in the number of targets, while the number of calls to Ψ by
ORIGAMI-A is bounded by O(n log r), where r denotes the length of the range formed by
the objective values. Thus, ORIGAMI-A is polynomial in the size of the MOSG, while solv-
ing even a single iteration of lexicographic maximization for the exact MILP formulation
is NP-hard, based on the result from [11] which proved the computational complexity of
Bayesian security games. As a result, this algorithmic approach is much more efficient and
the level of approximation between the computed solution and the Pareto optimal solution
can be bounded.

Algorithm 7: ORIGAMI-A(b, α)

1 c← empty coverage vector;
2 b+1 ← mint∈T U

u,d
1 (t);

3 b+ ← {b+1 } ∪ b ;
4 for 1 ≤ i ≤ n do
5 lower ← b+i ;
6 upper ← maxt∈T U

c,d
i (t);

7 while upper − lower > α do
8 b+i ←

upper+lower
2

;
9 c′ ← Ψ(b+);

10 if c′ = violated then
11 upper ← b+i ;

12 else
13 c← c′;
14 lower ← b+i ;

15 b+i ← Udi (c);

16 return c ;

The subroutine Ψ is used to compute the minimum coverage vector necessary to satisfy a
set of lower bound constraints b. As our MILP approach is an optimization problem, lower
bounds are specified for the secondary objectives but not the primary objective. We can
convert this optimization problem into a feasibility problem by creating a new set of lower
bounds constraints b+ by adding a lower bound constraint b+1 for the primary objective to
the constraints b. We set b+1 = mint∈T U

u,d
1 (t), the lowest defender payoff for leaving

a target uncovered. Now instead of finding the coverage c which maximizes Ud1 (c) and
satisfies b, we use Ψ to determine if there exists a coverage vector c such that b+ is satisfied.

ORIGAMI-A finds an approximately optimal coverage vector c by using Ψ to solve a
series of feasibility problems. This series is generated by sequentially performing binary
search on the objectives starting with initial lower bounds defined in b+. For objective i,
the lower and upper bounds for the binary search are, respectively, b+i and maxt∈T U

c,d
1 (t),

the highest defender payoff for covering a target. At each iteration, b+ is updated by setting
b+i = (upper + lower)/2 and then passed as input to Ψ . If b+ is found to be feasible,
then the lower bound is updated to b+i and c is updated to the output of Ψ , otherwise the
upper bound is updated to b+i . This process is repeated until the difference between the
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upper and lower bounds reaches the termination threshold, α. Before proceeding to the next
objective, b+i is set to Udi (c) in case the binary search terminated on an infeasible problem.
After searching over each objective, ORIGAMI-A will return a coverage vector c such that
Ud1 (c

∗)− Ud1 (c) ≤ α, where c∗ is the optimal coverage vector for a CSOP defined by b.
The solutions found by ORIGAMI-A are no longer Pareto optimal. Let Ωα be the ob-

jective space of the solutions found by ORIGAMI-A. We can bound its efficiency loss using
the approximation measure ρ(ε, α)=maxv∈Ωminv′∈Ωα max1≤i≤n(vi − v′i).
Theorem 5 ρ(ε, α) ≤ max{ε, α}.

Proof Similar to the proof of Theorem 4, for each point v ∈ Ω, we can use Algorithm 2 to
find a CSOP with constraints b which is solved using ORIGAMI-A with coverage c such
that (1) bi ≤ vi for i > 1 and (2) v′i ≥ vi − ε for i > 1 where v′ = Ud(c).

Assume that the optimal coverage is c∗ for the CSOP with constraints b. It follows that
Ud1 (c

∗) ≥ v1 since the coverage resulting in point v is a feasible solution to the CSOP with
constraints b. ORIGAMI-A will terminate if the difference between lower bound and upper
bound is no more than α. Therefore, v′1 ≥ Ud1 (c∗)−α. Combining the two results, it follows
that v′1 ≥ v1 − α.

Therefore, for any point missing in the frontier v ∈ Ω, we can find a point v′ ∈ Ωα such
that 1) v′1 ≥ v1 − α and v′i ≥ vi − ε for i > 1. It then follows that ρ(ε, α) ≤ max{ε, α}. �

9 Evaluation

The purpose of this section is to analyze how the choice of approach and properties of
MOSGs impact both the runtime and solution quality of Iterative-ε-Constraints. We per-
form this evaluation by running the full algorithm in order to generate the Pareto frontier for
randomly-generated MOSGs. For our experiments, the defender’s covered payoff Uc,di (t)
and attacker’s uncovered payoff Uu,ai (t) are uniformly distributed integers between 1 and
10, for all targets. Conversely, the defender’s uncovered payoff Uu,di (t) and attacker’s cov-
ered payoff Uc,ai (t) are uniformly distributed integers between -1 and -10, for all targets.
Unless otherwise mentioned, the default setup for each experiment is 3 objectives, 25 tar-
gets, ε = 1.0, and α = 0.001. The amount of defender resources m is fixed at 20% of the
number of targets. ORIGAMI-M is the default subroutine used in ORIGAMI-A. For exper-
iments comparing multiple formulations, all formulations were tested on the same set of
MOSGs. A maximum cap on runtime for each sample is set at 1800 seconds. We solved our
MILP formulations using CPLEX version 12.1. The results were averaged over 30 trials and
include error bars showing standard error.

9.1 Runtime Analysis

This section evaluates how different factors (e.g., the number of targets) impact the time
needed to generate the Pareto frontier using five different formulations. We refer to the base-
line MILP formulation as MILP-B. The MILP formulation adding a bound on the defender’s
payoff for the primary objective is MILP-P. MILP-M uses ORIGAMI-M to compute bounds
on defender coverage. MILP-P can be combined with MILP-M to form MILP-PM. The al-
gorithmic approach using ORIGAMI-A will be referred to by name. For analyzing the effect
of the number of targets on runtime, we evaluate all five formulations for solving CSOPs.
We then select ORIGAMI-A and the fastest MILP formulation, MILP-PM, to evaluate the
effect of the remaining factors.
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Fig. 8 Effect of target scale up on the runtime of Iterative-ε-Constraints with different CSOP solvers.

9.1.1 Effect of the Number of Targets

This section presents results showing the efficiency of our different formulations as the
number of targets is increased. In Figure 8, the x-axis represents the number of the targets
in the MOSG. The y-axis is the number of seconds needed by Iterative-ε-Constraints to
generate the Pareto frontier using the different formulations for solving CSOPs. Our baseline
MILP formulation, MILP-B, has the highest runtime for each number of targets we tested.
By adding an upper bound on the defender payoff for the primary objective, MILP-P yields a
runtime savings of 36% averaged over all numbers of targets compared to MILP-B. MILP-M
uses ORIGAMI-M to compute lower bounds for defender coverage, resulting in a reduction
of 70% compared to MILP-B. Combining the insights from MILP-P and MILP-M, MILP-
PM achieves an even greater reduction of 82%. Removing the computational overhead of
solving MILPs, ORIGAMI-A is the most efficient formulation with a 97% reduction. For
100 targets, ORIGAMI-A requires 4.53 seconds to generate the Pareto frontier, whereas
the MILP-B takes 229.61 seconds, a speedup of greater than 50 times. Even compared to
fastest MILP formulation, MILP-PM at 27.36 seconds, ORIGAMI-A still achieves a 6 times
speedup. Additionally, since a small α value is used (0.001), there is only negligible loss in
solution quality. A more detailed analysis of solution quality is presented in Section 9.3.
T-test yields p-value < 0.001 for all comparisons of different formulations when there are
75 or 100 targets.

We conducted an additional set of experiments to determine how both MILP-PM and
ORIGAMI-A scale up for an order of magnitude increase in the number of targets by test-
ing on MOSGs with between 200 and 1000 targets. Based on the trends seen in Figure 9,
we can conclude that ORIGAMI-A significantly outperforms MILP-PM for MOSGs with
large number of targets. Therefore, the number of targets in an MOSG is not a prohibitive
bottleneck for generating the Pareto frontier using ORIGAMI-A.

9.1.2 Effect of the Number of Objectives

Another key factor on the efficiency of Iterative-ε-Constraints is the number of objectives
which determines the dimensionality of the objective space that Iterative-ε-Constraints must
search. We ran experiments for MOSGs with between 2 and 6 objectives. For these exper-
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Fig. 9 Effect of additional target scale up on the runtime of Iterative-ε-Constraints with the most efficient
exact CSOP solver (MILP-PM) and the approximate CSOP solver (ORIGAMI-A).

iments, we fixed the number of targets at 10. Figure 10 shows the effect of scaling up the
number of objectives. The x-axis represents the number of objectives, whereas the y-axis
indicates the average time needed to generate the Pareto frontier. For both MILP-PM and
ORIGAMI-A, we observe an exponential increase in runtime as the number of objectives is
scaled up. For both approaches, the Pareto frontier can be computed in under 5 seconds for
2 and 3 objectives. At 4 objectives, the runtime increases to 126 seconds for MILP-PM and
28 seconds for ORIGAMI-A. With 5 objectives, the separation between the two algorithm
increases with respective runtimes of 917 and 669 seconds, with 7 trials with MILP-PM and
6 trials with ORIGAMI-A timing out after 1800 seconds. Whereas, with 6 objectives nei-
ther approach is able to generate the Pareto frontier before the runtime cap of 1800 seconds.
The reason for this exponential runtime increase is two-fold. First, there is an increase in
the number of generated solutions because the Pareto frontier now exists in a higher dimen-
sional space. Second, each solution on the Pareto frontier takes longer to generate because
the lexicographic maximization needed to solve a CSOP requires additional iterations. These
results show that the number of objectives, and not the number of targets, is the key limiting
factor in solving MOSGs.

9.1.3 Effect of Epsilon

A third critical factor on the running time of Iterative-ε-Constraints is the value of the ε pa-
rameter which determines the granularity of the search process through the objective space.
In Figure 11, results are shown for ε values of 0.1, 0.25, 0.5, and 1.0. Both MILP-PM and
ORIGAMI-A see a sharp increase in runtime as the value of ε is decreased due to the rise in
the number of CSOPs solved. For example, with ε=1.0 the average Pareto frontier consists
of 49 points, whereas for ε = 0.1 that number increases to 8437. Due to the fact that ε is
applied to the n− 1 dimensional objective space, the increase in the runtime resulting from
decreasing ε is exponential in the number of secondary objectives. Thus, using small values
of ε can be computationally expensive, especially if the number of objectives is large.
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Fig. 10 Effective of objective scale up on the runtime of Iterative-ε-Constraints.
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Fig. 11 Effect of epsilon on the runtime of Iterative-ε-Constraints.

9.2 Objective Similarity Analysis

In previous experiments, all payoffs were sampled from a uniform distribution resulting
in independent objective functions. However, it is possible that in a security setting, the
defender could face multiple attacker types which share certain similarities, such as the
same relative preferences over a subset of targets.

9.2.1 Effect of Objective Distribution

As the objective payoffs become similar, there is less conflict between the objectives. Less
conflict means there is a reduction in the possible tradeoff between objectives, as it becomes
increasingly likely that multiple objectives will be maximized simultaneously. As a result,
the Pareto frontier is made up of fewer solutions, which means it can be generated more
efficiently by Iterative-ε-Constraints.

To evaluate the effect of objective similarity on runtime, we used a single security game
to create a Gaussian function with standard deviation σ from which all the payoffs for an
MOSG are sampled. Figure 12 shows the results for using ORIGAMI-A to solve MOSGs
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Fig. 12 Effect of objective similarity on the runtime of Iterative-ε-Constraints using ORIGAMI-A for a vary-
ing number of objectives.

with between 3 and 7 objectives using σ values of 0, 0.25, 0.5, 1.0, and 2.0. For σ = 0,
the payoffs for all security games are the same, resulting in Pareto frontier consisting of a
single point. In this extreme example, the number of objectives does not impact the runtime.
However, as the number of objectives increases, less dissimilarity between the objectives is
needed before the runtime starts increasing dramatically. For 3 and 4 objectives, the amount
of similarity has negligible impact on runtime. With 5 objectives, a significant runtime in-
crease is observed, going from an average of 32 seconds at σ = 0.25 to 1363 seconds at
σ = 2.0. This effect is further amplified as the number of objectives is increased. At 6 ob-
jectives, Iterative-ε-Constraints is unable to finish within the 1800 second time limit with
σ > 1.0, while the same is true for 7 objectives with σ > 0.5. We conclude that it is pos-
sible to scale to larger number of objectives if there is similarity, as defined in this section,
between the attacker types.

9.2.2 Effect of Objective Clustering

In Section 9.2.1, the payoffs for each objective function are sampled from the same Gaus-
sian distribution. This implies that all of the objective functions are related in their structure.
However, there could be situations where one or more objectives are similar but other ob-
jectives are independently distributed. In this model, the set of related objectives can be
viewed as forming a cluster while the remaining objectives are divergent from this cluster.
A cluster is defined by two parameters. The first parameter is the number of objectives in
the cluster as compared to the number of divergent objectives. A cluster size of 4 means
that all of the objectives are in the cluster and thus all similar. In contrast, a cluster size of
1 implies that all objective functions are independently distributed. The second parameter
is the value of σ which is the standard deviation defining the Gaussian distribution from
which the objectives in the cluster are drawn, i.e., the degree of similarity between the re-
lated objectives. In Figure 13, we show the runtime results for MOSGs with 4 objectives for
different cluster sizes and values of σ. We observe a trend in which the average runtime rises
as the value of σ is increased. This is a logical result as larger values of σ mean that there
is greater dissimilarity between the objectives within the cluster. When the cluster size is
between 2 and 4, increasing σ always results in an increase in the runtime. When the cluster
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Fig. 13 Effect of objective clustering size on the runtime of Iterative-ε-Constraints using ORIGAMI-A for
varying levels of intra-cluster Gaussian distribution.

contains only 1 objective, the runtimes for all values of σ are similar because all objectives
are independently distributed.

Another trend we would expect to observe is that as the size of the cluster decreases,
the runtime would increase as fewer objectives are similar and more are independently dis-
tributed. However, this trend only holds for σ = 0, when all of the objectives within the
cluster are exactly identical. For σ > 0, we observe a substantially different runtime trend.
With σ=1 and σ=2, the runtime starts low for clusters of size 4 and then increases dramat-
ically when the size of the cluster is reduced to 3. Beyond 3 objectives, the runtime begins
to decrease along with the cluster size until the runtime becomes similar for all values of σ
at cluster size 1. It is counterintuitive that the worst runtimes are achieved with three similar
objectives and one independently distributed objective. Upon close analysis of the experi-
ment output files, the increase in runtime is the result of solving more CSOPs and having a
larger Pareto frontier. In Figure 14, we can see that a comparison of the number of solutions
in the Pareto frontier closely resembles the trends seen in the comparison of runtimes. Thus,
one possible hypothesis could be that having three somewhat related objectives and one in-
dependently distributed objective allows for greater tradeoff between the objective payoffs
than four independently distributed objectives.

9.3 Solution Quality Analysis

9.3.1 Effect of Epsilon

If the Pareto frontier is continuous, only a subset of that frontier can be generated. Thus,
it is possible that one of the Pareto optimal points not generated by Iterative-ε-Constraints
would be the most preferred solution, were it presented to the end user. In Section 5.3, we
proved that the maximum utility loss for each objective resulting from this situation could be
bounded by ε. We conducted experiments to empirically verify our bounds and to determine
if the actual maximum objective loss was less than ε.

Ideally, we would compare the Pareto frontier generated by Iterative-ε-Constraints to the
true Pareto frontier. However, the true Pareto frontier may be continuous and impossible for
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Fig. 15 Effect of epsilon on solution quality of the Pareto frontier generated by Iterative-ε-Constraints using
MILP-PM and ORIGAMI-A compared against a Pareto frontier generated by MILP-PM using ε = 0.001.

us to generate, thus we simulate the true frontier by using ε = 0.001. Due to the computa-
tional cost associated with such a value of ε, we fix the number of objectives to 2. Figure 15
shows the results for ε values of 0.25, 0.5, 0.75, and 1.0. The x-axis represent the value of
ε, whereas the y-axis represents the maximum objective loss when comparing the generated
Pareto frontier to the true Pareto frontier. We observe that the maximum objective loss is
less than ε for each value of ε tested. At ε = 1.0, the average maximum objective loss is
only 0.75 for both MILP-PM and ORIGAMI-A. These results verify that the bounds for our
algorithms are correct and that in practice we are able to generate a better approximation of
the Pareto frontier than the bounds would suggest.

9.3.2 Comparison against Uniform Weighting

We introduced the MOSG model, in part, because it eliminates the need to specify a proba-
bility distribution over attacker types a priori. However, even if the probability distribution
is unknown it is still possible to use the Bayesian security game model with a uniform
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Fig. 16 Effect of epsilon on the benefit of the Pareto frontier generated by Iterative-ε-Constraints using
MILP-PM and ORIGAMI-A over the single solution generated by a uniformly weighted Bayesian security
game.

distribution. We conducted experiments to show the potential benefit of using MOSG over
Bayesian security games in such cases. We computed the maximum objective gain produced
by using a point in the Pareto frontier generated by Iterative-ε-Constraints as opposed to the
Bayesian solution. If v′ is the solution to a uniformly weighted Bayesian security game then
the equation for maximum objective loss is maxv∈Ωε maxi(vi − v′i). Figure 16 shows the
results for ε values of 0.25, 0.5, 0.75, and 1.0. At ε = 1.0, the maximum objective gain was
1.81 for both MILP-PM and ORIGAMI-A. Decreasing ε all the way to 0.25 increases the
maximum objective gain by less than 15% for both algorithms. These results suggests that
ε has limited impact on maximum objective gain, which is a positive result as it implies that
solving an MOSG with a large ε can still yield benefits over a uniform weighted Bayesian
security game.

9.4 Constraint Computation Analysis

A key property of the ORIGAMI-M algorithm is that it computes the minimum coverage
satisfying a vector b of lower bound constraints by attempting to satisfy one constraint
at a time until no violated constraints remain. In the process of computing the additional
coverage needed to satisfy the current constraint it is possible that previously satisfied con-
straints could become violated. It is important to understand the frequency with which this
phenomenon occurs as it can have serious implications for the efficiency of the algorithm.
Thus, we performed experiments which recorded the number of constraints that had to be
satisfied for each call to ORIGAMI-M. The number of constraints is inherently linked to the
number of objectives, thus we tested how the number of constraints computed was affected
when scaling up the number of objectives. Figure 17 shows the average number of computed
constraints for MOSGs with between 2 and 5 objectives and 10 targets. With 2 objectives,
the number of constraints computed is 1.78, implying that on average ORIGAMI-M finds
the minimal coverage with one pass through the constraints. Additionally, it means that there
are situations where solving the first constraint results in a coverage which also satisfies the
second constraint. For MOSGs with 5 objectives, the average number of computed con-
straints is 5.3 which again implies that ORIGAMI-M mostly requires just one pass through
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Fig. 17 Effect of objective scale up on the number of constraints computed per call to ORIGAMI-M for
Iterative-ε-Constraints using ORIGAMI-A.

the constraints. However, it also indicates that there are instances where previously satisfied
constraints become violated and must be recomputed. Fortunately, these violated constraints
appear to be infrequent and do not seem to produce a cascading effect of additional violated
constraints. These results suggest that ORIGAMI-M is able to efficiently compute the min-
imum coverage and is capable of scaling up to larger number of objectives.

9.5 Improved Pruning

In Section 5.2, we introduced two sets of pruning rules to improve the efficiency of Iterative-
ε-Constraints. As shown in Section 9.1.2, the number of objectives is one of the key con-
tributors to runtime when solving MOSGs. Thus, in order to perform a comparison, we
evaluated each set of pruning heuristics as the number of objectives is increased. In Figure
18, we show results which demonstrate the impact of the improved pruning heuristic. The
x-axis represents the number of objectives in the MOSG, while the y-axis represents the
average runtime for Iterative-ε-Constraints to compute the Pareto frontier. For MOSGs with
2 or 3 objectives, there is little difference in the average runtimes between the original and
improved pruning heuristics. When the number of objectives is increased to 4, the benefit
of the improved pruning heuristic emerges, reducing the average runtime from 34.5 to 23.1
seconds. At 5 objectives the improved pruning heursitic results in significant computational
savings, reducing the average runtime by almost 28% (813.8 versus 588.7 seconds). Even
with the improved set of pruning heuristics, Iterative-ε-Constraintsis still not able to finish
in under the 1800 second time limit. These results indicate that by further exploiting the
concept of Pareto dominance, it is possible obtain modest runtime improvements.

9.6 ORIGAMI-A Subroutine Analysis

The ORIGAMI-A algorithm relies on ORIGAMI-M to compute the minimum coverage
necessary to satisfy a set of lower bound constraints. ORIGAMI-M is a critical subroutine
which is called multiple times for each CSOP, thus making efficiency paramount. In Figure
9, we showed the ability of ORIGAMI-M to scale up to large number of targets. However,



34 Matthew Brown et al.

0

200

400

600

800

1000

1200

2 3 4 5

R
un

tim
e 

(s
ec

on
ds

)

Objectives

Original Pruning Heuristic

Improved Pruning Heuristic

Fig. 18 Effect of pruning heuristic on the runtime of Iterative-ε-Constraints using ORIGAMI-A for a varying
number of objectives.

any improvement to the subroutine used by ORIGAMI-A could lead to significant computa-
tion savings. Thus, in this section, we describe two approaches that either modify or replace
ORIGAMI-M in an attempt to improve the efficiency of ORIGAMI-A.

9.6.1 Comparing the Effect of the Number of Targets

In Figure 19, we compare the ability of both ORIGAMI-M-BS and DIRECT-MIN-COV to
scale up the number of targets as opposed to ORIGAMI-M. We evaluated the three algo-
rithms for MOSGs with between 200 and 1000 targets. The x-axis indicates the number of
targets in the MOSG, whereas the y-axis represents the average time needed to generate
the Pareto frontier. The runtime results for ORIGAMI-M-BS are counterintuitive, as the in-
clusion of binary search fails to provide any improvement over ORIGAMI-M. In fact, for
every number of targets tested the runtime for ORIGAMI-M-BS is greater than ORIGAMI-
M. The difference in runtime between the two algorithms remains essentially constant at 2
seconds for each number of targets tested. This result suggests that despite having different
formulations, ORIGAMI-M and ORIGAMI-M-BS are evaluating a similar number of attack
sets. Additionally, the runtimes for DIRECT-MIN-COV are worse than either ORIGAMI-M
or ORIGAMI-M-BS for every number of targets tested, except for ORIGAMI-M-BS at 200
targets. As the number of targets is increased, the disparity between the runtimes for the two
ORIGAMI-M algorithms and DIRECT-MIN-COV widens.

9.6.2 Comparing the Effect of the Ratio of Defender Resources to Targets

We sought to better understand why neither of the two new proposed algorithms were able to
improve upon the performance of ORIGAMI-M. In particular, we wanted to determine why
incrementally expanding the attack set (ORIGAMI-M) was faster than performing binary
search (ORIGAMI-M-BS), even for MOSGs with 1000 targets.

For all of our experiments, the ratio of defender resources to targets was fixed at m
|T | =

0.2. Intuitively, the higher this ratio is, the larger the average size of the attack set will be.
With relatively more resources, the defender can place additional coverage so as to induce
the attacker into considering a larger number of targets. Thus, the small m

|T | ratio that we
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Fig. 19 Effect of ORIGAMI-A subroutine on the runtime of Iterative-ε-Constraints for a varying number of
targets.

had been using previously meant the average size of the attack set would also be small. This
greatly favors ORIGAMI-M which expands the attack set one target at time and returns as
soon as it has found a satisfying attack set. In contrast, ORIGAMI-M-BS always evaluates
log n attack sets regardless of the m

|T | ratio. To evaluate the effect of m
|T | on the performance

of our three algorithms, we conducted experiments on MOSGs with 400 targets and m
|T |

ratios ranging between 0.2 and 0.8. In Figure 20, we show the results for this set of exper-
iments. The x-axis indicates the m

|T | ratio, whereas the y-axis indicates the average time to
generate the Pareto frontier. A clear pattern emerges from these results: (1) if m

|T | < 0.5

then the ordering of the algorithms from most to least efficient is ORIGAMI-M, ORIGAMI-
M-BS, DIRECT-MIN-COV; (2) if m

|T | ≥ 0.5 then the ordering is reversed to DIRECT-
MIN-COV, ORIGAMI-M-BS, ORIGAMI-M. What is interesting is that ORIGAMI-M-BS
is never the optimal algorithm. If m

|T | is small then it is better to incrementally expanding the
attack set using ORIGAMI-M, whereas when m

|T | is large it is more efficient to not precom-
pute the smallest satisfying attack set as in DIRECT-MIN-COV. This result suggests that
the optimal subroutine for ORIGAMI-A is dependent on the underlying properties of the
MOSG and thus could vary from domain to domain.

Additionally, there is a discernible trend across all three algorithms as the value of m
|T | is

varied. Specifically, the average runtime as a function of m
|T | resembles a bell curve centered

at m
|T | = 0.6. This is a result of the combinatorial nature of placing coverage on targets.

Therefore, when m
|T | = 0.2 there are significantly more targets than defender resources and

there is only so much that can be done to prevent attacks. Since there are fewer ways to
configure the coverage, the Pareto frontier contains fewer solutions. At the other extreme,
when m

|T | = 0.8 the amount of defender resources is essentially equivalent to the number of
targets. It is then possible to generate a coverage which maximizes all objectives simulta-
neously, leading to a Pareto frontier consisting of a single solution. Then as m

|T | approaches
0.6 from either direction the runtime increases as there are more ways to place coverage and
thus more solutions in the Pareto frontier. Due to the large number of possible defender cov-
erages to consider, each individual CSOP also takes longer to solve, which is a phenomenon
that has also been observed in single objective security games as described in [19].
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10 Visualization

The goal of our research is to provide decision support for decision-makers faced with multi-
objective optimization problems. As mentioned previously, solving a multi-objective opti-
mization problem involves generating the Pareto frontier. Once the Pareto frontier has been
obtained, it must still be presented to the end user who then selects one of the candidate
solutions based on their preferences, background knowledge, etc. One challenge associated
with multi-objective optimization is how to present information about the Pareto frontier to
the user so as to best facilitate their decision-making process. The most naı̈ve approach is to
present the contents of the Pareto frontier in a tabular format. However, this approach suf-
fers from one significant drawback, a lack of visualized spatial information. A table cannot
convincingly convey the shape and structure of the Pareto frontier as well as the tradeoff
between different objectives and solutions. Thus, visualization is an important component
for presenting the Pareto frontier to the user.

In Section 2, we highlighted the Los Angeles rail system as a motivating domain for
MOSGs. To recall, the LASD is responsible for protecting 70 stations in the rail system
against three potential attacker types: ticketless travelers, criminals, and terrorists. We use
the LASD domain as a case study to compare different methods for visualization in security
domains, which is only possible using our algorithms for calculating the Pareto frontier.

We model the LASD domain as an MOSG with 3 objectives, 70 targets, and 14 defender
resources. Iterative-ε-Constraints with ε = 1.0 was then used to generate the Pareto frontier
which contained 100 solutions. It is this Pareto frontier that we use to compare the different
visualization techniques.

10.1 Euclidean Plots

The elements of the Pareto frontier exist in an n-dimensional space, where n is the num-
ber of objectives. Visualizing the Pareto frontier for n = 2 is intuitive as solutions can be
represented in two-dimensional Euclidean space, as shown in Figure 2, by the payoffs ob-
tained for each objective. This approach allows the tradeoff between the two objectives to
be directly observed in a comprehensible form. An advantage of using Euclidean plots is
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Fig. 21 Euclidean plot for the LASD domain.

that because the solutions are represented as points, the plots can display a large number
of solutions without overwhelming the user. For n = 3 the Pareto frontier can still be plot-
ted in Euclidean space. In Figure 21, the sample Pareto frontier from the LASD domain is
visualized in three-dimensional Euclidean space. This example illustrates one of the draw-
backs of using a Euclidean plot for n = 3. It is difficult to evaluate the tradeoffs in payoff
for defending against ticketless travelers, criminals, and terrorists based on a single figure.
Thus, interactive components such as animation or figure manipulation become necessary
and present an additional barrier to the user’s understanding.

10.2 Scatter Plots

One of the standard methods for visualizing the Pareto frontier is the scatter plot matrix [38],
where n dimensions are visualized using (n2) two dimensional scatter plots, in which each
pair of dimensions has a scatter plot showing their relation. With each scatter plot, the end
user is able to gain a fundamental understanding of the tradeoffs between the payoffs for the
two objectives. Similar to Euclidean plots, scatter plots are capable of efficiently displaying
a large number of solutions. One extension on the standard bi-objective scatter plot is the
addition of a third color dimension [29], resulting in (n3) possible scatter plots. This color
dimension can be represented as either a continuous gradient or as a discrete set of colors
mapping to specific segments of the possible objective values. Examples of both bi-objective
and tri-objective (with discrete coloring) scatter plots for the LASD domain can be seen in
Figures 22 and 23, respectively. For the LASD domain, the tri-objective scatter plot matrix is
preferable because the entire Pareto frontier can be visualized in a single figure, rather than
the three figures required for the bi-objective scatter plot matrix. This eliminates the need for
the end user to synthesize data between multiple scatter plots in order to obtain the global
perspective. For both approaches, the decision making process becomes more difficult as the
number of objectives is increased due to the polynomial number of scatter plots that must
be generated.
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Fig. 22 Bi-objective scatter plot matrix for LASD domain.

Fig. 23 Tri-objective scatter plot matrix for LASD domain.

10.3 Parallel Coordinates

Parallel Coordinates [17] is another common approach used for visualizing the Pareto fron-
tier. In this approach, n parallel lines are used to represent the range of values for each
objective. A Pareto-optimal solution is displayed as a polyline that intersects each parallel
line at the point corresponding to the payoff received for that objective. Figure 24 shows
the Pareto frontier for the LASD domain using the Parallel Coordinates approach. The main
advantage of Parallel Coordinates is that the entire Pareto frontier, regardless of dimension-
ality, can be presented in a single figure. This eliminates any issues associated with having
to process data from multiple sources. However, due to the usage of polylines rather than
points, the Pareto frontier can become incomprehensible to the user if the number of solu-
tions in the Pareto frontier is large. This is an issue for the LASD domain because the Pareto
frontier consists of 100 candidate solutions, making it difficult to distinguish each individ-
ual solution. The number of Pareto optimal solutions can be influenced during processing
by adjusting the value of ε as well as during post-processing by employing a filter to prevent
certain solutions from being displayed. However, the number of solutions may need to be
dramatically reduced before the Pareto frontier becomes comprehensible.
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Fig. 24 Parallel coordinates for LASD domain.

10.4 Overall Trends

There is currently no one-size-fits-all visualization approach, the appropriate technique must
be determined for each domain based on factors such as the number of objectives and the
size of the Pareto frontier. For example, scatter plot matrices are better suited to situations
where the dimensionality of the Pareto frontier is low but the number of solutions it contains
is high, whereas Parallel Coordinates is better suited to situations with high dimensionality
but fewer candidate solutions.

Based on the properties of the domain, we conclude that tri-objective scatter plot is the
best approach for visualizing the Pareto frontier of the LASD MOSG because it allows for
the most compact and coherent visual representation. It captures the entire Pareto frontier in
a single figure which should be intuitive even for non-technical decision makers. By gener-
ating and visualizing the Pareto frontier in this way, LASD can gain a significant amount of
knowledge about their domain and the tradeoffs that exist between different security strate-
gies. This can be more insightful than finding a single solution, even if it were generated
using well thought out weightings for the objectives. Finally, since the tri-objective scatter
plot does not rely on animation or manipulation, information about the Pareto frontier can
be disseminated easily to large groups and included in printed reports.

We have demonstrated the ability to visualize the Pareto frontier for the LASD do-
main which has 3 objectives. As the dimensionality of the objective space increases, the
Pareto frontier naturally becomes more complex and difficult to understand. However, for
most multi-objective optimization problems the total number of objectives is relatively small
(n ≤ 5). Even for domains which require large number of objectives, it may be possible to
reduce the dimensionality of the Pareto frontier in order to focus the decision making pro-
cess only on the most salient objectives. Dimension reduction is possible in two situations:
(1) some objectives are insignificant in that their range of Pareto-optimal values is small;
(2) there exists a strong correlation between multiple objectives. This reduction is typically
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performed using machine learning techniques with the most common approach being Prin-
cipal Component Analysis (PCA) [21]. So if, in the future, LASD requires a higher fidelity
model with more attacker types, it may become necessary to use such dimension reduction
techniques in order to visualize the Pareto frontier.

11 Conclusion

We draw upon insights from game theory and multi-objective optimization to introduce a
new model, multi-objective security games (MOSG), for domains where security forces
must balance multiple objectives. Instead of a single optimal solution, MOSGs have a set of
Pareto-optimal (non-dominated) solutions, known as the Pareto frontier, which represents
the space of trade offs between the objectives. A single Pareto optimal solution can be found
by solving a CSOP for a given set of constraints b. The Pareto frontier is then generated
by solving multiple CSOPs produced by modifying the constraints in b. The contributions
presented in this paper include: (i) an algorithm, Iterative-ε-Constraints, for generating the
sequence of CSOPs; (ii) an exact approach for solving an MILP formulation of a CSOP;
(iii) heuristics that achieve speedup by exploiting the structure of security games to further
constrain the MILP; (iv) an approximate approach for solving a CSOP built off those same
heuristics, increasing the scalability of our approach with quality guarantees. Additional
contributions of this paper include proofs on the level of approximation, detailed experi-
mental evaluation of the proposed approaches and heuristics, as well as a discussion on
techniques for visualizing the Pareto frontier.

Now that we have demonstrated that generating and analyzing the Pareto frontier is a
viable solution concept for multi-objective security games, we plan to further extend our
MOSG model in the future. One possible direction to explore is having multiple objectives
for the attacker. This could model situations where the attacker explicitly considers multiple
criteria when selecting a target, such economic significance, political significance, cost to
attack, etc. As a result, the problem becomes even more difficult for the defender, as it is
unknown what process the attacker is using to weigh the objectives in order to select a target.
Such an extension may require the development of new solution concepts that rely on robust
optimization techniques. Another possible direction to investigate is irrational behavior in
attackers. In the current MOSG model, full rationality for the defender and all attackers is
assumed. However, in practice we know that humans are not fully rational or strictly utility
maximizing. Thus, if we wish to build robust model suitable for real world deployment
then we must account for this irrationality. Work has been done in this area for single-
objective security games [33,40], which we would seek to extend to the multi-objective
case. However, one immediate consequence is that ORIGAMI-M, ORIGAMI-M-BS, and
DIRECT-MIN-COV all rely on full rationality and thus would either need to be modified or
replaced. These extensions will result in a higher fidelity MOSG model that is applicable to
an even larger, more diverse set of domains.
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