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Many strategic actions carry a ‘contagious’ component beyond the immediate locale of the effort
itself. Viral marketing and peacekeeping operations have both been observed to have a spreading
effect. In this work, we use counterinsurgency as our illustrative domain. Defined as the effort to
block the spread of support for an insurgency, such operations lack the manpower to defend the
entire population and must focus on the opinions of a subset of local leaders. As past researchers of
security resource allocation have done, we propose using game theory to develop such policies and

model the interconnected network of leaders as a graph.
Unlike this past work in security games, actions in these domains possess a probabilistic, non-
local impact. To address this new class of security games, we combine recent research in
influence blocking maximization with a double oracle approach and create novel heuristic oracles
to generate mixed strategies for a real-world leadership network from Afghanistan, synthetic
leadership networks, and scale-free graphs. We find that leadership networks that exhibit
highly interconnected clusters can be solved equally well by our heuristic methods, but our more

sophisticated heuristics outperform simpler ones in less interconnected scale-free graphs.
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1. INTRODUCTION

Many adversarial domains exhibit ‘contagious’ actions for
each player. For example, word-of-mouth advertising / viral
marketing has been widely studied by marketers trying to
understand why one product or video goes ‘viral’ while
others go unnoticed [1].

Counterinsurgency (COIN) is the contest for the support
of the local leaders in an armed conflict and can include a
variety of operations such as providing security and giving
medical supplies [2]. Just as in word-of-mouth advertising
and peacekeeping operations, these efforts carry a social
effect beyond the action taken that can cause advantageous
ripples through the neighboring population [3]. Moreover,
multiple intelligent parties attempt to leverage the same
social network to spread their message, necessitating an
adversary-aware approach to strategy generation.

We use a game-theoretic approach to the problem
and develop algorithms to generate resource allocations
strategies for such large-scale, real world networks. We
model the interaction as a graph with one player attempting
to spread influence while the other player attempts to stop
the probabilistic propagation of that influence by spreading
their own influence. This ‘blocking’ problem models
situations faced by governments/peacekeepers combatting
the spread of terrorist radicalism and armed conflict with
daily/weekly/monthy visits with local leaders to provide
support and discuss grievances [4].

This follows work in security games from recent years

[5, 6, 7, 8, 9]. While some works have also modeled
interactions on a graph, we extend the approach into a new
area where actions carry a ‘contagion’ effect. The problem is
a type of influence blocking maximization (IBM) problems
[10, 11], which are a competitive extension of the widely
studied influence maximization problem [12, 13]. Past work
in influence blocking maximization has looked only at the
best-response problems and has not produced algorithms
to generate the game-theoretic equilibria necessary for this
repeated-interaction domain.

The first major contribution of this work is opening up
a new area of research that combines recent research in
security games and in influence blocking maximization. We
provide the first techniques for generating game-theoretic
equilibria. Drawing from recent work in security games, we
propose using a double oracle algorithm where each oracle
produces a single player’s best-response to the opponent’s
strategy and incrementally creates the payoff matrix being
solved. This approach allows us to leverage advances in
IBM research that has focused entirely on fast best-response
calculations.

The second contribution of our work is in proving
approximation quality bounds on the double oracle approach
when one of the oracles is approximated and combining this
with a greedy approximate oracle to produce a more efficient
approximate algorithm. Our final major contribution is to
introduce two heuristic oracles, LSMI and PAGERANK,
that offer much greater efficiency to address scaling issues
with the approximate technique. We conclude with an
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experimental exploration of a variety of combinations
of oracles, testing runtime and quality on a real-world
leadership network in Afghanistan, synthetic leadership
networks, and random scale-free graphs. We find that
the performance of the basic PAGERANK oracle suffers
minimal loss compared to LSMI in leadership networks
that possess clusters of highly interconnected nodes, but
performs far worse in sparsely interconnected scale-free
graphs. Finally, an unintuitive blend of the two oracles offers
the best combination of scalability and solution quality.

2. RELATED WORK

Recent work in game-theoretic security allocation have also
dealt with domains that were modeled as graphs [5, 6, 14],
however their actions were all deterministically defined and
did not feature a probabilistic contagion component. This
‘spreading’ aspect of the problem is very closely related to
influence maximization and inoculation problems. Influence
maximization, in which a player attempts to optimize a
selection of beginning ‘seed’ nodes from which to spread
his influence in a known graph, saw its first treatment in
computer science as a discrete maximization problem by
Kempe et al. (2003) who proposed a greedy approximation,
followed-up by numerous proposed speed-up techniques
[12, 13, 15]. Although these are one-player games, we draw
inspiration from their techniques to address efficiency issues
in our work.

Standard inoculation games feature a defender that
attempts to protect nodes in a graph and, usually, a random
outbreak of a disease on a node in the graph. These games
typically model nature as the adversary, which chooses
an initial set of nodes with some predefined probability
distribution that the defender is optimizing against [16,
17, 18, 19, 20, 21]. Variations on this include distributed
inoculation games where each node acts independently,
in which results such as price of anarchy are generally
considered [16, 19]. These games, however, do not include
an optimizing adversary, amounting to only an attacker or
defender best-response problem.

Influence blocking maximization problems, which we
use to model our domain, have been explored with
both independent cascade and linear threshold models
of propagation [10, 11]. Both of these works only
explored the defender’s best-response problem instead of
equilibrium strategy generation. Aside from influence
blocking maximization, a number of researchers have also
explored mutual maximization models where all players
seek to maximize their own influence [22, 23]. Finally, Hung
et al. (2011) and Howard (2010) also address the COIN
problem. However, Hung et al. (2011) assume a static
adversary and Howard (2010) only solves for pure strategies.
This forced predictability in a repeated-interaction situation
is dangerous since a real adversary can directly ambush
COIN teams. Additionally, it may be suboptimal since a real
adversary has no such limitation.

FIGURE 1: Example pure strategy for one player

3. PROBLEM DEFINITION

The counterinsurgency domain we focus on includes one
party that attempts to subvert the population to their cause
and another party that attempts to thwart the first party’s
efforts [24, 4, 3]. We assume that each side can carry out
operations such as provide security or give medical supplies
to sway the local leadership’s opinion. Furthermore, local
leaders will impact other leaders’ opinions of the two
parties. Specifically, one leader will convert other leaders
to side with their affiliated party with some predetermined
probability, giving each party’s actions a ‘spreading’ effect.
Since resources for COIN operations are very limited
relative to the size of the task, each party is faced with a
resource allocation task. Hung (2010) models the leadership
network of a single district in Afghanistan (based on real
data) with 73 nodes and notes that recent organizational
assignments show that a single battalion operates in 4-7
districts and divides into 3-4 platoons per 1-2 districts. This
translates into 5-30 teams responsible for a network with
300-500 nodes.

We model the counterinsurgency domain as a two-player
influence blocking maximization problem, which allows
us to draw from the extensive influence maximization
literature. An IBM takes place on an undirected graph G =
(V,E). One player, the attacker, will attempt to maximize
the number of nodes supporting his cause on the graph while
the second player, the defender, will attempt to minimize
the attacker’s influence. Vertices represent local leaders that
each player can attempt to sway to their cause, while edges
represent the influence of one local leader on another. We
note that these leaders do not report to one another and
hence an undirected edge provides an apt representation of
their influence relationship. Specifically, each edge, e =
(n,m), has an associated probability, pe , which dictates the
chance that leader n will influence leader m to side with n’s
chosen player. Since the graph is undirected, this is also
the probability that m influences n to side with m’s chosen
player. Only uninfluenced nodes can be influenced.

In an IBM, the two players each choose a subset of nodes
as their pure strategies (Sa, Sd ⊆ V ), which we will also
refer to as actions. Each action is composed of nodes (also
referred to as ‘sources’) where the allowable number of
nodes is referred to as the number of ‘resources’ a player
has and is given for each player (|Sa| = ra, |Sd| = rd).
Figure 1 shows an example of a pure strategy for one player
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as the selection of the two nodes, D and F , filled in. The
other player would similarly choose a set of nodes on the
same graph from which to begin spreading his influence.

Each node in Sa ∩ Sd has a 50% chance of being
influenced by each player, while all other nodes in Sa

support the attacker and all other nodes in Sd support the
defender. The influence then propagates via a synchronized
independent cascade, where at time step t0 only the initial
nodes have been influenced and at t1 each edge incident
to nodes in Sa ∪ Sd is ‘activated’ with probability pe.
Uninfluenced nodes incident to activated edges become
supporters of the influencing node’s player. If a single
uninfluenced node is incident to activated edges from both
player’s nodes, the node has a 50% chance of being
influenced by each player. This process, which outlines
a single stochastic outcome, is detailed in Algorithm 1,
which outputs the total number of attacker-activated nodes
for that particular sample. This process is polynomial with
respect to the network size, since each edge will only be
probabilistically activated a single time at most.

For a given pair of pure strategies, the attacker’s payoff
is equal to the expected number of nodes influenced to the
attacker’s side and the defender’s payoff is the opposite
of the attacker’s payoff. We denote the function to
calculate the expected number of attacker-influenced nodes
as σ(Sa, Sd). Each player chooses a mixed strategy, ρa
for the attacker and ρd for the defender, over their pure
strategies (subsets of nodes of size ra or rd) to maximize
their expected payoff. At equilibrium, each player’s mixed
strategy will be a best-response to the other player’s. The
defender’s mixed strategy is a policy by which COIN teams
can randomize their deployment each day/week/month,
depending on the frequency of missions. The focus of the
rest of this work will be to develop optimal, approximate,
and heuristic oracles that can be used in double oracle
algorithms to generate strategies for these influence blocking
maximization problems.

4. DOUBLE ORACLE APPROACH

The most commonly used approach for a zero-sum game
is a naı̈ve Maximin strategy, shown in Algorithm 2. In
Algorithm 2, P is the defender’s expected payoff, C is the
set of all column player actions iterated with c, Y is the
set of all row player actions iterated with y, and u(y, c)
is the utility for the row player when actions c and y are
played. In our problem, the row player (defender) has a
utility equivalent to the opposite of the column player’s
(attacker’s) which is equivalent to the expectation of the
propagation process, σ(·). That is, u(y, c) = −σ(y, c).
The primary constraint is Constraint 1, which restricts P to
be no greater than the expected utility achieved by the row
player in the worst outcome. This linear program, however,
requires precalculating the payoffs for every pair of player
actions to instantiate all constraints before it can efficiently
solve for a Nash equilibrium. This naı̈ve approach admits
two faults.

First, the payoff for a given pair of pure strategies

Algorithm 1 INFLUENCE PROP.: Sa , Sd , G = (N,E)

1: E∗ = ∅, Eactive = ∅
2: A← {s|s ∈ Sa ∧ s /∈ Sd}, D ← {s|s /∈ Sa ∧ s ∈ Sd}
3: for {s|s ∈ Sa ∩ Sd} do
4: // randomly add s to one of the player’s sets
5: RandomAdd(s,A,D)
6: end for
7: Nnew = A ∪D
8: while Nnew 6= ∅ do
9: for {(u, v)|u ∈ Nnew,(u, v) /∈ E∗} do

10: // activate the edge based on its probability
11: Eactive.add(RandomActivate((u, v)))
12: E∗.add((u, v))
13: end for
14: Nnew = ∅
15: for {s|s /∈ A ∪D,∃(u, s) ∈ Eactive} do
16: Nnew.add(s)
17: // Add s to appropriate set
18: AddToSet(s,A,D)
19: end for
20: end while
21: return Sa

Algorithm 2 MAXIMIN LINEAR PROGRAM

MAXIMIZE P

SUBJECT TO:
∀c ∈ C P ≤

∑
y∈Y

py · u(y, c) (1)

0 ≤ py ≤ 1,∀y ∈ Y (2)∑
y∈Y

py = 1 (3)

in our problem is computationally intractable to calculate
accurately. As shown by Chen et al. (2010), calculating
the analogous expectation in a basic influence maximization
game exactly is #P -Hard. Since influence maximization
is a special case of influence blocking maximization, it is
trivial to show that calculating σ(·) exactly is also #P -Hard.
The standard method for estimating these expectations is a
Monte Carlo approach that was adapted for the IBM problem
by Budak et al. (2011) and which we also adopt here. It
involves simulating the propagation process thousands of
times to reach an accurate estimate of the expected outcome.
Although it runs in time polynomial in the size of the graph
and is able to achieve arbitrarily accurate estimations, the
thousands of simulation trials required for accurate results
causes this method to be extremely slow in practice.

Second, the Maximin algorithm stores the entire payoff
matrix in memory which can be prohibitive for large graphs.
For example, with 1000 nodes and 50 resources per player,
each player has

(
1000
50

)
actions. To overcome similar memory

problems, double oracle algorithms have been proposed in
the past [6, 14] and form the basis for our work.

Double oracle algorithms for zero-sum games use a
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Maximin linear program at the core, but the payoff matrix is
grown incrementally by two oracles. This process is shown
in Algorithm 3. D is the set of defender actions generated
so far, and A is the set of attacker actions generated so far.
MaximinLP(D,A) solves for the equilibrium of the game
that only has the pure strategies in D and A and returns
ρd and ρa, which are the equilibrium defender and attacker
mixed strategies over D and A. DefenderOracle(·) solves the
defender’s ‘best-response problem’. That is, it generates a
defender action that is a best response against ρa among all
possible actions. This action is added to the set of available
pure strategies for the defender D. A similar procedure then
occurs for the attacker. Convergence occurs when neither
best-response oracle generates a pure strategy that is superior
to the given player’s current mixed strategy against the
fixed opponent mixed strategy. The number of attacker and
defender actions in the payoff matrix varies depending on the
speed of convergence, but is generally much smaller than the
full matrix. It has been shown that with two optimal best-
response oracles, the double oracle algorithm converges to
the Maximin equilibrium [25], although no guarantees are
known regarding the time to convergence.

Algorithm 3 DOUBLE ORACLE ALGORITHM

1: Initialize D with random defender allocations.
2: Initialize A with random attacker allocations.
3: repeat
4: (ρd, ρa) = MaximinLP(D,A)
5: D = D ∪ {DefenderOracle(ρa)}
6: A = A ∪ {AttackerOracle(ρd)}
7: until convergence
8: return (ρd, ρa)

4.1. Double Oracle: Example

To illustrate the double oracle algorithm in more detail,
consider the game described by the payoff matrix featured
in Table 1. As per standard game-theoretic notation, the
row player’s available actions are 1 and 2 and the column
player’s available actions include A, B, and C. If the row
player plays 1 and the column player plays A, then the
row player receives a payoff of 3 and the column player
a payoff of -3. Although this game could be solved by a
single Maximin run, we will describe the solution procedure
used by the double oracle algorithm to clarify the process.
Initially, each player’s actions are randomly seeded with a
single action from the complete action space of the original
game. Suppose the defender, the row player, is seeded with
action ‘1’ and the attacker, the column player, is seeded
with action ’C’ as shown in Table 2. Then D = {1} and
A = {C}. This subgame is trivially solved using a Maximin
linear program that produces the optimal strategy for both
players, which is to simply play their only available action
100% of the time (ρd = ρa = {1.0}).

Next the algorithm consults two oracles for the next
action to add to the subgame for each player. In this case,
AttackerOracle produces ‘B’ as the optimal action for the

A B C
1 3,-3 -1,1 2,-2
2 1,-1 2,-2 -2,2

TABLE 1: Example game’s full payoff matrix

C
1 2,-2

TABLE 2: Initial subgame

B C
1 -1,1 2,-2
2 2,-2 -2,2

TABLE 3: At convergence

attacker to take when the defender is playing a strategy of
100% ‘1’. The DefenderOracle, by contrast, produces ‘1’ as
the best-response to the current adversary strategy of 100%
‘C’ and chooses to add action ‘1’ which already exists in
the subgame. The subgame is now composed of one action
for the defender (D = {1}) and two actions for the attacker
(A = {C,B}). A Maximin solver is again run to determine
the optimal strategy for each player, producing a new pure-
strategy equilibrium (ρd = {1.0}, ρa = {0.0, 1.0}).

Both oracles are consulted again, with the AttackerOracle
again returning ‘B’ as the optimal action to the current
defender strategy (play ‘1’ 100%), but the DefenderOracle
now returning action ‘2’ as the best-response to the current
attacker strategy (play ‘B’ 100%). The subgame grows to
the 2x2 matrix shown in Table 3 and the Maximin linear
program is again run to solve it, producing new optimal
strategies for each player (ρd = { 47 ,

3
7}, ρa = { 47 ,

3
7}).

Another query to each oracle reveals that both players’
best-responses are already included in the subgame. At
this point the algorithm has converged and the Maximin
equilibrium strategies for both players in the full game have
been determined.

The payoff matrix generated at convergence is shown in
Table 3. Notice that the attacker action ’A’ was never added
to the game. Not only does this limit the size of the payoff
matrix stored in memory, but this also means that no payoffs
associated with action ‘A’ need to be generated (recall that
payoff generation in our problem is #P -Hard).

4.2. Double Oracle: Approximation

Now we prove an approximate double oracle setup that
admits a quality guarantee. We denote the defender and
attacker’s mixed strategies at convergence as ρd and ρa.
Also, we denote the defender’s expected utility given a
pair of mixed strategies as ud(ρd, ρa). Assume that the
defender’s oracle, DAR, is an α-approximation of the
optimal best-response oracle, DBR, so that DAR(ρa) ≥
α ·DBR(ρa). The following theorem is a generalization of
a similar result in Halvorson et al. 2009.

THEOREM 4.1. Let (ρd, ρa) be the output of the double
oracle algorithm using an approximate defender oracle
and let (ρ∗d, ρ

∗
a) be the optimal mixed strategies. Then:

ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

Proof. Since we know DAR is an α-approximation,
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ud(ρd, ρa) ≥ ud(DAR(ρa), ρa) ≥ α · ud(DBR(ρa), ρa).
Since (ρ∗d, ρ

∗
a) is a maximin solution, we know that

∀ρ′d, ρ′a : ud(ρ
∗
d, ρ
′
a) ≥ ud(ρ

∗
d, ρ
∗
a) ≥ ud(ρ

′
d, ρ
∗
a). Thus:

ud(DBR(ρa), ρa) ≥ ud(ρ
∗
d, ρa) ≥ ud(ρ

∗
d, ρ
∗
a), implying

ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

5. ORACLES

A major advantage of double oracle algorithms is the ability
to divide the problem into best-response components. This
allows for easily creating variations of algorithms to meet
runtime and quality needs by combining different oracles
together. Here, we present four oracles that we can combine
to create a suite of algorithms.

5.1. EXACT Oracle

Solving for a best-response in an influence blocking
maximization problem was shown to be NP-Hard by Budak
et al. (2011), but an optimal oracle may be useful
when paired with an efficient second oracle, given the
approximation result just shown. The first oracle we
introduce is an optimal best-response oracle. Our oracle,
which we call EXACT , determines the best-response by
iterating through the entire action set for a given player.
For each action, the expected payoff against the opponent’s
strategy is calculated, which requires n calculations of
σ(·), where n is the size of the support for the opponent’s
mixed strategy. In this oracle, σ(·) is evaluated via the
Monte Carlo estimation method, the benchmark technique in
influence maximization. This technique involves simulating
the propagation process n times, where n is generally
10,000-20,000, and using the average propagation of the
simulated trials as the estimate. The ε-error of the Monte
Carlo estimation exists in the Maximin approach as well, but
can be made arbitrarily small with sufficient simulations[26].

This oracle can be used for both the defender and the
attacker to create an incremental, optimal algorithm that
can potentially be superior to Maximin because of the
incremental approach. However, the oracle will perform
redundant calculations that can cause it to run slower than
Maximin when the equilibrium strategies support size is very
large.

5.2. APPROX Oracle

Here we describe approximate oracles that draw from
research in influence maximization, competitive influence
maximization, and influence blocking maximization. Budak
et al. (2011) showed that the best-response problem for the
blocker (the defender, in our setting) is submodular when
both players share the same probability of influencing across
a given edge. Thus, a greedy hill-climbing approach that
provides the highest marginal gain in each round provides
a (1 − 1

e )-approximation. This is outlined in Algorithm 4,
where rd is given for the problem instance, MCEst(·) is the
Monte Carlo estimation of σ(·), ρa is the current attacker
mixed strategy, Action() retrieves a pure strategy, Sa, and
Prob() retrieves a pure strategy’s associated probability. The

Lazy-Forward speed-up to the greedy algorithm introduced
by Leskovec et al. (2007) to tackle influence maximization
problems is also implemented, but we do not show it in
Algorithm 4 for clarity.

For the maximizer’s best-response problem, we note that
given a fixed blocker strategy, the best-response problem
of the maximizer in an IBM is exactly the best-response
problem of the last player in a competitive influence
maximization from Bharathi et al. (2007), which they
showed to be submodular. Thus, the attacker’s best-response
problem can also be approximated with a greedy algorithm
with the same guarantees. These oracles are referred to as
APPROX .

By combining an APPROX oracle for the defender and an
EXACT oracle for the attacker, we can create an algorithm
that generates a strategy for the defender more efficiently
than the naive one and guarantees a reward within (1 −
1
e ) of the optimal strategy’s reward by Theorem 4.1. An
algorithm with two APPROX oracles no longer admits
quality guarantees, but the iterative process still maintains
the best-response reasoning crucial to adversarial domains.

Algorithm 4 APPROX -DefBR(ρa)
1: Sd = ∅
2: while |Sd| < rd do
3: for n ∈ (N − Sd) do
4: U(n) =

∑ρa.Size()
i=1 ρa.Prob(i) ·

5: MCEst(ρa.Action(i),Sd ∪ {n})
6: end for
7: n∗ = argmaxn∈N U(n)
8: BR = BR ∪ {n∗}
9: end while

10: return BR

5.3. LSMI Oracle

We introduce our main heuristic oracle, LSMI, which is also
the name of the heuristic it is based on: Local Shortest-
paths for Multiple Influencers (LSMI(·)). This oracle uses
APPROX oracle’s Algorithm 4. However, LSMI(·) is used to
replace the MCEst(·) function and provides a fast, heuristic
estimation of the marginal gain from adding a node to the
best response. The heuristic is based on two assumptions:
very low probability paths between two nodes are unlikely to
have an impact and the highest probability path between two
nodes estimates the relative strength of the influence. The
probability associated with a path is defined as p =

∏
e pe

over all edges e on the path. We then combine these heuristic
influences from two players in a novel, efficient way.

The two heuristic assumptions have been applied
successfully for one-player influence maximization in
various forms, one of the most recent being Chen et al. [12].
As an application of the first assumption, when calculating
the influence of a node, they only consider nodes reachable
via a path with an associated probability of at least some
θ. As an application of the second assumption, Chen et al.
(2010) assume that each source will only affect nodes via
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the highest probability path. To improve the accuracy of
this estimation, they disallow other sources from being on
the path since the closer source’s influence will supersede
the further source’s along the same path. We use these
ideas as well, but Chen et al. (2010)’s approach to the
critical step of combining these influences efficiently relies
on there being only one type of influence. In a two-player
situation such as ours, there are two probabilities associated
with each node, and the winning influencer depends not only
on the probability but on the distance to sources as well.
This ordering effect is a new issue that necessitates a novel
approach to influence estimation.

L-Eval(·), described in Algorithm 6, is our new
algorithm for determining the expected influence of the
local neighborhood around a given node. LSMI(n, Sa, Sd)
estimates the marginal gain of n by finding the difference
between calling L-Eval(·) with and without n and replaces
the MCEst(·) function in Algorithm 4. For the defender
oracle, instead of a call of MCEst(Sa, Sd ∪ n):

LSMI(Sa, Sd, n) =

L-Eval(V, Sa, Sd ∪ {n}) - L-Eval(V, Sa, Sd),

s.t. V =GetVerticesWithinθ(n).

GetVerticesWithinθ() is a modified Dijkstra’s algorithm
that measures path-length by hop-distance, tie-breaks with
the associated probabilities of the paths, and stores all nodes’
shortest hop-distance and associated probability to the given
node. It does not add a new node to the search queue if
the probability on the path to the node falls below θ. This
procedure is outlined in more detail in Algorithm 5. The
overall structure remains identical to Dijkstra’s algorithm,
but distances are now measured with hop-distance instead of
summing the weights on edges and a cut-off is implemented
when the probability on the path falls below θ. The
probability on the path is calculated via probDistanceTo(),
which simply calculates the product of probabilities on
edges along the path from n to v. Since the algorithm exactly
mirrors that of Dijkstra’s algorithm, the runtime attributes
are identical.

In L-Eval(·), V is the set of n’s local nodes and Sa/Sd

are the attacker/defender source sets. Due to the addition
of n, we must recalculate the expected influence of each
v ∈ V . First, we determine all the nearby nodes that
impact a given v by calling GetVerticesWithinθ(v). Since
only sources exert influence, we intersect this set with the set
of all sources and compile them into a priority queue ordered
from lowest hop-distance to greatest. pa and pd represent the
probability that the attacker/defender successfully influences
the given node. From the nearest source, we aggregate the
conditional probabilities in order. If the next nearest source
is an attacker source, then pa is increased by the probability
that the new source succeeds, conditional on the failure of
all closer defender and attacker sources. The probability
that all closer sources failed is exactly pa + pd. pd remains
unchanged. If the next nearest source is a defender source,
then a similar update is performed. The algorithm iterates

Algorithm 5 GetVerticesWithinθ(n)
1: for v ∈ V do
2: hopDistanceTo[v] := infinity
3: probDistanceTo[v] := 0
4: Q.enqueue(v)
5: end for
6: hopDistanceTo[n] := 0
7: probDistanceTo[n] := 1
8:
9: while Q 6= ∅ do

10: u := vertex in Q with smallest distance (by hopDistanceTo)
11: remove u from Q
12: if hopDistanceTo[u] == infinity then
13: break
14: end if
15: for each neighbor v of u do
16: thop := hopDistanceTo[u] + 1
17: tprob := probDistanceTo[u] · p(u,v)
18: if thop ≤ hopDistanceTo[v] AND tprob > θ then
19: hopDistanceTo[v] := t
20: if tprob > probDistanceTo[v] then
21: probDistanceTo[v] := tprob
22: end if
23: end if
24: /* Reorder v in Queue, tie-break with probDistanceTo[]*/
25: decrease-key(v,Q)
26: end for
27: end while
28: return all v with hopDistanceTo[] less than infinity

through all impacted nodes and returns the total expected
influence.

To illustrate the aggregation calculation, we reproduce
the graph from Figure 1 again here in Figure ??. Consider
node h and assume the adversary has chosen source f and
defender has chosen source d. Since influence travels along
edges in an ordered fashion, the influence of f is only
possible if d fails to influence h, since d is closer in terms
of hop-distance. Thus, the probability that h is converted
into an adversary node is:

(1− p(d,h)) · (p(f,g) · p(g,h)) (4)

In words, the probability is equal to the joint probability
that d fails and the influence from f succeeds in influencing
g and then h thereafter. Notice that if the defender had
a second source further away, it would be completely
irrelevant, since only adversary-influenced nodes contribute
to the payoff determination.

Although the estimated marginal gain of LSMI can be
arbitrarily inaccurate, choosing the best action only requires
that the relative marginal gain of different nodes be accurate.
We show in the Experiments section that LSMI does a very
good job of this in practice as evidenced by the high reward
achieved by LSMI-based algorithms. The final algorithm for
the LSMI best-response oracle is shown in Algorithm 7.
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Algorithm 6 L-Eval(V, Sa, Sd)
1: InfV alue = 0
2: for v ∈ (V − Sa − Sd) do
3: N = GetVerticesWithinθ(v) ∩ (Sa ∪ Sd)
4: /* Prioritize sources by lowest hop-distance to v*/
5: S =makePriorityQueue(N)
6: pa = 0, pd = 0
7: while S 6= ∅ do
8: s = S.poll()
9: if (s ∈ Sa) then

10: pa = pa + (1− pa − pd)· Prob(s, v), pd = pd
11: else /* s must be in Sd */
12: pd = pd + (1− pa − pd)· Prob(s, v), pa = pa
13: end if
14: end while
15: InfV alue = InfV alue+ pa
16: end for
17: return InfV alue

Algorithm 7 LSMI-BR(ρa)
1: Sd = ∅
2: while |Sd| < rd do
3: for n ∈ (N − Sd) do
4: U(n) =

∑ρa.Size()
i=1 ρa.Prob(i) ·

5: LSMI(ρa.Action(i),Sd ∪ {n})
6: end for
7: n∗ = argmaxn∈N U(n)
8: BR = BR ∪ {n∗}
9: end while

10: return BR

5.4. PAGERANK Oracle

PageRank is a popular algorithm to rank webpages [27],
which we adapt here due to its frequent use in influence
maximization as a benchmark heuristic. The underlying idea
is to give each node a rating that captures the power it has for
spreading influence that is based on its connectivity. For the
purposes of describing PageRank, we will refer to directed
edges eu,v and ev,u for every undirected edge between u and
v. For each edge eu,v , set a weight wu,v = pe/pv where
pv =

∑
e pe over all edges incident to v. The rating or ‘rank’

of a node u, τu =
∑

v wu,v · τv for all non-source nodes v
adjacent to u. The exclusion of source nodes is performed
because u cannot spread its influence through a source node.

For our oracles, since the defender’s goal is to minimize
the attacker’s influence, the defender oracle will focus on
nodes incident to attacker sources Na = {n|n ∈ V ∧
∃en,m,m ∈ Sa}. Specifically, ordering the nodes of Na by
decreasing rank value, the top rd nodes will be chosen as the
best response. In the attacker’s oracle phase, the attacker will
simply choose the nodes with the highest ranks. Although
PAGERANK is very efficient, we expect its quality to be
low, since the attacker oracle fails to account for the presence
of a defender and the defender oracle only searches through
nodes directly incident to the attacker’s source nodes. We
will refer to oracles based on this heuristic as PAGERANK .

Algo Label Def. Oracle Att. Oracle Nodes R
DOEE EXACT EXACT 15 3
DOAE APPROX EXACT 20 3
DOAA APPROX APPROX 100 3
DOLE LSMI EXACT 20 3
DOLA LSMI APPROX 100-200 3
DOLL LSMI LSMI 450 20
DOLP LSMI PAGERANK 700 20
DOPE PAGERANK EXACT 40 3
DOPA PAGERANK APPROX 200-300 3
DOPL PAGERANK LSMI 1000+ 20
DOPP PAGERANK PAGERANK 1000+ 20

TABLE 4: Algorithms evaluated

6. EXPERIMENTS

In this section, we show experiments on both synthetic
and real-world leadership and social networks. We
evaluate the algorithms on scalability and solution quality.
One advantage of double oracle algorithms is the ease
with which the oracles can be changed to produce new
variations of existing algorithms. This allows us to simulate
various attacker/defender best-response strategies and test
our heuristics’ performance more thoroughly.

Ideally, we would report the performance of our mixed
strategy against an optimal best-response as a worst-case
analysis. However, due to scalability issues with the EXACT
best-response oracle, rewards for larger graphs can only be
calculated against an approximate best-response generated
by the APPROX oracle. Unless otherwise stated, each
datapoint is an average over 100 trials and the games created
used contagion probability on edges of 0.3, 20,000 Monte
Carlo simulations per estimation, and an LSMI θ = 0.001.
All experiments were run on machines with CPLEX 12.2,
2.8 GHz CPU, and 4GB of RAM.

In addition to the optimal Maximin algorithm, we also test
the set of double oracle algorithms listed in Table 4, where
Nodes and R(esources) indicate the approximate problem
complexity the algorithm can handle within 20 minutes
based on experiments with scale-free graphs.

6.1. Leadership Networks

In Hung (2010), a leadership network was created based on
real data of a district in Afghanistan with 7 village areas,
each with a few ‘village leaders’ with connections outside
the village, and a cluster of ‘district leaders’ shown in the
middle. We recreate the same network, shown in Figure ??a
and run our algorithms on it. Although not shown, quality as
measured against an APPROX attacker was very similar for
all algorithms. Algorithms exceeding 20min are not shown.

Closer examination of defender strategies reveals a
difference in the oracles’ approach. Since the PAGERANK
defender oracle considers only attacker-adjacent nodes with
the highest rank, most of its strategies focus on two
high-degree district leaders (neither are maximal degree
nodes) and on a regular member of the highest population
Village G. In this graph structure, where sets of nodes are
fully connected, this strategy works very well because the
attacker’s best response will often be the highest degree
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district leader and a node in Village G. This approach is
more conservative than LSMI , which directly chooses the
attacker’s source nodes since the 50% chance of wiping
out an attacker source provides slightly higher utility. The
attacker oracles all select from the same set of four high-
degree nodes. Aside from the highest-degree district leader
and Village G nodes, an additional high-degree village
leader far from Village G is also used. This result
suggests that not only connectivity, but also strategic spacing
provided by our algorithms is a key point for the maximizer’s
target selection.

Experiments varying contagion probability, shown in
Figure ??b, show LSMI defender oracle algorithms
randomizing over many more nodes at low contagion
levels. This occurs because the attacker’s initial set of
nodes accounts for most of his expected utility, encouraging
randomization over many nodes. PAGERANK ignores this
since a given set of nodes is often adjacent to all sets of
attacker-chosen nodes, while LSMI responds by matching
the increase node use directly.

As noted previously, a battalion is responsible for 4-
7 districts, so we create synthetic graphs with multiple
copies of a village structure (70 nodes each) and link all
district leaders together to create multi-district graphs. In
our experiments, for every district, each player is given 3
resources. Figure ?? shows runtime and solution quality
against an APPROX attacker best-response. Since we create
the graphs one district at a time, the graph sizes increase by
70 nodes at a time. The trend in rewards is once again that
LSMI defender oracle algorithms very slightly outperform
the others. All four algorithms scale to real-world problem
sizes.

6.2. Random Scale-Free Graphs

Scale-free graphs1 have commonly been used as proxies for
real-world social networks because the distribution of node
degrees in many real world networks have been observed
to follow a power law [28]. We conduct experiments on
randomly generated scale-free graphs of various sizes to
illustrate both the runtime scalability and quality of each
algorithm in graphs resembling social networks as opposed
to leadership networks.

Figure ?? shows the results for small scale-free graphs of
8-20 nodes with 3 resources for each player. The runtime
graph, Figure ??a shows only the algorithms that exceed
20 minutes for clarity. The remaining heuristic algorithms’
results all hug the x-axis because they take minimal time for
these graphs. As would be expected, Maximin scales the
most poorly and is only able to handle graphs of up to 11-12
nodes. The approximate algorithm, DOAE improves upon
DOEE and can handle up to 16-17 nodes, but swapping out
the APPROX oracle for the very fast LSMI oracle does not
improve runtime scalability very noticeably. This is because
although the LSMI oracle is orders of magnitude faster than
the APPROX oracle, the EXACT attacker oracle’s runtime

1The networks are built using the Barabási-Albert network building
algorithm and will be referred to as scale-free networks.

eclipses both of them, making the improvement irrelevant.
In Figure ??b, we show the reward obtained by the

defender when using the strategies generated against an
EXACT attacker best-response as described earlier. The key
point is that the majority of rewards are indistinguishable
from the optimal algorithms. The DOLL algorithm begins
to diverge slightly when the graph nears 100 nodes, but the
major exceptions are the algorithms featuring PAGERANK
defender oracles. Interestingly, DOLP, which uses LSMI
for the defender and PAGERANK for the attacker still
generates high rewards.

Figure ?? shows runtime and quality for larger scale-free
graphs of 20-100 nodes with 3 resources for each player. As
can be seen, the algorithms featuring the APPROX oracle
(DOAA, DOLA) begin to exceed our 20-minute cutoff
near 100 nodes while the remaining heuristic algorithms
continue to hug the x-axis because even these games are
completed in minimal time. As discussed previously,
due to the inefficiency of the EXACT oracle, we use an
APPROX best-response to calculate a more conservative
reward value. Figure ??b again shows algorithms with
PAGERANK defender oracles performing noticeably more
poorly than the other algorithms. DOLP is again very close
to the top performers. Note that while this may be due to the
APPROX best-response being used instead of an EXACT
best-response, it is very unlikely than an attacker could
perform any better given the hardness of the best-response
problem.

7. STRATEGY ANALYSIS

In addition, three types of variations were explored on
scale-free networks in more depth. First, we varied the
size of the graph and kept all other parameters constant.
Second, we varied the average contagion probability in the
graphs at three separate graph sizes. Finally, we varied
the standard deviation of the contagion probability in the
graphs and again tested these at three separate graph sizes.
All experiments featured a randomly generated scale-free
graph, 10 resources per player (Sd, Sa = 10), and contagion
probabilities on edges that were drawn from a normal
distribution. Scale-free graphs were chosen due to their
widespread use as proxies for general social networks and
were generated according to the principle of ‘preferential
attachment’ as introduced by Barabasi and Albert ([29]).
Our particular implementation adds edges between existing
vertices and newly added vertices with a probability of p =
(deg(v) + 1) / (|E|+ |V |)2. 100 trials were run for every data
point shown.

Figure ?? shows a preliminary test that was conducted to
provide a benchmark for the quality results. It shows the
reward for the defender when each of the four algorithms
is used as well as when no defender is present as well
for graphs of size 80, 160, and 240 and with the average
contagion probability set to 0.3, 0.5, and 0.7. Again, the
reward reported is the reward achievable by an adversary

2http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/ gener-
ators/random/BarabasiAlbertGenerator.html
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that best-responds to our algorithm’s generated defender
strategy by calculating the approximate best-response via
the algorithm proposed by Budak et. al (2011). As
mentioned, the graph sizes tested were limited to 260 nodes
because for larger graphs even calculating the approximate
best-response outlined above begins to take longer than 20
minutes as well.

As can be seen, all of the algorithms provide at least
a 30-40% improvement in reward obtained as opposed to
having no defender present across all of the cases tested.
Since this was intended as a preliminary justification for
the algorithms, we will provide more in-depth analysis
of the solution quality of the algorithms in the following
subsections.

7.1. Graph size scale-up

The first set of experiments explored the impact of scaling
up the size of the graph alone. Specifically, the more
efficient four algorithms (all combinations of the LSMI
and PAGERANK oracles) were run on randomly generated
scale-free graphs with 80-260 nodes in increments of
20, with 10 resources and contagion probabilities drawn
from a normal distribution N (0.3, 0.1). Graph sizes were
limited to 260 nodes because the adversary best-response
technique used to determine the defender’s reward became
too cumbersome for larger graphs.

Figure ??a shows the impact on runtime as the graph
size is scaled up. As can be seen, the solution technique
that features two LSMI oracles (DOLL) requires the longest
run time at 40-50 seconds for all of the game sizes tested.
Interestingly, there did not appear to be a consistent increase
in runtime as was observed in the other 3 algorithms (each
of which had at least one PAGERANK oracle). This is
due to the fact that the runtime depends on the size of the
problem but also on the ability of the oracles to find new,
higher-quality pure strategies to add to the subgame being
solved. DOLL features two highly adaptive LSMI oracles
and, as evidenced, tends to generate many more actions for
the smaller graph sizes. Thus, although the graphs get larger,
fewer iterations are used, causing minimal runtime increase
as the graph size is increased.

The other 3 algorithms were much faster across the board,
all requiring less than 30 seconds with a consistent trend as
the graph size increases. DOPL requires more time than
DOLP because of the fact that the defender PAGERANK
oracle explicitly adapts to the attacker’s strategy (only
uses nodes adjacent to attacker nodes), while the attacker
PAGERANK oracle does not. Previous work explored
scaling to larger graphs with more resources, but since this
is not the focus of our work, we refer the interested reader to
Tsai et. al (2012) [30].

Figure ??b shows the impact on solution quality as the
graph size is scaled up. Unsurprisingly, as the size of the
graph increases, it becomes increasingly difficult for the
defender to block the adversary’s influence spread and the
defender receives a correspondingly lower reward. Again,
we also observe a large difference between algorithms

that use a LSMI oracle for the defender as opposed to
a PAGERANK oracle for the defender, with the latter
providing much lower rewards. This is expected, due to the
higher sophistication of the LSMI defender oracle as was
noted earlier.

Figure ??a shows the final number of actions in the
defender’s action set as the size of the graph is increased.
The action set is defined as the number of actions available
to the defender in the CoreLP phase of the double oracle
algorithm and is exactly the number of new best-responses
that have been found by the defender oracle. In the worst
case, this would include all possible actions in the game, but
as can be seen is generally far smaller, making the problem
much more tractable. The attacker’s action set size was
always extremely similar if not identical to the defender’s
action set size.

Figure ??b shows a similar metric and features the number
of actions in the support set of the final defender strategy.
The support set is the set of actions that have non-zero
probability in the final mixed strategy. Again, the final
attacker support set size was always extremely similar if not
identical to the defender’s.

As can be seen, both the action set and the support set
sizes are much larger with the DOLL algorithm than for any
of the other algorithms. This is due to the sophistication
of the LSMI oracles as opposed to the PAGERANK oracle.
The PAGERANK oracles converge extremely quickly to
a small set of actions and often do not generate new
actions in response to new adversary strategies. This is
especially true for the PAGERANK attacker oracle, since the
defender oracle actually chooses nodes directly adjacent to
the attacker. Thus, even when only one PAGERANK oracle
is used, the algorithm overall converges quickly. The DOLL
algorithm is iterating many more times than algorithms
featuring the PAGERANK oracle, leading to the previous
runtime result with DOLL being far slower than the other
algorithms.

Furthermore, the trends seen in both Figure ??a and
??b show the size of the final action set and support set
decreasing as the graph size is increased. This is due to
the fact that as the graph grows larger, very few actions are
useful for the defender to use to defend against the spread
of the attacker’s influence. For the attacker, randomization
becomes less essential for the same reason. Thus, both
players converge to a very small set of actions for the final
mixed strategy.

7.2. Contagion probability: Average

To explore the impact of changing the contagion probabil-
ities on the four algorithms, we tested three different con-
tagion probability averages for three separate graph sizes.
Specifically, we ran all four algorithms with the contagion
probabilities drawn from normal distributions N (0.3, 0.1),
N (0.5, 0.1), and N (0.7, 0.1). The graph sizes tested were
80, 160, and 240 node random scale-free graphs with 10 re-
sources allowed per player. We measured the same 4 metrics
as in the previous section: runtime, solution quality, action
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set size, and support set size.
Figure ??a shows the results pertaining to runtime. The

x-axis is divided into three sets of three bars each. Each set
represents one setting for the contagion probability average
(0.3, 0.5, 0.7) while each bar represents the runtime result for
one algorithm. At averages of 0.5 and 0.7, consistent trends
can be seen, with larger graphs taking longer and higher
probabilities leading to longer runtimes for algorithms with
LSMI oracles. This is because LSMI oracles speed up
heuristic estimation by calculating only high probability
influences, but when contagion probabilities are higher, this
leads to many more nodes that must be processed by the
algorithm.

For the case of 0.3, however, the trend is not consistent
for the DOLL algorithm. Experiments suggest that with low
contagion probabilities, two LSMI oracles continually find
new best-responses to each other’s strategies. This occurs
because at low contagion probabilities, different parts of the
graph interact minimally and the attacker is able to move to
‘new’ nodes and entirely avoid the defender, resulting in a
cat-and-mouse game that requires many more iterations to
converge than when a PAGERANK oracle is used.

Figure ??b shows the reward for the defender using
the same approximate best-response technique described
previously. Unsurprisingly, larger graphs lead to lower
reward for the defender because it is harder to defend.
Higher contagion probabilities also result in lower defender
rewards for the same reason.

As we noticed in the scale-up experiments, larger graphs
lead to fewer actions in the action set as well as the final
support set, as shown in Figures ??a and ??b. As mentioned,
at the lowest contagion probability tested (0.3), the action
and support set sizes are very large for DOLL, causing very
high runtimes due to the many iterations required to generate
the observed action sets.

7.3. Contagion probability: Standard deviation

Next we tested variations of the standard deviation of the
normal distribution that the contagion probabilities on edges
are drawn from. Specifically, we ran all four algorithms with
the contagion probabilities drawn from normal distributions
N (0.3, 0.0), N (0.3, 0.05), N (0.3, 0.1), and N (0.3, 0.15).
These results, however, did not show statistically significant
differences in the results when the standard deviation was
changed under the particular parameter settings we tested.
We only show the runtime results in Figure ?? to support
this claim, but the quality, action set size, and support set size
results all looked similarly homogenous across the different
standard deviations tested.

8. CONCLUSION

With increasingly informative data about interpersonal
connections, principled methods can finally be applied
to inform strategic interactions in social networks. Our
work combines recent research in influence blocking
maximization, operations research, and game-theoretic

resource allocation to provide the first set of solution
techniques for a novel class of security games with
contagious actions. Experiments on real-world leadership
and scale-free graphs reveal that a simple PAGERANK
oracle can provide high quality solutions for graphs with
clusters of highly interconnected nodes, whereas more
sophisticated techniques can be very beneficial in sparsely
connected graphs. The methods used herein are a first step
into a new area of research in game-theoretic security with
wide-ranging applications.

9. FUTURE DIRECTIONS

This type of maximize/mitigate scenario can be used
to model a number of other domains that we hope to
apply them to. For example, anti-vaccination groups
have become a serious issue for health organizations to
address [31]. By modeling the interaction as an adversarial
information diffusion problem, the techniques here can
help health organizations mitigate the impact of anti-
vaccination propaganda. In political campaigns, candidates
often attempt to disseminate negative information about
their opponents to sway votes against them. Again, we
can model this scenario with one party attempting to
maximize the spread of this information while another party
attempts to block the spread by disseminating its own news
(e.g., their own negative propaganda, positive spin on the
negative news, bigger news). In addition to the open
theoretical questions for the existing model and algorithms
such as runtime and quality guarantees, these new domains
introduce novel challenges as we improve the fidelity of our
models to fit these problems.
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