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1. Introduction
Security is a critical concern around the world that arises in

protecting our ports, airports, transportation and other critical na-
tional infrastructure from adversaries, in protecting our wildlife
and forests from poachers and smugglers, and in curtailing the il-
legal flow of weapons, drugs and money; and it arises in problems
ranging from physical to cyber-physical systems. In all of these
problems, we have limited security resources which prevent full
security coverage at all times; instead, security resources must be
deployed intelligently taking into account differences in priori-
ties of targets requiring security coverage, the responses of the at-
tackers to the security posture, and potential uncertainty over the
types, capabilities, knowledge and priorities of attackers faced.

Game theory, which studies interactions among multiple self-
interested agents, is well-suited to the adversarial reasoning re-
quired for security resource allocation and scheduling problems.
Casting the problem as a Bayesian Stackelberg game, we have
developed new algorithms for efficiently solving such games that
provide randomized patrolling or inspection strategies. These al-
gorithms have led to some initial successes in this challenging
problem arena, leading to advances over previous approaches in
security scheduling and allocation, e.g., by addressing key weak-
nesses of predictability of human schedulers. These algorithms
are now deployed in multiple applications: ARMOR has been
deployed at the Los Angeles International Airport (LAX) since
2007 to randomize checkpoints on the roadways entering the air-
port and canine patrol routes within the airport terminals [17];
IRIS, a game-theoretic scheduler for randomized deployment of
the US Federal Air Marshals (FAMS) requiring significant scale-
up in underlying algorithms, has been in use since 2009 [17];
PROTECT, which schedules the US Coast Guard’s randomized
patrolling of ports using a new set of algorithms based on model-
ing bounded-rational human attackers, has been deployed in the
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port of Boston since April 2011 and is in use at the port of New
York since February 2012 [34], and is headed for nationwide de-
ployment; another application for deploying escort boats to pro-
tect ferries has been deployed by the US Coast Guard since April
2013 [10]; GUARDS is under evaluation for national deployment
by the US Transportation Security Administration (TSA) [32],
and TRUSTS [43] has been evaluated in field trials by the Los An-
geles Sheriffs Department (LASD) in the LA Metro system and
a nation-wide deployment is now being evaluated at TSA. These
initial successes point the way to major future applications in a
wide range of security domains; with major research challenges
in scaling up our game-theoretic algorithms, in addressing human
adversaries’ bounded rationality and uncertainties in action exe-
cution and observation, as well as in multiagent learning.

This paper will provide an overview of the models and algo-
rithms, key research challenges and a brief description of our suc-
cessful deployments.

2. Stackelberg Security Games
Stackelberg games were first introduced to model leadership

and commitment [39], and are now used to study security prob-
lems ranging from “police and robbers” scenario [11], computer
network security [27], missile defense systems [5], and terror-
ism [33]. Models for arms inspections and border patrolling have
also been modeled using inspection games [3], a related family
of Stackelberg games.

This section provides details on this use of Stackelberg games
for modeling security domains. We first give a generic description
of security domains followed by security games, the model by
which security domains are formulated in the Stackelberg game
framework.

2.1 Security Domains
In a security domain, a defender must perpetually defend a set

of targets using a limited number of resources, whereas the at-
tacker is able to surveil and learn the defender’s strategy and at-
tack after careful planning. This fits precisely into the descrip-
tion of a Stackelberg game if we map the defender to the leader’s
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role and the attacker to the follower’s role [3], [6]. An action, or
pure strategy, for the defender represents deploying a set of re-
sources on patrols or checkpoints, e.g., scheduling checkpoints at
the LAX airport or assigning federal air marshals to protect flight
tours. The pure strategy for an attacker represents an attack at a
target, e.g., a flight. The strategy for the leader is a mixed strategy,
a probability distribution over the pure strategies of the defender.
Additionally, with each target are also associated a set of payoff
values that define the utilities for both the defender and the at-
tacker in case of a successful or a failed attack. These payoffs are
represented using the security game model, described next.

2.2 Security Games
A key assumption of security games is that the payoff of an

outcome depends only on the target attacked, and whether or not
it is covered by the defender [23]. The payoffs do not depend on
the remaining aspects of the defender allocation. For example, if
an adversary succeeds in attacking target t1, the penalty for the
defender is the same whether the defender was guarding target t2
or not.

This allows us to compactly represent the payoffs of a secu-
rity game. Specifically, a set of four payoffs is associated with
each target. These four payoffs are the rewards and penalties to
both the defender and the attacker in case of a successful or an
unsuccessful attack, and are sufficient to define the utilities for
both players for all possible outcomes in the security domain. Ta-
ble 1 shows an example security game with two targets, t1 and t2.
In this example game, if the defender was covering (protecting)
target t1 and the attacker attacked t1, the defender would get 10
units of reward whereas the attacker would receive −1 units. We
make the assumption that in a security game it is always better for
the defender to cover a target as compared to leaving it uncovered,
whereas it is always better for the attacker to attack an uncovered
target. This assumption is consistent with the payoff trends in the
real-world. A special case is zero-sum games, in which for each
outcome the sum of utilities for the defender and attacker is zero,
although in general security games are not necessarily zero-sum.

Defender Attacker
Target Covered Uncovered Covered Uncovered
t1 10 0 -1 1
t2 0 -10 -1 1
Table 1 Example of a security game with two targets.

In the above example, all payoff values are exactly known. In
practice, we often have uncertainty over the payoffs and prefer-
ences of the players. Bayesian games are a well-known game-
theoretic model in which such uncertainty is modeled using mul-
tiple types of players, with each associated with its own payoff
values. For security games of interest, the main source of pay-
off uncertainty is regarding the attacker’s payoffs. In the result-
ing Bayesian Stackelberg game model, there is only one leader
type (e.g., only one police force), although there can be multiple
follower types (e.g., multiple attacker types trying to infiltrate se-
curity) [30]. Each follower type is represented using a different
payoff matrix. The leader does not know the follower’s type, but
knows the probability distribution over them. The goal is to find

the optimal mixed strategy for the leader to commit to, given that
the defender could be facing any of the follower types.

2.3 Solution Concept: Strong Stackelberg Equilibrium
The solution to a security game is a mixed strategy for the de-

fender that maximizes the expected utility of the defender, given
that the attacker learns the mixed strategy of the defender and
chooses a best-response for himself. This solution concept is
known as a Stackelberg equilibrium [25].

The most commonly adopted version of this concept in related
literature is called Strong Stackelberg Equilibrium (SSE) [4], [9],
[30], [40]. A SSE for security games is informally defined as fol-
lows (the formal definition of SSE is not introduced for brevity,
and can instead be found in [23]):

Definition 1 A pair of strategies form a Strong Stackelberg
Equilibrium (SSE) if they satisfy:
( 1 ) The defender plays a best-response, that is, the defender can-

not get a higher payoff by choosing any other strategy.
( 2 ) The attacker plays a best-response, that is, given a defender

strategy, the attacker cannot get a higher payoff by attacking
any other target.

( 3 ) The attacker breaks ties in favor of the leader.
The assumption that the follower will always break ties in favor of
the leader in cases of indifference is reasonable because in most
cases the leader can induce the favorable strong equilibrium by
selecting a strategy arbitrarily close to the equilibrium that causes
the follower to strictly prefer the desired strategy [40]. Further-
more an SSE exists in all Stackelberg games, which makes it an
attractive solution concept compared to versions of Stackelberg
equilibrium with other tie-breaking rules. Finally, although ini-
tial applications relied on the SSE solution concept, we have since
proposed new solution concepts that are more robust against var-
ious uncertainties in the model [2], [31], [42] and have used these
robust solution concepts in some of the later applications.

3. Deployed and Emerging Security Applica-
tions

In this section, we describe several deployed and emerging ap-
plications of the Stackeberg game framework in different real-
world domains. Besides describing successful transitions of re-
search, our aim is to set the stage for later sections in which we
discuss the research challenges that arise.

3.1 ARMOR for Los Angeles International Airport
Los Angeles International Airport (LAX) is the largest desti-

nation airport in the United States and serves 60-70 million pas-
sengers per year. The LAX police use diverse measures to protect
the airport, which include vehicular checkpoints, police units pa-
trolling the roads to the terminals, patrolling inside the terminals
(with canines), and security screening and bag checks for passen-
gers. The application of our game-theoretic approach is focused
on two of these measures: (1) placing vehicle checkpoints on in-
bound roads that service the LAX terminals, including both lo-
cation and timing, and (2) scheduling patrols for bomb-sniffing
canine units at the different LAX terminals. The eight different
terminals at LAX have very different characteristics, like physical
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size, passenger loads, international versus domestic flights, etc.
These factors contribute to the differing risk assessments of these
eight terminals. Furthermore, the numbers of available vehicle
checkpoints and canine units are limited by resource constraints.
Thus, it is challenging to optimally allocate these resources to im-
prove their effectiveness while avoiding patterns in the scheduled
deployments.

The ARMOR system (Assistant for Randomized Monitoring
over Routes) focuses on two of the security measures at LAX
(checkpoints and canine patrols) and optimizes security resource
allocation using Bayesian Stackelberg games. Take the vehicle
checkpoints model as an example. Assuming that there are n

roads, the police’s strategy is placing m < n checkpoints on
these roads where m is the maximum number of checkpoints.
ARMOR randomizes allocation of checkpoints to roads. The ad-
versary may conduct surveillance of this mixed strategy and may
potentially choose to attack through one of these roads. ARMOR

models different types of attackers with different payoff func-
tions, representing different capabilities and preferences for the
attacker. ARMOR uses DOBSS (Decomposed Optimal Bayesian
Stackelberg Solver) [30] to compute the defender’s optimal strat-
egy. ARMOR has been successfully deployed since August 2007
at LAX [17].

Fig. 1 LAX checkpoints are deployed using ARMOR.

3.2 IRIS for US Federal Air Marshals Service
The US Federal Air Marshals Service (FAMS) allocates air

marshals to flights originating in and departing from the United
States to dissuade potential aggressors and prevent an attack
should one occur. Flights are of different importance based on
a variety of factors such as the numbers of passengers, the pop-
ulation of source and destination, and international flights from
different countries. Security resource allocation in this domain is
significantly more challenging than for ARMOR: a limited num-
ber of air marshals need to be scheduled to cover thousands of
commercial flights each day. Furthermore, these air marshals
must be scheduled on tours of flights that obey various constraints
(e.g., the time required to board, fly, and disembark). Simply find-
ing schedules for the marshals that meet all of these constraints
is a computational challenge. Our task is made more difficult by
the need to find a randomized policy that meets these scheduling
constraints, while also accounting for the different values of each
flight.

Against this background, the IRIS system (Intelligent Random-
ization In Scheduling) has been developed and has been deployed

(a) PROTECT is being used in Boston (b) Extending PRO-
TECT to NY

Fig. 2 USCG boats patrolling the ports of Boston and NY

by FAMS since October 2009 to randomize schedules of air mar-
shals on international flights. In IRIS, the targets are the set of n
flights and the attacker could potentially choose to attack one of
these flights. The FAMS can assign m < n air marshals that may
be assigned to protect these flights.

Since the number of possible schedules exponentially increases
with the number of flights and resources, DOBSS is no longer ap-
plicable to the FAMS domain. Instead, IRIS uses the much faster
ASPEN algorithm [14] to generate the schedule for thousands of
commercial flights per day.

3.3 PROTECT for US Coast Guard
The US Coast Guard’s (USCG) mission includes maritime se-

curity of the US coasts, ports, and inland waterways; a security
domain that faces increased risks due to threats such as terror-
ism and drug trafficking. Given a particular port and the variety
of critical infrastructure that an attacker may attack within the
port, USCG conducts patrols to protect this infrastructure; how-
ever, while the attacker has the opportunity to observe patrol pat-
terns, limited security resources imply that USCG patrols cannot
be at every location 24/7. To assist the USCG in allocating its
patrolling resources, the PROTECT (Port Resilience Operational /
Tactical Enforcement to Combat Terrorism) model has been de-
signed to enhance maritime security. It has been in use at the port
of Boston since April 2011, and is also in use at the port of New
York since February 2012 (Figure 2). Similar to previous ap-
plications ARMOR and IRIS, PROTECT uses an attacker-defender
Stackelberg game framework, with USCG as the defender against
terrorists that conduct surveillance before potentially launching
an attack.

The key idea in PROTECT is also that unpredictability creates
situations of uncertainty for an enemy and can be enough to deem
a target less appealing. While randomizing patrol patterns is key,
PROTECT also addresses the fact that the targets are of unequal
value, understanding that the attacker will adapt to whatever pa-
trol patterns USCG conducts. The output of PROTECT is a sched-
ule of patrols which includes when the patrols are to begin, what
critical infrastructure to visit for each patrol, and what activities
to perform at each critical infrastructure.

While PROTECT builds on previous work, it offers key inno-
vations. First, this system is a departure from the assumption
of perfect attacker rationality noted in previous work, relying in-
stead on a quantal response model [28] of the attacker’s behavior.
Second, to improve PROTECT’s efficiency, a compact represen-
tation of the defender’s strategies is used by exploiting equiva-
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lence and dominance. Finally, the evaluation of PROTECT for
the first time provides real-world data: (i) comparison of human-
generated vs PROTECT schedules, and (ii) results from an Adver-
sarial Perspective Team’s (human mock attackers) analysis. The
PROTECT model has now been extended to other U.S. ports like
Los Angeles/Long Beach and is moving towards nationwide de-
ployment.

3.4 Ferry Protection for the US Coast Guard
Another problem that USCG faces is the protection of ferries,

including the Staten Island Ferry in New York, from potential ter-
rorist attacks from water. We developed a game-theoretic system
for scheduling escort boat patrols to protect ferries, and this has
been deployed at the Staten Island Ferry since 2013[10]. The
key research challenge is the fact that the ferries are continuous
moving in a continuous domain, and the attacker could attack at
any moment in time. This type of moving targets domain leads
to game-theoretic models with continuous strategy spaces, which
presents computational challenges. Our theoretical work showed
that while it is safe to discretize the defender’s strategy space,
discretizing the attacker’s strategy space would result in loss of
utility. We developed a novel algorithm that uses a compact rep-
resentation for the defender’s mixed strategy space while being
able to exactly model the attacker’s continuous strategy space.
The implemented algorithm, running on a laptop, is able to gen-
erate daily schedules for escort boats with guaranteed expected
utility values.

Fig. 3 Escort boats protecting the Staten Island Ferry are using strategies
generated by our system.

3.5 TRUSTS for Security in Transit Systems
Urban transit systems face multiple security challenges, in-

cluding deterring fare evasion, suppressing crime and counter-
terrorism. In particular, in some urban transit systems, including
the Los Angeles Metro Rail system, passengers are legally re-
quired to purchase tickets before entering but are not physically
forced to do so (Figure 4). Instead, security personnel are dy-
namically deployed throughout the transit system, randomly in-
specting passenger tickets. This proof-of-payment fare collection
method is typically chosen as a more cost-effective alternative to
direct fare collection, i.e., when the revenue lost to fare evasion
is believed to be less than what it would cost to directly preclude
it. In the case of Los Angeles Metro, with approximately 300,000
riders daily, this revenue loss can be significant; the annual cost
has been estimated at $5.6 million [12]. The Los Angeles Sheriffs

(a) Los Angeles Metro (b) Barrier-free entrance to tran-
sit system

Fig. 4 TRUSTS for transit systems

Department (LASD) deploys uniformed patrols on board trains
and at stations for fare-checking (and for other purposes such
as crime prevention). The LASD’s current approach relies on
humans for scheduling the patrols, which places a tremendous
cognitive burden on the human schedulers who must take into
account all of the scheduling complexities (e.g., train timings,
switching time between trains, and schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Secu-
rity in Transit Systems) models the patrolling problem as a leader-
follower Stackelberg game [43]. The leader (LASD) pre-commits
to a mixed strategy patrol (a probability distribution over all pure
strategies), and riders observe this mixed strategy before deciding
whether to buy the ticket or not. Both ticket sales and fines issued
for fare evasion translate into revenue for the government. There-
fore the utility for the leader is the total revenue (total ticket sales
plus penalties). The main computational challenge is the expo-
nentially many possible patrol strategies, each subject to both the
spatial and temporal constraints of travel within the transit net-
work under consideration. To overcome this challenge, TRUSTS

uses a compact representation of the strategy space which cap-
tures the spatiotemporal structure of the domain.

The LASD conducted field tests of this TRUSTS system in
the LA Metro in 2012, and one of the feedback comments from
the officers was that patrols are often interrupted due to execu-
tion uncertainty such as emergencies and arrests. Utilizing tech-
niques from planning under uncertainty (in particular Markov De-
cision Processes), we proposed a general approach to dynamic
patrolling games in uncertain environments, which provides pa-
trol strategies with contingency plans[19]. This led to schedules
now being loaded onto smartphones and given to officers. If inter-
ruptions occur, the schedules are then automatically updated on
the smartphone app. The LASD has conducted successful field
evaluations using the smartphone app, and the TSA is currently
evaluating it toward nationwide deployment.

Crime presents a serious problem in transit systems like LA
Metro. Furthermore, unlike terrorists that strategically plans an
attack, criminals are often opportunistic, in that their decisions
are based on the available opportunities encountered. For the
crime problem, we developed a new game-theoretic model that
utilizes recent advances in criminology on modeling opportunis-
tic criminals, and novel efficient algorithms that achieve speedups
by exploiting the spatiotemporal structure of the domain [45].

3.6 GUARDS for US Transportation Security Agency
The United States Transportation Security Administration
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(TSA) is tasked with protecting the nation’s over 400 airports.
To aid the TSA in scheduling resources to protect airports, a
new application called GUARDS (Game-theoretic Unpredictable
and Randomly Deployed Security) has been developed. While
GUARDS also uses Stackelberg games as ARMOR and IRIS,
GUARDS faces three key challenges [32]: 1) reasoning about hun-
dreds of heterogeneous security activities; 2) reasoning over di-
verse potential threats; and 3) developing a system designed for
hundreds of end-users. To address those challenges, GUARDS

created a new game-theoretic framework that allows for heteroge-
neous defender activities and compact modeling of a large num-
ber of threats and developed an efficient solution technique based
on general-purpose Stackelberg game solvers. GUARDS is cur-
rently under evaluation and testing for scheduling practices at an
undisclosed airport.

3.7 Emerging Applications in Networked Domains
Beyond the deployed applications above, there are a number of

emerging application areas. One such area of great importance
is securing urban city networks, transportation networks, com-
puter networks and other network centric security domains. For
example, after the terrorist attacks in Mumbai of 2008 [8], the
Mumbai police have started setting up vehicular checkpoints on
roads. We can model the problem faced by the Mumbai police
as a security game between the Mumbai police and an attacker.
In this urban security game, the pure strategies of the defender
correspond to allocations of resources to edges in the network—
for example, an allocation of police checkpoints to roads in the
city. The pure strategies of the attacker correspond to paths from
any source node to any target node—for example, a path from
a landing spot on the coast to the airport. The strategy space of
the defender grows exponentially with the number of available
resources, whereas the strategy space of the attacker grows expo-
nentially with the size of the network. In addressing this compu-
tational challenge, novel algorithms based on incremental strat-
egy generation have been able to generate randomized defender
strategies that scale up to the entire road network of Mumbai [16].

The Stackelberg game framework can also be applied to adver-
sarial domains that exhibit ‘contagious’ actions for each player.
For example, word-of-mouth advertising/viral marketing has
been widely studied by marketers trying to understand why one
product or video goes ‘viral’ while others go unnoticed. Counter-
insurgency is the contest for the support of the local leaders in an
armed conflict and can include a variety of operations such as pro-
viding security and giving medical supplies. These efforts carry a
social effect beyond the action taken that can cause advantageous
ripples through the neighboring population. Moreover, multiple
intelligent parties attempt to leverage the same social network to
spread their message, necessitating an adversary-aware approach
to strategy generation. Game-theoretic approaches can be used to
generate resource allocations strategies for such large-scale, real
world networks [36], [37]. This interaction can be modeled as a
graph with one player attempting to spread influence while an-
other player attempts to stop the probabilistic propagation of that
influence by spreading their own influence. This ‘blocking’ prob-
lem models situations faced by governments/peacekeepers com-

batting the spread of terrorist radicalism and armed conflict with
daily/weekly/monthly visits with local leaders to provide support
and discuss grievances [13].

Game-theoretic methods are also appropriate for modeling re-
source allocation in cyber-security such as packet selection and
inspection for detecting potential threats in large computer net-
works. The problem of attacks on computer systems and corpo-
rate computer networks gets more pressing each year. A number
of intrusion detection and monitoring systems are being devel-
oped, e.g., deep packet inspection method that periodically se-
lects a subset of packets in a computer network for analysis. The
attacking/protecting problem can be formulated as a game be-
tween two players: the attacker (or the intruder), and the defender
(the detection system). The actions of the attacker can be seen
as sending malicious packets from a controlled computer to vul-
nerable computers. The objective of the defender is to prevent
the intruder from succeeding by selecting the packets for inspec-
tion and subsequently thwarting the attack. However, packet in-
spections cause unwanted latency and hence the defender has to
decide where and how to inspect network traffic. The computa-
tional challenge is efficiently computing the optimal defending
strategies for such network scenarios [38].

3.8 Emerging Applications in Sustainability
A number of our newer applications are focused on sustain-

ability, through suppression of environmental crime. One area is
protecting forests [20], where we must protect a continuous for-
est area from extractors by patrols through the forest that seek
to deter such extraction activity. With limited resources for per-
forming such patrols, a patrol strategy will seek to distribute the
patrols throughout the forest, in space and time, in order to min-
imize the resulting amount of extraction that occurs or maximize
the degree of forest protection. This problem can be formulated
as a Stackelberg game and the focus is on computing optimal al-
locations of patrol density [20].

Endangered species poaching is reaching critical levels as the
populations of these species plummet to unsustainable numbers.
The global tiger population, for example, has dropped over 95%
from the start of the 1900s and has resulted in three out of nine
species extinctions. Depending on the area and animals poached,
motivations for poaching range from profit to sustenance, with
the former being more common when profitable species such as
tigers, elephants, and rhinos are the targets. To counter poaching
efforts and to rebuild the species’ populations, countries have set
up protected wildlife reserves and conservation agencies tasked
with defending these large reserves. Because of the size of the re-
serves and the common lack of law enforcement resources, con-
servation agencies are at a significant disadvantage when it comes
to deterring and capturing poachers. Agencies use patrolling as
a primary method of securing the park. Due to their limited re-
sources, however, patrol managers must carefully create patrols
that account for many different variables (e.g., limited patrol units
to send out, multiple locations that poachers can attack at vary-
ing distances to the outpost). Our proposed system Protection
Assistant for Wildlife Security (PAWS) aims to assist conserva-
tion agencies in their critical role of patrol creation by predicting
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where poachers will attack and optimizing patrol routes to cover
those areas.

Another emerging application domain is that of ensuring the
sustainability of fish resources. Marine fisheries are acknowl-
edged to be some of the most important food resources for coun-
tries around the world. As reported by World Wild Fund for Na-
ture (WWF), cod are currently at risk from overfishing in the UK,
Canada and most other Atlantic countries. Global cod catch has
suffered a 70% drop over the last 30 years, and if this trend con-
tinues, the world’s cod stocks will disappear in 15 years. Illegal,
unreported, and unregulated (IUU) fishing is one of the major
threats to the sustainability of ocean fish resources. As estimated
by National Oceanic and Atmospheric Administration (NOAA),
IUU fishing produces between 11 and 26 million tons of seafood
annually, representing as much as 40 percent of the total catch in
some fisheries. The driver behind IUU fishing is high economic
profit and low chance of seizure. It is impossible to maintain a
24/7 presence to prevent IUU fishing everywhere due to the lim-
ited asset patrolling resources. Hence the allocation of the pa-
trolling resources becomes a key challenge for security agencies
like USCG. Utilizing data on fish locations, as well as historical
data on USCG patrols and captures, we developed an algorithm
that combines machine learning techniques and game-theoretic
planning, and developed a prototype application that is currently
under evaluation by US Coast Guard.

4. Scaling Up To Real-world Problem Sizes
The wide use of Stackelberg games has inspired theoretical and

algorithmic progress leading to the development of fielded appli-
cations, as described in Section 3. For example, DOBSS [30],
an algorithm for solving Bayesian Stackelberg games, is central
to the fielded application ARMOR in use at the Los Angeles In-
ternational Airport [17]. Conitzer and Sandholm [9] gave com-
plexity results and algorithms for computing optimal commit-
ment strategies in Bayesian Stackelberg games, including both
pure and mixed-strategy commitments.

These early works assumed that the set of pure strategies for the
players are given explicitly. Many real world problems, like the
FAMS and urban road networks, present billions of pure strate-
gies to both the defender and the attacker. Such large problem
instances cannot even be represented in modern computers, let
alone solved using previous techniques. We have proposed mod-
els and algorithms that compute optimal defender strategies for
massive real-world security domains [14], [15].

4.1 Scaling up with defender pure strategies
In this section, we describe one particular algorithm ASPEN,

that computes strong Stackelberg equilibria (SSE) in domains
with a very large number of pure strategies (up to billions of ac-
tions) for the defender [14]. ASPEN builds on the insight that in
many real-world game-theoretic problems, there exist solutions
with small support sizes, which are mixed strategies in which
only a small set of pure strategies are played with positive prob-
ability [26]. ASPEN exploits this by using a strategy generation
approach for the defender, in which defender pure strategies are
iteratively generated and added to the optimization formulation.

Master Slave 

…
 

Fig. 5 Strategy generation employed in ASPEN: The schedules for a de-
fender are generated iteratively. The slave problem is a novel
minimum-cost integer flow formulation that computes the new pure
strategy to be added to P; J4 is computed and added in this example.

As an example, let us consider the problem faced by the FAMS.
There are currently tens of thousands of commercial flights fly-
ing each day, and public estimates state that there are thousands
of air marshals that are scheduled daily by the FAMS [22]. Air
marshals must be scheduled on tours of flights that obey logistical
constraints (e.g., the time required to board, fly, and disembark).
An example of a schedule is an air marshal assigned to a round
trip from Los Angeles to New York and back.

ASPEN [14] casts this problem as a security game, where the
attacker can choose any of the flights to attack, and each air mar-
shal can cover one schedule. Each schedule here is a feasible set
of targets that can be covered together; for the FAMS, each sched-
ule would represent a flight tour which satisfies all the logistical
constraints that an air marshal could fly. A joint schedule then
would assign every air marshal to a flight tour, and there could be
exponentially many joint schedules in the domain. A pure strat-
egy for the defender in this security game is a joint schedule. As
mentioned previously, ASPEN employs strategy generation since
all the defender pure strategies cannot be enumerated for such a
massive problem. ASPEN decomposes the problem into a master
problem and a slave problem, which are then solved iteratively.
Given a number of pure strategies, the master solves for the de-
fender and the attacker optimization constraints, while the slave
is used to generate a new pure strategy for the defender in every
iteration.

The iterative process is graphically depicted in Figure 5. The
master operates on the pure strategies (joint schedules) generated
thus far , which are represented using the matrix P. Each column
of P, Jj , is one pure strategy (or joint schedule). An entry Pij in
the matrix P is 1 if a target ti is covered by joint-schedule Jj , and
0 otherwise. The objective of the master problem is to compute
x, the optimal mixed strategy of the defender over the pure strate-
gies in P. The objective of the slave problem is to generate the
best joint schedule to add to P. The best joint schedule is identi-
fied using the concept of reduced costs, which measures if a pure
strategy can potentially increase the defender’s expected utility
(the details of the approach are provided in [14]). While a naı̈ve
approach would be to iterate over all possible pure strategies to
identify the pure strategy with the maximum potential, ASPEN

uses a novel minimum-cost integer flow problem to efficiently
identify the best pure strategy to add. ASPEN always converges
on the optimal mixed strategy for the defender.

Employing strategy generation for large optimization problems
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Minimax 
Best Response 

Defender 

Best Response 
Attacker 

Fig. 6 Strategy Generation employed in RUGGED: The pure strategies for
both the defender and the attacker are generated iteratively.

is not an “out-of-the-box” approach, the problem has to be formu-
lated in a way that allows for domain properties to be exploited.
The novel contribution of ASPEN is to provide a linear formula-
tion for the master and a minimum-cost integer flow formulation
for the slave, which enables the application of strategy genera-
tion techniques. Additionally, ASPEN also provides a branch-
and-bound heuristic to reason over attacker actions. This branch-
and-bound heuristic provides a further order of magnitude speed-
up, allowing ASPEN to handle the massive sizes of real-world
problems.

4.2 Scaling up with defender and attacker pure strategies
In domains such as the urban network security setting de-

scribed in Section 3.7, the number of pure strategies of both the
defender and the attacker are exponentially large. In this section,
we describe the RUGGED algorithm [15], which generates pure
strategies for both the defender and the attacker.

RUGGED models the domain as a zero-sum game, and com-
putes the minimax equilibrium, since the minimax strategy is
equivalent to the SSE in zero-sum games. Figure 6 shows the
working of RUGGED: at each iteration, the Minimax module gen-
erates the optimal mixed strategies 〈x,a〉 for the two players for
the current payoff matrix, the Best Response Defender module
generates a new strategy for the defender that is a best response
against the attacker’s current strategy a, and the Best Response
Attacker module generates a new strategy for the attacker that is
a best response against the defender’s current strategy x. The
rows Xi in the figure are the pure strategies for the defender, they
would correspond to an allocation of checkpoints in the urban
road network domain. Similarly, the columns Aj are the pure
strategies for the attacker, they represent the attack paths in the
urban road network domain. The values in the matrix represent
the payoffs to the defender. The algorithm stops when neither
of the generated best responses improve on the current minimax
strategies.

The contribution of RUGGED is to provide the mixed integer
formulations for the best response modules which enable the ap-
plication of such a strategy generation approach. RUGGED can
compute the optimal solution for deploying up to 4 resources in
real-city network with as many as 250 nodes within a reason-
able time frame of 10 hours (the complexity of this problem can
be estimated by observing that both the best response problems
are NP-hard themselves [15]). More recent work [16] builds on
RUGGED and proposes SNARES, which allows scale-up to the

entire city of Mumbai, with 10–15 checkpoints.

5. Current Research
In this section we highlight several areas that we are actively

doing research on, and point out some of the open research chal-
lenges.

Scalability: Driven by the growing complexity of applications,
a sequence of algorithms for solving security games have been
developed including DOBSS [30], ERASER [23], ASPEN [14] and
RUGGED [15]. However, existing algorithms still cannot scale
up to very large scale domains. While RUGGED/SNARES com-
putes optimal solutions much faster than any of the previous ap-
proaches, much work remains to be done for it to be applicable to
complex heterogenous settings on large networks.

Besides strategy generation, another approach for dealing with
an exponential number of pure strategies is to compactly repre-
sent mixed strategies as marginal probabilities of coverage on
each of the targets. Because of the utility structure of security
games, such marginal probabilities are sufficient to express the
expected utility of the defender. Kiekintveld et al. [23] used
this approach in ERASER to formulate the problem of comput-
ing SSE as a compact mixed-integer linear program. However,
this approach is unable to deal with complex constraints on the
defender resources [24]. Nevertheless, we have recently been
able to use this approach for certain patrolling domains, includ-
ing fare-enforcement patrols in urban transit systems [43] and
boat patrols for protecting ferries [10]. In these domains a pure
strategy is a patrol of a certain time duration over a set of loca-
tions, and the number of such pure strategies grow exponentially
in the time duration. We were able to compactly represent mixed
strategies as fractional flows on the transition graph, in which
vertices are time-location pairs and arcs represent possible ac-
tions. This allowed us to formulate the optimization problems
compactly which led to improved scalability. An open problem
is to find other types of security domains in which the strategy
space can be compactly represented. Another is to develop a hy-
brid approach that combines marginals and strategy generation.

Robustness: Classical game theory solution concepts often
make assumptions on the knowledge, rationality, and capability
(e.g., perfect recall) of players. Unfortunately, these assump-
tions could be wrong in real-world scenarios. Algorithms for the
defender’s optimal strategy have been proposed to take into ac-
count various uncertainties faced in the domain, including payoff
noise [44], execution/observation error [42], and uncertain capa-
bility [2]. However, previous works assumed that the attacker
knows (or with a small noise) the defender’s mixed strategy. Re-
cently An et al. [1] proposed a formal framework to model the at-
tacker’s belief update process as he observes instantiations of the
defender’s mixed strategy. The resulting optimization problem
for the defender is nonlinear and scalable computation remains
an open issue.

Human adversary modeling: One required research direction
is addressing bounded rationality of human adversaries. This is a
fundamental problem that can affect the performance of our game
theoretic solutions, since algorithms based on the assumption of
the perfectly rational adversary are not robust to deal with devia-
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tions of the adversary from the optimal response. Recently, there
has been some research on applying ideas from behavioral game
theory (e.g., prospect theory [21] and quantal response [28])
within security game algorithms. One line of approaches is based
on the quantal response model to predict the behaviors of the hu-
man adversary, and then to compute optimal defender strategies
against such behavior of the adversary. These include BRQR [41]
which follows the logit quantal response (QR) [28] model, and
subsequent work on subjective-utility quantal response (SUQR)
models [29]. The parameters of these models are estimated by
experimental tuning. Figure 7 shows the interface of an interac-
tive game used in our human subject experiments, based on the
security scenario at the LAX airport. We have made the source
code of the game available at http://teamcore.usc.edu/
projects/BGT/experiment.html.

Fig. 7 Interface of the Guards and Treasures game, based on the security
scenario at the LAX airport.

However, in real-world security domains, we may have very
limited data, or may only have some limited information on the
biases displayed by adversaries. An alternative approach is based
on robust optimization: instead of assuming a particular model of
human decision making, try to achieve good defender expected
utility against a range of possible models. One instance of this
approach is MATCH [31], which guarantees a bound for the loss
of the defender to be within a constant factor of the adversary
loss if the adversary responds non-optimally. Another robust so-
lution concept is monotonic maximin [18], which tries to opti-
mize defender utility against the worst-case monotonic adversary
behavior, where monotonicity is the property that actions with
higher expected utility is played with higher probability. An open
research challenge is to combine such robust-optimization ap-
proaches with available behavior data. Furthermore, since real-
world human attackers are sometimes distributed coalitions of
socially, culturally and cognitively-biased agents, we may need
significant interdisciplinary research to build in social, cultural
and coalitional biases into our adversary models.

Multi-Objective Optimization: In existing applications such
as ARMOR, IRIS and PROTECT, the defender is trying to max-
imize a single objective. However, there are domains where
the defender has to consider multiple objectives simultaneously.
Multi-objective security games (MOSG) have been proposed to
address the challenges of domains with multiple incomparable
objectives [7]. In an MOSG, the threats posed by the attacker

types are treated as different objective functions which are not ag-
gregated, thus eliminating the need for a probability distribution
over attacker types. Unlike Bayesian security games which have
a single optimal solution, MOSGs have a set of Pareto-optimal
(non-dominated) solutions which is referred to as the Pareto fron-
tier. By presenting the Pareto frontier to the end user, they may
be able to better understand the structure of their problem as well
as the trade-offs between different security strategies.

Evaluation: Evaluation in itself is a major challenge given the
real-world deployment of these systems. We have conducted a
number of such evaluations: simulations, human subjects in the
lab, adversary perspective teams (mock attacker teams) before
and after deployment, assessment by domain experts internal and
external to agencies deploying these applications, and data from
deployments (such as number of citations to fare-evaders) have
all been used. Space precludes us from discussions of these eval-
uations, but they are discussed in individual publications on the
applications [17], [34], [43], and all and more of these are dis-
cussed in [35].

6. Summary
Security is recognized as a world-wide challenge and game

theory is an increasingly important paradigm for reasoning about
complex security resource allocation. While the deployed game
theoretic applications have provided a promising start, very sig-
nificant amount of research remains to be done. These are large-
scale interdisciplinary research challenges that call upon multi-
agent researchers to work with researchers in other disciplines,
be “on the ground” with domain experts, and examine real-world
constraints and challenges that cannot be abstracted away.
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