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ABSTRACT

Protecting our environment and natural resources is a major global

challenge. “Protectors” (law enforcement agencies) try to protect

these natural resources, while “extractors” (criminals) seek to ex-

ploit them. In many domains, such as illegal fishing, the extractors

know more about the distribution and richness of the resources than

the protectors, making it extremely difficult for the protectors to op-

timally allocate their assets for patrol and interdiction. Fortunately,

extractors carry out frequent illegal extractions, so protectors can

learn about the richness of resources by observing the extractor’s

behavior. This paper presents an approach for allocating protector

assets based on learning from extractors. We make the following

four specific contributions: (i) we model resource conservation as a

repeated game; (ii) we transform this repeated game into a POMDP

by adopting a fixed model for the adversary’s behavior, which can-

not be solved by the latest general POMDP solvers due to its ex-

ponential state space; (iii) in response, we propose GMOP, a ded-

icated algorithm that combines Gibbs sampling with Monte Carlo

tree search for online planning in this POMDP; (iv) for a specific

class of our game, we can speed up the GMOP algorithm without

sacrificing solution quality, as well as provide a heuristic that trades

off solution quality for lower computational cost.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms

Algorithm, Security, Performance
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1. INTRODUCTION
Faced with the challenge of sustaining natural resources, many

nations have established law enforcement agencies tasked with in-

terdicting illegal extractions of natural resources. However, patrol

assets are limited and the allocation of these limited assets is a key

challenge for law enforcement. This scarcity is also observed in
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security games for protecting critical infrastructure against terror-

ism [15]. However, protecting natural resources is very different. In

security games, the attacker conducts extensive surveillance on the

defender and executes a one-shot attack, while in resource conser-

vation domains, the extractor also observes the protector’s strategy

but carries out frequent illegal extractions. We propose the term re-

source conservation games to refer to this new domain. Throughout

this paper, we refer to law enforcement as the “protector”, environ-

mental criminals as the “extractor”, and locations with resources as

“sites”.

In resource conservation domains, the protector often does not

know the distribution of resources while the extractor may have

more information about it, e.g. preventing illegal fishing. This fact

leads to the fundamental challenge addressed in this paper: we want

to know how to provide an optimal asset deployment (e.g., patrol)

strategy for the protector, given her lack of knowledge about the

distribution of resources. Similar planning problems under uncer-

tainty exist in security games where the defender does not know the

attacker’s utilities. Previous work on uncertainty in security games

can be divided into two categories: the first models uncertainty in

terms of different attacker types and then solves a Bayesian Stack-

elberg game with a known prior distribution [11, 18]; the other opti-

mizes the worst-case payoff without any assumptions about a prior

distribution [5]. In resource conservation games, the extractor’s

frequent illegal extractions provide the protector with the opportu-

nity to learn about the distribution of resources by observing the

extractor’s behavior. Our paper focuses on constructing an online

policy for the protector to maximize her utility given observations

of the extractor. At every round, the protector chooses one site to

protect and the extractor simultaneously chooses one site to steal

from. Both the extractor and the protector have full knowledge

about each other’s previous actions.

In this paper, we model this situation as a repeated game. We

then adopt a fixed model for the extractor’s behavior and recast this

repeated game as a partially observable Markov decision process

(POMDP). However, our POMDP formulation has an exponential

number of states, making current POMDP solvers like ZMDP [14]

and APPL [7] infeasible in terms of computational cost. Silver

and Veness [13] have proposed the POMCP algorithm which of-

fers good solution quality and is scalable to large POMDPs. It uses

particle filtering to maintain an approximation of the belief state of

the agent, and then uses Monte Carlo Tree Search (MCTS) for on-

line planning. However, the particle filter is only an approximation

of the belief state. By appealing to the special properties of our

POMDP, we propose the GMOP algorithm (Gibbs sampling based

MCTS Online Planning) which draws samples directly from the

exact belief state using Gibbs sampling and then runs MCTS for

online planning. Our algorithm provides higher solution quality



than the POMCP algorithm. Additionally, for a specific subclass of

our game with an extractor who plays a best response against the

protector’s empirical distribution, and a uniform penalty of being

seized across all sites, we provide an advanced sampling technique

to speed up the GMOP algorithm along with a heuristic that trades

off solution quality for lower computational cost.

2. RELATED WORK
There is a significant body of literature on single and multia-

gent learning. It can be divided into two categories: model-free ap-

proaches and model-based approaches. Q-learning [16] is a popular

model-free approach that computes an optimal MDP policy with-

out any prior knowledge about the reward and transition functions

through trial and error. Model-free approaches make no assump-

tions about the opponent’s strategy, but they learn slowly. Model-

based approaches start with some model of the opponent’s strategy,

compute and play the best response, observe the opponent’s play

and then update the model of the opponent’s strategy. The ear-

liest such model-based approach is fictitious play [2], where the

opponent is assumed to play a stationary mixed strategy and the

first player assumes the opponent’s mixed strategy is given by his

empirical distribution. Conitzer and Sandholm propose the AWE-

SOME algorithm [4] that: (i) converges to a Nash equilibrium when

all other players use AWESOME; (ii) converges to a best response

with probability 1 if all other players play stationary strategies. Un-

like most existing model-based approaches which learn the oppo-

nent’s strategy under the assumption of known utility functions, our

model-based approach learns the opponent’s utility function.

There is previous work on repeated games with incomplete in-

formation [1]. In these works, it is assumed that both players are

strategic and play a Nash equilbrium. However, the extractors in the

real world are not game theorists who play sophisticated strategies.

Indeed, the current consensus from behavioral sciences suggest that

human behavior is far from rational.

There has been previous work on learning attacker payoffs in

repeated security games [8, 9]. Letchford et al. [8] develop an

algorithm to uncover the attacker type in as few rounds as possi-

ble, while our paper focuses on maximizing the protector’s utility.

Marecki et al. [9] use MCTS to maximize the defender’s utility in

the first few rounds. However, their algorithm is unable to offer

guidance in later rounds because it does not allow for belief up-

dating, which is a major component of our paper. Additionally,

Letchford et al. [8] and Marecki et al. [9] both assume that the

defender plays a mixed strategy and the attacker plays a pure strat-

egy that maximizes his expected utility given the defender’s mixed

strategy. However, illegal extractions happen frequently in resource

conservation games, so the assumption that the extractor carries out

surveillance over a long time to know the exact mixed strategy of

the protector does not hold. Furthermore, we relax the assumption

that the attacker is perfectly rational to handle more general behav-

ior models such as quantal response.

3. MODEL

3.1 Motivating Domain
Our work is motivated by the domain of resource conservation,

for example, illegal fishing, illegal oil extraction, water theft, crop

theft, and illegal diamond mining, etc. In each case, illegal extrac-

tions happen frequently and the resources are spread over a large

area that is impossible for the protector to cover in its entirety.

In our model, we make the assumption that the protector and the

extractor fully observe their opponent’s actions. The protector is

usually a powerful government agency that has access to satellite

imaging, multiple patrol assets, and the reports of local residents.

The extractor learns about law enforcement tactics by exchanging

information internally, covert observation, and by buying informa-

tion from other sources.

Our flagship example is the real-world problem faced by the U.S.

Coast Guard (USCG) in the Gulf of Mexico of illegal fishing by

fishermen from across-the-border. In this domain, the protector

(USCG) performs daily aircraft patrol surveillance1; satellites are

also used to monitor illegal fishing2. Furthermore, illegal fishermen

have well-organized support from across-the-border; USCG pro-

vided evidence that fishermen have surveillance on USCG boats.

3.2 Formal Model
We now formalize the preceding story into a two-player repeated

game between a protector and an extractor. In our model, the

amount of resources at each site will be fixed and the extractor will

have full knowledge of this distribution. The protector will have to

learn this distribution by observing the extractor’s behavior.

We operate over the finite time horizon t ∈ T , {1, . . . , T}.

There are n sites indexed by N , {1, 2, . . . , n} that represent the

locations of the natural resource in question: the extractor wants to

steal resources from these sites and the protector wants to interdict

the extractor. We represent the value of the sites to the extractor

in terms of their utilities. Each site has a utility u(i) that is only

known to the extractor. The utility space is discretized into m lev-

els, u(i) ∈ M , {1, 2, . . . ,m}. Human beings cannot distinguish

between tiny differences in utilities in the real world, so we are jus-

tified in discretizing these utilities. For n sites and m utility levels,

there are mn possible sets of utilities across all sites. The distribu-

tion of resources is then captured by the vector of utilities at each

site, and the set of possible resource distributions is:

U , {(u (1) , u (2) , . . . , u (n)) : u (i) ∈ M, ∀i ∈ N} = ×i∈NM.
(1)

We assume that the resource levels u(i), i ∈ N are independent

from each other. At the beginning of the game, the protector may

have some prior knowledge about the resource levels u(i) at each

site i ∈ N. This prior knowledge is represented as a probability

density function p(u(i)) over M. If the protector does not know

anything about u(i), then we adopt a uniform prior for u(i) over

M.

At each time t ∈ T, the protector chooses a site at ∈ N to pro-

tect and the extractor simultaneously chooses a site ot ∈ N from

which to steal. If at = ot, the protector catches the extractor and

the extractor is penalized by the amount P (ot) < 0; if at 6= ot,
the extractor successfully steals resources from site ot and gets a

payoff of u(ot). For clarity, the protector’s interdiction is always

successful whenever it visits the same site as the extractor. Ad-

ditionally, the protector fully observes the moves of the extractor,

likewise, the extractor fully observes the moves of the protector.

Note that the penalty P (i), i ∈ N is known to both the protector

and the extractor. We adopt a zero-sum game, so the protector is

trying to minimize the extractor’s payoffs. In most resource con-

servation domains, the extractor pays the same penalty P if he is

seized independent of the site he visits. We allow for varying penal-

ties across sites for greater generality.

In this work, we assume a fictitious Quantal Response playing

(FQR) extractor. Specifically, a fictitious extractor assumes the

protector’s empirical distribution will be his mixed strategy in the

1http://www.uscg.mil/d8/sectCorpusChristi/
2http://wwf.panda.org/?206301/WWF-new-approach-to-fight-
illegal-unreported-and-unregulated-fishing



next round. In this behavior model, the extractor makes decisions

based on the parameters u(i), P (i), i ∈ N, as well as the protec-

tor’s actions in previous rounds. We justify this model with three

arguments. First, it is natural that the extractor’s actions depend

on u(i), P (i), i ∈ N along with the protector’s actions in previous

rounds. The extractor is more likely to steal from sites with higher

utilities u(i), lower penalties P (i), that have not been visited of-

ten by the protector. Second, many human behavior models such

as quantal response (QR) [10] have been shown to be effective in

describing human’s behavior through human subject experiments.

Human subjects make decisions based on the available data, which

are comprised of exactly the utilities, penalties, and history of play.

Thus, we can justify a quantal response model that is a function of

these available data. Third, in all of our motivating domains, the

realm of play and the number of possible distributions of resources

are both very large. Any model of protector— extractor interaction

necessarily has a large state space. Solution algorithms for general

two-player zero-sum extensive-form games would suffer from the

curse of dimensionality. To increase tractability, we fix a reason-

able model of the extractor.

The extractor behaves in the following way: in every round, he

(i) computes the empirical coverage probability ci for every site i
based on the history of the protector’s actions; (ii) computes the

expected utility EU(i) = c(i)P (i) + (1 − c(i))u(i) for every

site; (iii) attempts to steal from the site i with the probability pro-

portional to eλEU(i) where λ ≥ 0 is the parameter representing

the rationality of the player (higher λ represents a more rational

player). The reader will see that our methodology can be applied

to other human behavior models, for example, the extractor can be

fully rational and visit the site with the highest expected utility (a

special case of QR corresponding to taking the limit λ → ∞); the

extractor can visit sites with expected utilities that exceed a cer-

tain threshold; the extractor can have only a limited memory of the

protector’s actions, etc.

3.3 Protector’s POMDP Formulation
To implement the model from Section 3.2, we must resolve two

technical questions. First, at every round t, based on her current

belief about u, how should the protector choose sites to protect in

the next round? Second, after each round, how should the protector

use the observation of the latest round to update her beliefs about

u? We are studying decision making and belief updating in a par-

tially observable environment where the payoffs u are unobservable

and the extractor’s actions are observable, which is the exact setup

for a POMDP. We now setup our two-player game as a POMDP

{S,A,O, T,Ω, R} where the extractor follows a quantal response

model.

state space The state space of our POMDP is S = U × Z
n, which

is the cross product of the utility space and the count space. U is

the utility space as defined in Equation 1. Zn is the set of possible

counts of the protector’s visits to each site, where Ct ∈ Z
n is an

integer-valued vector where Ct (i) , i ∈ N is the number of times

that the protector has protected site i at the beginning of round t ∈
T. A particular state s ∈ S is written as s = (u,C), where u is

the vector of utility levels for each site and C is the current state

count. The initial beliefs are expressed by a distribution over s =
(u, 0), induced by the prior distribution on u. We define ct(i) ,
Ct(i)
t−1

to be the frequency with which the protector visits site i at

the beginning of round t ∈ T. We set c1 , 0 by convention.

action space The action space A is N, representing the site the

protector chooses to protect.

observation space The observation space O is N, representing the

site the extractor chooses to attempt to steal from.

conditional transition probability Let ea ∈ R
n denote the unit

vector with a 1 in slot a ∈ N and zeros elsewhere. The conditional

transition probability T governing the evolution of the state is

T
(

s′ =
(

u′, C′)
| s = (u,C) , a

)

=

{

1, u = u′, C′ = C + ea,

0, otherwise.

Specifically, the evolution of the state is deterministic. The under-

lying utilities do not change, and the count for the site visited by

the protector increases by one while all others stay the same.

conditional observation probability We define EU(u,C) ∈ R
n

to be the vector of empirical expected utilities for the extractor for

all sites when the actual utility is u and the count is C,

[EU(u, C)](i) = c(i)P (i) + (1− c(i))u(i), ∀i ∈ N,

when t ≥ 1. We set [EU (u, 0)] (i) = u(i) by convention. Hence,

our observation probabilities Ω are explicitly

Ω(o|s′ = (u,C), a) =
eλ[EU(u,C−ea)](o)

∑

i∈N
eλ[EU(u,C−ea)](i)

,

the probability of observing the extractor takes action o when the

protector takes action a and arrives at state s′. Note that both a and

o are the actions the protector/extractor take at the same round.

reward function The reward function R is

R
(

s = (u,C), s′ = (u,C + ea), a, o
)

=

{

−P (o), a = o,

−u (o) , a 6= o.

We conclude this section by briefly explaining how the above

POMDP can be modified to allow for other extractor behavior mod-

els. We only require the extractor’s decisions to be a function of

the utilities u, penalty P , and the count C. We can then calcu-

late the probability that the extractor visits site i, i ∈ N in ev-

ery possible state s = (u,C). Thus, we can accordingly mod-

ify the conditional observation probabilities Ω to treat this extrac-

tor behavior, while the rest of the POMDP is unchanged. If the

extractor’s decision making depends on the sequence of the pro-

tector’s actions more than the count C, for example, if the extrac-

tor has limited memory or weighs recent protector activity more

heavily, then the state space also needs to be modified to become

S = U × {Ni : i ∈ {0, 1, 2, . . . , T}}. U is still the utility space

and {Ni : i ∈ {0, 1, 2, . . . , T}} is now the entire history of the

protector’s actions. Note when the extractor has a limited memory

k we only need to keep track of the last k ≤ T time steps.

4. GMOP ALGORITHM
In Section 3, we modeled our repeated game as a POMDP in or-

der to update the protector’s beliefs about the resource distribution

and to allocate patrol assets. However, the size of the utility space

U is mn, and the size of the count space is O(T
n

n!
). The computa-

tional cost of the latest POMDP solvers such as ZMDP and APPL

soon become unaffordable for us as the problem size grows. For a

small instance like n = 4, m = 5 and 5 rounds, there are 78750
states in the POMDP. Both the ZMDP and APPL solvers run out of

memory when attempting to solve this POMDP. This challenge is

non-trivial because our models in reality are much larger than this

toy example.

Silver and Veness [13] have proposed the POMCP algorithm,

which provides high quality solutions for large POMDPs. The

POMCP algorithm uses a particle filter to approximate the belief

state. Then, it uses Monte Carlo tree search (MCTS) for online

planning where (i) state samples are drawn from the particle fil-

ter and (ii) the action with the highest expected utility based on



Monte Carlo simulations is chosen. However, the particle filter is

only an approximation of the true belief state and is likely to move

further away from the actual belief state as the game goes on, es-

pecially when most particles get depleted and new particles need

to be added. Adding new particles will either (i) make the particle

filter a worse approximation of the exact belief state, if the added

particles do not follow the distribution of the belief state or (ii) be

as difficult as drawing samples directly from the belief state, if the

added particles do follow the distribution of the belief state. How-

ever, if we could efficiently draw samples directly from the exact

belief state, then there would be no need to use a particle filter.

Our POMDP has specific structure that we can exploit. The

count state in S is known and the utility state does not change,

making it possible to draw samples directly from the exact belief

state using Gibbs sampling. We propose the GMOP algorithm that

draws samples directly from the exact belief state using Gibbs sam-

pling, and then runs MCTS. The samples drawn directly from the

belief state better represent the true belief state compared to sam-

ples drawn from a particle filter. We thus conjecture that our GMOP

algorithm will yield higher solution quality than the POMCP algo-

rithm for our problem, and this intuition is confirmed in our exper-

iments.

4.1 GMOP Algorithm Framework
The GMOP algorithm is outlined in Algorithm 1. At a high level,

in round t the protector draws samples of state s from its belief

state Bt(s) using Gibbs sampling and then it runs MCTS using

those samples. Finally, it executes the action with the highest ex-

pected utility. MCTS starts with a tree that only contains a root

node. Since the count state Ct is already known, the protector only

needs to sample the utility state u from Bt. The sampled state s is

comprised of the sampled utility u and the count Ct.

Algorithm 1 GMOP Algorithm Framework

1: function PLAY(Ct)

2: Initialize Tree

3: for i = 1→ numSamples do

4: u← GIBBSSAMPLING

5: SIMULATE(s= (u,Ct))
6: end for

7: at ← best action in tree

8: end function

It has been shown that the UCT algorithm converges to the opti-

mal value function in fully observable MDPs [6]. Based on this re-

sult, Silver and Veness have established the convergence of MCTS

in POMDP online planning as long as the samples are drawn from

the true belief state Bt(s). It follows that the convergence of our

GMOP algorithm is guaranteed.

From Algorithm 1, we see that each iteration of our algorithm

is composed of two parts: GIBBSSAMPLING which draws sam-

ples u directly from Bt(u) using Gibbs sampling, and SIMULATE

which does Monte Carlo simulation of the sampled states s =
(u, Ct). Our sampling technique will be discussed in detail in Sec-

tion 4.2 while the details of MCTS in POMDP are available in [13].

4.2 Drawing Samples

4.2.1 Gibbs Sampling Overview

Gibbs sampling [3] is a Markov chain Monte Carlo (MCMC)

algorithm for sampling from multivariate probability distributions.

Let X = (x1, x2, . . . , xn) be a general random vector with n com-

ponents and with finite support described by the multivariate prob-

ability density p(X). Gibbs sampling only requires the conditional

probabilities p(xi|x−i) to simulate X , where x−i = (xj)j 6=i de-

notes the subset of all components of X except component i. Gibbs

sampling is useful when direct sampling from p(X) is difficult.

Suppose we want to obtain k samples of X = (x1, x2, . . . , xn).
Algorithm 2 shows how Gibbs sampling works in general to pro-

duce these samples using only the conditional probabilities p(xi|x−i).
It constructs a Markov chain whose steady-state distribution is given

by p(X), so that the samples we draw also follow the distribution

p(X). The states of this Markov chain are the possible realizations

of X = (x1, x2, . . . , xn), and a specific state Xi is denoted as

Xi = (xi1, xi2, . . . , xin) (there are finitely many such states by

our assumption). The transition probabilities of this Markov chain,

Pr(Xj |Xi), follow from the conditional probabilities p(xi|x−i).
Specifically, Pr(Xj |Xi) = p(xl|x−l) when xjv = xiv for all

v not equal to l, and is equal to zero otherwise, i.e. the state tran-

sitions only change one component of the vector-valued sample at a

time. This Markov chain is reversible (meaning p(Xi)Pr(Xj |Xi) =
P (Xj)Pr(Xi|Xj),∀i, j) so p(X) is its steady-state distribution.

Algorithm 2 Gibbs Sampling

1: Initialization: X = {x1, x2, . . . , xn} satisfying p(X) > 0
2: for i = 1→ k do

3: for j = 1→ n do

4: xj ∼ p(xj|x−j)
5: end for

6: Xi ← {x1, x2, . . . , xn}
7: end for

4.2.2 Applying Gibbs Sampling in GMOP

We let Bt be the probability distribution representing the protec-

tor’s beliefs about the true utilities at the beginning of round t ≥ 1;

B1 represents the protector’s prior beliefs when the game starts. We

adopt the notation Bt (u) to denote the probability of the vector of

utilities u with respect to the distribution Bt.

Let B be the prior belief distribution and B′ be the posterior

belief distribution. Our Bayesian belief update rule to obtain B′

from B and the observation is explicitly

B′(s′ = (u,C)) =ηΩ(o|s′, a)
∑

s∈S

T (s′|s, a)B(s)

=ηΩ(o|s′, a)B(s = (u,C − ea)).

If at and ot represent the actions that the protector and the ex-

tractor choose to take at round t, we have

Bt(u) =ηBt−1(u)Ω(ot−1|s = (u,Ct), at−1)

=η′B1(u)Π
t−1
i=1Ω(oi|s = (u,Ci+1), ai).

(2)

It follows that the posterior belief Bt is proportional to the prior

belief B1 multiplied by the observation probabilities over the en-

tire history. Since there are mn possible utilities, it is impossible to

store and update Bt when m and n are large, and thus it is impossi-

ble to sample directly from Bt. Hence, we turn to Gibbs sampling.

We only need the conditional probabilities p(ui|u−i),∀i in Bt

p(ui|u−i) = ηp(ui, u−i) = ηBt(ui, u−i)

=η′B1(ui, u−i)Π
t−1
j=1Ω(oj |s = (u = (ui, u−i), Cj+1), aj)

=η′′B1(ui)Π
t−1
j=1Ω(oj |s = (u = (ui, u−i), Cj+1), aj).

(3)

This quantity is easy to compute where B1(ui) is the prior proba-

bility that site i has utility ui. Besides the conditional probability,

we also need to find a valid u with Bt(u) > 0 to initialize Gibbs



sampling. Finding such a u is easy in our FQR model because any

u with B1(u) > 0 satisfies Bt(u) > 0. In other behavior mod-

els, where finding a valid u is not so intuitive, one possibility is to

check the sampled utilities at the latest round to pick a valid one.

5. FICTITIOUS BEST RESPONSE
In this section, we focus attention on a limiting case of the FQR

model, a fictitious best response playing (FBR) extractor. An FBR

extractor plays a best response against the empirical distribution of

the protector, a similar assumption is found in [8, 9]. Additionally,

we assume that all sites share the same penalty P , this assumption

is satisfied in most resource conservation games. We will see that

these two assumptions allow us to greatly speed up the GMOP algo-

rithm. We also put forward a computationally inexpensive heuristic

that offers high quality solutions.

When the extractor is FBR, our POMDP is roughly the same as

in the FQR case except that the conditional observation probabili-

ties Ω are now

Ω(o|s′ = (u,C), a) =

{

1
|A(u,C−ea)|

, o ∈ A (u,C − ea) ,

0, otherwise,

(4)

where A (u, C) is the set of sites with maximal empirical expected

utility when the actual utility is u and the count is C, i.e.

A (u, C) = argmax
i∈N

[EU (u, C)] (i) ⊂ N,

The FBR extractor is actually a limiting case of the more gen-

eral FQR model, we obtain this case by taking λ → ∞. If we run

the POMCP algorithm for an FBR extractor, the particles produced

by the particle filter will be depleted very quickly and most util-

ity states will take on probability 0 after only a few rounds. For

example, if n = 10 and the protector observes that the extractor

visits site 3 in the first round, then approximately 90% of possi-

ble utility states take on probability 0. Compared with FQR, more

new particles must be added in the FBR case. Thus, the particle

filter is a worse approximation of the belief state, leading to worse

performance of the POMCP algorithm.

5.1 Speeding Up GMOP
Gibbs sampling requires computation of the conditional proba-

bility p(ui|u−i) as described in Equation 3. However, t grows as

the game evolves and the computational cost increases linearly with

t. Under our assumptions of an FBR extractor and uniform penal-

ties, we can use an advanced algorithm to compute p(ui|u−i) with

its computational cost bounded by constant time.

Define

It(i, j) ,

{

It−1(i, j), i 6= ot−1,

max{It−1(i, j),
1−ct−1(j)

1−ct−1(i)
}, i = ot−1,

and I1(i, j) , 0, ∀i, j ∈ N. The quantities It(i, j) can be com-

puted recursively from It−1(i, j) at very little computational cost.

Intuitively, It(i, j) maintains the minimum allowed ratio
u(i)−P

u(j)−P

for any u satisfying Πt−1
j=1Ω(oj |s = (u, Cj+1), aj) > 0 as the

game evolves. By checking if u satisfies
u(i)−P

u(j)−P
≥ It(i, j), ∀i, j ∈

N, we can figure out if Πt−1
j=1Ω(oj |s = (u, Cj+1), aj) is equal

to 0 or not. We then compute the exact value of Πt−1
j=1Ω(oj |s =

(u, Cj+1), aj) whenever this probability is not 0.

PROPOSITION 1. For a specific u, Πt−1
i=1Ω(oi|s = (u,Ci+1), ai)

> 0 ⇐⇒ u(i)−P

u(j)−P
≥ It(i, j),∀i, j ∈ N.

PROOF. From Equation 3 and 4, Πt−1
j=1Ω(oj |s = (u,Cj+1), aj)

> 0 ⇐⇒ oj ∈ A(u,Cj),∀j ∈ {1, 2, . . . , t− 1}.
o ∈ A(u,C) ⇐⇒ [EU(u, C)](o) ≥ [EU(u,C)](i), ∀i ∈ N

c(o)P + (1− c(o))u(o) ≥ c(i)P + (1− c(i))u(i), ∀i ∈ N

u(o) − P

u(i) − P
≥

1− c(i)

1− c(o)
,∀i ∈ N

∀u that
u(i)−P

u(j)−P
≥ It(i, j), ∀i, j ∈ N, we have oj ∈ A(u,Cj),∀j

∈ {1, 2, . . . , t − 1} by the definition of It(i, j); ∀u that ∃i, j ∈

N
u(i)−P

u(j)−P
< It(i, j), for that i, j, ∃ round k ∈ {1, 2, . . . , t − 1}

that
1−ck(j)
1−ck(i)

= It(i, j) and i = ok , so we have ok /∈ A(u,Ck)

because
u(i)−P

u(j)−P
< It(i, j) = 1−ck(j)

1−ck(i)
. Here we proved oj ∈

A(u,Cj),∀j ∈ {1, 2, . . . , t−1} ⇐⇒ u(i)−P

u(j)−P
≥ It(i, j),∀i, j ∈

N.

We now explain how to compute Πt−1
j=1Ω(oj |s = (u, Cj+1), aj).

Define Vt(i) , {k : ok = i, k ∈ {1, 2, . . . , t− 1}}, ∀i ∈ N to be

the set of rounds where the extractor attempts to steal from site i;
define V eq

t (i, j) , {k : j ∈ A(u,Ck), k ∈ Vt(i)}, ∀i, j ∈ N to

be the set of rounds where the extractor attempts to steal from site

i, but where site j gives the extractor the same expected utility. We

define V neq
t (i, j) , {k : j /∈ A(u,Ck), k ∈ Vt(i)},∀i, j ∈ N to

be the set of rounds where the extractor attempts to steal from site

i and site j gives the extractor lower expected utility. Additionally,

we define

Tiet(i, j) , {k : It(i, j) =
1− ck(j)

1− ck(i)
, k ∈ Vt(i)},∀i, j ∈ N

Like It(i, j), Tiet(i, j) can be computed recursively at very lit-

tle cost. By definition, V eq
t (i, j) ∩ V neq

t (i, j) = φ, V eq
t (i, j) ∪

V neq
t (i, j) = Vt(i) and Tiet(i, j) ⊆ Vt(i), ∀i, j ∈ N.

PROPOSITION 2. If
u(i)−P

u(j)−P
= It(i, j), V

eq
t (i, j) = Tiet(i, j),

V neq
t (i, j) = Vt(i)−Tiet(i, j); If

u(i)−P

u(j)−P
> It(i, j), V

neq
t (i, j) =

Vt(i), V
eq
t (i, j) = φ.

PROOF. If
u(i)−P

u(j)−P
= It(i, j):

∀k ∈ V eq
t (i, j), ck(i)P + (1 − ck(i))u(i) = ck(j)P + (1 −

ck(j))u(j) since i, j ∈ A(u,Ck), so
1−ck(j)
1−ck(i)

= u(i)−P

u(j)−P
= It(i, j),

k ∈ Tiet(i, j). So we have V eq
t (i, j) ⊆ Tiet(i, j)

∀k ∈ Tiet(i, j),
u(i)−P

u(j)−P
= It(i, j) = 1−ck(j)

1−ck(i)
, so ck(i)P +

(1− ck(i))u(i) = ck(j)P + (1− ck(j))u(j), j ∈ A(u,Ck). So

we have Tiet(i, j) ⊆ V eq
t (i, j).

Till now we proved when
u(i)−P

u(j)−P
= It(i, j), V

eq
t (i, j) = Tiet(i, j),

so V neq
t (i, j) = Vt(i) − Tiet(i, j) by definition. The proof when

u(i)−P

u(j)−P
> It(i, j) is similar so we omit it here.

Algorithm 3 shows how our advanced sampling technique re-

samples u(k) from the conditional probabilities p(ui|u−i) by us-

ing the quantities It and Tiet. The input u is the current set of

sampled utilities; k is the index of u to be resampled according

to p(uk|u−k); and I and ‘Tie’ are the latest I and ‘Tie’ that have

been computed recursively. We set #A(j) = |A(u,Cj)| to de-

note the number of sites that have maximal expected utility for the

extractor at round j, and we initialize these quantities to be 1 be-

cause ok ∈ A(u,Ck) by definition. Then, we check every pair of

sites i, j ∈ N: (i) if
u(i)−P

u(j)−P
< It(i, j), then we set Bt(u) = 0

according to Proposition 1; (ii) if
u(i)−P

u(j)−P
= It(i, j), then we set

V eq
t (i, j) = Tiet(i, j) according to Proposition 2, and we increase



#A(k) by 1 for those k ∈ Tiet(i, j) because j ∈ A(u,Ck),∀k ∈

V eq
t (i, j) = Tiet(i, j); (iii) if

u(i)−P

u(j)−P
> It(i, j), then V eq

t (i, j) =

φ according to Proposition 2, so we do nothing. After checking

all pairs i, j ∈ N, we determine: (i) whether Bt(u) = 0 and (ii)

#A(k),∀k ∈ {1, 2, . . . , t − 1} if Bt(u) > 0. Based on these

evaluations, the conditional probability Prob = p(ui|u−i) used to

resample u(k) is computed according to Equation 3. Finally, Prob
is normalized and then we sample the new u(k).

Algorithm 3 Advanced Sampling Technique

1: function DRAWSAMPLE(u,k, I, T ie)

2: Prob = B1(uk)
3: for i = 1→ m do

4: u(k)← i
5: #A(j)← 1,∀j = 1→ currRound− 1
6: for p = 1→ n, q = 1→ n do

7: if
u(p)−k

u(q)−k
< I(p, q) then

8: Prob(i)← 0
9: break

10: else if
u(p)−k

u(q)−k
= I(p, q) then

11: #A(j)← #A(j) + 1,∀j ∈ Tie(p, q)
12: end if

13: end for

14: if Prob(i) 6= 0 then

15: Prob(i)← Prob(i) ∗ ΠcurrRound−1
j=1

1
#A(j)

16: end if

17: end for

18: Normalize Prob
19: u(k) ∼ Prob
20: return u
21: end function

5.2 Myopic Planning Heuristic
For our GMOP algorithm, larger sample sizes in MCTS leads to

higher solution quality but at the expense of greater computational

cost. Some domains require decisions to be made very quickly, so

the protector may get poor performance with the GMOP algorithm

due to an insufficient number of samples. With this motivation, we

provide a myopic planning heuristic. This heuristic offers slightly

lower solution quality compared with GMOP, but costs much less

computing time.

The myopic planning heuristic works as follows: it (i) approx-

imately computes the posterior marginal probabilities of all sites’

utilities based on all previous observations; (ii) computes the ex-

pected u(i) for each site using the posterior marginal probabilities;

(iii) plans myopically—protects the site with the highest estimated

expected utility for the extractor based on the expected u(i) com-

puted in step (ii) and the empirical visit counts C (ties are broken

with even probabilities).

The key issue lies in step (i)—the computation of the posterior

marginal probabilities of the utilities u(i). This step can be viewed

as inference in a Bayesian network. An example Bayesian network

where n = 4 is shown in Figure 1. Here, u(i), ∀i ∈ N are treated

as the unobserved random variables in the Bayesian network, and

they have prior probabilities B1(u(i)) for all i ∈ N. We define

f(u(i), u(j)), ∀i, j ∈ N to be observable binary random variables

that depend on u(i), u(j):

f(u(i), u(j)) ,

{

1, u(i)−P

u(j)−P
≥ It(i, j),

u(j)−P

u(i)−P
≥ It(j, i),

0, otherwise,

variable
node

factor
node

u(1) u(2) u(3) u(4)

f(u(1), u(2)) f(u(1), u(3)) f(u(3), u(4))

Figure 1: Bayesian Network when n = 4

In the Bayesian Network, we have observations of f(u(i), u(j))
= 1, ∀i, j ∈ N, and our aim is to infer the posterior marginal prob-

abilities for u(i), ∀i ∈ N. According to Proposition 1, these factor

nodes f(u(i), u(j)) = 1,∀i, j ∈ N fully describe the conditions a

specific u must satisfy in order to have a positive posterior proba-

bility. We then use the widely known belief propagation algorithm

[12] for inference, which yields approximate marginal probabili-

ties.

Note that this heuristic does not take into consideration possi-

ble ties in the extractor’s decision-making. In particular, recall that
u(i)−P

u(j)−P
= It(i, j) and

u(i)−P

u(j)−P
> It(i, j) correspond to two differ-

ent cases, as we have shown in Proposition 2, and they are treated

separately in Algorithm 3. Yet, the Bayesian network is unable

to distinguish between these two cases and it treats them both as
u(i)−P

u(j)−P
≥ It(i, j). Hence, the Bayesian network does not uti-

lize all of the information that the protector has obtained and thus

cannot offer an accurate description of the true belief state. Sub-

sequently, the posterior probability we compute from the Bayesian

network is inaccurate even if an exact inference algorithm is used.

However, we note that in our experiments we get satisfactory so-

lution quality even though both the Bayesian network formulation

and the belief propagation algorithm are inexact.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of our models and algorithms in

this section through extensive numerical experiments. We give at-

tention to both the FQR and FBR extractor models, and our results

strongly support the worth of our techniques.

For most of our upcoming experiments we use the following set-

tings: n = 10, m = 10, the penalty across all sites is P = −50,

and the prior probability distribution B1(ui), i ∈ N is uniform. All

results are averaged over 1000 simulation runs. For each simula-

tion run, we randomly draw the true utilities u(i), i ∈ N and then

simulate the actions the protector and the extractor would take over

the rounds of the game. Solution quality is assessed in terms of

the average reward that the protector gets in the first few rounds of

the game. There are two parameters in MCTS for our GMOP algo-

rithm: numSamples is the number of samples and maxHorizon
is the depth of the tree, i.e. the number of horizons we look ahead

in the POMDP.

GMOP vs ZMDP/APPL To begin, we compare our GMOP

algorithm with the ZMDP solver [14] and the APPL solver [7],

both are general POMDP solvers. We show that our GMOP algo-

rithm achieves almost the same solution quality as ZMDP/APPL

solvers. For a small problem instance like n = 4, m = 5 and total

rounds maxHorizon = 5, there are 78750 states in the POMDP.

Both ZMDP and APPL solvers run out of memory even in this

small problem instance. Hence, we test the two solvers together

on an even smaller instance with n = 3, m = 5, P = −10 and

maxHorizon = 5, so that the resulting POMDP has only 7000
states. As a base line, we also include a fixed policy where the pro-

tector randomly chooses one site to protect at each round. Table



1 reports the average reward of these three algorithms for both the

FQR (λ = 0.5, 1 and 1.5) and FBR extractor. In this table, the

columns titled Hi for i = 1, . . . , 5 represent the GMOP algorithm

with maxHorizon set to be i and numSamples set to be 10000.

We see that the GMOP algorithm with maxHorizon varying from

1 to 5 and the APPL/ZMDP solvers are very close in terms of av-

erage reward, and all algorithms outperform the random policy for

the FQR and FBR extractor models.

Table 1: ZMDP/APPL vs GMOP in Solution Quality

Random ZMDP APPL H1 H2 H3 H4 H5

FQR(0.5) 1.13 3.85 3.85 3.90 3.89 3.95 3.90 3.91

FQR(1) 1.05 4.84 4.81 4.75 4.80 4.87 4.97 4.79

FQR(1.5) 1.03 5.35 5.39 5.35 5.36 5.42 5.36 5.34

FBR 1.09 6.32 6.31 6.25 6.24 6.27 6.32 6.36

Analysis of GMOP Now we look at our GMOP algorithm more

closely. We want to investigate the effect of numSamples and

maxHorizon on the performance of MCTS in our GMOP algo-

rithm for the FQR and FBR extractor models. Figure 2(a)/2(b) re-

ports the results for the FQR model and Figure 3(a)/3(b) reports the

results for the FBR model. Figure 2(a) and Figure 3(a) show that

the performance of MCTS improves as we increase numSamples
while holding maxHorizon fixed, demonstrating the convergence

of MCTS for both the FQR and FBR models. Figures 2(b) and Fig-

ure 3(b) together show that increasing maxHorizon increases the

protector’s reward as long as the numSamples is large enough to

ensure convergence. If numSamples is not large enough, for ex-

ample if it is only 100, then the performance of MCTS deteriorates

as maxHorizon increases.
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Figure 2: Fictitious Quantal Response

POMCP (Particle Filter) vs GMOP (Gibbs Sampling) In this

paper we use Gibbs sampling to drive MCTS instead of the parti-

cle filter, as in the original POMCP algorithm [13]. In this way,

the distribution of our samples is closer to the actual belief state.

We now compare the performance of these two sampling tech-

niques. The runtime of Gibbs sampling roughly increases linearly

with numSamples; the runtime of the particle filter roughly in-

creases linearly with the size of the particle filter (number of parti-

cles). For a fair comparison, we fix the particle filter size as well as

numSamples in Gibbs sampling.

For the FQR model, we set the particle filter size to be 100000
and numSamples in Gibbs sampling to be 100. The total run-

times are recorded in Table 2, where we see that the runtime of

our GMOP algorithm is shorter than the runtime of POMCP as

numSamples varies from 100 to 100000. However, Figure 2(c)

demonstrates that the performance of the GMOP algorithm with

100 samples exceeds the performance of the POMCP algorithm

regardless of the value of numSamples. This performance gap

between GMOP and POMCP grows with time because the particle

filter gives an increasingly worse approximation of the belief state

as time evolves.

Table 2: GMOP vs POMCP in Runtime(s)

GMOP-100 POMCP-100 POMCP-1000 POMCP-10000 POMCP-100000

31.71 75.86 72.92 75.89 92.26

Fictitious Quantal Response (λ = 1.5),maxHorizon = 1

Table 3 and Figure 3(c) show the runtime and reward of GMOP

with numSamples = 1000 vs POMCP with filter size 10000, for

the FBR extractor. For the FBR extractor, we see the same pat-

tern but with an even larger gap in solution quality. In the FBR

extractor model, the particles are depleted much more quickly than

in the FQR model so that more new particles must be added. How-

ever, these new particles do not follow the distribution induced by

the current belief state, which is detrimental to the quality of the

approximation of the belief state and thus leads to worse perfor-

mance.

Table 3: GMOP vs POMCP in Runtime(s)

GMOP-1000 POMCP-100 POMCP-1000 POMCP-10000 POMCP-100000

83.48 224.35 240.83 257.40 282.71

Fictitious Best Response, maxHorizon = 1
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Figure 3: Fictitious Best Response

Robustness In some situations, the protector may not know the

true value of λ which measures the extractor’s rationality. In this



experiment, we allow the extractor’s true value of λ to take values

in 0.5, 1, 1.5, and we allow the protector to estimate λ to be any of

0.5, 1, 1.5, for a total of 9 combinations of the true λ and its esti-

mate. Figure 2(d) presents the results of this experiment. It turns

out that the protector only does slightly worse when she incorrectly

estimates the extractor’s true λ.

Evaluation of the Advanced Sampling Technique in FBR Model

In Section 5.1, we proposed an advanced way to compute condi-

tional probabilities when using Gibbs sampling in the FBR model.

This technique is less computationally expensive than the general

method. Table 4 compares the runtimes of the general sampling

technique with our advanced sampling technique. As the number of

rounds increases from 20 to 100, the total runtime of the advanced

sampling technique increases linearly, implying that the sampling

cost at each round is approximately the same. On the other hand,

the total runtime of the general sampling technique increases with

the square of the number of rounds in the game, implying that the

sampling cost is increasing linearly in each round.

Table 4: General vs Advanced Sampling in Runtime(s)

20 40 60 80 100

General 51.77 209.31 469.80 835.15 1303.95

Advanced 43.83 62.04 77.24 92.77 108.67

Fictitious Best Response, numSamples = 1000, maxHorizon = 1

GMOP vs Myopic Planning Heuristic Our myopic heuristic

trades solution quality for computational efficiency for a FBR ex-

tractor. Figure 3(d) compares the solution quality of the myopic

planning heuristic versus GMOP, and Table 5 compares their total

runtimes. For a fair comparison, we set maxHorizon to be 1 in

the GMOP algorithm. Figure 3(d) indicates that the heuristic gives

better solutions than GMOP with numSamples = 100. However,

the solution quality of the heuristic is worse than the one produced

by GMOP when numSamples equals 1000 or 10000. According

to Table 5, the runtime of the myopic heuristic is much less than

the runtime of GMOP.

Table 5: GMOP vs Heuristic in Runtime(s)

Heuristic GMOP-100 GMOP-1000 GMOP-10000

0.49 8.38 83.48 689.87

Fictitious Best Response

7. CONCLUSION
This paper presents an online planning algorithm for the protec-

tor in resource conservation games3. Our algorithm uses the in-

formation gained by observing the extractor’s actions. We model

this problem as a repeated game and then cast it as a POMDP. The

latest POMDP solvers fail to scale up to our problem, so in re-

sponse, we propose the GMOP algorithm which is based on MCTS

and Gibbs sampling. Our experimental results show that our al-

gorithm provides the same solution quality as the general POMDP

solvers like ZMDP/APPL and outperforms the previous POMCP

algorithm. Additionally, for the special case with FBR extractor

and uniform penalties, we provide an advanced sampling technique

3Although this paper and Yang et al. [17] both discuss learning
from the actions the extractors take in resource conservation do-
mains, this paper focuses on learning the resource richness while
Yang et al. [17] focuses on learning the behavioral model of the
extractors.

to speed up the GMOP algorithm along with a heuristic that trades

off solution quality for lower computational cost. Their effective-

ness is also verified in our experimental results.
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