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Abstract

Game theory has become an important research area in handling complex security resource

allocation and patrolling problems. Stackelberg Security Games (SSGs) have been used in

modeling these types of problems via a defender and an attacker(s). Despite recent successful

real-world deployments of SSGs, scale-up to handle defender teamwork remains a fundamental

challenge in this field. The latest techniques do not scale-up to domains where multiple defenders

must coordinate time-dependent joint activities. To address this challenge, my thesis presents

algorithms for solving defender teamwork in SSGs in two phases. As a first step, I focus on

domains without execution uncertainty, in modeling and solving SSGs that incorporate teamwork

among defender resources via three novel features: (i) a column-generation approach that uses

an ordered network of nodes (determined by solving the traveling salesman problem) to generate

individual defender strategies; (ii) exploitation of iterative reward shaping of multiple coordinating

defender units to generate coordinated strategies; (iii) generation of tighter upper-bounds for

pruning by solving security games that only abide by key scheduling constraints.

In the second stage of my thesis, I address execution uncertainty among defender resources

that arises from the real world by integrating the powerful teamwork mechanisms offered by

decentralized Markov Decision Problems (Dec-MDPs) into security games. My thesis offers

the following novel contributions: (i) New model of security games with defender teams that

xiii



coordinate under uncertainty; (ii) New algorithm based on column generation that utilizes Decen-

tralized Markov Decision Processes (Dec-MDPs) to generate defender strategies that incorporate

uncertainty; (iii) New techniques to handle global events (when one or more agents may leave

the system) during defender execution; (iv) Heuristics that help scale up in the number of targets

and resources to handle real-world scenarios; (v) Exploration of the robustness of randomized

pure strategies. Different mechanisms, from both solving situations with and without execution

uncertainty, may be used depending on the features of the domain. This thesis opens the door to a

powerful combination of previous work in multiagent systems on teamwork and security games.

xiv



Chapter 1: Introduction

The challenge of providing security applies to many domains across the world. One large focus

has been on the protection of critical infrastructure and facilities. Some examples of the impact

of terrorist attacks include the Oklahoma City bombing in 1995 which killed 168 people and

caused at least an estimated $652 million in damages [Hewitt, 2003], the September 11 attacks

on the World Trade Center towers and the Pentagon which killed 2,996 people and resulted in an

estimated loss of over $100 billion [Institute for the Analysis of Global Security, 2004]. In the

2004 Madrid train bombings, 191 people were killed and approximately 1,800 people were injured

along with disrupting the train system [Wikipedia, 2014]. The 2008 Mumbai terrorist attacks on

several buildings and sites killed 164 people while injuring 308 people [Press Information Bureau

(Government of India), 2008]. On April 15, 2013, two homemade bombs exploded during the

Boston Marathon which killed 3 people and injured approximately 264 people [Kotz, 2013]. Even

more recently was the Charlie Hebdo shooting on January 2015 where two gunmen killed 12

people which included Charlie Hebdo employees and 2 national police officers while wounding

11 others [BBC News Europe, 2015]. A common theme across all these settings is the limited

amount of resources that are unable to protect all areas or targets. An additional factor that must
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be accounted for in these security settings is the presence of an adversarial agent that is able to

conduct surveillance of the resources’ strategy, while having the ability to exploit this knowledge.

Stackelberg Security Games (SSGs) have been widely applied to real-world security domains

with these applications depending on significant advances in fast algorithms for SSGs [Jain et al.,

2010b; Tambe, 2011]. These applications include ARMOR (Assistant for Randomized Monitoring

Over Routes) software at the Los Angeles International Airport [Pita et al., 2008] to randomize

checkpoints and canine units, the IRIS (Intelligent Randomization in Scheduling) system used

by the United States Federal Air Marshal Service to allocate air marshals on flights [Tsai et al.,

2009], the PROTECT (Port Resilience Operational / Tactical Enforcement to Combat Terrorism)

application used by the United States Coast Guard to schedule patrols to protect the ports [Shieh

et al., 2012], the TRUSTS (Tactical Randomization for Urban Security in Transit Systems) tool

to produce patrol schedules in transit systems [Yin et al., 2012], the ARMOR-FISH system that

aids the United States Coast Guard in depending fisheries from illegal fishing in the Gulf of

Mexico [Brown et al., 2014a], and the PAWS (Protection Assistant for Wildlife Security) algorithm

to help wildlife rangers execute patrols to deter poaching in national parks in Uganda [Yang et al.,

2014].

SSGs focus on modeling the strategic interactions between a defender (e.g., security personnel)

and attacker (e.g., terrorist) where the defender has a limited amount of resources to protect a set

of targets. The challenge addressed in SSGs is optimizing the use of a defender’s limited security

resources in the presence of an adversary who can conduct surveillance before planning an attack.

2



(a) US Coast Guard patrolling the port of Boston (b) Sheriff in a transit system

Figure 1.1: Different domains of Stackelberg security games

1.1 Problem Addressed

In solving SSGs, the challenge is how to optimally allocate limited security resources over a set

of potential targets [Basilico et al., 2009; Conitzer and Sandholm, 2006; Paruchuri et al., 2008].

Current algorithms solve this problem by generating mixed defender strategies, which represents a

probability distribution over a set of targets or patrol schedules, while also considering that the

attacker conducts surveillance over the defender’s strategy.

An example of a deployed application based on SSGs is the PROTECT system which has been

in use by the United States Coast Guard (USCG) since 2011 to generate patrol schedules to help

protect the ports from terrorist attacks [Shieh et al., 2012]. While working on this application with

the USCG, one concern that they expressed was that the system did not model coordination across

multiple boats and/or resources. Modeling and solving security games that handle coordination

among multiple defender units significantly increases the number of possible defender strategies.
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This results in an exponentially large defender strategy space that for even small scale games are

unable to fit into memory.

Such coordination is an important aspect of real-world security systems as there are benefits

that may accrue from coordination across multiple defender resources, e.g., if a target is visited

by a single defender resource, it may only be 50% effective in detecting (and hence stopping) a

potential attack. The arrival of a second defender resource may increase the effectiveness to 80%

(as the attacker may be forced to react to a second defender). Previous algorithms would typically

consider a target fully covered (or 100% effective) if a single defender resource visits a target and

thus do not handle varying effectiveness nor additional benefit if a second resource also visits a

target. No prior SSG algorithms can scale-up to handle coordinated patrols for real-world domains;

neither general purpose Stackelberg algorithms such as [Conitzer and Sandholm, 2006; Paruchuri

et al., 2008], nor special purpose SSG algorithms [Jain et al., 2010b].

In addition to coordination among defender resources, the challenge of deploying game-

theoretic schedules in the field has not been addressed by research in SSGs. Despite some initial

evaluation of the PROTECT system [Shieh et al., 2012], a head-to-head comparison between

game-theoretic schedules and human generated schedules, the way in which most security agencies

allocate their resources, is still missing from literature. However, this type of study would be

extremely useful to advance the state-of-the-art of game-theoretic scheduling, because it would

allow the user to measure, for the first time, the actual performance of such schedules when

deployed in the real world.
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1.2 Contributions

My thesis will focus on modeling and efficiently solving teamwork among defender resources in

security games for real-world domains.

1.2.1 Defender Teamwork in Security Games with No Uncertainty

The first part of my thesis will first address teamwork in SSGs for defender resources in domains

with no execution uncertainty while also providing valuable real-world feedback that compares

human generated schedules versus game-theoretic generated schedules. To handle teamwork

among defender resources in SSGs without uncertainty, my thesis presents Smart, Security games

with Multiple coordinated Activities and Resources that are Time-dependent, a model extending

the framework of security games to explicitly represent jointly coordinated activities, and two

algorithms: an optimal algorithm, SmartO, that computes optimal defender strategies for Smart

problems, and a heuristic algorithm, SmartH , that achieves further speed-up over SmartO [Shieh

et al., 2013].

The algorithms build upon work that has leveraged the branch-and-price framework [Jain et al.,

2010b]. These algorithms are able to exploit the structure of the joint activity coordination problem

to gain speed up based on the following key ideas: (i) use of insights from the Traveling Salesman

Problem to order the search space, especially in SmartH , while maintaining coordination, (ii)

efficient greedy computation of patrols per resource via iterative reward shaping to generate a

joint patrol, and (iii) generation of tight upper-bounds exploiting scheduling constraints to allow

pruning of the search space based on the submodular property of joint activities.
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This part of the thesis also presents an important head-to-head comparison of the game-

theoretic schedules generated by SmartH versus schedules generated by humans in a large scale

real-world experiments of a one-day patrol exercise of the Los Angeles Metro System. The results

show that the game-theoretic schedules from SmartH were evaluated to outperform the schedules

generated by humans.

1.2.2 Defender Teamwork in Security Games with Execution Uncertainty

The second part of my thesis presents scalable solution approaches for handling the presence of

execution uncertainty of coordinating defender resources (which significantly increases the com-

plexity of the problem) [Shieh et al., 2014]. Teamwork can be complicated by three factors—(i)

requiring defender resources to coordinate under uncertainty; (ii) handling the dynamic inability

of a resource to continue teamwork; and (iii) lack of communication. The next part of my thesis

addresses these additional factors of uncertainty that frequently arise in the real-world in security

games. I leverage previous work in teamwork in multiagent systems such as the TREMOR algo-

rithm which solves distributed Partially Observable Markov Decision Problems (DEC-POMDPs)

for a team of agents that work together in environments with uncertainty [Varakantham et al.,

2009]. First, I provide a new model of a security game where a joint policy is used as the defender’s

pure strategy to handle coordination under uncertainty. Second, I present a new algorithm that uses

column generation to efficiently generate Dec-MDP policies as pure strategies used in determining

the optimal mixed strategy for the defender team. Third, global events among defender resources

are modeled and leveraged in handling teamwork. Fourth, I show multiple heuristics that help

scale-up to real-world scenarios.
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1.3 Overview of Thesis

This thesis is organized in the following manner. Chapter 2 discusses the necessary background

materials for the research presented here. Chapter 3 provides an overview of the relevant research.

Chapter 4 presents the Smart model and corresponding algorithms to solve these types of games.

Chapter 5 describes the algorithm and heuristics used to solve coordinating defender resources

in SSGs in the presence of execution uncertainty via the use of Dec-MDPs in security games.

Chapter 6 provides additional evaluation and analysis into the performance of the algorithms

presented in this thesis. Chapter 7 concludes this thesis and presents ideas for future work.
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Chapter 2: Background

In this chapter, I present two areas of research that the thesis draws upon. I begin by introducing the

Stackelberg Security Game model in Section 2.1 as the work in this thesis extends the security game

model. The second research area is Decentralized Markov Decision Problems that explore multiple

distributed cooperating agents, which is leveraged in providing teamwork under uncertainty and is

described in more detail in Section 2.2.

2.1 Stackelberg Security Games

Stackelberg Security Games (SSGs) [Conitzer and Sandholm, 2006; Kiekintveld et al., 2009] are

composed of two players, a leader and a follower, where the leader (denoted as the defender) must

protect a set of targets from the follower (denoted as the attacker or adversary). The defender has a

limited amount of resources with which to protect the set of targets against the adversary whose

strategy is to determine which target to attack. The adversary conducts surveillance and thus learns

the defender’s strategy before choosing the target to attack.

Both the attacker and defender have pure strategies where the defender’s pure strategy would

be an allocation of resources on patrols or targets, while the adversary’s pure strategy would be

the target that is to be attacked. The optimal strategy of resource allocation for the defender will
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Uu
d Uc

d Uu
a Uc

a
t1 -5 4 6 -3
t2 -3 1 7 -2

Table 2.1: Sample payoffs for the defender and attacker.

typically be a mixed strategy, which is a probability distribution over the set of defender pure

strategies.

For domains where the defender resources must conduct patrols over a set of targets while

adhering to a maximum patrol time, the defender’s pure strategy is now defined on a graph

Gr = (T, Er), where the vertices T are the targets and the edges Er represent connectivity between

the targets for resource r. This allows for heterogeneous resources, e.g., boats or helicopters, which

have the same targets but the connectivity between nodes can be different. For each e ∈ Er, τ(e)

represents the time it takes one defender resource to traverse the edge e. As usual with SSGs [Yin

et al., 2010], for each target t ∈ T , there is an associated reward Uc
d(t) and penalty Uu

d(t) to the

defender if t was protected with an effectiveness of 100% and 0% respectively. Similarly, payoffs

Uc
a(t) and Uu

a(t) are defined for the attacker, with Uu
d(t) < Uc

d(t) and Uc
a(t) < Uu

a(t). Table 2.1 gives

an example of the payoffs for two targets, t1 and t2, for the defender and the attacker. If the defender

protects target t1, then the defender’s payoff would be Uc
d(t1) = 4 while the attacker’s payoff would

be Uc
a(t1) = −3. However, if the defender leaves target t2 unprotected, then the defender’s payoff

would be Uu
d(t2) = −3 while the attacker’s payoff would be Uu

a(t2) = 7. The defender has a set

of R resources, and each resource can choose an activity from the setA = {α1, α2, . . . αK}. Each

pure strategy of the defender is a route for each resource.

There have been many algorithms and models developed to solve SSGs, including

DOBSS [Paruchuri et al., 2008] which solves SSGs using a mixed-integer linear program, AS-

PEN [Jain et al., 2010b] which solves SSGs that contain a greater number of defender resources
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and larger strategy space, ORIGAMI [Kiekintveld et al., 2009] which provides a polynomial time

algorithm for SSGs that contain no scheduling constraints, along with HUNTER [Yin and Tambe,

2012] and RECON [Yin et al., 2011] which compute robust strategies for security games. However,

these algorithms are unable to scale-up in solving security games that require teamwork (in the

form of joint coordinated activities) among defender resources.

2.2 Dec-MDP

Teamwork among multiple agents has been a well studied area. Some well known frameworks for

teamwork include the SharedPlans [Grosz and Kraus, 1996] framework where agents communicate

their beliefs, desires, and intentions, the STEAM [Tambe, 1997] framework that builds a partial

hierarchy of joint intentions/actions, and the Generalized Partial Global Planning (GPGP) [Decker

and Lesser, 1995] framework that is based on a group of coordinating mechanisms to handle

different task environments. However, these frameworks of teamwork focus on creating a standard

methodology for coordination and communication while failing to address uncertainty and rewards.

Decentralized Markov Decision Problems (Dec-MDP) models provide a framework to handle

distributed decision-making problems to generate coordinated multiagent policies where uncer-

tainty exists in the domain while also accounting for rewards and costs associated with different

states [Bernstein et al., 2002]. The Dec-MDP model that is used by this thesis (for teamwork

under uncertainty) is defined by the tuple: 〈Ag, S , A,T,R〉. Ag = {1, . . . , n} represents the set

of n defender resources. S = S u × S 1 × · · · × S n is a finite set of world states of the form

s = 〈su, s1, · · · , sn〉. Each resource i’s local state si is a tuple (ti, τi) where ti is the target and τi is

the time at which resource i reaches target ti. Time is discretized and there are m decision epochs
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{1, . . . ,m}. su is the unaffected state, meaning that it is not affected by the resources’ actions. It is

employed to represent occurrence of global events (bomb threats, increased risk at a location etc.)

A = A1 × · · · × An is a finite set of joint actions a = 〈a1, · · · , an〉, where Ai is the set of actions

to be performed by resource i. T : S × A × S → R is the transition function where T (s, a, s′)

represents the probability of the next joint state being s′ if the current joint state is s and joint

action is a. Since transitions between resource i’s local states are independent of actions of other

resources, we have transition independence. Due to the presence of unaffected states, this notion of

transition independence is equivalent to the one employed in Network Distributed POMDPs [Nair

et al., 2005]. Formally, T (s, a, s′) = Tu(su, s′u) ·
∏

i Ti(〈su, si〉, ai, s′i).

My thesis focuses on modeling game-theoretic interactions, in which the rewards depend on

the strategies of both the defender and the attacker. Therefore standard Dec-MDP reward functions

cannot be directly applied. Nevertheless, as part of our algorithm, I will reduce a subproblem to a

Dec-MDP problem with a standard Dec-MDP joint reward function of the form R : S → R, where

R(s) represents the reward for reaching joint state s. Unlike in the ND-POMDP framework, our

reward function is not decomposable.

Dec-MDPs are a popular framework for multiagent planning and coordination under uncer-

tainty, with work ranging from a simplified model for transition independent Dec-MDPs [Becker

et al., 2004], a toolbox for multiagent planning solvers [Spaan and Oliehoek, 2008], the use

of heuristic search and constraint optimization [Dibangoye et al., 2012], to multi-robot explo-

ration [Matignon et al., 2012]. A major difference in this thesis is the addition of an adversarial

agent that is able to respond to the joint policy of the Dec-MDP.
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Chapter 3: Related Work

There are two main areas of related work. The first area is on Stackelberg security games. The

second area is the work done on Decentralized Markov Decision Processes. I will now explore

these two areas in more detail.

3.1 Stackelberg Security Games

Stackelberg security games (SSGs) have gathered significant attention in literature [Basilico et al.,

2009; Dickerson et al., 2010; Korzhyk et al., 2011a,b; Letchford and Conitzer, 2013; Letchford

et al., 2012; Letchford and Vorobeychik, 2013]. Early work focused on solving Stackelberg games

but did not consider their application to the security domain. Stackelberg games were first solved

via the MultipleLP approach [Conitzer and Sandholm, 2006] where the leader’s strategies were

computed for a Stackelberg game. A faster algorithm (compared to the MultipleLP approach)

known as DOBSS [Paruchuri et al., 2008] used a mixed-integer linear program to solve for the

leader’s optimal strategy for Stackelberg games.

Following DOBSS, ORIGAMI and ERASER algorithms [Kiekintveld et al., 2009] were

developed with ORIGAMI providing a polynomial time solution for security games with no

scheduling constraints (an example of scheduling constraints is patrolling a metro system where
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the defender is restricted in the stations that can be visited based on patrol time and metro lines).

ERASER [Kiekintveld et al., 2009] provided a more compact representation of the defender

strategies for multiple resources (compared to DOBSS) while also handling scheduling constraints

that arise from the defender’s strategies. ASPEN [Jain et al., 2010b] was later developed which

utilized a branch-and-price approach to generate a subset of the defender’s pure strategies while

still computing the optimal solution for the defender allowing arbitrary scheduling constraints,

thereby significantly improving the efficiency of solving Stackelberg security games. However,

these algorithms do not consider teamwork and joint activities among the defender resources.

As discussed earlier, SSG models and algorithms have been used to build decision aids

including ARMOR [Pita et al., 2008], IRIS [Tsai et al., 2009], GUARDS [Pita et al., 2011],

PROTECT [Shieh et al., 2012], TRUSTS [Yin et al., 2012] and RaPtoR [Varakantham et al.,

2013b]. All these decision aids have been developed to assist the security of transportation

infrastructure including ports, airports and train lines. However, most of these decision aids do not

model joint coordinated activities. The IRIS system models some of this coordination by assigning

a negative infinite weight to the joint action of two Federal Air Marshals (FAMS) taking the same

flight, explicitly restricting the maximum number of FAMS on any flight to one (see the work of

Jain et al. [2010a] for more details). This type of solution, however, does not model more complex

forms of joint effectiveness as we will do in this thesis. In fact, most decision aids, including

ARMOR, GUARDS, PROTECT, TRUSTS and RaPtoR, do not account for jointly coordinated

activities. They allocate security resources without considering the benefits that could be accrued

by different resources combining their effort. As a consequence, they are generating schedules that

are not as effective as they could be.
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Jiang et al. [Jiang et al., 2013c] explored handling execution uncertainty of defender patrols

in security games via the use of Markov Decision Processes, but do not consider coordination

and teamwork among the multiple defender resources and instead focuses on a single defender,

or multiple independent defender resources that do not consider the additional effectiveness that

arises from having multiple resources at the same target.

Other than execution uncertainty, there has been recent work investigating coordination in

security games. In, Jiang et al. [2013b], the impact and loss from miscoordination between defender

resources is analyzed and quantified. Additional work has explored coordination mechanisms

for defenders that desire to share only limited amounts of sensitive information in the context of

security games [Procaccia et al.]. However, they do not consider and address the optimization

challenges and modeling of coordination in addition to execution uncertainty.

In addition to decision aids and security allocation, research in SSGs has also addressed

problems of multi-robot patrolling. More specifically, research has developed the multi-robot

adversarial patrolling games (MAPG) framework, a restricted type of SSG, which considers the

problem of coordinated patrols of multiple robots around a closed area with the existence of an

adversary attempting to penetrate into the area [Agmon et al., 2008a, 2011]. The penetration

requires time and the defender should identify the attacker during his attempt. Similarly, the work

from Sless et al. [2014] requires the robots to physically inspect penetration attempts for a given

time period. More specifically, Sless et al. [2014] investigate the problem of coordinated attacks, in

which the adversary initiates two attacks in order to maximize its chances of successful penetration,

assuming a robot from the team will be sent to examine a penetration attempt. Such MAPGs

patrols are frequency-based patrols in adversarial environments, but do not consider targets of
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varying importance and the impact of joint activities [Agmon et al., 2008b; Machado et al., 2003;

Vanek et al., 2010].

3.2 Decentralized Markov Decision Process

There has been significant amount of work done on decentralized Markov Decision Problems.

I first present models and extensions of Dec-MDPs. I then explore two subareas including

communication in Dec-MDPs and interactive sequential decision making under uncertainty. Then

the section describes some of the algorithms developed to efficiently solve Dec-MDPs including

the Expectation-Maximization framework.

One of the earliest models of Dec-MDPs addressed the issue of scalability when there exists

transition independence among the agents [Becker et al., 2004]. Transition independent Dec-MDPs

have been extended in a variety of ways. For example, one extension allows partial observability

in network structures known as network-distributed POMDP or ND-POMDP [Nair et al., 2005].

Another extension of Dec-MDPs include a decision theoretic model known as the decentralized

sparse-interaction Markov decision process (Dec-SIMDP) [Melo and Veloso, 2011], a subclass

of Dec-MDPs, where local interactions and communications are abstracted to interaction areas

and observable interactions. Unfortunately, the complexity of Dec-MDPs have been shown to be

NEXP-complete [Bernstein et al., 2002]. These models provide a framework for coordination

among agents, however are unable to model an adversarial agent that has a different reward

function.

Another subarea of Dec-MDPs include communication among agents in a decision theoretic,

decentralized environment by Goldman et al. [Goldman et al., 2007]. The Dec-MDP model is
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extended to Dec-MDP-Com model that includes the language of communication and cost to

transmit a message. The use of communication can potentially help overcome the issues that

arise from miscordination and provide a more robust solution. Another framework known as

Dec-SMDP-Com [Goldman and Zilberstein, 2008] for a decentralized semi-Markov decision

process with direct communication has been used to represent communication within multi-agent

planning in stochastic domains, where the agents operate independently between communication.

Dec-MDPs have also been used to address the issue of multi-robot exploration under commu-

nication breakdowns [Matignon et al., 2012]. Another area of research related to sequential

decision making under uncertainty is interactive partially observable Markov decision processes

(I-POMDP) [Gmytrasiewicz and Doshi, 2005], where the beliefs of the agents are not constrained

just by the state space, but include the physical environment and models of other agents. An

initial technique used to solve I-POMDPs included the use of particle filters to obtain approxi-

mate solutions [Doshi and Gmytrasiewicz, 2005]. Additional research has focused on graphical

models to represent and solve I-POMDPs [Doshi et al., 2007, 2009] along with a policy iteration

algorithm to solve I-POMDPs [Sonu and Doshi, 2012]. These models and algorithms explore the

coordination aspect under uncertainty but again fail to account for strategic agents with a different

reward structure.

Given the complexity of Dec-MDPs there has been a lot of work exploring ways to increase

the scalability of solving these types of problems. Spaan and Melo proposed an interaction-

driven Markov game, which is a model that extends Dec-MDPs and takes advantage of the

situations where the interaction between the resources are a local phenomenon, and provides a fast

approximate solution that exploits the structure [Spaan and Melo, 2008]. Roth et al. [Roth et al.,

2007] explored solving multi-agent domains with collective observability where factored policy
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representations are used. Dibangoye et al. [Dibangoye et al., 2012], present an algorithm to solve

transition independent Dec-MDPs while also providing error-bounds and fast convergence rates

via the use of continuous state MDPs and piecewise linear convex functions. A general framework

that has been used to solve multiagent planning problems is the Expectation-Maximization

(EM) framework [Dempster et al., 1977], which has helped in scaling up. In solving infinite-

horizon multi-agent sequential decision making problems, Kumar and Zilberstein, reformulated

the problem to a set of dynamic Bayes nets and use the EM algorithm to find the optimal policy

of the dynamic Bayes nets [Kumar and Zilberstein, 2010]. The EM algorithm has also been

used in solving infinite horizon POMDP and Dec-POMDP problems that are represented as finite

state controllers [Pajarinen and Peltonen, 2011]. Kumar et al. [Kumar et al., 2011] use value

factorization within the EM framework where the inference process is able to be separated into

smaller components providing greater scalability. While these techniques are useful in solving

larger problems of Dec-MDPs, they are unable to handle a game theoretic model that incorporates

an adversarial agent.
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Chapter 4: Teamwork for Defender Resources without Execution

Uncertainty

Despite significant advances in SSGs as mentioned earlier in the thesis, scaling up remains a sig-

nificant issue in advancing the scope of SSGs. A major drawback of the current algorithms is their

failure to scale up to SSGs where multiple defender resources explicitly perform joint activities,

i.e., games where coordination in space and time will provide the defender with additional benefits

[Jain et al., 2010a; Paruchuri et al., 2008; Vanek et al., 2011]. To date, neither general purpose

SSG algorithms [Conitzer and Sandholm, 2006; Paruchuri et al., 2008], nor special purpose SSG

algorithms [Jain et al., 2010a] can scale up to handle these joint activities. Yet, joint activities

are an important aspect of real-world security. For example, the algorithm used in PROTECT

[Shieh et al., 2012] only focuses on one boat patrols. Yet, if a single boat is, perhaps, 50% effective

in detecting (and hence stopping) a potential adversary attack, a second boat may increase the

effectiveness significantly to, perhaps, 80% as the adversary may be forced to react to this second

boat. PROTECT is unable to handle such coordination over multiple boats. Similarly, when

patrolling a train line, security resources such as explosive detective canine (EK9) teams often

patrol train lines in cooperation with other resources. By doing so, their effectiveness is increased.

In essence, the key problem for most of the algorithms, discussed above, is that representing this
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type of joint activity space significantly accelerates the growth in the number of pure strategies,

which severely impacts their ability to scale up in several security domains (e.g., port security).

Furthermore, a key question raised for deployed applications of SSGs is the evaluation of their

performance in the field. Despite earlier attempts, the actual evaluation of the deployed SSGs-

applications in the field is still a major open challenge [Shieh et al., 2012]. A significant number

of practical constraints (e.g., time to train the officers, availability of personnel to organize, run

and evaluate the experiment) limits the ability of researchers to conduct head-to-head comparisons

between SSGs-applications and human schedulers. Hence, a systematic study that evaluates the

benefits using a head-to-head comparison is still missing from the literature.

To address these shortcomings, this chapter presents four contributions. The first contribution

is Smart, Security games with Multiple coordinated Activities and Resources that are Time-

dependent, a model extending the framework of security games to explicitly represent jointly

coordinated activities. The second contribution consists of two algorithms. I present SmartO,

an optimal algorithm to compute optimal defender strategies for Smart problems and SmartH , a

heuristic iterative procedure to achieve further speed-up over SmartO. Both SmartO and SmartH

use a branch-and-price algorithm – an algorithm composed of branch-and-bound and column

generation – to deal with the large strategy space of the domain [Barnhart et al., 1994]. These

algorithms exploit the structure of the joint coordinated activities to gain speed up, based on the

following key ideas: (i) use of insights from the Traveling Salesman Problem (TSP) to order the

search space during column generation, especially in SmartH , while maintaining coordination;

(ii) efficient greedy computation of patrols per resource via iterative modification of rewards to

generate a joint patrol, during column generation, and (iii) generation of tight upper-bounds within

the branch-and-bound component by exploiting scheduling constraints to allow pruning of the
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search space based on the sub-modular property of joint activities. The third contribution is the

analysis of the performance of both SmartO and SmartH in solving instances of Smart. I analyze

the quality of the solutions generated by SmartH and evaluate both algorithms in simulation

comparing their runtime and solution quality.

Finally, the fourth contribution is the real-world evaluation of the game-theoretic schedules

generated using SmartH . This evaluation constitutes the largest scale experiment evaluating the

performance of SSGs in the field. I present results from a massive transit full-scale exercise (FSE),

a real-world experiment whereby 80 security officers coordinated their activities to patrol 10

stations of a metro line for 12 hours. The purpose of the exercise was a head-to-head comparison

between SSG-based schedules, generated using SmartH , against human-generated schedules. We

were able to evaluate the schedule generation process, as well as provide a thorough evaluation of

the performance of both schedules as conducted by a number of security experts located at each of

the ten stations during the entire length of the exercise. The results show that the game-theoretic

approach, based on SmartH , was able to significantly cut the schedule generation effort for humans

compared to manual scheduling. Yet, game-theoretic scheduling was able to generate schedules

similar to the ones generated by humans in terms of number of joint activities. In addition,

game-theoretic schedules were able to address the comprehensive security of the train line by

having the different teams patrol all the different levels of the stations (e.g., the platform level, the

street level and the mezzaning level). Finally, the game-theoretic schedules allocated the more

effective teams to the more important stations. These last two factors, which were missing from

the human-generated schedules, led security experts to concur that the game-theoretic schedules

were more effective in providing security than the human-generated schedules.
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The overall conclusion from this real-world exercise is that the game-theoretic schedules,

generated by SmartH were able to perform at least equivalently to (and in fact better than those)

generated by human schedulers. This indicates that we could save precious time so security experts

could focus on maintaining security rather than on generating schedules. Overall, the data that was

collected constitutes a source of information which can be used for evaluating the current status of

research in SSGs, and to understand new directions where to take such research.

4.1 The Smart Problem

A Smart problem is an instance of a SSG. A SSG, as discussed in detail in the work of Kiekintveld

et al. [2009], is a two-player game involving a defender d and an attacker a competing over a set

of targets T . The defender has a limited number of resources R and needs to select which targets

to protect considering that the attacker is going to conduct a thorough surveillance to exploit any

predictable pattern in the defender resource allocation. In a SSG, each target t ∈ T is assigned a

reward Uc
d(t) and a penalty Uu

d(t) to the defender if t is covered and uncovered, respectively, by a

defender’s resource. Similarly, each target is assigned a reward Uc
a(t) and a penalty Uu

a(t) to the

attacker. As discussed by Kiekintveld et al. [2009], the payoffs are defined such that Uu
d(t) < Uc

d(t)

and Uc
a(t) < Uu

a(t) ∀ t ∈ T . The purpose of each player then is to maximize their expected payoffs

defined in equations 4.4 and 4.5. In an optimal solution of a SSG, the defender plays a mixed

strategy, i.e., a probability distribution over the different targets, which intelligently allocate the

defender resources given the importance of each target and considering the behavior of the attacker

[Conitzer and Sandholm, 2006].

In a Smart problem instance, each resource chooses an activity from the set A =

{α1, α2, . . . αK} for each target t ∈ T . Each resource r ∈ R is assigned a graph Gr = (T, Er),
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R Number of defender resources,
subscripted by r

Gr = (T, Er) Graph of the input problem instance
T Set of targets
tb Home base

Er : {e(ti, t j)} Set of edges
τ(e(ti, t j)) Time required to traverse the edge e
τ(α) Time required to conduct activity α
eff(α) Effectiveness of activity α
eff(αi, α j) Effectiveness of joint activity 〈αi, α j〉

P Set of pure strategies of the defender
ωt(Pi) Effective coverage of t in Pi

Γr Maximum time allowed for an individual patrol for resource r
W Time window for a joint activity
Xr The set of pure strategies for resource r

Table 4.1: Notation Table

where the set of vertices T represents the set of targets to patrol and the set of edges Er represents

the connectivity between such targets. Each edge e ∈ Er is assigned a time value τ(e) representing

the time that it takes for one defender resource r to traverse e. Each graph encodes the motion of

different resources. For example, security assistants patrol the stations of a train line by taking the

trains. In contrast, sheriffs and EK9 units use a car. They can go from one end to the other of a

train line without having to cross each station. Similarly, aerial patrols can move freely and reach

any area of a port, whereas boat patrols might be constrained to take certain routes. The notation

used in Smart is described in Table 4.1.

The attacker’s pure strategy space is the set of all targets, T . A pure strategy for the defender

is a set of routes, one route Xi for each resource. Formally, each patrol route is defined as an

ordered list of 3-tuples Xi = [X1
i , . . . , X

j
i , . . .]. The jth 3-tuple X j

i = (t, α, γ) represents a time-action

segment for defender resource i: she conducts and completes activity α at target t at time γ. Each

time-action segment is different since different activities might require different amounts of time

and have a different effect on the target to protect (as discussed below).
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Each patrol route starts and ends at the same, pre-defined, home base tb ∈ T , i.e., X1
i .t = tb and

X |Xi |

i .t = tb. The total route length of each resource’s patrol is upper bounded by a specific value Γr

as follows:

traversal time time for activities︷                     ︸︸                     ︷
|Xi |−1∑

j=1

τ(e(X j
i .t, X

j+1
i .t)) +

︷       ︸︸       ︷
|Xi |∑
j=1

τ(X j
i .α) ≤ Γr ∀ Xi (4.1)

Xr is defined as the set of pure strategies for resource r and the set of joint pure strategies P is

given by the cross-product of pure strategies for each resource, i.e., P =
∏R

r=1{X
r}.

Smart is unique since it explicitly models joint activities, or activities coordinated in space

and time between multiple defender resources. The defender is said to conduct a joint activity

〈αi, α j〉 in her pure strategy if there exists at least two tuples (ti, αi, γi) ∈ Xi and (t j, α j, γ j) ∈ X j

in the defender’s pure strategy such that ti = t j and |γi − γ j| ≤ W. In other words, i.e., the two

activities are on the same target and are within a time window of width W. Here, the time width W

represents the minimum interval of time within which two different activities have a joint effect.

For instance, if one aerial and one boat patrol explore the same area one after the other within a

time frame of 10 minutes, their effectiveness will be much larger then if they were patrolling one

after the other but within a time frame of 30 minutes. In the former case, it can be assumed that

they were conducting a joint patrol action. In contrast, in the second case, given the large temporal

distance, the two actions can be considered individually.
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For each activity αi, eff(αi) represents the individual effectiveness1 of the activity αi. This

effectiveness ranges from 0% to 100%, and measures the probability that the defender will be able

to successfully prevent an attack on target t if such an attack overlaps with the activity αi at t that

the defender is conducting . This is similar to what was done in PROTECT [Shieh et al., 2012]. We

define the effectiveness of the joint activity 〈αi, α j〉 as eff(αi, α j). While a joint activity may be

composed of two or more resources – and our experimental results show the benefits of n-ary joint

activities in Section 4.4.1 – in this section we focus on joint activities composed of two resources

for simplicity of explanation. In this case, a joint activity composed of two resources receives the

maximum effectiveness and any additional resource visiting target t in the time window will have

no additional benefit.Thus, it is possible to define a total order relation ≥ onA such that αi ≥ α j

if and only if (1) eff(αi) ≥ eff(α j) and (2) eff(αi, αk) ≥ eff(α j, αk),∀αk. In other words αi

provides a greater effectiveness than α j.

Given a set of activities S = {αi}i=1...k on a target within the same time window, labeled so that

αi ≥ α j for all i > j, we extend the notation of eff such that eff({∅}) = 0, eff(S ) = eff(α1) if

S = {α1}, i.e., |S | = 1, and eff(S ) = eff(α1, α2) if S = {αi}i=1...k, i.e., |S | > 1. eff(S ) represents

the maximum effectiveness of an individual or a joint activity over a set S of activities performed

at a target within the same time window. One interesting aspect to understand about the operator

eff() is whether it is submodular or not. We define eff() as submodular if for all S 1 ⊆ S 2 and all

αi the following condition holds:

eff(S 1 ∪ {αi}) − eff(S 1) ≥ eff(S 2 ∪ {αi}) − eff(S 2) (4.2)

1We associate effectiveness with activities and not with targets, assuming that each activity is equally effective at all
targets.
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This means that each additional activity performed has diminishing gains in effectiveness. The

reason why we are interested in submodularity is that whenever it holds it becomes possible to

define an approximate greedy algorithm, SmartH , which provides performance guarantees on the

quality of the solution that it calculates. More specifically, in Section 4.3, we formally demonstrate

that whenever eff() is submodular, the solutions generated by SmartH are upper bounds to the

optimal solutions of the problem (see Equation 4.26).

Therefore, the submodularity property is crucial from a practical perspective. Whenever it

holds in a real-world domain, we can provide theoretical guarantees on the performance of the

deployed officers. One example of such domain is port security, if one boat from the US Coast

Guard is exploring a specific area of a port, any additional boat is unlikely to provide additional

benefit in terms of deterrence effect or ability to capture criminals. In contrast, submodularity will

not hold in domains where the defender has two different resources that only provide benefit when

they are acting together. As we will see in Section 4.4.2, this is the case of the train domain, where

some security resources (e.g., the EK 9) will be characterized by a null individual effectiveness but

a non-zero joint effectiveness. If the submodularity property does not hold, the SmartH algorithm

is still able to solve and generate an approximate solution of the problem, however nothing can be

said about such solution’s quality.
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The expected utilities Ud(Pi, t) and Ua(Pi, t) for both players, when the defender is conducting

pure strategy Pi (defined as a joint pure strategy for multiple defender resources), and when the

attacker chooses to attack target t is given as follows:

ωt(Pi) = max
(t,α,γ)∈Pi

{(t,αl,γl),(t,αm,γm)}⊆Pi,|γl−γm |≤W

{eff(α), eff(αl, αm)} (4.3)

Ud(Pi, t) = ωt(Pi)Uc
d(t) + (1 − ωt(Pi))Uu

d(t) (4.4)

Ua(Pi, t) = ωt(Pi)Uc
a(t) + (1 − ωt(Pi))Uu

a(t) (4.5)

Here ωt(Pi) defined in Equation (4.3) represents the effective coverage of the defender on

target t when executing pure strategy Pi. This is computed by taking the maximum effectiveness of

either a single or joint activity performed at target t at any time during the defender’s patrols. The

justification here is that in many domains the time that it takes to prepare and carry out a complex

attack on a target, is often longer than the time required to patrol. Hence, we can safely assume

that the attacker only cares about the maximum effective activity or joint activity (nonetheless, the

formulation could be extended to situations involving shorter attack durations by dividing a patrol

based multiple attack periods, a topic we leave for future work). Once the effectiveness ωt(Pi)

is computed from the pure strategy Pi, the defender and attacker expected utilities Ud(Pi, t) and

Ua(Pi, t) are calculated as defined in Equation (4.4) and (4.5). The following example illustrates

how the effectiveness of each pure strategy is calculated.

Example 1. Consider the problem composed of 5 targets as given by the graph in Figure 4.1. The

travel time on the edges between targets ti and t j is denoted as τi j. Assume that the home base,

tb = t1. Furthermore, consider that the defender has 2 resources, each of which could conduct

activities {α1, α2, α3}, such that α1 is a thorough inspection of the target premises, α2 is waiting at
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t1
t5

t2
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Figure 4.1: Example graph of targets and edges

Activity α1 α2 α3

Effectiveness, eff(αi) 0.5 0.4 0.1
Time 2 1 0

Table 4.2: Effectiveness of a single activity at any target.

α1 α2 α3

α1 0.8 0.7 0.58
α2 0.7 0.55 0.45
α3 0.58 0.45 0.11

Table 4.3: Joint Effectiveness of each joint activity at any target.

the target looking for suspicious behavior and α3 just transiting through the target area. Tables 4.2

and 4.3 give the time required for activity α and the effectiveness eff for each individual as well

as joint activity. The time at each tuple is computed by summing the distance between the targets

and the activity time in Table 4.2.

An example of a pure strategy for the first defender resource is: X1 =

[(t1, α3, 0), (t5, α1, 3), (t1, α1, 6)]. In words, the strategy describes a patrol whereby the first de-

fender resource start at the home base target, t1, performs activity α3, go to t5, performs activity

α1 and then returns back to the base, t1 to perform activity α1.

An example of a pure strategy of the second defender resource is: X2 = [(t1, α3, 0), (t2, α3, 2),

(t3, α3, 3), (t2, α3, 4), (t1, α2, 7)]. This strategy describes a patrol where the second defender re-

source starts at t1 and travels to t2, t3, t2, and then back to t1 performing activity α3 at all targets

except at the second visit target t1, performing activity α2.
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The pure defender strategy considering all defender resources is defined as P1 = (X1, X2).

Assuming that the time window W = 2, then the effectiveness of the defender’s pure strategy is

computed by first determining the most effective single activity for this target, which is α1 with

eff(α1) = 0.5 for target t1, as shown in Table 4.2. Looking at the schedule of the two defender

resources, we then find the maximum coordinated joint activity that are within the time window

W = 2. For t1, this is determined to be (t1,α1, 6) for resource 1 and (t1,α2, 7) for resource 2,

which gives eff(α1, α2) = 0.7, from Table 4.3. Thus, ωt1(P1) = max(0.7, 0.5) = 0.7, as defined in

Equation (4.3). Similarly, ωt2(P1) = 0.1, ωt3(P1) = 0.1, ωt4(P1) = 0.0, ωt5(P1) = 0.5.

Given pure strategy P1, the defender’s expected utility for target t1 is computed using Equa-

tion (4.4), and is equal to 0.7 · Uc
d(t1) + 0.3 · Uu

d(t1). The attacker’s expected utility for target t1

given pure strategy P1 is computed in a similar fashion.

Problem Statement: The objective of the defender is to maximize her expected utility in the

Smart problem by computing the optimal mixed strategy given that the attacker will best respond

to the defender’s strategy.

4.2 SmartO: Optimal Branch-and-Price Solver

SmartO is an optimal algorithm to compute solutions for Smart problem instances. It builds

upon the ASPEN algorithm [Jain et al., 2010a], an optimal algorithm to solve SSGs based on

the branch-and-price framework [Barnhart et al., 1994]. The two major novelties of SmartO

over ASPEN are the formulation of a slave component capable of handling joint activities (in

Section 4.2.1) and the improved upper bounds on the quality of the solutions recovered by the

algorithm (in Section 4.2.2). The price SmartO pays for its optimality is its lack of scalability (as

discussed later in Section 4.4.1). Nonetheless, it is useful to understand SmartO’s functioning
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because it lays the foundation for SmartH , which is a more scalable algorithm. SmartO also allows

us to measure SmartH’s performance on smaller-sized problems.

4.2.1 Pricing component

The branch-and-price framework constructs a branch-and-bound tree, where for each leaf of the

tree, the attacker’s target is fixed to a different t′. The objective of the pricing component is to find

the best defender mixed strategy x at that leaf, such that the best response of the attacker to x is

to attack target t′. Due to the exponential number of defender pure strategies, the best defender

mixed strategy is determined using column generation, which is composed of a master and slave

procedure, where the slave iteratively adds a new column (defender strategy) to the master. Each

component is defined as follows:

min
c,x
− Ud(t′, c) (4.6)

Ua(t′, c) ≥ Ua(t, c) ∀t , t′ (4.7)

ct −
∑
j∈J

ωt(P j)x j ≤ 0 ∀t ∈ T (4.8)

∑
j∈J

x j = 1 (4.9)

x j ∈ [0, 1] ∀ j ∈ J, ct ∈ [0, 1] ∀t ∈ T (4.10)

Master: The master LP, given in Equations (4.6) to (4.10), finds the optimal defender mixed

strategy x given a set of pure strategies J and assuming that the pure strategy of the attacker is
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set to t′ (determined by the leaf node).2 This is similar in formulation to the ERASER algorithm

[Kiekintveld et al., 2009]. Ud(t′, c) and Ua(t′, c) are the utilities of the defender and the attacker

respectively when the defender’s effective marginal coverage is c and the attacker attacks t′. Both

Ud(t′, c) and Ua(t′, c) are defined following Equations 4.4 and 4.5, e.g., Ud(t′, c) = ct′Uc
d(t′) + (1−

ct′)Uu
d(t′). For each pure strategy P j, ωt(P j) is the effectiveness on t.

Slave: Once the master LP is solved to optimality, the slave problem receives the values of the

duals of the master LP. The reduced cost c j associated with column P j is defined as follows:

c j =
∑

t

yt · ωt(P j) − z, (4.11)

where z is the dual variable of Equation (4.9) and {yt} are the duals of Equation family (4.8). The

reduced cost of a column gives the potential change in the master’s objective function when a

candidate pure strategy is added to J. The candidate pure strategy with the minimum reduced

cost is likely to improve our objective the most [Bertsimas and Tsitsiklis, 1994], since we are

minimizing the master in Equation (4.6).

The objective for the slave problem is to find the column P j with the least reduced cost, to

add to the current set of columns. In addition, if the least reduced cost is greater or equal to

0, the current master solution is optimal for the full LP. The best column is identified using a

mixed-integer linear program (MILP) formulation over the transition graph defined below, which

captures all the spatio-temporal constraints of the problem for handling joint activities and avoids

having to enumerate all pure strategies.

2For the sake of computation, we formulate the LP as a minimization problem (Equation 4.6); this will be explained
in detail when we describe the slave procedure.
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The transition graph Gr = (N′r, E
′
r) contains nodes u = (t, γ) for each target t and time instant

γ ∈ [0,Γr] if it is possible for the defender to be at target t at time instant γ (the time interval is

discretized). Each edge in E′r is associated with an activity α. An edge e(u,v,α) from node u to

node v maps to a defender patrol that starts from target tu at time γu, goes to target tv and conducts

activity α at target tv. Therefore, we can calculate γv as follows:

γv = γu + τ(tu, tv) + τ(α) (4.12)

where τ(tu, tv) is the time required to traverse from target tu to tv and τ(α) is the time required to

conduct activity α. The graph contains virtual source and sink nodes that contain edges to/from

the base target tb to ensure that patrols start and end at tb.

Example 2. Figure 4.2 shows a sample transition graph related to the problem presented in

Example 1. Here, tb = t1 and the source has three edges, one for each activity α1 – α3. Looking at

node u = (t1, 0), target t1 is adjacent to t2 and t5, so for each of these targets, three edges are added

to represent the travel and corresponding activity at that target. For example, if activity α2 is then

performed at target t2, then the new vertex would be at time γ = 0 + τ(α2) + τ12 = 0 + 1 + 2 = 3,

where τ12 = 2, and node v = (t2, 3) as shown in Figure 4.2.

Slave Problem MILP: We now describe our mixed integer linear programming formulation

that identifies the pure strategy P j. The MILP for the slave problem is given in Equation (4.13)

to (4.17). This novel MILP component of SmartO solves for joint activities and generates the

optimal defender pure strategy.
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Figure 4.2: An Example for the Transition Graph

min
∑
t∈T

yt ·max{gt, ht} (4.13)

∑
e∈out(u)

f (er) =
∑

e∈in(u)

f (er) ∀ u, r (4.14)

gt = max
er∈IA(t),
∀r

{ f (er) · eff(e.α)} (4.15)

ht = max
ei,e j∈JA(ri,r j,t),
∀i, j ∈R

{( f (ei) + f (e j) − 1) · eff(ei.α, e j.α)} (4.16)

f (er) ∈ {0, 1} ∀er, gt, ht ∈ [0, 1] ∀t ∈ T (4.17)

This MILP uses one copy of the transition graph for each defender resource, where f (er)

represents the flow on edge e for resource r, and gt and ht represent the effectiveness of the

defender’s individual and joint activities on target t. It only considers the maximum effective

activity at target t (Equations (4.13), (4.15), and (4.16)) in accordance with our assumption of the

attacker’s decision making. In all three equations, the maximum effectiveness is computed using

integer variables along with a large constant M. The resulting constraints are similar to the ones

used in the DOBSS algorithms [Paruchuri et al., 2008].
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Here, the set IA(d) represents the set of edges in the transition graph such that they represent

one resource performing an activity α on target d, and can be represented as:

IA(d) = {in(ur)|ur.t = d,∀ur ∈ N′r,∀r ∈ R}

where in(ur) represents all edges with the target node ur. Similarly, the set JA(ri, r j, d) contains

pairs of edges 〈ei, e j〉 such that both edges lead to the same target d and are separated by a time

window no larger than W, corresponding to when resources i and j perform a joint activity on

target d. Formally, JA(ri, r j, d) =

{〈ei = (u, v), e j = (u′, v′)〉|v.t = v′.t = d, |v.γ − v′.γ| ≤ W}.

Both sets IA and JA are defined over all transition graphs.

The result from the slave MILP is a set of 0-1 integer flows for each defender resource r. Given

these flows, the defender pure strategy P j and the effective coverage ω(P j) are generated, and then

both are sent back to the master.

4.2.2 Branch-and-bound component

In our branch-and-price framework, we define a separate branch for each attacker pure strategy, i.e.

for each target t. Thus, the leaf node for target t̂ has qt = 1 for t = t̂ and 0 otherwise. The pricing

procedure described earlier is then used to compute the solution for this leaf node. This procedure

is repeated for each leaf, after which the best solution obtained thus far is returned as the optimal
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Figure 4.3: The structure of branch-and-price

solution.3 An example branch-and-bound tree is given in Figure 4.3. The leaf (gray) nodes in the

figure represent the pure strategies of the attacker, i.e., where the pricing computation is performed.

The non-leaf (white) nodes represent the nodes for which upper bounds are obtained using a

branch-and-bound heuristic (the branch-and-bound heuristic also determines the ordering of leaves,

or attacker’s pure strategies, in this tree). The objective of the branch and bound component is

(i) to compute upper bounds for each internal node of the tree such that leaf nodes can be pruned

thereby requiring less computation, and (ii) to determine an efficient ordering of leaves.

We generate these upper bounds using OrigamiP, a modification of Origami [Kiekintveld

et al., 2009] specifically designed to generate tighter upper bounds for Smart problem instances

by exploiting the structure of the domain.

3Only considering pure-strategies for the attacker is not a limitation; Stackelberg games always exhibit at least one
Strong Stackelberg equilibrium where the attacker’s best response is a pure strategy [Paruchuri et al., 2008].
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min
c,f(e)

k (4.18)

0 ≤ k − Ua(t, c) ≤ (1 − qt) · M ∀t ∈ T (4.19)∑
e∈out(source)

f (e) = R (4.20)

∑
e∈in(sink)

f (e) = R (4.21)

∑
e∈out(u)

f (e) =
∑

e∈in(u)

f (e) ∀u (4.22)

ct ≤
∑

e=(u,v)|v.t=t

f (e) · eff(αk) ∀t ∈ T (4.23)

ct ∈ [0, 1], qt ∈ {0, 1} ∀t ∈ T, f (e) ∈ [0,R] ∀e ∈ E (4.24)

OrigamiP uses the transition graph defined in the slave formulation (Section 4.2.1). Equa-

tions (4.18)–(4.19) minimize the attacker’s maximum expected utility, Ua(t, c) defined by Equation

4.5. This utility represents the attacker’s utility given the defender’s effective marginal coverage is c

and the attacker attacks t. Since, the algorithm is used in the internal nodes of the branch-and-price

tree, the attacker’s target is fixed to a target t′. Thus, the integer variables qt representing the

attacker’s pure strategy are fixed (for target t̂, qt = 1 for t = t̂ and 0 otherwise) and the original

MILP is simplified into an LP. Equations (4.20)–(4.22) define the flows of the edges and enforce

the flow conservation property. Equation (4.23) limits the coverage of the defender based on the

amount of flow and the respective activity. We can show that OrigamiP satisfies the following

proposition:
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Proposition 1. OrigamiP computes upper bounds of the defender expected utility Ud() if eff() is

submodular.

Proof. OrigamiP estimates the effectiveness of a defender patrol on a target as being the sum

of the effectiveness of all individual activities on a target. This is an over-estimate of the effec-

tiveness (thereby providing an upper bound on defender utility) if the effectiveness function eff

is sub-additive, i.e., eff(αi) + eff(α j) ≥ eff(αi, α j), which is the case when eff satisfies the

submodularity property in (4.2). �

OrigamiP is an LP and therefore solvable in polynomial time. Once the OrigamiP solution has

been obtained, the defender’s expected utility Ud(t, c) is computed for each target t. The targets

are then ordered in decreasing order of Ud(t, c). This ordering and computation of upper bounds is

then exploited to prune the nodes in the branch-and-price tree.

4.3 SmartH: Further scaling up Smart

We now present the SmartH heuristic to further scale up the computation for Smart problem

instances. As we will see in the following section, SmartO fails to scale beyond 4 targets in our

computational experiments. Hence, we introduce SmartH which follows the same branch-and-price

procedure discussed before but uses a novel heuristic slave formulation.

In essence, SmartH is built on two intuitions related to coordination. The first intuition is

that joint patrols can be computed by considering individual patrols iteratively, by using greedy

policy optimization between iterations to reflect the additive benefit of joint activities. The second

intuition is that each defender resource would like to visit as many targets as possible, and visiting

targets in accordance with an ordering based on a solution of the Traveling Salesman Problem is
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likely to extract maximal benefit out of the resource while still accounting for the spatio-temporal

constraints needed for coordination. As a result, the SmartH slave only needs to solve a set of

linear programs (as opposed to solving a MILP in SmartO’s slave).

4.3.1 Iterative Reward Modification

The slave in SmartH computes the joint patrol P j of the defender by iteratively and greedily

building up individual patrols Xr for each defender resource r. The additional benefit of joint

activities is considered by appropriately shaping the rewards for each resource based on the patrols

of other resources. Greedy policy optimization has been used in other reinforcement learning

contexts [Sutton and Barto, 1998]; here we leverage this idea for coordination among multiple

resources. This greedy approach allows SmartH to handle heterogeneous defender resources with

each iteration solving for a different resource r.

Algorithm 1 SmartH Greedy Slave

1: Input: y, G
2: Initialize P j, µ
3: for all ri ∈ R do
4: Xi ← SolveSinglePatrol(y,µ,Gr)
5: P j ← P j ∪ Xi

6: µ← ComputeCostCoef(P j,Gr)
7: ω(P j)← ConvertToColumn(P j)
8: return P j,ω(P j)

SmartH uses a greedy algorithm, as outlined in Algorithm 1. This algorithm takes the

coefficients yt (refer Equation (4.11)) as input and builds P j iteratively in Lines 3–6. Line 4

computes the best individual patrol Xr for the defender resource r (described in Section 4.3.2). Xr

is then merged with the rest of the defender’s pure strategy P j (in Line 5). Line 6 computes µ, the

potential effectiveness contribution from one resource to another given the current pure strategy P j.
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This is computed over each edge e(u,v,α) in the transition graph, and measures the added benefit

to the defender if the defender resource was to travel from u.t to v.t at time u.γ performing activity

e.α at target v.t. These values of µ are used in the next iteration when computing an individual

patrol for the next defender resource.

To understand how close the solution of the greedy algorithm is to the optimal solution, we

use some insights from [Nemhauser et al., 1978], which states that greedy maximization of a

non-negative submodular function achieves a constant-factor approximation. Recall that the

objective of the slave problem is to find a pure strategy P j that minimizes the reduced cost c j (see

Equation 4.11). This is equivalent to maximizing (since z in Equation 4.11 is a constant):

F(P j) = −
∑
t∈T

ωt(P j) · yt (4.25)

The duals y from the master are always negative in this formulation making F(P j) non-negative.

ωt(P j) is the effectiveness of pure strategy P j at target t as defined in (4.3).

If F(P j) is submodular, and if P∗ is the optimal defender pure strategy, then, as shown by

Nemhauser et al. [1978] the solution P j of the greedy algorithm satisfies

F(P j) ≥
1
2

F(P∗) (4.26)

For the special case where the time window, W, is greater than or equal to the maximum patrol

time4, Γ, we show that F(P j) is submodular. F(P j) is submodular if P1 and P2 are two sets of

routes where P1 ⊆ P2 and F(P1 ∪ {X}) − F(P1) ≥ F(P2 ∪ {X}) − F(P2).
4W ≥ Γ implies that two resources present at the same target at anytime during the patrol are considered to conduct

a joint activity.
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Theorem 1. F(P j) is submodular in P j if W ≥ Γ and eff() is submodular.

Proof. Since W ≥ Γ and ωt(P j) = eff(S P j), where S P j is the set of activities of P j on target t. To

prove that F(P j) is submodular, it suffices to show that ωt(P j) is submodular because F(P j) is

defined as a non-negative linear combination of ωt(P j). Considering Equation (4.2):

eff(S P1 ∪ αX) − eff(S P1) ≥ eff(S P2 ∪ αX) − eff(S P2)

we can write ωt(P1 ∪ X) − ωt(P1) ≥ ωt(P2 ∪ X) − ωt(P2), P1 ⊆ P2. Thus, ωt(P j) is submodular

when the time window is greater than or equal to the maximum patrol time. �

In real life situations, W may be less than Γ. We show that even in this situation, F(P j) is

submodular for 2 resources.

Theorem 2. F(P j) is submodular in P j for two resources if eff() is submodular.

Proof. We prove that F(P1 ∪ {X})− F(P1) ≥ F(P2 ∪ {X})− F(P2) where P1 = {∅} and P2 contains

a single patrol {X2}. To do this, we show that ωt({X}) ≥ ωt({X2, X}) − ωt({X2}), for each target t,

based on the submodularity property of eff() in (4.2). We proceed in two steps. First, we show

that:

wt({X}) ≥ wt({X2, X}) − wt({X2}) (4.27)
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We use case-reasoning. If X2 and X are in the same window then the same argument as

Theorem 1 applies. Hence, we only need to demonstrate the equation for the case where X2 and X

are not in the same window. We have wt({X2, X}) = max(eff(X2), eff(X)), then:

wt({X2, X}) − wt({X2}) = max(0, eff(X) − eff(X2)) (4.28)

⇔ wt({X2, X}) − wt({X2}) ≤ eff(X) = wt(X) (4.29)

Second, we show that Equation 4.27 is equivalent to wt(P1∪{X})−wt(P1) ≥ wt(P2∪{X})−wt(P2):

wt({X}) ≥ wt({X2, X}) − wt({X2}) (4.30)

⇔ wt({∅} ∪ {X}) − wt({∅}) ≥ wt({X2, X}) − wt({X2}) (4.31)

⇔ wt(P1 ∪ {X}) − wt(P1) ≥ wt(P2 ∪ {X}) − wt(P2) (4.32)

This shows that ωt(P j) is submodular. As a consequence, F(P j) is also submodular because it is a

non-negative linear combination of ωt(P j). �

Qualifying this result for W < Γ for 2 resources is important since this setup is used most

frequently in the real world, e.g., the US Coast Guard. For three or more resources, we can

artificially construct counter-examples that break submodularity. However, given actual domain

geometries, time windows, and operational rules, submodularity may hold even for larger number

of resources – e.g., Theorem 1 shows that relaxing the time window may lead to such submodularity.

Characterizing these spaces is a topic left for future work.
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4.3.2 TSP Ordering with Transition Graph

To achieve the approximation bound in Equation (4.26), we need to optimally compute an individ-

ual patrol Xr for the defender resource r in line 5 of Algorithm 1. This can be solved by an MILP

of similar form to the slave MILP (Equations (4.13)-(4.17)), but for a single patrol. The resulting

MILP for a single patrol has less variables than the MILP for all patrols, however this still fails to

scale up beyond 6 targets (Section 4.4).

Instead, we present a heuristic approach that achieves better scale-up by exploiting the spatial

structure of the domain, and is provably optimal in some specific cases. Our approach is based on

the following restricted version of the problem: we define an ordering of the targets and restrict the

sequence of target visits to be increasing in this order. We construct the ordered transition graph

in the same way as described in Section Ḣowever, now, an edge from node u to v is added only if

target u.t appears before target v.t in the ordering. If there does not exist a direct edge from u to v,

an edge is added between these nodes such that τu.t,v.t is equal to the shortest path from u.t to v.t.

Traversing along this edge does not impact the effectiveness of the intermediate targets. Instead of

computing the maximum effectiveness of the multiple edges per target, each target is only visited

once per patrol in the ordered transition graph. Since each target in the patrol is counted only once,

the max expressions in (4.13), (4.15), and (4.16) can be replaced with linear expressions. The

resulting problem is equivalent to a min-cost flow, which has integer extreme points that allow us

to drop the integrality constraint (4.17), since a feasible solution of the resulting LP is guaranteed

to be an integer flow. Hence, these LPs are easier to solve than the above MILPs, both in theory as

well as in our experiments.
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Fixing an ordering will exclude certain patrols. Therefore, we would like an ordering such that

the resulting patrol, which corresponds to a subsequence of the ordering, will still be a sensible

way to visit targets compared to patrols with alternative orderings. To that end, SmartH uses an

ordering based on the solution of the traveling salesman problem (TSP). Given an input graph

of all targets, G = (T, E), the orderings are generated using a nearest neighbour algorithm (as

discussed by Gutin et al. [2002]) which determines the order to which the targets are visited in

the patrol. Despite using an approximate algorithm, we are still able show that under certain

conditions, the TSP ordering can yield an optimal solution of the single-patrol problem. When

such conditions do not hold, it is likely that different orderings, based on more sophisticated TSP

algorithms could result in a better solution. This could be a very interesting empirical challenge.

However, we decided to focus our analysis on different aspects of the problem because in Section

4.4 we compare the performance of both SmartO and SmartH and show that the TSP ordering,

despite being generated by an approximate algorithm, generates solutions that are very close to the

optimal ones.

We look at a tree structure because various domains in the real world can be represented as a

graph similar to a tree. For example, train lines can be represented as a line where edges connect

each station and each station is connected to some other nodes representing the different levels

of the station (e.g., platform, mezzanine or parking level). Similarly, ports can be imagined as a

minimum spanning tree connecting all the locations within a port.

Theorem 3. Suppose the input graph G is a tree, and the time window for joint effectiveness is

greater than or equal to the maximum patrol time. Then SmartH computes a patrol for a single

unit that optimizes the objective for the single unit problem in Algorithm 1.
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Proof. We first observe that the optimal TSP tour of G visits each edge of the tree exactly twice.

The TSP tour corresponds to a complete preorder traversal of the tree.

SmartH outputs a patrol P on a subset of targets TP, corresponding to a subsequence of the

TSP ordering. We show that this patrol is a TSP tour of the corresponding subgraph on Tp, denoted

Gp. There are two cases:

1. If GP is a connected subtree of G then P is a preorder traversal of that subtree, and therefore

is a TSP tour of the subtree.

2. If GP is not connected, for each two targets in different connected components of GP there

is a unique path in the original tree graph G that connects the two. By adding nodes on

these paths to GP, we recover a connected subtree G′P, an optimal TSP tour on which is also

optimal for GP. Then since P is a preorder traversal of the subtree G′P, it is a TSP tour of

GP.

Consider a patrol P′ on TP that does not follow the TSP ordering. Let P be the patrol we get

by reordering targets of P′ so that they are increasing in the TSP ordering. Since P is a TSP tour

of GP, if P′ finishes within the time limit then P also does. Furthermore, since the time window

for joint effectiveness is large, joint activities in P′ will also be joint activities in P, and thus P

achieves the same slave objective as P′. Therefore, we never lose optimality by considering only

patrols that follow the TSP order. �

When the graph is a tree but the time window is smaller than the patrol time limit, the algorithm

is not guaranteed to be optimal. However, as we show in our experiments, SmartH generates

optimal or near-optimal solutions for Smart problem instances.
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4.4 Experimental Results

The section presents our simulations and our real-world experimental results. In Section 4.4.1, we

extensively evaluate the performance of SmartH and SmartO in solving instances of Smart. We

show the impact of the different components of our approach in terms of runtime and with respect

to the difference in solution quality of the optimal versus heuristic algorithm. In Section 4.4.2,

we describe our field experiment. This experiment constitutes the first real world head-to-head

comparison between game-theoretic and human generated schedules. This comparison covers the

effort to generate the schedules, the evaluation of security within a train line by security experts and

the coordination between different deployed resources. This evaluation constitutes a contribution

to evaluation not only of joint coordinated activities in the real world but also to the general

evaluation of SSG-applications in the real world.

4.4.1 Simulations

In our simulations, we are not able to compare with previous algorithms [Conitzer and Sandholm,

2006; Jain et al., 2010a; Paruchuri et al., 2008; Vanek et al., 2011] due to the inability of these

algorithms to scale up to the combinatorics unleashed by joint activities. Hence, we compare

different versions of SmartH and SmartO.

In the results below, in each experiment, each data point shown is averaged over 100 game

instances, generated with random payoffs in the range [-10,10] and two defender resources unless

otherwise noted. All the figures contains error bounds indicating the standard error of the mean.

Given, the large number of instances, in some cases the bars are not shown, since they are too

small to be seen. All the results are tested for statistical significance using a Student t-test (p
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= 0.05). All experiments were run on graphs constructed beginning with a tree that spans the

targets and then adding 10 random edges between nodes to create some random cycles in the

graph. The root of the tree corresponded to the home base, tb. The idea is to simulate the typical

topology of a transportation hub or network, e.g., the areas of a port and the stations of a train

line as in the port of Los Angeles or the Metro train line in Los Angeles. The time window was

30 minutes with 3 possible activities for the defender, taking 0, 5, or 15 minutes. In most of the

experiments described below, the transition graph required to build the slave problem (see Section

4.2.1) was built using a time discretization of 5 minutes, i.e., any two adjacent nodes of the graph

u1 = (t1, γ1) and u2 = (t2, γ2) were defined such that γ2 = γ1 + 5. In contrast, in the experiments

where we compared SmartO and SmartH , we used a larger time discretization of 15 minutes.

This discretization was used for comparison purposes, i.e., SmartO would not run with the large

transition graph produced as a result of a larger discretization. In such a setting, one activity had a

duration of 0 minutes while the remaining two had a duration of 15 minutes. All experiments were

run on a machine with a Dual core 2.0 GHz processor and 4 GB of RAM. We present our results

in the remainder of this section.

4.4.1.1 SmartH vs. SmartO: Runtime

In this experiment, we compare SmartH and SmartO in terms of runtime to solve different Smart

problem instances. Each instance is generated considering an increasing number of targets. The

results are shown in Figure 4.4. In the figure, the number of target is shown on the x-axis while the

runtime is shown on the y-axis. We can see that SmartO is not able to scale to problem instances

with more than 4 targets. In contrast, SmartH takes seconds to scale up to instances of 20 targets.

As shown in the figure, when the number of targets increases to 5, SmartO runs out of memory
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and takes at least 40 minutes to run before giving an out-of-memory error. In contrast, SmartH

takes less than a minute to solve problems consisting of up to 20 targets. This shows that SmartH

dramatically improves both runtime computation and memory consumption compared to SmartO.

4.4.1.2 SmartH: Scalability using TSP ordering

In this experiment, we measure the ability of SmartH to scale up to large problem instances while

using the TSP ordering procedure described in Section 4.3.2 and while not using any ordering

procedure. The idea is to measure the benefits that ordering the nodes will do to the SmartH

algorithm in terms of its scalability. In the experiment, we consider one single defender resource.
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Figure 4.6: SmartH: benefits of pruning nodes

Figure 4.5 shows the results of our experiment. In the figure, the x-axis is the number of targets

and the y-axis is the runtime. As shown in the figure, by using the MILP and not ordering the

nodes, or allowing the defender to visit any node at any order in the path, the runtime for 6 targets

is over 40 minutes. For 7 targets, SmartH not using node ordering runs out of memory. The impact

of the TSP ordering heuristic is then significant: SmartH takes seconds for solving problems with

up to 7 targets. In fact, as we will see in the next experiments, this heuristic allows the algorithm

to scale up easily to problems with up to 40 targets.

4.4.1.3 SmartH: Pruning

In this experiment, we analyze the benefits of generating tight upper bounds to prune the branch-

and-price tree. The idea is to show in detail, why SmartH can scale up to large problem instances,

while preserving memory.

Figure 4.6(a) shows the runtime (in minutes) required by the algorithm to solve Smart problem

instances either pruning nodes (using OrigamiP) or not. The x-axis shows the number of targets

and the y-axis shows the runtime. As shown in the figure, the amount of time saved by pruning

nodes increases with the number of targets. We ran a student t-test (p=0.05) which confirmed the

statistical significance of these results. In larger problem instances, the branch-and-price tree is
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bigger. Thus, a larger number of nodes will be pruned. This will have an impact on runtime: by

using OrigamiP, the algorithm will require less time to solve bigger problem instances compared

to simply solving all the leaf-nodes of the tree (i.e., no pruning).

Figure 4.6(b) shows the percentage of nodes pruned by SmartH considering Smart problem

instances of different size. In the figure, the x-axis shows the number of targets while the y-axis

shows the percentage of the nodes in the branch-and-bound tree that were pruned by SmartH . The

figure confirms the intuition behind the results in Figure 4.6(a), SmartH will prune more nodes on

larger problem instances, e.g., up to 70% of the nodes for instances of 40 targets.

4.4.1.4 SmartH: n-ary Joint Activities

In this experiment, we measure the ability of SmartH to solve large problem instances of up to

40 targets and large joint activity spaces of up to 10 activities at the same time. In Section 4.1,

we defined the coverage effectiveness of a pure strategy in Equation 4.3. We used a max operator

which, however, accounts only for the best single activity and joint couple of activities to calculate

the coverage effectiveness. In this experiment, we modify SmartH to handle n-ary combinations

of resources efficiently by re-defining the underlying utility function as an additive joint activity
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Figure 4.8: Solution quality of SmartH versus algorithm with no joint activities

function (capped at one). SmartH’s iterative modification of reward then efficiently computes µ

based on this new utility function based on the n-ary interaction (line 6 of Algorithm 1).

Figures 4.7 depicts the results of the experiment. In the figure, the x-axis is the number of

defender resources. Each of such numbers is also associated with a specific arity of joint actions

(e.g., 3 resources with ternary interactions) and the y-axis is the runtime. As we can see, SmartH

can efficiently handle n-ary interactions since, the runtime never exceeds 3 minutes, even for

instances consisting of 40 targets and 10 defender resources.

4.4.1.5 SmartH: Effectiveness of Joint Activities

In this experiment, we compare the quality of the solutions obtained by running SmartH on Smart

problem instances where the resources have activities with varying levels of joint effectiveness.

The idea is to measure how SmartH will allocate resources when the effectiveness of their joint

activities increases. We calculate the level of effectiveness as a ratio between the highest joint

effectiveness value and the highest single effectiveness value, considering the best activity αmax:
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eff(αmax, αmax) − eff(αmax)
eff(αmax)

(4.33)

For all test scenarios, eff(αmax) is held constant to a value of 0.6, while varying the values

of eff(αmax, αmax). For example, when eff(αmax, αmax) = 0.8, the subsequent ratio would be:

(0.8 − 0.6)/0.6 = 0.2/0.6 = 2/6. The individual and joint effectiveness, here, are calculated as

discussed in Section 4.1. They receive the maximum effectiveness and any additional resource

visiting a target within the pre-defined time window will have no additional benefit (see Equation

4.3).

The results are shown in Figure 4.8. In the figure, the y-axis shows the solution quality and the

x-axis denotes the maximum patrol time. Considering the experiment settings discussed at the

beginning of this section, we can see that when the patrol time is increased, a simple strategy with

no defender coordination (no benefit to joint activities) provides very little benefit to the solution

quality while the improvement due to the coordination of multiple defender resources can almost

double the solution quality. In more detail, taking into account joint activities between multiple

defenders provides a solution quality that is double (when the ratio is 4/6) than that of an approach

that does not handle defender coordination, i.e., when the ratio is 0.

4.4.1.6 Solution Quality against Hetergeneous Resources

In this experiment, we compare the quality of the solutions obtained by different versions of

SmartH considering an increasing number of heterogeneous resources with different abilities. The

idea is to measure the impact that different hetergeneous resources will have on the quality of

the solutions recovered by SmartH . We consider two type of resources: type A (TA) and type B
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Figure 4.9: Heterogeneous defender resources: type A (TA) and type B (TB) for 30 targets.

(TB). Resources of type A are different than resources of type B in the following ways: (1) shorter

transit times; (2) shorter patrol time; (3) lower effectiveness values.

Figure 4.9 shows the results considering both type A and type B. The figure shows the solution

quality (i.e. the expected utility for the defender) obtained varying the maximum patrol time,

the number of resources, their type and considering 30 targets. As we can see, increasing the

number of resources lead to a higher solution quality. More specifically, we can see that by

considering three resources instead of two, the expected utility increases from 1.77 to 3.46 (i.e.,

50%) considering 90 minute patrols and from 4.31 to 5.69 (i.e., 25%) considering 180 minute

patrols. Hence, as the number of resources increases, SmartH is able to allocate them effectively

by exploiting their abilities to improve the overall solution quality.

4.4.2 Real-world Experiment

We present in what follows a real-world experiment whereby we compared the game-theoretic

allocation of resources computed using SmartH against a manual allocation, the standard method-

ology adopted by several security agencies. Security agencies refer to this type of experiment

as a mass transit full scale exercise (FSE). It was important to perform this exercise in the real
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world rather than purely on paper with imaginary units, in order to ensure that the schedules

generated by SmartH be compared to manual schedules when getting executed in the real-world

under real-world constraints with real heterogeneous resource types.

A FSE is a training exercise where multiple security agencies analyze the way their resources

cooperate to secure a specific area while simulating a critical scenario. This scenario typically

describes a “high level” threat, e.g., intelligence reports confirming that a terrorist attack might

take place in the Los Angeles Metro System. The FSE consists of simulating the response to this

threat, i.e., increasing the number of resources patrolling a train line on a daily basis to improve the

quality of the security. Nonetheless, in most real-world settings, the number of resources deployed

by the agencies is not sufficient to cover all the different locations within a train line. For this

reason, an intelligent and unpredictable allocation of security resources, which leverages their

ability to work individually and cooperate together, is crucial to achieve a more effective security.

All the above reasons make an FSE a very promising test-bed to run our comparison between

SmartH (SmartO would not scale to the dimensions of the FSE, as discussed in Section 4.4.1) and

manual schedules. In addition, it would allow us to collect real-world data which we could use to

analyze and improve the current algorithm.

4.4.2.1 Organization of the FSE

The FSE consisted of patrolling 10 stations of one train line of the LA Metro system for 12

hours. Each station on the train line is composed of three levels (street level, platform level and

mezzanine) except station 1 which is composed of 5 levels (2 more platform levels). Figure 4.10

shows a graph illustrating the 10 stations.
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Figure 4.10: The 10 stations of the FSE

Team Description
Acronym Name Deployed Teams

T Teams

T16
T27

High Visibility T38
Uniformed Patrol Teams T49

T510
T11

HVWT Teams
High Visibility HVWT12
Weapon Teams HVWT34

VIPR Team
Visible Intermodal VIPR
Interdiction Team

CRM Teams
CRM1

Crisis Response CRM2
Motors CRM3

EK9 Teams
Explosive EK91

K9 (canine) EK92

Table 4.4: Teams deployed during the FSE

The exercise involved multiple security agencies, each participating with a number of resources.

Overall, 80 security personnel were involved. These resources were divided into 14 teams, each

with different abilities. The resources deployed in the FSE are described in Table 4.4.
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Figure 4.11: The smartphone application used to visualize the schedule of the CRM team

The exercise was divided into 3 different “sorties”, each consisting of three hours of patrolling

and one hour of debriefing. Human-generated schedules were used during the first sortie while

SmartH schedules were used during the second and the third sorties. To visualize the schedules

generated using SmartH , each team was given a android smartphone app to visualize the game-

theoretic schedule (see Figure 4.11).

The first two sorties were used to run the head-to-head comparison. Hence, the sorties were run

under the same settings: the same number of officers had to cover the 10 stations for a cumulative

time of 450 minutes. The two sorties were run during off-peak times (9h00 to 12h00 and 13h00 to

16h00, respectively), hence the type and the number of riders of the train lines could be considered

to be, approximately, the same.

The purpose of Sortie 3 was to test whether the officers were capable of following SmartH

schedules for a longer period (900 minutes instead of 450) and during peak time, i.e., when

traffic and the number of people riding the trains increases. We found out that the officers were
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actually able to follow the schedules. Thus, since the purpose of this Sortie was unrelated to our

comparison, we will focus on Sorties 1 and 2 in the remainder of this section.

4.4.2.2 The Schedule Generation Process

Each type of schedule was generated as follows:

SmartH schedules: The schedules were generated by (i) instantiating a Smart problem instance

using the specifics of the FSE discussed earlier; (ii) solving this problem instance using SmartH

and (iii) sampling a pure strategy to generate the patrol schedule for each of the different resources

involved.

To define a problem instance we had to define three different sets of features of the problem.

The first sets of features are the graphs for each resource type. By using the graph presented in

Figure 4.10 as a baseline, we defined the graph for each resource as follows:

• T teams, HVWT teams and VIPR teams move using the trains and patrol all the different

levels of a station. Hence, each resource type was assigned the graph in Figure 4.10.

• CRM teams move using their bikes and patrol only one level (the street / parking level) of

the stations. Their graph is then a line connecting ten nodes, each representing the street

level of a station.

• EK9 teams move using a car and patrol all levels. Their graph is defined as in Figure 4.10

but edges connect the nodes representing the street level instead of the platform level.

The second sets of features are the payoffs of the game.5 We defined the payoffs for each

target (32 in total) in discussions with security experts from the Los Angeles County Sheriff’s
5We are not able to reveal the value of these payoffs due to an agreement with the Los Angeles County Sheriff

Department (LASD).
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Department (LASD). Each set of payoffs for each station was based on the number of people

using the station every day and by the economic impact that losing this station would have on the

city. The different levels of a single station had slightly different payoffs which were based on the

number of persons present at each specific level of the station every weekday.

The payoffs were defined so that the game was zero-sum, i.e., given a target t, we defined

Uc
d(t) = Uc

a(t) = 0 and Uu
d(t) = −Uu

a(t) = v where v ∈ [0, 10]. This choice of payoffs is reasonable

for this setting because the key here is the importance of stations, and the defender will lose exactly

as much as the attacker will gain if his attack is successful.

The third features are the activities for each resource type and the corresponding single and

joint effectiveness. Each team could perform a series of two types of activities:

Observe: This action consisted of observing a specific target for 15 minutes. The officers had to

explore the location (e.g., street level or platform) with great accuracy to ensure that it was

secure.

GoTo: This action consisted of moving from one target to another (e.g., by using a car, by riding

a train or using the stairs to move between targets at the same station). The duration of this

action was estimated based on the train schedules, the traffic at the time of the day and the

average time to move from one level of a station to another.

Given these activities, the single and joint effectiveness parameters are summarized in Table

4.5. In the table, the joint activities are represented as a vector of two values, one for each

joint activity between the action in the row of the table and an observe action and a goto action,

respectively. As we can see, all GoTo actions are given a 0 effectiveness, since moving from one

station to another (i.e., riding the trains or taking the car) will not have any effect on the security of
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Team Action Individual eff Joint eff

T-teams
Observe 0.7 [0.0, 0.0]

GoTo 0 [0.0,0.0]

HVWT teams
Observe 0.7 [0.0, 0.0]

GoTo 0 [0.0,0.0]

VIPR team
Observe 0.8 [0.0,0.0]

GoTo 0 [0.0,0.0]

CRM teams
Observe 0.7 [0.75,0.0]

GoTo 0 [0.0,0.0]

EK9 teams
Observe 0 [0.75,0.0]

GoTo 0 [0.0,0.0]

Table 4.5: Individual and joint activities

the stations. Most teams are assigned the same positive individual effectiveness of 0.7, except the

VIPR team which has a greater individual effectiveness because it is composed of officers from

multiple agencies carrying heavy weapons. VIPR teams, T-teams and HVWT teams typically

work alone. Hence, to define their effectiveness values, their individual effectiveness is positive

while their joint effectiveness is null (any joint effectiveness value below 0.7 would induce the

same type of behavior, but we chose 0 since it is a clear indicator of the type of behavior that we

want to obtain). The CRM teams are assigned a joint effectiveness greater then their individual

effectiveness because they can perform all type of activites, but, typically, they prefer joint over

individual activities. In contrast, EK9 teams typically work only in cooperation with other teams,

therefore they are assigned a null individual effectiveness and a positive joint effectiveness of

0.75.6

Next, we defined the time window for a joint action to be effective as a 10 minutes interval.

This value was chosen considering the time required by teams to move from a station to another,

from a level to another and by discussion with the security agencies involved in the exercise.

6Whereas these estimates of individual and joint effectiveness could potentially be slightly altered, the purpose of our
exercise was comparison with human schedulers. Since the comparison was ultimately conducted by security experts
who evaluated the game-theoretic schedule to be superior to human-generated one, we may infer that the effectiveness
values we obtained for the individual and joint activities in our SMART model for FSE were reasonable.

57



Figure 4.12: The mixed strategy for the FSE

Finally, we decided the discretization of the transition graph to correspond to the shortest duration

between the durations of all the actions available to the different resources (i.e., the goto action to

move between two levels).

After defining the Smart problem instance, we solved it using SmartH . We run the algorithm

considering 14 resources (the teams defined in Table 4.4), and 32 targets (5 levels for station S 1

and 3 levels for the 9 other stations). To reach the cumulative time of 450 minutes, as required

by the specifics of Sortie 2, we defined the patrol time of each resource such that a total close to

450 minutes could be obtained. The mixed strategy provided by the algorithm is shown in Figure

4.12. The figure shows the coverage ct for each target t as defined by Equation 4.8 in the master

in Section 4.2. In the figure, the levels of the stations with a higher payoff are assigned a higher

coverage.

As a final step, the mixed strategy is sampled to generate a pure strategy. This pure strategy

contains a schedule for each resource. It is shown in Table 7.2 in Appendix A.

Manual Schedules: The schedules were by human expert schedulers of the LASD. They were

generated using a two-step process. First, each station was assigned a coverage duration of 45

minutes (i.e., 1
10

th of the time). The idea was to have the officers perform three observe actions

58



S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10

Manual 3 3 3 2 3 2 2 2 2 2
SmartH 2 2 3 3 2 2 2 3 3 2

Table 4.6: Count of Individual Activities

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10

Manual 0 0 0 1 0 1 1 1 1 1
SmartH 1 0 0 0 0 2 0 1 1 1

Table 4.7: Count of Joint Activities

at each station. Second, the human expert schedulers assigned teams to each station so that each

station was covered for exactly 45 minutes. Joint team activities were used 6 times in six different

stations. The resulting allocation is shown in Table 7.1 in the Appendix A. This simple two-step

process was adopted to avoid the cognitive burden involved with leveraging the effectiveness

of each team to cover the different stations individually or while coordinating with other teams.

Despite its simplicity, this process was difficult for the human expert schedulers. It involved several

discussions and required one entire day of work.

Having defined the two allocations, we can now analyze the results that we obtained.

4.4.3 Results

We first analyze the type of schedules generated as a result of using either SmartH or manual

scheduling. Then, we evaluate the results obtained by deploying the schedules during Sorties

1 and 2 and measuring their performance in the real world. The key is that if SmartH were to

perform equivalently to human schedulers, then it would indicate that we could save precious time

so security experts could focus on maintaining security rather than on generating schedules.
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4.4.3.1 Schedules Comparison

The allocation of resources generated by Manual scheduling and SmartH are shown in Tables

7.1 and 7.2 in Appendix A. The numbers of individual and joint activities for both schedules are

shown in Tables 4.6 and 4.7. In both tables we can see that the number of individual (IA) and joint

(JA) activities for both approaches are the same (IA: both 24; JA: both 6). All the joint activities

in the SmartH schedules are performed by CRM and EK9 teams, i.e., the teams with a positive

joint effectiveness. This is similar to the behavior of the manual generated schedules, where joint

activities are mostly performed by EK 9 and CRM teams (once by the VIPR team). The remaining

individual activities are performed by the T team, the HVWT team and the VIPR team.

There are two important differences between the two types of schedules. The first is that

the game-theoretic scheduler sent the most effective VIPR team to the most important stations –

because its individual effectiveness is greater than the effectiveness of other teams. This was not

seen in the human schedule. The second difference between the two types of schedules is that the

schedules generated using SmartH assign the different teams to cover all the different levels of the

different stations, whereas manual schedules do not specify such levels. The reason for this is that

human schedulers were not able to reach this level of detail and thus they preferred to leave the

decision of which level to patrol to the teams once they were deployed. In addition to accuracy,

in SmartH , the human effort was confined to providing the individual and joint effectiveness of

available teams, and then the schedules were automatically generated in just a couple of hours.

Hence, the effort required to generate the schedules using SmartH was much lower than the

effort required to generate manual schedules, which, as discussed above, required one day of

work due to its significant cognitive burden. Since typically such patrols would be conducted
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Q1 “The security scheduling system (SSS) makes the station safer.”
Q2 “The SSS is efficient.”
Q3 “The SSS is an effective deterrent for adversaries.”
Q4 “The SSS results in some areas being patrolled more than needed.”
Q5 “The SSS decreases the number of attempts to infiltrate train stations.”
Q6 “The SSS appears to make securing train stations easier.”
Q7 “The SSS results in enough security at all three levels of the train station.”
Q8 “The SSS results in security officials having a strong presence throughout the station.”
Q9 “The SSS results in ALL areas being patrolled as much as needed.”
Q10 “The SSS did NOT prevent patrollers from taking or completing an action.”
Q11 “The SSS provides security officials with enough time to secure all areas of the station.”

Table 4.8: The 11 assertions used in the questionnaire during the FSE

day-in and day-out for several days in high-threat periods, the savings of human effort achieved by

game-theoretic schedulers are thus very significant.

4.4.3.2 Evaluation by Securty Experts

Each type of security allocation (either manual or game-theoretic based on SmartH) was evaluated

by security experts. In this setting, individual and joint activities between different resources

played an important role.

For the purposes of this evaluation, a team of security experts (SEs) was placed at each station

for the entire length of the exercise. Their task was to observe and evaluate the officers’ patrolling

activity during each sortie, and determine how their behavior was affecting the quality of the

security within each station. In what follows, we report the conclusions of their analysis. The SEs

did not know the type of schedules (so as to not bias their evaluation). To translate the observers’

observations into a comparable value, each observer was asked to fill out a questionnaire every

30 minutes. The objective was to define a number of key sentences that could help to qualify the

way in which the security officers had been patrolling the station in the last 30 minutes. Each

questionnaire contained 11 assertions about the level of security within the station. Table 4.8
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(a) Assertions

(b) Stations

Figure 4.13: Evaluation of the FSE: average agreement over the different questions and stations.

summarizes the assertions used in the questionnaire. Each assertion was a sentence defining a

key aspect related to the security of a station. The assertions were defined in collaboration with

a team of SEs from the LASD and with social scientists. Each SE had to determine his level of

agreement with each assertion. The level of agreement was defined in the integer interval {0,6},

where 0 meant a strong disagreement, whereas 6 meant a strong agreement.

Figures 4.13(a) and 4.13(b) show the results that we obtained. Figure 4.13(a) shows the

weighted average agreement obtained for each assertion calculated over all the stations (the

average was calculated considering each station’s corresponding weight). Figure 4.13(b) shows
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the average agreement obtained for each station calculated over all the assertions. The error bars

in both figures show the standard error of the mean calculated for each specific assertion (in

Figure 4.13(a)) and station (in Figure 4.13(b)). As we can see the difference between some data

points of the two approaches do not seem to be statistically significant. A student t-test confirmed

this trend. This is expected, since we were only able to collect data for few hours of a single

day. Nonetheless, we can still acquire some interesting information about the performance of

game-theoretic schedules in the field, by analyzing the results that are statistically significant. In

the next section then, we will discuss how running additional experiments is a key challenge to

confirm the trends presented here.

In Figure 4.13(a), we can see that SmartH schedules seem to yield a higher level of agreement

than manual schedules over all questions. As shown in the figure, the difference is significant only

for assertions Q1, Q2, Q8 and Q9. As shown in Table 4.8, these four assertions correspond to very

general statements about the security at each station which address the efficiency of the schedules,

their ability to provide a strong feeling of safety and to allow the officers to patrol each area as

much as needed.

Similarly, in Figure 4.13(b), we can see that the average agreement is higher for SmartH

schedules over Manual schedules for stations S 1, S 2, S 3, S 4, S 8, S 9 and S 10. Some of these

stations (S 1, S 8 and S 9) are the ones assigned a higher set of payoffs, as discussed above (see

Figure 4.12). Hence, they correspond to the ones given a higher coverage by SmartH (see Figure

4.12).

These results indicate that game-theoretic schedules were evaluated as more effective than

manual schedules. Analysis reveals that whereas the game-theoretic schedules were able to

incorporate joint activities in a fashion comparable to the human schedules– and this was important
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to ensure security effectiveness –the game-theoretic schedules were able to be more effective in

two key ways that showed the limitations of human schedulers. First, manual schedules were

generated by leaving the decision of which level of a station to patrol to each deployed team. The

officers then, were not able to properly coordinate over the different levels to patrol and therefore

they ended up patrolling the same levels. In do doing, the were not able to fully cover the different

stations. In contrast, as shown in Appendix A, SmartH produced a schedule which tackled the

comprehensive security of all the ten different stations. The officers knew before-hand which

levels they had to patrol and therefore, it was unnecessary for them to coordinate their decisions

during the exercise.

Second, SmartH produced a schedule which more effectively scheduled the VIPR team, i.e.,

the team with the highest effectiveness (0.8) for covering each target. As we can see in Table

7.2, the schedule generated by SmartH had the VIPR team patrol all the most important stations

at key levels. In contrast, manual schedules assigned the VIPR team, without accounting for its

effectiveness. This made an impact on the security evaluators. By observing the VIPR at key

locations, they considered the game-theoretic allocation more effective than the manual allocation,

because it was using leveraging the abilities of the resources in a way that human experts could

not achieve.

Overall, these results show the potential of game-theoretic security allocation to solve real

world problems. In the next section, we discuss our future work, whereby we describe some new

experiments that could be ran to further strengthen the results presented here.
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4.5 Chapter Summary

This chapter addressed the challenge of solving security games where multiple defenders resources

receive benefits from performing joint coordinated activities. This challenge has not been addressed

in previous work in security games. However, incorporating such joint activities into the existing

SSG framework is critical for real-world applications.

To address this challenge, this chapter presented four contributions. First, we presented Smart,

a new type of SSG which accounts for multiple defenders performing joint activities. Second, we

presented two branch-and-price based approaches, SmartO and SmartH to solve Smart problem

instances. SmartO computes optimal solutions of Smart problem instances and uses a novel slave

formulation that captures coordination in both space and time. SmartH is an heuristic approach

based on reward shaping and TSP ordering to speed-up the computation. Third, we provide proofs

of theoretical properties of our algorithms while also showing the improved performance of the

key components in simulation.

Fourth, we present the first head-to-head comparison between SSG based schedules and

manual schedules in the field. To the best of our knowledge, this evaluation constitutes one of the

largest evaluation of algorithmic game theory in the field to date. In more detail, we present the

results that we obtained by organizing a large scale real-world experiment whereby 80 security

officers (divided into 23 teams) patrolled 10 stations of a metro line for one day. In this experiment,

we ran a head-to-head comparison between SSG-based schedules, generated using SmartH , and

human-generated schedules. Our results were based on an analysis provided by a team of security

experts analyzing the performance of each type of schedule at each of the ten stations. The results
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showed that in comparison with human schedulers, game-theoretic schedules were able to reduce

the effort to generate schedules, while improving coordination and perception of security presence.

In terms of future work, we aim to address one key challenge, that of execution uncertainty. In

some security domains, the deployed resources may sometimes be delayed. For instance, USCG

officers might be delayed because they need to board a boat. To address this challenge, our idea is

to generalize the current model into a decentralized Markov decision process (dec-MDP [Becker

et al., 2004]). Recently, this challenge was addressed by Shieh et al. [2014]. In their work, Shieh

et al. [2014] propose a new security game model where a Dec-MDP is used to model execution

uncertainty between different resources, i.e., situations where one resource is delayed and cannot

complete his schedules albeit all the resources are still required to coordinate. The increase in

complexity of the new model, which blends a security game and a DecMDP, is addressed by

proposing a novel set of approximate algorithms which use column generation in a manner similar

to the one presented in our work.

Additionally, as shown by the results presented in this chapter, we believe that our work opens

the door of applied research in security games to the realm of field evaluation. Given the strong

connection that research in SSGs shares with real world security allocation problems, we argue

that field evaluation should become a key area for future research in security games.
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Chapter 5: Teamwork with Execution Uncertainty (Utilizing

Dec-MDPs in Security Games)

This chapter focuses on this challenge of computing an optimal resource allocation strategy

for a defender team while also considering uncertainty in coordination of multiple defender

resources. To that end, this chapter combines two areas of research in multi-agent systems:

security games and multi-agent teamwork under uncertainty. In many security environments,

teamwork among multiple defender resources of possibly different types (e.g., joint coordinated

patrols of aerial, motorized vehicles and canines) is important to the overall effectiveness of the

defender. However, teamwork is complicated by the following three factors that we choose to

address in this chapter. First, multiple defenders may be required to coordinate their activities under

uncertainty, e.g., delays that may arise from unexpected situations may lead different resources

to miscoordinate, making them unable to act simultaneously. Second, some resources may leave

the system unexpectedly requiring others to fill in the gaps that are created. Third, defenders may

need to act without the ability to communicate, e.g., in security situations, communication may

sometimes be intentionally switched off. We provide detailed motivating scenarios outlining these

challenges.
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To handle teamwork of defender resources in security games, our work makes the following

contributions. First, this chapter provides a new model of a security game where the defender team’s

strategy incorporates coordination under uncertainty. Second, we present a new algorithm that

uses column generation and decentralized Markov Decision Problems (Dec-MDPs) to efficiently

generate defender strategies. Third, global events among defender resources (e.g., a defender

resource stops patrolling due to a bomb threat) are modeled in handling teamwork. Fourth, we

contribute heuristics that help scale-up to real-world scenarios. Fifth, while exploring randomized

pure strategies previously seen to converge faster, we discovered that they were not as fast but

instead were more robust than deterministic pure strategies.

While the work presented in this chapter applies to many of the application domains of

security games, including the security of flights, ports and rail [Tambe, 2011], we focus on the

metro rail domain for a concrete example, given the increasing amount of rail related terrorism

threats [Reuters, 2013]. The challenges from interruptions, teamwork, or limited communication is

not specific to only the metro rail domain and can be applied to other domains as well. In the rest

of the chapter, we use the term resource and agent interchangeably (i.e., one resource is equivalent

to one agent).

This chapter is organized as follows: Section 5.1 starts with exploring the importance and

challenges in the metro rail domain. Section 5.2 presents a brief background on Dec-MDPs and

security games. Section 5.3 presents the game theoretic model to address uncertainty among

defender resources in a security game. Section 5.4 describes the algorithm to solve and compute

the defender strategy. Section 5.5 presents heuristics to improve the runtime. Section 5.6 follows

by describing heuristics to handle robustness. Section 5.7 provides experimental results for all of
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our algorithms and heuristics. Section 5.8 summarizes the contributions of the chapter and future

work.

5.1 Motivating Domain: Security of Metro Rail

In recent news, there have been terrorism related events pertaining to metro rail systems across

the world. In April 2013, two men were arrested for plotting to carry out an attack against a

passenger train traveling between Canada and the United States Carter [2013]. In August 2013

an article reported planned attacks by Al Qaeda on high-speed trains in Europe which prompted

authorities in Germany to step up security on the country’s metro rail system Reuters [2013]. A

presentation by Arnold Barnett suggested that the success of aviation security may be shifting

criminal/terrorist activity towards other venues like commuter metro rail systems, and he also

argues that “the prevention of rail terrorism warrants high priority” INFORMS [2012].

In the metro rail domain, the defender resources (i.e., canine, motorized) patrol the stations

while the adversary conducts surveillance and may take advantage of the defender’s predictability

to plan an attack. With limited resources to devote to patrols, it is impossible for the defender to

cover all stations all the time. The defender must decide how to intelligently patrol the metro rail

system. Additional constraints include the defender resources having to travel on the train lines,

thus being limited in path and sequences of stations and having to adhere to the daily timetables

of the trains. Recent research on security games focused on the metro rail domain include the

computation of randomized patrol schedules for the Singapore metro rail network [Varakantham

et al., 2013b] and security patrolling for fare inspection in the Los Angeles Metro Rail system [Jiang

et al., 2013c].
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Figure 5.1: Example of the metro rail domain

In Figure 5.1, we give an example of the metro rail domain. Each of the circles represent a

station, with the various lines corresponding to a separate metro rail line. For example, one line

would be composed of the stations/targets: {t4, t5, t6, t7}. Another metro rail line is composed of

stations {t1, t5, t9, t14}. Not all stations have the same payoff, for example some stations may have

transfers between multiple train lines and are more attractive for the adversary to attack (as shown

in the figure with stations t5, t9, and t12 being represented with a larger circle). In this figure, we

give three possible patrols that a single defender resource can execute with a single patrol being

unable to visit all of the stations given the time constraints. The path of patrol 1 starts at station t4,

travels to station t5, then visits t9, and finally ends with station t14.

Defender resources may engage in teamwork to patrol certain key areas that may be advanta-

geous in thwarting the adversary compared to individual patrolling. What we mean is that defender

resources may execute multiple patrols, e.g., Patrol 1 and 2 in Figure 5.1, and coordinate to visit a

single station simultaneously (like station 5). Thus, if the adversary observes a coordinated set of
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defender resources patrolling a station, he will have to overcome multiple defenders if he decides

to attack. To address teamwork in the metro rail domain along with the constraint that the defender

resources must travel on the train lines that adhere to a fixed daily schedule (e.g., to allow the

defenders to arrive simultaneously at a train station), we model the time as discrete, based on

the train arrivals and departures. Indeed such discrete time is important to represent since even

individual defender resource actions are based on train arrival and departure times.

Within this metro rail domain, we can see three factors that complicate teamwork and are

not addressed by previous work in security games. First, uncertainty in execution may cause

miscoordination. In particular, while defender resources are on patrol, one or more of them may

be forced to deviate from the given patrol due to unforeseen events (we denote as execution

uncertainty), such as questioning of suspicious individuals which results in delays and uncertainty

in the patrol – while still needing to coordinate with other resources. This type of uncertainty

occurs on a local level to the individual defender resource and is not known by the other defender

resources (due to limited communication as described below). Using the example discussed above

of teamwork, e.g., patrol 1 and 2, this type of uncertainty would cause the patrols to arrive at

station 5 at different times, instead of having the resources visit station 5 together.

Second, a global event may cause a resource to leave the system and stop patrolling. This type

of global event affects the entire team and impacts the coordination among patrol resources which

is different from the local level events that may occur to an individual defender resource. One of

the defender resources may get interrupted to deal with a serious bomb threat – the entire team

may be alerted to this threat via an emergency channel and the responsible resources may take

over the response, resulting in the resource stopping the patrol and requiring others to fill in any

gaps as a team. The remaining resources will continue to patrol the metro rail system to guard
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against subsequent future attacks that may arise. Third, in this metro rail domain there is often

limited communication among the defender resources. Reasons for this limited communication

include the trains and stations being underground or the use of cell phones being jammed to avoid

triggering of explosions or radio giving away the defender’s coordinates or information (with the

emergency channel reserved for emergencies). This prevents defender resources from constantly

communicating with other resources to determine their location.

5.2 Background

This section begins by introducing, motivating and providing background on security games in

Section 5.2.1. Section 5.2.2 then discusses Decentralized Markov Decision Processes.

5.2.1 Security Games with an Example Application in the Metro Domain

Security games were first formalized by Kiekintveld et al. [Kiekintveld et al., 2009] which is based

on a two-player Stackelberg game between a defender (leader) and an attacker (follower). In a

security game the leader (defender) plays a strategy first while the follower (attacker) observes

the defender’s strategy before choosing his response [Gatti, 2008; Jakob et al., 2012; Vaněk et al.,

2011]. Thus, using the Stackelberg (i.e., leader-follower) model as a basis for security games

allows us to capture the attacker’s conducting of surveillance of the defender strategy before

launching any major attack [Kiekintveld et al., 2009; Pita et al., 2008; Yang et al., 2012]. The

security game is a two stage game: the defender plays a mixed strategy and the attacker then

responds with an attack on a time and target; the game then terminates. The defender does not

get to observe the attacker or form beliefs about the attacker. The focus of this section is how the
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security game model applies to the metro domain as considered in previous work such as in [Jiang

et al., 2013c], but without coordination of multiple resources under uncertainty.

In this model, both the attacker and defender have a set of possible pure strategies. The

attacker’s pure strategies correspond to the set of target-time pairs, B, where each target-time

pair b = (t, τ) is defined as t being the target to attack and τ being the time point to carry out

the attack. In the train domain, targets correspond to stations in the metro system. The attacker

chooses a single target-time pair to attack based on the observation of the defender’s marginal

coverage (defined in detail later in Section 5.3, but based on the concepts of marginals introduced in

[Kiekintveld et al., 2009]). The defender’s pure strategies correspond to visiting a set of target-time

pairs given a set of resources. By convention, in the rest of the chapter, we refer to the defender as

she and attacker as he.

The payoffs for both the attacker and defender are dependent on whether the target-time pair is

covered by the defender or left uncovered (based on the strategy of the defender). The defender’s

actions and capabilities influence the effectiveness of coverage on target-time pairs, allowing for

partial effectiveness. Each target-time pair b has a payoff associated with it for both the attacker

and defender, with Uc
d(b) denoting the payoff for the defender if b is covered (100% effectiveness),

and Uu
d(b) denoting the payoff for the defender if b is uncovered (0% effectiveness) — we define

defender expected utility under partial effectiveness later[Jain et al., 2011; Shieh et al., 2013; Yin

et al., 2010]. We choose to have payoffs on both the location and time, due to the payoff being

dependent on time, e.g., in the train domain, at rush hour the payoffs are larger than in the middle

of the night with very few passengers. The payoffs are influenced by the number of people at the

station/trains because if an attack is carried out when there are a lot of people and the station is
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more crowded, then the attack will result in a greater number of deaths and injuries compared to

an attack when the station and train lines are not as busy.

The payoffs for the attacker are in the same format, Uc
a(b) and Uu

a(b). A common assumption

for security games is that Uc
d(b) > Uu

d(b) and Uc
a(b) < Uu

a(b), i.e., when a defender covers b, she

receives a higher reward while the attacker receives a lower reward compared to when the defender

does not cover b [Basilico et al., 2012; Jain et al., 2010c; Tambe, 2011]. The model presented in

this chapter allows a non-zero-sum game, where the sum of the defender’s and attacker’s payoff

values may be non-zero.

The objective in the security game is to compute the defender mixed strategy that maximizes

the defender’s utility given the attacker’s strategy where the attacker has full knowledge of the

defender’s strategy. In other words, the goal in security games is one of optimizing the use

of the defender’s limited security resources while taking into account the attacker’s ability to

observe the defender’s mixed strategy and to respond optimally to such a strategy. Note that we

compute the mixed strategy for the defender but only need to consider the pure strategies of the

attacker [Paruchuri et al., 2008]. This is because given a fixed mixed strategy of the defender, the

attacker faces the problem that contains linear rewards and thus if a mixed strategy is optimal

for the attacker, then so are each of the pure strategies in the support set of the mixed strategy

(pure strategies that have a non-zero probability). Therefore, we do not need to consider the mixed

strategies of the attacker.

This optimization goal is equivalent to finding the Strong Stackelberg equilibrium (SSE), which

was first proposed by Lietmann [Leitmann, 1978]. Significant research on the strong Stackelberg

equilibrium versus other types of Stackelberg equilibrium has already been done in previous work

and led to SSE being commonly used in security game research [Conitzer and Sandholm, 2006;
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Jain et al., 2010b, 2011, 2010c; Jiang et al., 2013c; Kiekintveld et al., 2009; Pita et al., 2010, 2008;

Shieh et al., 2012, 2013; Yin et al., 2010].

5.2.2 Dec-MDP

In this chapter, we enhance security games by allowing complex defender strategies where multiple

defenders coordinate under uncertainty. Attempting to find the optimal defender mixed strategy in

such a setting is computationally extremely expensive, as discussed later. To speed up computation,

we exploit advances in previous work in Decentralized Markov Decision Process (Dec-MDP)

algorithms [Dibangoye et al., 2012; Goldman and Zilberstein, 2008; Spaan and Melo, 2008;

Varakantham et al., 2009], in one key component of our algorithm, and hence this section provides

relevant background on Dec-MDPs.

Markov Decisions Processes (MDPs) are a useful framework to address problems that involve

sequential decision making under uncertainty. In situations where there is only partial information

of the system’s state, a more general framework of Partially Observable Markov Decision Processes

(POMDPs) are used. When there is a team of agents, where each one is able to make its own local

observations, the framework is known as a Decentralized Markov Decision Process (Dec-MDP)

when there is joint full observability (at a given time step, the total observation of all agents

uniquely determine the state) [Becker et al., 2004; Bernstein et al., 2002; Dibangoye et al., 2012,

2013; Spaan and Melo, 2008], and a Decentralized Partially Observable Markov Decision Process

(Dec-POMDP) when the agents together may not fully observe the state of the system and thus

have uncertainty in their state [Amato et al., 2014; Amato and Oliehoek, 2015; Bernstein et al.,

2002; Oliehoek et al., 2013, 2015; Wu et al., 2013]. As we will explain later, when solving the

security game model introduced in this chapter, we use Dec-MDPs in one key component of our
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algorithm to attempt to optimize defender mixed strategies. Informally, in this component, we are

faced with a problem involving multiple agents in a team, with uncertainty in their actions, and

only local knowledge of states.

More specifically, we employ the transition independent Dec-MDP model [Becker et al., 2004]

that is defined by the tuple: 〈Ag, S , A,T,R〉. Ag = {1, . . . , n} represents the set of n agents (or

defender resources) [Bernstein et al., 2002]. S = S u × S 1 × · · · × S n is a finite set of world

states of the form s = 〈su, s1, · · · , sn〉. Each agent i’s local state si is a tuple (ti, τi) where ti is the

target and τi is the time at which agent i reaches target ti. Time is discretized (as explained in

Section 5.1) and there are m decision epochs {1, . . . ,m}. su is the unaffected state, meaning that

it is not affected by the agents’ actions. It is employed to represent occurrences of global events

(bomb threats, increased risk at a location, etc.) that are not dependent on the state or actions of the

agents. This notion of unaffected states is equivalent to the one employed in Network Distributed

POMDPs [Nair et al., 2005].

A = A1 × · · · × An is a finite set of joint actions a = 〈a1, · · · , an〉, where Ai is the set of

actions to be performed by agent i. T : S × A × S → R is the transition function where

T (s, a, s′) represents the probability of the next joint state being s′ if the current joint state is

s and the joint action is a. Since transitions between resource i’s local states are independent

of actions of other agents, we have transition independence [Becker et al., 2004]. Formally,

T (s, a, s′) = Tu(su, s′u) ·
∏

i Ti(〈su, si〉, ai, s′i), where Ti(〈su, si〉, ai, s′i) is the transition function for

agent i and Tu(su, s′u) is the unaffectable transition function. The joint reward function for the

Dec-MDP takes the form of R : S → R, where R(s) represents the reward for reaching joint state

s.
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Unfortunately, we cannot directly apply the Dec-MDP model to solve the security game that

incorporates defender teamwork under uncertainty. One issue is that in the security game, the

defender and attacker have different payoffs, which is not possible to be modeled in Dec-MDPs.

Another issue is that we are modeling game-theoretic interactions, in which the rewards depend on

the strategies of both the defender and the attacker. Therefore the standard Dec-MDP model cannot

be directly applied to model and solve this game-theoretic interaction between the defender and

attacker. Nevertheless, as mentioned earlier, to speed up the computation of the optimal defender

mixed strategy under uncertainty, we decompose the problem into a game theoretic component

and a Dec-MDP component (that only models the interaction among defender agents and does not

need to model the interaction with the attacker nor have to consider the different payoffs for the

attacker).

5.3 Game Model

This chapter presents a game theoretic model of effective teamwork among multiple decentralized

defender resources with execution uncertainty. We are generalizing the security game model

introduced in Section 5.2.1 to multiple defender resources coordinating under uncertainty. This

section starts with a model for the defender team and uncertainty. Next, it goes into detail of the

defender’s effectiveness at each target-time pair (Section 5.3.1). Then, the defender’s pure strategy

along with the attacker and defender’s expected utility is discussed (Section 5.3.2). Finally, global

events are explained and addressed in the model (Section 5.3.3).

The model for the defender team is represented by the tuple similar to the one for Dec-MDP

as described in Section 5.2.2: 〈Ag, S , A,T,U〉. The main difference between this tuple and the one
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b Target-time pair composed of (t, τ) where t is the target and τ is the time
Uc

d(b) Defender payoff if b is covered by the defender (100% effectiveness)
Uu

d(b) Defender payoff if b is uncovered by the defender (0% effectiveness)
Uc

a(b) Attacker payoff if b is covered by the defender (100% effectiveness)
Uu

a(b) Attacker payoff if b is uncovered by the defender (0% effectiveness)
R Total number of resources
sr State of resource r, composed of a location(target) t, and time τ
ξ Effectiveness of a single defender resource

eff(s, b) Effectiveness of the resources on target-time pair b, given the global state s
π j The the defender team’s jth pure strategy (joint policy)
J Set of indices of defender pure strategies

P j
b The expected effectiveness of target-time pair b from defender pure strategy π j

Ud(b,π j) Expected utility of the defender given a defender pure strategy π j, and
an attacker pure strategy of target-time pair b

Ua(b,π j) Expected utility of the attacker given a defender pure strategy π j, and
an attacker pure strategy of target-time pair b

x Mixed strategy of the defender (probability distribution over π j)
c Vector of marginal coverages over target-time pairs

Ud(b, c) Expected utility of the defender given marginal coverage c, and
an attacker pure strategy of target-time pair b

Table 5.1: Notation for game formulation

presented in Section 5.2.2 is the last element, U, which represents the utility or reward of the state.

The reward is no longer just based on the state or action, as in traditional Dec-MDPs, but now is

based on the interaction between the defender and attacker.

A (naive) patrol schedule for each resource consists of a sequence of commands; each command

is of the form: at time τ, the resource should be at target t and execute action a. The action of

the current command takes the defender resource to the location and time of the next command.

In practice, each defender resource faces execution uncertainty, where taking an action might

result in the defender resource being at a different location and time than intended. This type of

execution uncertainty may arise due to unforeseen events. In our example metro rail domain, this

uncertainty may arise due to questioning of suspicious individuals. The questioning of suspicious

individuals results in the defender resource taking additional time to determine the motive and
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actions of the individuals, thereby taking a longer duration at the given location and potentially

missing the next train and delaying the whole schedule.

The attacker is assumed to observe the defender’s marginal coverage over the target-time pair

(defined in detail later in this section). The defender’s marginal coverage is based on the frequency

and number of resources at each target-time pair. So in other words, the attacker cares about how

often and with how many resources each target-time pair is visited by the defender team. The

attacker’s strategy is to choose which target and location to attack, and once that happens, the

game terminates. For simplicity of exposition, we first focus on the case with no global events,

in which case the unaffected state su never changes and can be ignored (we will consider these

global events later in Section 5.3.3). Actions at sr are decisions of which target to visit next.

We consider the following model of delays that mirror the real-world scenarios of unexpected

events: for each action ar at sr there are two states s′r, s
′′
r with a nonzero transition probability: s′r

is the intended next state and s′′r has the same target as sr but a later time. Next, we discuss the

defender’s effectiveness at each state and how this impacts defender coordination.

5.3.1 Defender Effectiveness

This section explains the value of the defender’s effectiveness starting with a single defender

resource and then how this changes with the inclusion of multiple defender resources. The

defender’s effectiveness of a single defender resource visiting a target-time pair is defined to be

ξ ∈ [0, 1]. ξ can be less than 1 because visiting a target-time pair will not guarantee full protection.

For example, if a defender resource visits a station while patrolling and walking through each of

the platforms and the concourse, she will be able to provide some level of effectiveness, however

she cannot guarantee that there is no adversary attack. Two or more defender resources visiting
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the same target-time pair provides an additional effectiveness. Given a global state s of defender

resources, let eff(s, b) be the effectiveness of the resources on target-time pair b. This effectiveness

value, eff(s, b), is similarly defined to be in the range [0, 1] with 0 signifying no coverage and

1 representing full protection of the state b. We define the effectiveness of k resources visiting

the same target-time pair to be 1 − (1 − ξ)k. This corresponds to the probability of catching the

attacker if each resource independently has probability ξ of catching the attacker. Then

eff(s, b) = 1 − (1 − ξ)
∑

i Isi=b

where Isi=b is the indicator function that is 1 when si = b and 0 otherwise. As more resources

visit the same target-time pair, the effectiveness increases, up to the maximum value of 1. The

rationale for the increase in effectiveness as additional resources visit the same target-time pair, b,

is that as the attacker observes b, and notices multiple defender resources, this will provide further

deterrence of the attacker choosing to target b. If the attacker observes just one defender resource,

he can still choose to attack b, by first circumventing one defender resource. However if there are

multiple defender resources, the attacker would either need additional help or decide to attack a

different target-time pair. Although we provide a function for the effectiveness value of eff(s, b),

our algorithm to solve this SSG would apply to other functions of effectiveness, including when

different resources have different capabilities. The only constraint of other possible functions of

the effectiveness given the global state s and target-time pair b, is that the value of the effectiveness

is in the range [0, 1]. Other possibilities include representing defender resources that give an

effectiveness value greater than 0 only when paired with another specialized type of defender
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resource. The next section explains the defender’s pure strategy and the expected utility of both

the defender and attacker.

5.3.2 Defender Pure Strategy and Expected Utility

This section first explains the model of the defender team’s pure strategy and then describes how

the defender and attacker’s expected utility is computed based on the pure strategy, mixed strategy,

and marginal coverage. Denote by π j the defender team’s jth pure strategy (joint policy), and πJ

the set of all defender pure strategies, where J is the corresponding set of indices. For example,

if there are two defender resources, then a sample π j includes a policy for defender resource

1 (r1), and a policy for defender resource 2 (r2). An example policy for r1 is: {((t1, 0) :Visit

t2), ((t1, 1) :Visit t2), ((t2, 1) :Visit t3)}, while an example policy for r2 is: {((t3, 0) :Visit t2),

((t3, 1) :Visit t2), ((t2, 1) :Visit t1)}. The policy for r1 is a mapping from the local state of r1 to

the corresponding action. If r1 is at state (t1, 0), then the action that r1 would take is to Visit t2.

However, if r1 is at state (t2, 1), then she would choose action Visit t3. Looking at the policy, r1

starts at t1 at time step 0, and tries to visit t2 and then t3, while defender resource r2 starts at t3

at time step 0, and traverses toward t2 and then t1. The global state s at time step 0, would be

{(r1 : (t1, 0)), (r2 : (t3, 0))}, where r1 is at t1 and r2 is at t3.

Each pure strategy π j induces a distribution over global states visited. Denote by Pr(s|π j) the

probability that global state s is reached given π j. The expected effectiveness of target-time pair b

from defender pure strategy π j, is denoted by P j
b; formally,

P j
b =

∑
s

Pr(s|π j)eff(s, b)
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Given a defender pure strategy π j, and an attacker pure strategy of target-time pair b, the expected

utility of the defender is

Ud(b,π j) = P j
bUc

d(b) + (1 − P j
b)Uu

d(b)

The attacker’s utility is defined similarly as:

Ua(b,π j) = P j
bUc

a(b) + (1 − P j
b)Uu

a(b)

The defender may also play a mixed strategy x, which is a probability distribution over the set of

pure strategies πJ . Denote by x j the probability of playing pure strategy π j. Simply choosing a

single defender pure strategy, π j, or a single joint policy, is typically not the defender’s optimal

strategy due to the various constraints that limit the coverage over all the target-time pairs. For

example, a single defender pure strategy may only allow the defender team to visit half of the

possible target-time pairs. In this example, if the defender decides to select a single pure strategy

to execute, then the attacker would decide to attack one of the target-time pairs that is not covered

by the defender. Therefore, in this situation, a mixed strategy for the defender that covers all

possible target-time pairs provides a better strategy for the defender. The players’ expected utilities

given mixed strategies are then naturally defined as the expectation of their pure-strategy expected

utilities. Formally, the defender’s expected utility given the defender mixed strategy x and attacker

pure strategy b is
∑

j x jUd(b,π j). Let

cb =
∑

j

x jP
j
b
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be the marginal coverage on b by the mixed strategy x [Yin et al., 2010], and c the vector of

marginal coverages over target-time pairs. Then this expected utility can be expressed in terms of

marginal coverages, as

Ud(b, c) = cbUc
d(b) + (1 − cb)Uu

d(b)

The model above assumes no global events, or when the unaffected state su never changes. In the

following section, we introduce global events and how it impacts the model.

5.3.3 Global Events

A global event refers to some event whose occurrence becomes known to all agents in the team,

and causes one of the agents in the defender team to become unavailable, causing others to fill

in the gaps created. In our example domain, global events correspond to scenarios such as bomb

threats or crime, where a resource must stop patrolling and deal with the unexpected event. The

entire defender team is notified when a global event occurs. Depending on the type of event,

a pre-specified defender resource, which we denote as the qualified defender resource, will be

removed from patrolling and allocated to deal with the event once it occurs. This is because certain

defender resources have capabilities best suited towards addressing the global event, thereby

having the pre-specified, qualified defender resource stop patrolling and handle the global event

while the other defender resources continue to monitor and patrol.

To handle such global events, we include the global unaffected state in our security game

model. The global unaffected state is a vector of binary variables over different types of events

that may be updated at each time step τ. This state is labeled as such because it is known by each

defender resource but is not affected by the defender team; the defender team has no control over
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this global unaffected state. For example, a global state could be a vector < 1, 0, 1 > where each

element corresponds to the type of the event such as bomb threat, active shooter, or crime. If the

first element corresponds to a bomb threat and is set to 1, that implies that a bomb threat has been

received.

When the global unaffected state is updated (a global event occurs), this results in a change in

the state for both the qualified defender resource as well as the other defender resources. The qual-

ified defender resource stops patrolling to address the global event while the remaining defender

resources may change their strategy and subsequent actions to account for the qualified defender

resource leaving the system. Transitions associated with global unaffected state, i.e., Tu(su, s′u)

could potentially be computed based on the threat/risk levels of various events at the different

time steps. The transitions associated with individual defender resources, i.e., Ti(〈su, si〉, ai, s′i) are

dependent on whether the defender resource is responsible for handling a global event that has

become active in that time step. If su indicates that a bomb threat is active and i is the qualified

defender resource, then the valid joint policy indicates that the qualified defender resource handles

the global event and goes out of patrolling duty. If su indicates a bomb threat and i is not the quali-

fied defender resource, then resource i would choose an action ai based on su with the knowledge

that the qualified defender resource is no longer patrolling.

Problem Statement: Our goal is to compute the strong Stackelberg equilibrium of the new

game representation that includes joint policies as defined earlier as the pure strategies for the

defender. In other words, we want to find the optimal (highest expected value) mixed strategy for

the defender to commit to considering that a strategic adversary best responds to her strategy.

84



5.4 Approach

This section begins with a linear program (LP) to solve for the defender’s optimal strategy based

on the game model discussed in the previous section (Section 5.3). Given the exponential number

of defender pure strategies (joint policies) that are needed to solve the LP, we introduce a column

generation framework [Barnhart et al., 1994] to intelligently generate a subset of pure strategies for

the defender. The space of joint policies is very large. We look to Dec-MDP algorithms to cleverly

search that space [Becker et al., 2004; Dibangoye et al., 2012; Petrik and Zilberstein, 2009; Spaan

and Melo, 2008], but optimal Dec-MDP algorithms are difficult to scale-up, and hence we use

heuristics that leverage ideas from previous work on Dec-MDPs [Varakantham et al., 2009]. The

use of heuristics results in the possibility that our algorithm does not find the optimal defender

mixed strategy. However, we show in the experimental results that the heuristic solution is able to

scale-up and perform better than algorithms that do not handle uncertainty (which can scale-up but

suffer from solution quality loss) in Section 5.7.1 or algorithms that attempt to find the optimal

solution (which may not suffer from solution quality loss but cannot scale up) in Section 5.7.2 or

algorithms that attempt to find even higher quality solutions heuristically (they still fail to perform

better) in Section 5.7.3.2.

A standard method for solving Stackelberg games is the Multiple-LP algorithm [Conitzer and

Sandholm, 2006]. The Multiple-LP approach involves iterating over all attacker choices. The

attacker has |B| choices and hence we iterate over these choices. In each iteration, we assume that

the attacker’s best response is fixed to a pure strategy α, which is a target-time pair, α = (t, τ).
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max
c,x

Ud(α, c) (5.1)

Ua(α, c) ≥ Ua(b, c) ∀b , α (5.2)

cb −
∑

j∈J
P j

bx j ≤ 0 ∀b ∈ B (5.3)∑
j∈J

x j = 1 (5.4)

x j ≥ 0 ∀ j ∈ J, cb ∈ [0, 1] ∀b ∈ B (5.5)

The LP for α, shown in Equations (5.1) to (5.5), solves the optimal defender mixed strategy x

to commit to, given that the attacker’s best response is to attack α. Then among the |B| solutions,

the solution that achieves the best objective (i.e., defender expected utility) is chosen. In more

detail, Equation (5.2) enforces that the best response of the attacker is indeed α. In Equation (5.3),

P j is a column vector which gives the values of expected effectiveness P j
b of each target-time pair

b given the defender’s pure strategy π j. An example of a set of column vectors is shown below:

P =



j1 j2 j3

b1 0.0 0.5 0.4

b2 0.2 0.7 0.0

b3 0.5 0.6 0.2

b4 0.6 0.0 0.8


Column P j1 = 〈0.0, 0.2, 0.5, 0.6〉 gives the effectiveness P j1

bi
of the defender’s pure strategy π j1

over each target-time pair bi. For example, policy π j1 has an effectiveness of 0.5 on b3. Thus,
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Equation (5.3) enforces that given the probabilities x j of executing mixed strategies π j, cb is the

marginal coverage of b.

24

Input: α =  (t1, 1)

α=(t1, 1) α=(t1, 2) α=(t1, 3)

α=(t2, 1) α=(t2, 2) α=(t2, 3)

.  .  . 

.

.

. 

.  .  . 

.

.

. 

Target (t)

Time (τ)

LP1 LP2 LP3

LP7 LP8 LP9

.

.

. 

Output: Defender Strategy

LP1

Figure 5.2: Diagram of the Multiple-LP approach

Figure 5.2 gives a diagram of how the Multiple-LP algorithm applies to our solution approach.

Focus first on the right side of Figure 5.2. There the figures show several LPs. In particular, this

approach generates a separate LP for each attacker pure strategy denoted as α in Equations (5.1)

to (5.5). For example, the first LP that is solved, assumes that the attacker’s best strategy, α is to

attack target t1 at time τ = 1. The algorithm fixes the attacker’s best strategy, α = (t1, 1), and then

solves for the defender team’s strategy under the constraint that the attacker’s best response is α.

The algorithm then iterates to the next LP, which corresponds to a new attacker strategy. Once all

the LPs have been solved, we compare the defender’s strategy for each attacker strategy/LP and

choose the one that gives the defender the highest expected utility.
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For each LP that is being solved, the input is the attacker’s best strategy, denoted as α, which

is composed of a target and time. The output of each LP is the defender’s strategy against an

attacker whose best strategy is α. To determine the defender’s strategy against the attacker, all

the defender pure strategies must be enumerated. However, in our game there is an exponential

number of possible defender pure strategies, corresponding to joint policies — and thus a massive

number of columns that cannot be enumerated in memory — so that the Multiple-LP algorithm

cannot be directly applied. For N stations, T time steps, and R defender resources, we will have

(NT )R policies.

Since this grows exponentially large in proportion to the number of stations, time steps, and

defender resources, we turn to column generation to solve the LP and intelligently compute a

subset of defender pure strategies along with the optimal defender mixed strategy. We solve

an LP using a column generation framework for each possible target-time pair for the attacker

strategy and then choose the solution that achieves the highest defender expected utility. The

column generation framework is composed of two components, the master and slave. The master

component solves the LP given a subset of defender pure strategies (or joint policies). The slave

component computes the next best defender pure strategy or joint policy to improve the solution

found by the master component. We cast the slave problem as a Dec-MDP to generate the joint

policy for the defender team. In the next section, we explore in detail the column generation

framework.

5.4.1 Column Generation

The defender needs to know all possible pure strategies in order to compute the optimal strategy

against the attacker. However, as stated in the previous section, the number of possible defender
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pure strategies grows exponentially in the number of stations, time steps, and defender resources.

To deal with this problem, we apply column generation [Barnhart et al., 1994], a method for

efficiently solving LPs with large numbers of columns. At a high level, it is an iterative algorithm

composed of a master and a slave component; at each iteration the master solves a version of

the LP with a subset of columns, and the slave smartly generates a new column (defender pure

strategy) to add to the master.

Master

j1 j2

b1 0.0 0.5

b2 0.2 0.7

b3 0.5 0.6

b4 0.6 0.0

P = 

Slave

j3

b1 0.4

b2 0.0

b3 0.2

b4 0.8

New Column = 
j1 j2 j3

b1 0.0 0.5 0.4

b2 0.2 0.7 0.0

b3 0.5 0.6 0.2

b4 0.6 0.0 0.8

P = 

Step 1:
Solve Master +
Obtain Duals Duals

Step 3:
Solve Slave +
New ColumnStep 4:

Add Column +
Resolve Master

Step 2:
Update Slave 
with Duals

Figure 5.3: Column generation illustration including the master and slave components. The
column generation algorithm contains multiple iterations of the master-slave formulation.

Figure 5.3 gives an example that shows the master-slave column generation algorithm. Note

that there are four steps in this figure to explain the process and interaction between the master

and slave component. In the first step, the master component solves an LP to generate a defender

mixed strategy while also computing the corresponding dual variables (Step 1). The master starts

with a subset of defender pure strategies represented as columns in P. In this example, the master
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is solving the LP given two columns, j1 and j2. The dual values from the master component are

then used as input for the slave component (Step 2).

Then the slave component computes a defender pure strategy (joint policy) and returns the

column that corresponds to the defender pure strategy back to the master component (Step 3).

We show in this example that the column j3 is generated by the slave component. The master

component then adds this new column to the existing set of columns, P, and then resolves the LP

which now includes the new column generated from the slave (Step 4). We see here that now the

master resolves the LP but with three columns now, j1 to j3. This master-slave cycle is repeated

for multiple iterations until the column generated by the slave no longer improves the strategy for

the defender. Next, we go in detail about first the master component and then the slave component.

The master is an LP of the same form as Equations (5.1) to (5.5), except that instead of having

all pure strategies, J is now a subset of pure strategies. Pure strategies not in J are assumed to be

played with zero probability, and their corresponding columns do not need to be represented. We

solve the LP and obtain its optimal dual solution.

The slave’s objective is to generate a defender pure strategy π j and add the corresponding

column P j, which specifies the marginal coverages, to the master. We show that the problem of

generating a good pure strategy can be reduced to a Dec-MDP problem.

To start, consider the question of whether adding a given pure strategy π j will improve the

master LP solution. This can be answered using the concept of the reduced cost of a column [Barn-

hart et al., 1994], which intuitively gives the potential change in the master’s objective when a

candidate pure strategy π j is added. Formally, the reduced cost f j associated with the column P j

is defined as:

f j =
∑

b
yb · P

j
b − z
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where z is the dual variable of (5.4) and {yb} are the dual variables of Equation family (5.3), and

are calculated using standard techniques. If f j > 0 then adding pure strategy π j will improve the

master LP solution. When f j ≤ 0 for all j, the current master LP solution is optimal for the full

LP.

Thus the slave computes the π j that maximizes f j, and adds the corresponding column to the

master if f j > 0. If f j ≤ 0 the algorithm terminates and returns the current master LP solution.

5.4.2 Dec-MDP Formulation of Slave

We formulate this problem of finding the pure strategy that maximizes reduced cost as a transition

independent Dec-MDP [Becker et al., 2004]. The rewards are defined so that the total expected

reward is equal to the reduced cost. The states and actions are defined as before. We can visualize

them using transition graphs: for each resource r, the transition graph Gr = (N′r, E
′
r) contains

state nodes sr = (t, τ) ∈ S r for each target and time. In addition, the transition graph also contains

action nodes that correspond to the actions that can be performed at each state sr. There exists

a single action edge between a state node sr and each of the action nodes that correspond to the

possible actions that can be executed at sr. From each action node ar from sr, there are multiple

outgoing chance edges, to state nodes, with the probability Tr(sr, ar, s′r) labeled on the chance

edge to s′r. In the illustrative example scenario that we have focused on, with there being delays,

each action node has two outgoing chance edges with one chance edge going to the intended next

state and another chance edge going to a different state which has the same location as the original

node but a later time.

Example: Figure 5.4 shows a sample transition graph showing a subset of the states and

actions for resource i. Looking at the state node (t1, 0), assuming target t1 is adjacent to t2 and t5,
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there are three actions, Stay at t1,Visit t2, or Visit t5. If action, Visit t2 is chosen, then the transition

probability is: Ti((t1, 0),Visit t2, (t2, 1)) = 0.9 and Ti((t1, 0),Visit t2, (t1, 1)) = 0.1.
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t5
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Figure 5.4: Example Transition Graph for one defender resource

The transition independent Dec-MDP consists of multiple such transition graphs, which we

represent as Gr. There is however a joint reward function R(s). This joint reward function, R(s), is

dependent on the dual variables, yb, from the master, and the effectiveness eff(s, b) of resources

with global state s on target-time pair b, as defined in Section 5.3:

R(s) =
∑

b
yb · eff(s, b). (5.6)

Multiple transition graphs are needed because each defender resource may have a different graph

structure and/or action space.

We provide an example for the joint reward function R(s), continuing from the scenario

described in Section 5.3.2. The example global state is si = {(r1 : (t1, 0)), (r2 : (t3, 0))}, where r1 is
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at t1 and r2 is at t3. Since there are only two target-time pairs in this global state, we only need to

sum over these two pairs because for all other pairs, the effectiveness, eff(s, b) = 0. If we define

ξ = 0.6, the defender’s effectiveness of a single resource visiting a target-time pair, b1 = (t1, 0),

and b2 = (t3, 0) then:

R(s) =
∑

b
yb · eff(s, b) = yb1 · 0.6 + yb2 · 0.6

Proposition 2. Let π j be the optimal solution of the slave Dec-MDP with reward function defined

as in (5.6). Then π j maximizes the reduced cost f j among all pure strategies.

Proof. The expected reward of the slave Dec-MDP given π j is

∑
s
Pr(s|π j)R(s) =

∑
b

yb

∑
s

Pr(s|π j)eff(s, b)

=
∑

b
ybP j

b = f j + z.

Therefore the optimal policy for the Dec-MDP maximizes f j. �

5.4.3 Solving the Slave Dec-MDP

If the Dec-MDP is solved optimally each time it is called in the master-slave iteration, we would

achieve the optimal solution of the LP. Unfortunately, optimally solving Dec-MDPs, particularly

given large numbers of states (target-time pairs) is extremely difficult. The optimal algorithms

from the MADP toolbox[Spaan and Oliehoek, 2008] along with the MPS algorithm [Dibangoye
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et al., 2012] are unable to scale up past four targets and four resources in this problem scenario.

Experimental results illustrating this outcome are shown in Section 5.7. Hence this section focuses

on a heuristic approach. As mentioned earlier, this implies that we do not guarantee achieving

the optimal value of each LP we solve; however, we do show in Section 5.7 that this approach

scales better than one attempting to achieve the optimal and one that scales but does not handle

uncertainty.

Our approach, outlined in Algorithm 2, borrows some ideas from the TREMOR algo-

rithm [Varakantham et al., 2009], which iteratively and greedily updates the reward function

for the individual resources and solves the corresponding MDP. We do not use the TREMOR

algorithm but reference this algorithm as the closest algorithm in the Dec-MDP literature to the

one implemented in this section. In particular, unlike TREMOR, there is no iterative process in

our algorithm. More specifically, for each resource r, this algorithm updates the reward function

for the MDP corresponding to r and solves the single-agent MDP; the rewards of the MDP are

updated so as to reflect the fixed policies of previous resources.

The MDP for each resource consists of: S r, the set of local states sr in the form of a tuple (t, τ);

Ar, the set of actions that can be performed by the resource; T (sr, ar, s′r), the transition function

of the resource at state sr taking the action ar and ending up at state s′r; and R(sr), the reward

function which represents the reward for visiting and covering state sr. The value of the reward is

determined both by the dual variable yb, from the master and the policies of defender resources

that have already been computed from previous iterations.

In more detail, this algorithm takes the dual variables yb (refer Section 5.4.1) from the master

component and G as input and builds π j iteratively in Lines 2–5. Line 3 computes vector µr, the

additional reward of reaching each of resource r’s states.

94



Algorithm 2 SolveSlave(yb, G)

1: Initialize π j

2: for all r ∈ R do
3: µr ← ComputeUpdatedReward(π j, yb,Gr)
4: πr ← SolveSingleMDP(µr,Gr)
5: π j ← π j ∪ πr

6: P j ← ConvertToColumn(π j)
7: return π j,P j

Compute Updated 
Reward

Solve Single 
MDPIndividual 

policy (πr)

Reward Vector (μr)

Add Policy to
Joint policy 

Joint policy (πj)

Convert Joint Policy 
to Column 

Joint policy (πj)

Run for r
iterations

Send column
to Master Component

Input from Master:
Dual variables (yb)
Transition Graph (G)

Figure 5.5: Diagram of the algorithm for the slave component

Figure 5.5 gives a diagram of how the slave component operates. It receives as input from the

master component the dual variables yb and the transition graph G. It then solves and generates

an individual policy, πr, for each resource, based on the reward vector. This reward vector takes

into account the dual variables from the master along with the individual policies of resources that

have already been computed. After all individual policies have been generated, the joint policy is

converted into a column and then sent to the master.
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Consider the slave Dec-MDP defined on resources 1, . . . , r (with joint reward function (5.6)).

The additional reward µr(sr) for state sr is the marginal contribution of r visiting sr to this

joint reward, given the policies of the r − 1 resources computed in previous iterations, π j =

{π1, . . . , πr−1}. Specifically, because of transition independence, given {π1, . . . , πr−1} we can

compute the probability psr (k) that k of the first r − 1 resources have visited the same target and

time as sr. Then µr(sr) =
∑r−1

k=0 psr (k)(eff(k + 1) − eff(k)), where we slightly abuse notation

and define eff(k) = 1 − (1 − ξ)k. µr(sr) gives the additional effectiveness if resource r visits

state sr by computing the effectiveness of resource r visiting state sr (incorporating the policies

of the resources that have already been computed) and subtracting the effectiveness due to just

the previous resources and not resource r. For example, if two previously computed resources

already visit a state sr, then if the third resource visits state sr, the individual reward for the third

resource will not be the joint reward of having three resource visit the state, but will instead be the

additional effectiveness of having three resources visit the state versus two resources. This avoids

double-counting for states that have been visit by other previously computed resources.

Line 4 computes the best individual policy πr for resource r’s MDP, with rewards µr. We

compute πr using value iteration (VI):

V(sr, ar) = µr(sr) +
∑

s′r
Tr(sr, ar, s′r)V(s′r)

where V(sr) = maxar V(sr, ar) and πr(sr) = arg maxar V(sr, ar).

The way that the Dec-MDP value function is decomposed into the individual MDP value

function is that for each MDP for an agent, the rewards are updated/precomputed based on the

policies of prior agents that have already been computed. For the first agent, the value function
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on each state for the MDP would simply be the reward if there is just one agent. This agent then

solves the MDP to generate an individual policy. For the second agent, the value function now

gets updated based on the individual policy of the first agent. More specifically, the value function

for the second agent gets updated by modifying the rewards (µr(sr)) on the states that the first

agent visits, to reflect the additional reward/effectiveness that the defender team would receive if a

second agent visits that same state versus having just a single agent visit that state. In particular,

the reward vector, µr is being changed in the value function for the different resources (in Line 3).

5.5 Heuristics for Scaling Up

Without column generation, our model of Dec-MDPs in security games would be faced with

enumerating (NT )R columns, making enumeration of defender pure strategies impossible, let alone

trying to find a solution. While column generation is helpful, each LP still does not scale well and

thus in this section, we present three different approaches to further improving the runtime. We

first started by examining what component in the algorithm was consuming the majority of the

time needed to find the defender’s strategy. The slave component within the column generation

was found to be taking significantly more time than the master component. When running the

algorithm with 8 targets, 8 time steps, and 8 resources, the master component took an average

of 7.2 milliseconds while the slave component took an average of 26.3 milliseconds. Increasing

the number of resources from 8 to 12 resulted in the master component taking an average of 7.3

milliseconds and the slave component taking an average of 101.3 milliseconds. Further increasing

the number of resources from 12 to 16, the master component took on average 7.5 milliseconds

while the slave component took on average 1,229.8 milliseconds. Thus, as the number of resources
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increased, the master component did not increase in runtime while the runtime for the slave

component increased exponentially from 26.3 milliseconds to 101.3 milliseconds, and then to

1,229.3 milliseconds. This demonstrates that the slave component is clearly a bottleneck.

As discussed in Section 5.4.1, the column generation approach requires multiple master-slave

iterations, and thus there are three different approaches that could be used to attempt to improve

the runtime of the column generation process by focusing on the slave component. First, we

focus on reducing the number of iterations that the column generation algorithm needs to execute,

thereby reducing the number of times the slave component is called in Section 5.5.1. Second,

we then concentrate on decreasing the runtime of a single slave iteration (which we find to take

significantly more time than the master component) to aid in scaling up to more defender resources

in Section 5.5.2. The third approach that was considered to improve the runtime of the algorithm

was the idea of computing a higher quality solution for the slave component so that the number of

total iterations needed by column generation would be reduced (Section 5.5.3).

5.5.1 Reducing the Number of Column Generation Iterations

The initial approach starts with each LP computing its own columns (i.e., cold-start). However,

this does not scale well and thus we build on this approach with several heuristics for scale-up that

focuses on reducing the amount of times column generation needs to be executed:

Append: First, we explored reusing the generated defender pure strategies and columns

across the multiple LPs. The intuition is that the defender strategies/columns generated by the

master-slave column generation algorithm for an LP might be useful in solving subsequent LPs,

resulting in an overall decrease in the total number of defender pure strategies/columns generated

(along with fewer iterations of column generation) over all the multiple LPs. Figure 5.6 gives
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25

α = (t1, 1) α = (t1, 2)

LP1 LP2

j1 j2 … j80

b1 0.0 0.5 … 0.3

b2 0.2 0.7 … 0.0

b3 0.5 0.6 … 0.2

b4 0.6 0.0 … 0.7

j1 j2 … j80 j81 … j134

b1 0.0 0.5 … 0.3 0.2 … 0.7

b2 0.2 0.7 … 0.0 0.5 … 0.1

b3 0.5 0.6 … 0.2 0.7 … 0.2

b4 0.6 0.0 … 0.7 0.0 … 0.4

Figure 5.6: Example of the Append heuristic

an example of how the Append heuristic shares the columns across different LPs. This figure

shows two of the multiple LPs that need to be solved (refer to Figure 5.2 for the diagram of the

Multiple-LP approach). In this example, in the first LP, the column generation approach outputs

80 columns or defender pure strategies in determining the defender’s strategy, when the attacker’s

optimal strategy is to attack target-time pair (t1, 1). Then the second LP, where the attacker’s

optimal strategy is set to (t1, 2) is solved. The 80 columns that were generated to solve the first LP

are then carried over to be used in the second LP (as denoted by the dashed line box). To extend

the example shown in this figure, all 134 columns that are used in the second LP will then be

carried over to the third LP. This continues for all subsequent LPs.

Cutoff: To further improve the runtime, we explored setting a limit on the number of defender

pure strategies generated (i.e., the number of iterations of column generation that is executed) for

each LP.
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Ordered: With this limit on the columns generated, some of the |B| LPs return low-quality

solutions, or are even infeasible, due to not having enough columns. Combined with reusing

columns across LPs, the LPs that are solved earlier will have fewer columns. Since we only need a

high-quality solution for the LP with the best objective, we would like to solve the most promising

LPs last, so that these LPs will have a larger set of defender pure strategies to use. While we do not

know apriori which LP has the highest value, one heuristic that turns out to work well in practice

is to sort the LPs in increasing order of Uu
a(b), the uncovered payoff of the attacker strategies

(target-time pairs) chosen; i.e., to solve the LPs that correspond to attack strategies that are less

attractive to the attacker first, and LPs (attack strategies) that are more attractive to the attacker

later.

5.5.2 Reducing Runtime for a Single Slave Iteration

The heuristics in Section 5.5.1 target reducing the total number of iterations, but not the run-time

within a single slave iteration. Here, we focus on reducing the runtime of a single iteration which

helps to scale up as the number of resources increases. The importance of scaling up to handle

defender teams that are comprised of multiple resources is demonstrated in a large scale real-world

experiment of security games that had to plan for 23 defender security teams [Fave et al., 2014].

To deal with the inability of the previous heuristics in Section 5.5.1 to handle many defender

resources, we explored the following desiderata to guide our selection of an idea to allow us

to scale up: (1) The idea has to focus on the part of the entire algorithm that actually causes a

slowdown. (2) If we introduce a heuristic, the slave should report the column truthfully to the

master. If the slave does not report the column truthfully, then the master will compute a solution

that is inaccurate for the LP (in the Multiple-LP approach). If the solution/value for the LP is
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incorrect, then we may end up selecting the best LP incorrectly and choose a low valued strategy.

(3) The heuristic itself should be very simple. The master calls the slave multiple times within any

given problem instance, and it is important that the slave generate a column in a timely fashion. (4)

The heuristic should preferably lead the slave to be conservative, i.e., it is preferred if the heuristic

does not place fewer resources on important targets.

The rationale for why the slave component was taking a long time to run, was the exponential

increase due to two factors: (1) the size of the state space, when the number of resources increases,

and (2) the computation of the updated rewards that is needed to determine the effectiveness at

each state based on the defender’s joint policy (Algorithm 2, Line 3). For example, if there are

16 defender resources and each resource has a non-zero probability of visiting state s, then the

computation of the updated reward would require iterating through all subsets of the 16 defender

resources, or
(
16
1

)
+

(
16
2

)
+ · · ·+

(
16
16

)
= 65, 535 possible combinations of defender resources.

Algorithm 3 ComputeEffectiveness(π, b)
1: Initialize w
2: Rs ← FindResourcesAtState(π, b)
3: for n = 1 . . . |Rs| do
4: C ← CombinationGenerator(R, n)
5: for all c ∈ C do
6: p← ComputeEffectInstance(c, π, b)
7: w← w + p
8: return w

To improve the runtime to handle a larger number of resources, we used the desiderata as

a guideline. We explored setting a limit on the number of resources in the computation of the

effectiveness of a given state, eff(s, b), but do not actually place a limit in the game and in

the column that is computed by the slave component and used by the master component. The

reasoning to place a limit on the number of resources is that the effectiveness for the defender does
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not significantly increase when there are already a few defender resources at a state. For example,

if a state is already covered by ten defender resources, adding an additional defender resource will

not provide a significant increase in effectiveness, compared to the additional benefit if there was

just one defender resource and another resource was added. Algorithm 3 gives the algorithm of

computing the effectiveness of joint policy π on state b. Algorithm 3 is used in Algorithm 2, for

the computation of the updated rewards (Algorithm 2, Line 3) and in transforming the policy that

encompasses all resources into a column for the master (Algorithm 2, Line 6). In both cases, we

need to enumerate all combinations of resources for each state to compute the effectiveness of the

defender resources at each state. The computation of the updated rewards (Algorithm 2, Line 3)

is used more expansively in the slave component compared to the conversion of the policy to a

column (Algorithm 2, Line 3) and thus we focus on improving the runtime and computation of the

updated rewards. Since this updated computation of the effectiveness can potentially generate a

lower effectiveness value (as described in detail below), by not modifying the computation of the

policy to a column, the algorithm still provides an accurate column for the master component. By

placing a limit on the maximum number of resources at any given state, the solution quality may

decrease because the resulting joint policy computed by the slave does not consider the increased

effectiveness of additional resources above the imposed limit, but at the end of the slave calculation

(Algorithm 2, Line 6) the column return to the master accurately describes the effectiveness of the

joint policy.

Algorithm 3 starts by computing Rs, which is the set of resources that have a non-zero proba-

bility of visiting state b (Line 2), by scanning through the policy of each resource to see if there is

a possibility of reaching state b. It then iterates from 1 to the total number of resources that have a

non-zero probability, or |Rs|, of visiting state b. This value of n, represents the number of resources
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that visit state b, where the algorithm computes the probability and corresponding effectiveness.

In Line 4, the algorithm generates all possible combinations of resources of size n. For example, if

R = 5 and n = 2, then C = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}, where

the numbers in each set correspond to different resources. For each combination, the effect of each

particular combination is computed and added together (Lines 6-7). For example, if c = (1, 4),

then ComputeEffectInstance(c, π, b) (Line 6) would compute the effectiveness of two resources at

state b, multiplied by the probability of resource 1 and 4 at state b, along with the probability of all

other resources not being at state b.

During this computation of the effectiveness of joint policy π on state b, instead of computing

the effectiveness by allowing up to |Rs| resources, we place a limit on the maximum number of

resources (set to z) that can be at state b (just in our calculation of the updated rewards but not

while converting the policy to a column). To accomplish this, Algorithm 3 is modified at Line 3 so

instead of n iterating from 1 to |Rs|, it will instead iterate from 1 to z.

This simplifies the computation of the effectiveness, eff(s, b), for all states and in turn

improves the runtime of the slave. This is because the algorithm does not need to compute all

combinations of resources from lines 3 to 7, which grows exponentially large as the number of

resources increases. By placing a limit of at most z resources to consider while calculating the

effectiveness, we are able to improve the runtime and scale up to a larger number of resources.

Despite this limit in calculating the effectiveness, in reality more than z resources may visit this

state.

However, when converting the defender’s joint policy to a column (Algorithm 2, Line 6), we

can compute the exact effectiveness, eff(s, b), by calling Algorithm 3 without placing a limit on

the maximum number of resource. In Algorithm 3, Line 3, instead of just iterating from 1 to z, the
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algorithm iterates from 1 to |Rs| to compute an exact effectiveness of the policy for the column that

is returned to the master component. In other words, we speed up policy computation but ensure

that the value of the policy is correctly returned to the master.

Referring to the diagram of the slave component in Figure 5.5, the changes that are made are

within the Compute Updated Reward step. This is where the limit is placed on the maximum

number of resources that can visit a state. In the step where the joint policy is converted to a

column (once the slave is done computing individual policies for each resource), this computation

does not place a limit on the maximum number of resources to ensure that the column returned to

the master is a correct representation of the joint policy (fulfilling the second desiderata criteria).

The idea we present above fulfills all four points of the desiderata in scaling up to handle

many defender resources. It focuses on modifying the slave component, which has been shown

to consume the majority of the runtime. The heuristic, while modifying the computation of

the effectiveness value in the updated rewards, still reports an accurate column for the master

component. If the column generated underestimated the effectiveness, this would result in an

incorrect value for the LP as computed by the master. This may cause the Multiple-LP algorithm

to choose the best LP incorrectly and therefore result in low valued strategy for the defender. This

heuristic, as shown in Section 5.7.5, is extremely beneficial in speeding up while still providing a

high level of solution quality.

5.5.3 Improving the Solution Quality of the Slave

Another approach that we considered in improving the runtime of the algorithm was generating

a higher quality solution for the slave component (even at the expense of the slave component

running slightly slower) with the notion that if the slave component produces a better column for
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the master, the column generation algorithm will converge more quickly to a solution, thereby

speeding up the overall algorithm.

In the slave component, in Algorithm 2, we generate a policy for each resource by iterating

over each resource in a single iteration (Line 2). Therefore, the policy of the first resource does

not take into account the policies of all other resources. The slave computes the optimal policy

for the first resource assuming there are no other resources. The slave component then computes

the optimal policy for the second resource given the policy for the first resource (which is now

fixed and does not change). The policy of the third resource is computed with the knowledge of

the policies of the first two resources. This continues until policies are generated for all resources.

Algorithm 4 SolveRepeatedSlave(yb, G)

1: Initialize π j, ψp, ψc

2: while ψp , ψc do
3: for all r ∈ R do
4: π j ← π j − πr

5: µr ← ComputeUpdatedReward(π j, yb,Gr)
6: πr ← SolveSingleMDP(µr,Gr)
7: π j ← π j ∪ πr

8: ψp ← ψc

9: ψc ← ComputeObjective(π j)
10: P j ← ConvertToColumn(π j)
11: return π j,P j

As mentioned, the policy of the first resource does not consider the policies of any other

resource as we use this heuristic to be able to scale up. We proposed modifying the slave

component to include a repeated iterative process where instead of a single for loop (Algorithm 2,

Line 2), we repeatedly iterate Lines 2 - 5, until we reach a local optimum where the policies of the

defender resources do not change across iterations.

Algorithm 4 outlines the updated repeated iterative slave. ψp and ψc represent the computed

objective value of the joint policy for the previous iteration and current iteration respectively. This
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1 2 3 4 5 6 7 8
Single iteration 6.939 5.152 3.009 3.160 5.094 4.374 6.676 7.083
Repeated iterative 7.305 5.416 3.053 3.246 5.432 4.422 6.821 7.203

Table 5.2: Comparison of solution quality for only one instance of the slave when using a single
iteration versus repeated iterative slave

is used to determine whether the joint policy has changed across iterations. The main difference

between Algorithm 4 and Algorithm 2 is the outer while loop (Line 2) that compares the objective

across iterations to see if it has improved or reached a local maximum. In Line 4, the joint policy,

π j is modified by removing the current individual policy of resource r. The updated individual

policy for the resource r is then recomputed and re-added to the joint policy. After the individual

policies of each resource is computed, the objective of the joint policy is computed in Line 9.

While further improvements could be made, the question we focused on is whether this style

of improvement in solution quality of individual joint policies would help us reduce the total

run-time.

The rationale for this repeated iterative process in the slave is to improve the joint policy (and

equivalent column) that is computed by the slave component and to provide a higher defender

expected utility. First, we tested the solution quality of a single instance of running the slave,

comparing the output of the single iteration slave versus the repeated iterative slave. This is to

verify that the solution quality of the joint policy from the repeated iterative slave is higher than the

joint policy computed by the single iteration slave. We show this comparison in Table 5.2 where

each column represents the solution quality after running a single instance of the slave component.

Therefore, each of the values in this table measure the solution quality of a single defender pure

strategy or joint policy.

In a follow-up test, we compared the performance of the repeated iterative slave versus a single

iteration slave run over the whole game instance to find the defender’s mixed strategy over the set

106



of pure strategies generated via the column generation framework. This is different from the results

in Table 5.2, where in this test we run the Multiple-LP algorithm including column generation to

determine the defender’s expected utility and mixed strategy. In a preliminary test, with 5 targets,

8 time steps, and 4 resources and averaged over 15 game instances, in comparing the repeated

iterative slave versus a single iteration slave, the solution quality (defender expected utility) when

using a repeated iterative slave was 0.861 while the solution quality for the single iteration slave

was 0.849. The maximum improvement of the repeated iterative slave over the single iteration

slave was 0.057. This shows that the overall solution quality of the repeated iterative slave is

higher than the single iteration slave. This is what we expect for the repeated iterative slave as it

computes a locally optimal joint policy compared to the single iteration slave.

5.6 Robustness

There are two types of robustness issues that we explore in this section. The first type of robustness

that we study examines the impact of uncertainty in different network structures. An example of

this includes the performance of the algorithm when the probability of delay increases. In the real

world, this value will be determined based on the frequency that the actual patrols get delayed or

interrupted. In addition to determining the performance of the algorithm as the probability of delay

changes, we evaluate the impact of network structure. The rationale for studying the robustness

of the algorithm across different types of network structure, is to see if having different types of

connectivity among the targets/stations would affect the defender’s strategy and expected utility.

Would having a more sparse graph or densely connected graph influence the defender’s expected

utility and how would that expected utility change as we change the transition uncertainty? We
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conduct experiments across different types of network structures and varying levels of transition

probability in Section 5.7.4.1 to show that a network structure that has more edges (e.g., complete

graph) provides greater resilience even as the probability of delay increases.

The second type of robustness that we explore addresses the impact of uncertainty over

uncertainty. In our algorithm, we assume a probability of delay, where the defender resource

may get delayed during a patrol. However, there may be uncertainty in what this probability may

actually be in the real world. We present a different approach in generating the defender’s policy

within the slave, to provide a more robust solution to this type of uncertainty.

As described in Section 5.4.3, the slave generates a policy for each defender resource using

value iteration. We present a different way to solve the MDP by using soft-max value iteration

(SMVI) [Varakantham et al., 2013a] to provide a more robust solution to uncertainty. SMVI is

similar to VI except that the soft-max function is used instead of max while computing the value

function of a state s. SMVI generates randomized policies – i.e., randomized pure strategies –

associating probability πr(sr, ar) to each action ar at each state sr. Formally,

V(sr) = softmaxar V(sr, ar) ≡ log
∑

ar
eV(sr ,ar)

πr(sr, ar) =
eV(sr ,ar)

eV(sr)

SMVI was first explored for its ability to speed up convergence, as in [Varakantham et al.,

2013a]. In our experiments SMVI did not provide significant runtime improvement, however we

discovered that the randomized policy obtained from SMVI provides robustness to uncertainty

in our estimates of transition probabilities, which is a highly useful feature since this uncertainty

often arises in practice. The intuition behind SMVI providing robustness to uncertainty stems from
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the fact that the SMVI algorithm computes a policy that spreads out the probability of choosing

an action at each state, instead of choosing only one action at each state (VI). In the presence of

uncertainty, if the action that is chosen by VI is no longer the best action, it will still be chosen

with a probability of 1 and therefore the updated optimal action due to uncertainty will now be

chosen with a probability of 0. With soft-max, the probability over the action to take at each

state is distributed over the set of possible actions based on their values. Therefore when noise

or uncertainty is added, the randomized policy will have a non-zero probability of choosing the

updated best action (or a close-to-best action). For example, if there are two possible actions, a1

and a2, that give the values 5 and 4 respectively, then the VI algorithm will generate in a policy that

chooses a1, 100% of the time. However, the SMVI algorithm will compute a policy that chooses

a1, 73.1% of the time and a2, 26.9% of the time. If noise is added to the system that now results in

a2 giving a higher value than a1, the VI-based policy will be choosing a suboptimal action, or a1,

100% of the time or the optimal action, a2, 0% of the time. However, the SMVI-based policy will

choose the optimal action, a2, 26.9% of the time, thereby giving the defender a higher value. Such

probability will be significant especially when there are many close-to-optimal pure policies.

5.7 Evaluation

The experiments detailed in this section were performed on a quad core Linux machine with 12 GB

of RAM and 2.3 GHz processor speed. The test results were averaged over 30 game instances, with

each game having random payoffs in the range [-10,10]. Unless otherwise stated, the scenarios are

run over 8 targets, 4 resources, a patrol time of 80 minutes discretized into 10 minute intervals,

5% probability of delay, and 5% probability of a global events, using VI with append + cutoff +
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ordering. The graphs of the scenarios are formed by connecting targets together in lines of length

5, and then randomly adding |T |2 edges between targets, to resemble train systems in the real world

with complex loops. All key comparisons where we assert superiority of particular techniques,

e.g., as in Figure 5.19, are statistically significant with p < 0.01.

5.7.1 Importance of Teamwork and Uncertainty

In this section, we focus on showing that the problem we are solving and the way we model it,

provides significant improvement over previous models. The purpose is to show that modeling and

solving for defender teamwork and uncertainty is an important research topic and that generating

a high quality solution is not trivial. Given the complexity of the problem and model that we are

solving, a reasonable question would be whether solving a more simple model, such as one that

does not take into account the effectiveness of multiple resources or uncertainty, would provide a

solution quality that is “good enough” or close to the solution that we receive from our algorithm

that takes into account teamwork and uncertainty. This section shows that this is not the case,

where solving a more simple model provides a significantly lower solution quality compared to

the model that we present in this chapter. In addition, these experiments are benchmarks for our

algorithm in providing lower bounds. We first demonstrate that the algorithm we use to solve this

model provides a significant improvement over a naive approach of a uniform random strategy.

Next, we present three properties that we investigated: (i) defender teamwork in the form of

additional effectiveness for the defender team as multiple resources visit the same state; (ii) global

events that are handled in our model versus one that ignores these types of events; (iii) execution

uncertainty in the form of delays in the defender’s patrol. The following figures show that each
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property that we model provides a considerable improvement in the defender’s strategy versus a

model that ignores the property.
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Figure 5.7: Comparison of our VI algorithm versus a uniform random strategy

First, we compare the solution quality of our VI algorithm versus a uniform random strategy

in Figure 5.7. The x-axis denotes the number of targets while the y-axis shows the solution quality

(defender expected utility). The purpose of this comparison is to use the uniform random strategy

as an initial benchmark to measure the performance and increase in solution quality that our VI

algorithm provides to the defender team. This figure shows that for varying numbers of targets,

our algorithm significantly outperforms a naive uniform random approach.

Figure 5.8 shows the benefit received in our model’s ability to handle teamwork. This

demonstrates the improvement in the solution quality, or defender expected utility, that comes

from the increased effectiveness of having multiple defender resources visit the same state. More

specifically, it shows the difference in solution quality between our algorithm that generates

policies that takes into account benefit to having multiple resources covering the same target-time

pair, eff(s, b) = 1 − (1 − ξ)
∑

i Isi=b , and an algorithm that generates policies that ignores additional
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Figure 5.8: Benefit of considering the effectiveness of multiple resources

effectiveness, eff(s, b) = ξ · Ib∈s (i.e., it is ξ as long as at least one resource covers b). This

algorithm that ignores additional effectiveness is still solving individual MDPs for each defender

resource (in the slave component) and providing joint policies for the master component.

For both algorithms, when evaluating and computing the defender expected utility, if multiple

resources visit the same state, the defender receives an additional effectiveness. In other words

even for the algorithm that generates policies that ignore multiple resources, when evaluating and

computing the defender expected utility, if there is more than one resource at a state, the defender

will get an additional effectiveness. As the number of defender resources increases, the solution

quality for when there is a benefit to having multiple resources increases at a faster rate than when

there is no benefit of multiple resources visiting the same state (no teamwork).

Figure 5.9 further illustrates the expressiveness of our teamwork model. It compares the

solution quality when we consider global events versus solving under the assumption of no global

events. The x-axis denotes the number of targets while the y-axis shows the solution quality. In

the latter case, the system solves the model under the assumption that there is no global event, and

112



-3

-2

-1

0

1

So
lu

tio
n 

Q
ua

lit
y

Handling 
global event
Ignoring 

-4

-3

8 12 16

So
lu

tio
n 

Q
ua

lit
y

Number of Targets

Ignoring 
global event

Figure 5.9: Solution quality of handling global events versus ignoring global events

we compute the defender expected utility if there is a 5% probability of global events at each time

step. This shows the need and improvement to incorporating and handling global events.
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Figure 5.10: Comparison of solution quality taking into account the probability of delay

Figure 5.10 shows the importance of taking account execution uncertainty in the form of

delays. The x-axis is the number of targets and the y-axis is the solution quality. It compares

the solution quality of our algorithm that considers and plans for uncertainty (in the form of

delays), to an algorithm that does not take into account execution uncertainty (i.e., assumes that the
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policy/patrol schedule will be performed exactly as indicated and that there will be no unforeseen

events or delays). When executing the policy that does not take into account delays, when a delay

is encountered, the policy terminates with no action. The solution quality of the algorithm that

assumes no uncertainty generates a mixed strategy for the defender, that is then analyzed with

the assumption of a 5% probability of delay. This figure reinforces the usefulness and value to

handling execution uncertainty with multiple coordinated defender resources.

5.7.2 Comparison with other Dec-MDP solvers
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Figure 5.11: Comparison of various Dec-MDP solvers

In Figure 5.11 we compare the runtime of the VI-based slave for one iteration (no column

generation) with other algorithms for Dec-MDPs such as MPS [Dibangoye et al., 2012], JESP [Nair

et al., 2003] and DICEPS [Oliehoek et al., 2008]—this is the only figure in this section that focuses

only on the slave and not on the master-slave algorithm in full.2 The x-axis shows the number

of targets and the y-axis is the execution time (seconds). We are thankful for the advances in

Dec-MDP algorithms and are in debt to the multi-agent planning under uncertainty community for

2We would like to thank Jilles Dibangoye for providing the MPS algorithm and Matthijs Spaan for providing the
MADP toolbox (for JESP and DICEPS).
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important research that we utilize in our algorithm. There is new fertile ground for new research

that exploits deeper insights from MPS along with demonstrating the importance towards fast

heuristic algorithms to solve Dec-MDPs.

This figure shows that JESP and DICEPS run out of memory for more than two targets, while

MPS runs out of memory for more than four targets. For a single iteration of the slave, MPS takes

over six minutes with four targets, whereas our algorithm takes less than 10 seconds. This suggests

that security games can benefit from a new family of fast approximate Dec-MDP algorithms, such

as our VI-based slave, that provides a new direction for further Dec-MDP research.

5.7.3 Evaluating Runtime Improvements

This section begins with a comparison among all the runtime heuristics presented in Section 5.5.

In Section 5.7.3.1, we show the increased performance when the slave component is modified to

place a limit on the number of resources at each state. Then in Section 5.7.3.2 we further explore

the impact of the repeated iterative slave.

The first two figures, Figure 5.12 and 5.13 compare the runtime and solution quality across the

multiple heuristics as described in Section 5.5. In both figures, the x-axis is the number of targets

while the y-axis is the runtime in minutes for Figure 5.12 and the solution quality in Figure 5.13.

Focusing on Figure 5.12, the heuristics that provide the fastest runtime are: Append + Cutoff,

Append + Cutoff + Ordered, and Max 3 joint resources + Append + Cutoff + Ordered. Both Cold

Start and Append take the longest time to run.

When comparing the solution quality, in Figure 5.13, all the heuristics compute approximately

the same solution quality or defender expected utility except for the Append + Cutoff heuristic.

The rationale as to why there is a decrease in solution quality for the Append + Cutoff heuristic
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Figure 5.13: Solution quality comparison of heuristics

is that due to the cutoff function where there is a limit placed on the total number of columns

generated within a single LP, this may result in a lower defender expected utility. By adding

the Ordered heuristic, we are solving the LPs that are less attractive to the attacker first, thereby
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allowing additional columns to be generated and used by the LPs that are solved later in the

algorithm to give the defender a larger number of columns or defender pure strategies to use.

These two figures show that the Append + Cutoff + Ordered heuristic runs at least as fast as the

Cold Start, Append, and Append + Cutoff algorithms, while also computing approximately the

same solution quality (and outperforming Append + Cutoff). Therefore, we focus on improving

the Append + Cutoff + Ordered heuristic in the following section to handle situations where there

is a larger number of defender resources.

5.7.3.1 Maximum resources per state in the slave

We show in this section that the Append + Cutoff + Ordered heuristic, cannot scale up well when

further increasing the number of resources. Figure 5.14 shows the runtime improvements and

solution quality when limiting the maximum number of resources at a state. The “No Limit”

column represents the algorithm that uses Append + Cutoff + Ordered, but does not place a limit as

to the maximum number of resources that can visit a state (equivalent to the number of resources

at the same target-time pair). We show the solution quality and runtime when we place a limit of 2,

3, and 4 maximum resources at a state.

Figure 5.14(a) shows the runtime in minutes (y-axis) as the number of resources increases

from 10 to 16 (x-axis). Even using the append, cutoff, and ordering improvements, when there are

16 resources, the program takes over 50 minutes to run, compared to under 20 minutes to run when

we limit the maximum number of resources at a state to 4. In Figure 5.14(b), the x-axis is the

number of resources and the y-axis is the solution quality. This figure shows the amount of loss in

solution quality when placing limits on the number of resources that can visit the same state with

the error bars denoting a 95% confidence interval. Notice that when we place a limit of 3 defender
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resources that can visit a state, when there are a total of 10 or 12 resources, the solution quality is

approximately the same as when we do not place a limit on the number of resources that can visit

the same state. However, when the number of resources increases to 14 and 16, placing a limit of

only 3 resources results in a loss in solution quality. Overall, these figures show the improvement

in runtime for placing limits on the maximum number of resources that can visit a state, while not

significantly decreasing in solution quality (e.g., when there is a limit of 4 resources).
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Figure 5.14: Improvements in limiting maximum number of resources

5.7.3.2 Repeated iterative slave
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Figure 5.15: Solution quality comparison of the single versus repeated slave

118



2
3
4
5
6
7

R
un

tim
e 

(m
in

)

Single Iteration 
Slave (VI)
Repeated Iterative 
Slave (VI)

0
1

5 10 15 20 25

R
un

tim
e 

(m
in

)

Number of Targets

Slave (VI)

Figure 5.16: Runtime comparison of the single versus repeated slave
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Figure 5.17: Comparison of the number of iterations of the single versus repeated slave

Figures 5.15, 5.16, and 5.17 compare the performance of the single iteration versus the repeated

iterative slave algorithm as explained in Section 5.5.3. In all three figures, the x-axis denotes the

number of targets. In Figure 5.15, the y-axis is solution quality while in Figure 5.16 the y-axis is the

runtime in minutes. For Figure 5.17 the y-axis is the total number of column generation iterations.

As mentioned in Section 5.5.3, for initial test cases, the repeated iterative slave computed a higher

solution quality than the single iteration slave.
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However, as we ran additional tests as shown in these figures, the repeated iterative slave

approach did not provide a significant increase in the solution quality over the single iteration

approach as we initially thought, nor did it improve the overall runtime. In addition, both algorithms

executed for approximately the same number of total iterations. The intuition for both the repeated

iterative slave and the single iteration slave resulting in a similar solution quality is that although

the repeated iterative slave produces a better joint policy for a single iteration than the single

iteration slave, recall that the master component computes a mixed strategy over all joint policies

generated by the slave component. Therefore, the initial joint policies computed by the repeated

iterative slave may be better, but over multiple iterations of column generation, the single iteration

slave will generate effective joint policies so that the resulting defender expected utility is similar

to the resulting defender expected utility for the repeated iterative slave.

These results indicate that improving the solution quality of the joint policy returned by the

slave is by itself not sufficient to guarantee a faster run-time or higher solution quality. In fact,

the effect may be counter-productive. Thus, whereas we have settled on a particular heuristic

approach, we have shown now in various ways that going towards a slave that computes an optimal

policy fails to scale up (Figure 5.11), going towards a slave that computes a potentially higher

quality policy fails to degrade runtime while not improving solution quality (Figures 5.15 and

5.16), and going towards a slave that ignores the uncertainty provides a very low solution quality

(Figure 5.10). This does not preclude further improvements to the heuristic slave presented in this

chapter, but suggests that such an improvement will require a deeper exploration.
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5.7.4 Robustness Experiments

This section explores the levels of robustness of our algorithm. First we test the algorithm under

different graph structures. Next, we show the robustness of the SMVI slave with uncertainty in

the transition probability. Then, the performance of both VI and SMVI slaves are studied with

variations in the payoff structure.

5.7.4.1 Varying graph structure
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Figure 5.18: Comparison of different graph structures under varying probabilities of delay

In all the prior figures, the graph structure of the targets resemble a metro/train system

composed of connected lines. In Figure 5.18, we compare the impact of different graph structures

while also varying the probability of delay. The x-axis is the probability of delay and the y-axis is

the solution quality. The payoffs for the targets are the same across all four graph structures. The

four graph structures that were examined are:

• Metro - a metro-based graph as described in the first paragraph of Section 5.7

• Complete - a complete graph where all targets are connected to each other
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• Star - a star graph where only one internal target is connected to all other leaf targets

• Tree - a binary tree graph where each target has at most two “children” targets

Across varying levels of probability of delay, the complete graph always gives the highest

solution quality, followed by metro graph, tree graph, and finally star graph. The complete graph

gives the highest solution quality because each target is connected to the other, thereby having less

constraints for the paths of the patrols/policies. The star graph gives the lowest solution quality

because for the defender resource to visit two leaf targets, the resource must traverse past the

internal target, thereby not being able to visit as many targets within the maximum patrol time. As

the probability of delay increases, from 5% to 20%, the solution quality for all graph structures

decreases, however the complete graph continues to enjoy the highest solution quality. This is

because there is increased amounts of uncertainty as to the location of the other defender resources.

From this figure and set of experiments, we show that adding more connectivity in the graphs

that are used for patrolling is valuable and improves the overall solution quality. Even when

there is a high amount of uncertainty, having a highly connected graph still results in a higher

performance of the algorithm.

5.7.4.2 Evaluating SMVI and VI

Figure 5.19 shows the difference in solution quality of soft-max value iteration (SMVI) versus

value iteration (VI) in the presence of uncertainty in transition probability. The x-axis is the

number of targets and the y-axis is the solution quality. The uncertainty that is added corresponds

to the probability of the transition uncertainty being different than the initial assumed value. In

this scenario, SMVI and VI obtain Dec-MDP based pure strategies with the assumption that the
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Figure 5.19: Comparison of SMVI and VI under uncertainty in transition probability

probability of delay of 5% (the value that is assumed is the probability of delay). We evaluate how

the solution quality is impacted with a probability of delay of 10%, while the algorithms assume a

delay of 5%. In other words, we measure the change in solution quality (defender expected utility)

when the algorithms generate a defender strategy that assumes that the probability of delay is 5%

but evaluate the defender strategy if there is actually a probability of delay of 10%. This shows

that without any uncertainty SMVI performs worse than VI, but with uncertainty in the transition

probability, SMVI gives a higher solution quality than VI. Thus, SMVI is a more favorable option

given uncertainty in transition probability.

5.7.4.3 Varying payoff structure

In Figure 5.19, both SMVI and VI have a significant decrease in solution quality when there is

uncertainty in the transition probability. To further explore if this phenomenon happens across

different scenarios, we generated different payoff structures by varying the covariance values of the

payoffs using the covariance game generator of the GAMUT package [Nudelman et al., 2004]. We

find that regardless of the payoff structure, the SMVI-based algorithm provides a greater robustness

to uncertainty in the transition probability compared to the VI-based algorithm.
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Figure 5.20: Comparison of SMVI and VI under uncertainty in transition probability with varying
payoff structures

The covariance value is chosen from the range [−1.0, 0.0], which provides the correlation

between the defender’s payoff and the adversary’s payoff. The rewards for both the defender and

adversary are positive integers in the range [1, 10] while the penalties for both the defender and

adversary are negative integers in the range [−10,−1]. A covariance value of -1.0 is equivalent to

a zero-sum game where if the defender’s reward is 8, then the corresponding adversary’s penalty

would be -8. A covariance value of 0 is equivalent to random payoffs where there is no correlation

between the defender’s and adversary’s payoffs. Figure 5.20 shows the change in solution quality

for both SMVI and VI under uncertainty in the transition probability with different types of payoff

structures. When the covariance value is -1.0, or under a zero-sum game, note that the solution

quality of the SMVI-based algorithm drops by only 0.6 when there is uncertainty in the transition

probability, while the VI-based algorithm drops by 1.5. In other words, the drop in solution quality

of the VI-based algorithm is 50% larger than the drop in solution quality for the SMVI-based

algorithm when there is uncertainty in the transition probability.

As the covariance value increases from -1.0 to 0, the solution quality when there is no

uncertainty in the transition probability increases at a faster rate than the solution quality with
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uncertainty in the transition probability. Under the Strong Stackelberg Equilibrium [Breton et al.,

1988; Leitmann, 1978; Kiekintveld et al., 2009], the follower (adversary) will choose the optimal

strategy (state to attack) for the leader (defender). This leads to a higher solution quality for the

defender when there is no transition uncertainty. When there is uncertainty added to the system,

the adversary may instead choose to attack a state that gives the defender a significantly worse

expected utility, thereby resulting in a larger drop in solution quality, as seen in Figure 5.20, as

the covariance value deviates from -1 (a zero-sum game). In the more realistic cases, where the

payoff structure is closer to real-world scenarios (with the covariance being closer to -1 or the

left portion of the figure), there is less degradation in the solution quality for both SMVI- and

VI-based algorithms with SMVI continuing to provide greater robustness compared to VI.

5.7.5 Summary of Heuristics

This section compares all the heuristics and extensions presented in this article. The Cold Start,

Append, and Append + Cutoff heuristics are not included in the table as they are dominated by the

Append + Cutoff + Ordered heuristic in both runtime and solution quality. Table 5.3 compares the

four primary heuristics/extensions proposed in this chapter. The first heuristic, Append + Cutoff

+ Ordered, works well for scenarios where the user may have a lot of targets but less than ten

defender resources. When there are a significant number of defender resources, the user should

choose to use the heuristic that places a maximum number of resources at a state (within the slave)

in addition to the Append + Cutoff + Ordered heuristic. For scenarios where there may be a lot

of uncertainty in the parameters, the Soft-Max Value Iteration provides a more robust defender

strategy.
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Heuristic Positives Negatives
Append + Cutoff + Ordered Scales up as number of targets Fails to scale as number of

increases resources increases
Maximum number of resources at a state Scales up as number of resources Have to determine suitable limit
with Append + Cutoff + Ordered increases for resources at a state

Finds a higher quality joint Overall solution quality does not
Repeated iterative slave policy for the defender for significantly improve and takes

each slave iteration longer time to run
Computes robust solution Generates a solution quality worse

Soft-Max Value Iteration (SMVI) when uncertainty exists in than value iteration (VI) when there
the parameters is no uncertainty in the parameters

Table 5.3: Comparison of Heuristics
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5.8 Chapter Summary

The key contribution of this chapter is opening up a fruitful new area of research at the intersection

of security games and multi-agent teamwork. We present a novel game theoretic model that for

the first time addresses teamwork under uncertainty for security games. To solve this model, we

present an algorithm that leverages column generation which allows us to decompose the problem

into a master and slave component. Within the slave component, we turn to Dec-MDP research to

compute defender pure strategies as joint policies. Additionally, we present heuristics to improve

the runtime and demonstrate the robustness of using randomized pure strategies.

127



Chapter 6: Evaluation of Algorithms

This chapter describes my work to evaluate the algorithms developed in modeling and computing

defender team strategies in Stackelberg Security Games. First, I provide experiments comparing

the SmartH algorithm against other algorithms in scenarios where there is defender teamwork

among multiple resources while assuming no uncertainty. Second, in domains where uncertainty

exists for the defender team while executing their respective strategy, I analyze the performance

of the value iteration heuristic slave algorithm versus other algorithms. The payoffs for the

experiments conducted in this chapter were randomly generated from a uniform distribution

between -10 and 10. All experimental results were obtained on a machine with a Dual core 2.8

GHz processor and 4 GB of RAM, and were averaged over 100 trials.

The main focus of the additional experiments in this chapter is to contribute further analysis

into the quality of the strategies generated by the algorithms proposed in this thesis. Computing

the optimal solution or providing approximation guarantees for the quality of the output generated

by the algorithms is important. Many prior work on security games have explored computing the

optimal strategy for the defender in scaling up to large state spaces [Jain et al., 2010a,b, 2011;

Kiekintveld et al., 2009], in modeling a boundedly rational adversary [Pita et al., 2010, 2012; Jiang
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et al., 2013a; Yang et al., 2012, 2013], and in handling uncertainty [Brown et al., 2014a; Nguyen

et al., 2014a,b; Qian et al., 2015; Yin and Tambe, 2012; Yin et al., 2011].

Unfortunately, some of the algorithms presented my thesis are not guaranteed to find the

optimal defender solution nor am I able to provide approximation guarantees on the solution

quality. However, these algorithms are necessary to be able to solve security games with teamwork

among multiple defender resources for real-world scenarios. Therefore, in this chapter, I include

additional experiments on these heuristic algorithms to provide upper and lower bounds on their

performance. I conclude this chapter with a summary of the evaluations of the algorithms presented

in this thesis.

6.1 Analysis of SmartH

In this section, I start by comparing the SmartH algorithm versus the optimal algorithm (SmartO)

in Section 6.1.1. Since the optimal algorithm is unable to scale up to more than 5 targets, I compare

the solution quality of the SmartH algorithm versus the computed upper bound from OrigamiP. I

then compare the performance of SmartH versus two other heuristic algorithms that are also able

to generate defender strategies for more than 5 targets.

6.1.1 SmartH versus SmartO

In this experiment, we compare the solution quality, or defender expected utility, of SmartH versus

SmartO while varying the number of targets. The idea is to understand the quality of the solutions

recovered by the more “practical” algorithm, SmartH , in comparison with the optimal solutions

generated by SmartO. In the following three tables, Table 6.1, 6.2, and 6.3, I compare the solution
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Figure 6.1: Diagram of the three different graph structures tested for 3, 4, and 5 targets.

quality of SmartH versus SmartO for varying types of graph structures. The results shown in

all three tables represent the defender expected utility averaged over 100 game instances with

random payoffs in the range [-10, 10]. In all the experiments, the number of defender resources is

kept constant to two defender resources. For the game instances, the graph is fixed (depending

on which structure) with just the target payoffs changing over each problem instance. Figure 6.1

shows the graph structure for each of the of the different graphs tested for 3, 4, and 5 targets.
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Number of scenarios Average Average Maximum
SmartH SmartO with different solution quality absolute difference percentage difference (%) difference

3 targets 3.001 3.080 21 0.078 2.2 0.657
4 targets -0.862 -0.788 18 0.074 7.5 1.114
5 targets -0.924 -0.910 19 0.015 1.5 1.06

Table 6.1: Solution Quality and Metrics of SmartH vs. SmartO for Tree Graphs

Number of scenarios Average Average Maximum
SmartH SmartO with different solution quality absolute difference percentage difference (%) difference

3 targets 2.748 2.810 28 0.062 2.0 0.504
4 targets1 0.532 0.532 0 0.0 0.0 0.0
5 targets1 0.171 0.171 4 0.0 3.5 0.6

Table 6.2: Solution Quality and Metrics of SmartH vs. SmartO for Star Graphs

Number of scenarios Average Average Maximum
SmartH SmartO with different solution quality absolute difference percentage difference (%) difference

3 targets 2.967 3.063 30 0.097 2.2 0.784
4 targets -1.067 -0.988 20 0.079 2.6 0.879
5 targets -1.740 -1.703 15 0.037 2.2 0.667

Table 6.3: Solution Quality and Metrics of SmartH vs. SmartO for Line Graphs

1The maximum time of the patrol length was decreased to 30 minutes for these game instances so SmartO would run and generate a solution. Increasing the patrol length
to longer than 40 minutes would result in SmartO failing to run and generate the optimal solution.
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For all three tables, the first column provides the solution quality for SmartH , the second

column provides the solution quality for SmartO (optimal solution), the third column represents

the number of scenarios (game instances) where SmartH computed a different solution quality

compared to SmartO, the fourth column computes the average difference in solution quality

between SmartH and SmartO, the fifth column displays the average percentage difference in

solution quality of SmartH versus SmartO, and the sixth (final) column provides the maximum

difference in solution quality for SmartH versus SmartO.

The results shown in Table 6.1 represent the defender expected utility for a tree graph, with

the root of the tree corresponding to the home base and each parent having at most two children.

When testing for 3 targets, on average SmartH generated a solution quality of 3.001 while SmartO

generated an average solution quality of 3.080, with 21 out of the 100 game instances resulting

in both the algorithms computing a different solution quality. In all three scenarios (comparing

from three to five targets), the average difference in solution quality of SmartH versus SmartO is

less than 0.08. On average for the tree graphs, in 80% of the problems, SmartH achieved the same

solution quality as SmartO. The average absolute difference in solution quality decreases from

0.078 for 3 targets, to 0.074 for 4 targets, and finally to 0.015 for 5 targets. So as the number of

targets increases, the average absolute difference decreases. We see a similar trend for star and

line graphs.

Table 6.2 represent the solution quality for a star graph. In the star graph, the home base target

is at the center, and all other targets are leaf nodes that are connected to the home base target.

When testing for more than 3 targets, the maximum patrol time was decreased to 30 minutes so

SmartO would be able to run and produce an output. With a shorter patrol time and running both

algorithms for four targets, both SmartH and SmartO generated the same exact solution quality
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over all of the 100 game instances. When increasing the number of targets to five, only four out of

the 100 game instances resulted in different solution qualities for SmartH and SmartO. The reason

why SmartH performs well compared to the tree and line graphs, could be due to the decrease in

maximum patrol time. As this value is decreased, the state space decreases and thus there are less

possible valid patrols for each defender resource. This constraint may help SmartH be able to find

the optimal solution.

The results shown in Table 6.3 represent the solution quality for a line graph, where the graph

of the targets resembles a single line. As the number of targets increases, the solution quality

decreases as there are more targets that need to be covered. Another trend is that as the number of

targets increases, the number of game instances where SmartH gives a different defender expected

utility than SmartO decreases. For five targets, the average solution quality for SmartH is only

0.037 less than the average solution quality for SmartO. Similar to tree graphs, for line graphs,

SmartH generates the optimal solution quality approximately 80% of the time. Similar to tree

graphs, the average absolute difference between SmartO and SmartH decreases as the number

of targets increases, with the average difference being 0.097 for 3 targets, but then decreasing to

0.037 for 5 targets. In addition, as the number of targets increases, SmartH generates the optimal

solution a higher percentage of the time, from 70% of the time for 3 targets to 85% of the time for

5 targets.

Therefore, even when varying over different graph types, SmartH computes a solution which

is, on average, very close to SmartO. Based on these experiments, SmartH generates the optimal

solution approximately 80% of the time. For all graph structures, as we increased the number

of targets, the number of game instances with differences in solution quality actually goes down.

We also see a similar trend for the average absolute difference in solution quality, that this value
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decreases as the number of targets increases. A rationale for this is that as we increase the number

of targets, but keep the maximum patrol time constant, there may be less variety in the types of

patrols and activities that can be performed by the defender resource in maximizing each patrol.

For example, if there are only 3 targets, then the defender resource has more time to execute

activities that give the defender a higher effectiveness. As the number of targets increases, more

time must be devoted to visiting all the targets and thus decreases the different types of activities

that can be performed at each target.

I also examined the individual game instances where the optimal solution quality was different

than the solution quality computed by SmartH to see if there was any trend into the scenarios

where SmartH fails to find the optimal solution. I looked at the defender payoffs (e.g., when there

are larger gaps in the reward and penalties versus smaller gaps), attacker payoffs, defender strategy

(e.g., how many defender pure strategies receive a non-zero probability), and size of the support

set to investigate why some scenarios the SmartH algorithm is able to find the optimal solution

while in other situations it is generates a lower solution quality. However, there was no noticeable

pattern to ascertain when SmartH would compute an optimal solution.

Unfortunately, we are unable to run SmartO for greater than five targets. When running SmartO

for six targets, the program did not run more than two iterations of the column generation approach

within the 10 hour run-time limit placed on the program. To measure the performance of SmartH

for more than five targets, I looked towards comparing SmartH versus the upper bounds value

computed by OrigamiP in the following section.
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SmartH Upper Bound
10 targets 1.241 1.887
15 targets 0.534 0.840
20 targets 0.382 0.910

Table 6.4: Solution Quality of SmartH vs. Upper Bounds for Tree Graph

SmartH Upper Bound
10 targets 2.149 2.400
15 targets 1.489 1.800
20 targets 1.740 1.799

Table 6.5: Solution Quality of SmartH vs. Upper Bounds for Star Graph

SmartH Upper Bound
10 targets 0.444 1.258
15 targets -0.301 0.446
20 targets 0.841 1.815

Table 6.6: Solution Quality of SmartH vs. Upper Bounds for Line Graph

6.1.2 SmartH compared to Upper Bounds from OrigamiP

Since SmartO is unable to solve problem instances of more than five targets, I turned to using the

upper bounds as computed by the OrigamiP algorithm (defined in Section 4.2.2) to understand

and measure the performance of the solution quality computed by SmartH . As explained in

Section 4.2.2, OrigamiP provides an over-estimate for the effectiveness of a defender patrol on a

target by adding the effectiveness of all individual activities on a target.

Tables 6.4, 6.5, and 6.6 compare the solution quality returned by the SmartH algorithm

with the upper bound value computed by OrigamiP for tree, star, and line graphs, respectively.

There is a much larger difference between the upper bound from OrigamiP versus the solution

quality computed by SmartH , compared to the difference between SmartO and SmartH . This is

because the upper bound computed in OrigamiP allows the defender to potentially have a higher

effectiveness than is possible (and that can be computed in SmartH).
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For some experiments, the solution quality compute by SmartH is close to the upper bounds

computed from OrigamiP, like for star graph with 10 targets (difference of 0.251) or 20 targets

(difference of only 0.059). However, for other scenarios, the gap in value between the solution

quality from SmartH and the upper bound is larger. For example, in the line graph, with 20 targets,

the difference in value is 0.974, or in the tree graph with 10 targets, the difference in value is 0.646.

While the upper bounds computed from the OrigamiP algorithm does give a rough measure of the

quality that is computed by SmartH , I next focus on other scalable heuristic algorithms to provide

a lower bound in the solution quality.

6.1.3 SmartH versus other scalable heuristic algorithms

Given the complexity of optimally computing a solution to handle joint activities within defender

teams in SSGs, I look to other scalable heuristic based algorithms to compare against SmartH , to

provide lower bounds and benchmarks while also demonstrating the quality of the strategy that

SmartH computes.

The first algorithm is the emphSampled Subgame algorithm, that generates random pure

defender strategies by solving a subgame of the problem. The Sampled Subgame algorithm

computes a set of pure defender strategies for each resource by solving the slave component as

described in Section 4.3, but with the difference of using random rewards instead of rewards

based on the duals from the master component (See Equation 4.11 for more details about the

duals/input from the master component to the slave component). In other words, instead of finding

the next best defender team strategy within the slave component, based on the duals form the

master component (what SmartH does), the Sampled Subgame approach uses random inputs to

solve the slave component, to generate feasible defender team strategies. Since random rewards
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Figure 6.2: Comparison of SmartH versus other algorithms while varying the number of targets.

are used in the Sampled Subgame algorithm, the master can no longer use the reduced cost to

determine when to terminate and thus the slave is run for a fixed amount of iterations to generate a

subset of joint policies. The master LP is solved with the subset of joint policies in finding the

defender’s strategy and corresponding expected utility.

The second algorithm is a uniform random approach where the defender has a set of possible

defender team patrols and has a uniform random probability of choosing each defender team patrol

strategy.

I provide two experiments comparing SmartH versus both the Sampled Subgame and Uniform

Random algorithms by varying the number of targets and maximum patrol time. Both the Sampled

Subgame and Uniform Random algorithms generated a fixed set of 200 defender pure strategies.

The SmartH algorithm on average generated less than 100 defender pure strategies. The main

focus of these two experiments is to show the solution quality/defender expected utility that is

computed by SmartH in larger scale games against other heuristics that are also able to scale up.
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Figure 6.3: Comparison of SmartH versus other algorithms while varying the maximum patrol
time.

Figure 6.2 shows the performance of all three algorithms when the number of targets increases.

The x-axis shows the number of targets, while the y-axis shows the solution quality or defender

expected utility. As can be seen in this figure, the strategy computed by the SmartH algorithm

provides a significant increase in solution quality compared to the other two algorithms. For

example, SmartH generates a strategy that gives a defender expected utility on average of 1.05 for

a Stackelberg Security Game with 20 targets, whereas the Sampled Subgame approach provides a

defender strategy that only gives a defender expected utility of 0.469, and the Uniform Random

approach gives a defender expected utility of -3.71. In this figure, the solution quality for all three

algorithms decrease as the number of targets increase, as there are additional targets that need to

be covered while keeping the number of resources and maximum patrol time constant.

Figure 6.2 shows the performance of all three algorithms when varying the maximum patrol

time. The x-axis shows the maximum patrol time in minutes, while the y-axis shows the solution

quality or defender expected utility. Consistent with the previous figure, the SmartH algorithm

outperforms the Sampled Subgame and Uniform Random algorithms for all lengths of patrol time.
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Figure 6.4: Solution quality of an algorithm that incorporates defender coordination in the form of
joint activities versus an algorithm that does not consider joint activities.

6.1.4 SmartH versus no defender coordination

In addition to comparing SmartH against other scalable algorithms, this section presents results

of SmartH versus an algorithm that does not consider defender coordination, or the increased

effectiveness from joint activities. The purpose of this comparison is to demonstrate the importance

of defender teamwork in SSGs and that simply implementing an algorithm that ignores joint

activities will significantly decrease the defender’s expected utility.

As seen in Figure 6.4, taking into account defender teamwork in the form of joint activities

is important and simply using an existing algorithm that ignores joint activities among multiple

defender resources will result in a lower defender expected utility. In this figure, the x-axis shows

the maximum patrol time in minutes, while the y-axis shows the solution quality. The algorithm

that does not consider joint activities generates a patrol strategy that assumes no benefit to joint

activities, but when computing the defender expected utility, if there does happen to be a joint

activities, the defender still receives an increased effectiveness from having multiple defender

resources visit the same target. The algorithm that considers defender coordination via joint
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activities corresponds to the SmartH algorithm. When the maximum patrol time is just 90 minutes,

then the difference in solution quality is only about 0.15, compared to when the maximum patrol

time increases to 150 minutes where there is an improvement of over 1.25 in the defender’s

expected utility when considering joint activities.

6.2 Analysis of Value Iteration Heuristic Slave

This section focuses on evaluating the value iteration (VI) heuristic slave (see Section 5.4.3) versus

other heuristic algorithms solving Stackelberg Security Games under both defender teamwork and

execution uncertainty. Given the increased complexity in solving SSGs when taking into account

defender teamwork and execution uncertainty, we compare against other heuristic algorithms to

provide lower bounds on our VI heuristic slave algorithm.

Similar to the two algorithms introduced in Section 6.1.3, I modified both the Sampled

Subgame and uniform random algorithms to use the updated slave as described in Section 5.4.3, to

solve MDPs and generate a policy for each defender resource that deals with execution uncertainty.

The Sampled Subgame algorithm now generates a fixed set of defender team strategies that

include a policy for each resource. I compare these three algorithms as the input problem size and

parameters are varied.

Vary Number of Targets: Figure 6.5 presents the results when varying the number of targets

in the input problem. The x-axis shows the number of targets, whereas the y-axis shows the

solution quality (defender expected utility). The three bars in the graph compare the solution

quality of the VI heuristic slave (labeled as Iterative-based Slave), Sampled Subgame, and uniform

random. These results show that the VI heuristic slave is better than both the Sampled Subgame
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Figure 6.5: Varying the number of targets.

-4
-3
-2
-1
0
1

So
lu

tio
n 

Q
ua

lit
y

Iterative-based 
Slave
Sampled 
Subgame

-5
-4

4 6 8

So
lu

tio
n 

Q
ua

lit
y

Number of Resources

Uniform 
Random

Figure 6.6: Varying the number of defender resources.

and uniform random algorithms across all numbers of targets. For example, for 16 targets, the

VI heuristic slave generated a defender team strategy that results in a defender expected utility of

-0.67 compared to the defender expected utility of -1.71 for the Sampled Subgame approach and

-4.74 for the uniform random strategy.
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Figure 6.7: Varying the probability of delay.

Vary Number of Defender Resources: Figure 6.6 presents the results when varying the

number of targets in the input problem. The x-axis shows the number of defender resources,

whereas the y-axis shows the solution quality (defender expected utility). These results demonstrate

that the VI heuristic slave outperforms both the Sampled Subgame and uniform random algorithms

across varying number of defender resources. For example, for 4 defender resources, the VI

heuristic slave generated a strategy that gives a defender expected utility of -0.06 compared to the

defender expected utility of -0.63 for the Sampled Subgame approach and -4.10 for the uniform

random strategy.

Vary Number of Probability of Delay: I now present the results when varying the probability

of delay in Figure 6.7. The x-axis shows the probability of delay ranging from 5% to 15% delay,

whereas the y-axis shows the solution quality (defender expected utility). These results show that

the performance trend remains the same: the VI heuristic slave outperforms both the Sampled

Subgame and uniform random algorithms. For example, when the probability of delay is 0.1 or

10%, the VI heuristic slave generated a strategy that gives a defender expected utility of 0.09
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Figure 6.9: Varying the graph type for zero-sum games.

compared to the defender expected utility of -0.45 for the Sampled Subgame approach and -3.89

for the uniform random strategy.

Vary Graph Type and Payoffs: I now present the results when varying the graph type while

also comparing the performance for non-zero-sum games and zero-sum games in Figures 6.8 and
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6.9. The x-axis for both of these figures shows the different graph types, whereas the y-axis shows

the solution quality (defender expected utility). The four graph types that were examined are

described in detail in Section 5.7.4.1.

For both varying the graph structure and non-zero-sum/zero-sum games, the results show that

the performance trend remains consistent: the VI heuristic slave outperforms both the Sampled

Subgame and uniform random algorithms. For example, in Figure 6.9, for a complete graph and

zero-sum payoffs, the VI heuristic slave computes a defender team strategy with a solution quality

of -4.9 while the Sampled Subgame algorithm has a solution quality of -5.6 and the uniform

random algorithm results in a solution quality of -7.1.

6.3 Summary of Evaluations

In this section, I summarize all the different types of evaluation that I have conducted in measuring

the performance of SmartH for SSGs that handle teamwork, and the VI heuristic slave for SSGs

that address execution uncertainty among multiple coordinating defender resources.

6.3.1 Evaluation of SmartH

• Comparison with optimal algorithm SmartO for 3, 4, and 5 targets for different graph types

shows that SmartH computes the optimal solution approximately 80% of the time with the

average difference in solution quality decreasing as the number of targets increases.

• Comparison with two scalable heuristic algorithms (Sampled Subgame and Uniform Ran-

dom) provides lower bounds on solution quality.

• Outperforms an algorithm that does not consider coordination among defender resources.
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• Real-world test on the train domain goes beyond simulations and uses real-world data

to evaluate the schedule generated by SmartH versus a manual schedule, and show the

improved level of safety and effectiveness of SmartH .

6.3.2 Evaluation of VI heuristic slave

• Comparison with two scalable heuristic algorithms (Sampled Subgame and Uniform Ran-

dom) while varying targets, resources, probability of delay, and graph type to provide lower

bounds and benchmarks for solution quality.

• Performs better than an algorithm that solves for MDPs without coordination.

• Comparison with algorithm that ignores global events to show increased performance of VI

heuristic slave which handles global events.

• Achieves a higher quality solution compared to an algorithm that assumes no execution

uncertainty.

• Generates approximately the same solution quality as an algorithm that computes a locally

optimal joint policy within the slave component.

• Outperforms an algorithm that generates randomized policies, but is less robust to noise.

• Significantly faster than other Dec-MDP solvers that focus on finding a single optimal joint

policy.

Although these two algorithms do not always generate the optimal solution, I have shown that

they perform far better than many other types of algorithms that can be used to solve these types of

Stackelberg Security Games which include defender teamwork. In addition, SmartH was tested in
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the first-of-its-kind large scale real-world experiment that compared my game theoretic schedule

against a schedule generated by humans and demonstrated to provide more security and greater

effectiveness than the manual schedule.
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Chapter 7: Conclusions

The use of game theory in the security domain has seen success in the real world via deployed

algorithms and applications such as ARMOR at the Los Angeles International Airport [Pita et al.,

2008], IRIS (Intelligent Randomization in Scheduling) for the United States Federal Air Marshal

Service [Tsai et al., 2009], GUARDS for TSA [Pita et al., 2011], PROTECT for the US Coast

Guard [Shieh et al., 2012], TRUSTS for the Los Angeles Sheriff’s Department [Yin et al., 2012],

and STREETS, a traffic patrolling application for the Singapore police [Brown et al., 2014b].

However, these systems often have an assumption of a single defender resource or multiple

independent defender resources. While this is a reasonable assumption for the first generation of

security applications, there is an increased need to address coordination among multiple defender

resources.

My thesis aims to handle this challenge first by modeling security games with multiple

coordinated defender resources, and then by efficiently solving these types of security games to be

able to scale up to real-world scenarios. I further explored the impact of execution uncertainty,

both from local events (e.g., a defender resource gets delayed) and global events (e.g., a defender

resource stops patrolling), on coordinated defender resources. My thesis makes the following

contributions:
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7.1 Contributions

• Smart, SmartO, and SmartH: The Smart model extends the framework of security games

to represent jointly coordinated activities among the defender resources while the SmartO

algorithm optimally solves Smart game instances and the SmartH algorithm achieves

significant scale-up to be able to solve real-world Smart problems. These algorithms use

a branch-and-price framework to deal with the large strategy space of the defender, with

SmartH exploiting the structure of the joint activity coordination problem to gain speed

up. In fact, the SmartH algorithm was used in a mass transit full scale exercise involving

14 heterogeneous teams to compare the benefit of game-theoretic schedules versus human

generated schedules.

• Defender coordination under execution uncertainty : To address execution uncertainty in

security games with coordinated defender resources, I designed a model and algorithm that

integrates the teamwork mechanisms under uncertainty from Dec-MDPs into a security

game framework. This model of security games represents the defender pure strategy as a

joint policy to address coordination under uncertainty. I provide additional heuristics to both

enable scale up in the number of targets in the real world and with respect to the number

of defender resources. I explore the robustness of randomized defender pure strategies.

This opens the door to a potentially new area of combining computational game theory and

multi-agent teamwork.
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7.2 Future Plans

My research in this thesis focuses on using a game theoretic approach to optimally allocate multiple

coordinated defender resources in the security domain. Additional future research areas include: (i)

Scalability: one potential idea is to improve the algorithm by generating a diverse set of defender

strategies instead of a single defender strategy; (ii) Team Formation in Security Games: given a set

of heterogeneous defender resource types that provide varying levels of effectiveness along with a

fixed cost, what is the optimal defender team of heterogeneous resources that gives the greatest

benefit to the defender; (iii) Coordinated Adversary Resources: model and compute the defender

strategy against multiple adversary resources that are able to coordinate and simultaneous attack

multiple targets.

7.2.1 Scalability

My current work has provided models and efficient algorithms to handle coordination and teamwork

among multiple defender resources in security games for both domains where there is no execution

uncertainty and those where there is execution uncertainty for the defender resources. However,

newer algorithms and solution approaches are needed to handle larger domains with greater

number of resources. For example, in the context of counter-terrorism, security forces organized a

full-scale exercise in which 80 security officers were divided into 23 defender teams [Fave et al.,

2014].

New algorithms are needed to improve the efficiency and scalability in solving problems that

require a larger number of coordinating defender resources. One way to improve scalability is to

explore generating a diverse set of Dec-MDP policies for each iteration, thus potentially reducing
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the total number of iterations that are needed to compute the optimal defender strategy. Currently,

as part of column generation, each iteration of the slave component generates a single joint policy

(which contains a policy for each defender resource). Figure 7.1 shows the steps of column

generation, with the first step starting at the master component with a single pure strategy. The

second step includes the slave component generating the next best strategy, which is then returned

to the master component. In the third step, the master component adds the newly generated pure

strategy from the slave to the set of pure strategies. The master component then resolves the

security game, and then repeats the steps 1-3. Note that in each iteration, a single pure strategy is

generated by the slave component.

A new idea is to have the slave component generate multiple strategies in each iteration.

Figure 7.2 shows how the column generation iteration changes and provides additional strategies

at each iteration. In step 2, instead of the slave just generating one pure strategy, it generates

three new patrol strategies for the master component. This has the capability to both improve

the solution quality (defender’s expected utility) and reduce the number of times that the slave

component needs to be executed, thereby improving the runtime and scalability of the algorithm.

7.2.2 Team Formation in Security Games

In additional to scalability, a different direction for future research is to look at various team types

that allow heterogeneous team members (e.g., 3 boats, 2 boats and a helicopter, one boat and

2 helicopters; see Figure 7.3 for some examples of different defender teams) in security games,

where there are costs associated with each defender resource (e.g., one boat has the same cost as

two helicopters). These heterogeneous resources will also have different levels of effectiveness

based on which resources are conducting a joint activity/working together. For example, having
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Figure 7.1: Column generation with a single strategy(policy)
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Figure 7.2: Column generation with a diverse set of strategies(policies)

a helicopter and a boat visit the same target will provide increased effectiveness compared to

having two helicopters or two boats visiting that target. Then given a set cost, what would be the

composition of the team that provides the optimal defender expected utility.
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OR OR 

Figure 7.3: Examples of different heterogeneous defender teams

7.2.3 Coordinated Adversary Resources

A common assumption in security games is that there is either a single adversary, or multiple

independent adversaries with each target being able to be attacked by a separate adversary. While

my research has focused on modeling and computing defender strategies for coordinated defender

resources, there has been a lack in focus on studying multiple coordinated adversary resources.

This is a relevant area to study as there have been numerous terrorist attacks in the past with

multiple coordinated attacks from the terrorist organizations such as the September 11 attacks

where multiple planes were used to attack the World Trade Center towers along with the Pentagon,

the 2004 Madrid bombings that contained ten explosions on four trains where all the explosions

took place within 5 minutes of each other, and the 2008 Mumbai terrorist attacks that was conducted

by 10 attackers that split up into different groups to target various buildings along with bomb

blasts during the attack. A necessary step is to model these types of coordinated attacks to better

compute and generate defender strategies that take these type of attackers into account.
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Appendix A

This appendix presents two tables:

• Table 7.1 depicts the security allocation resulting from the manual allocation process

• Table 7.2 depicts the security allocation resulting from the game-theoretic allocation process
based on the SmartH algorithm.
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Table 7.1: The human-generated security allocation
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Table 7.2: Security allocation generated by SmartH: s represents the street level of a station, m the
mezzanine level and p the platform level.
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