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Abstract 

 

There are a growing number of automated decision aids based on game-theoretic algorithms in daily use 

by security agencies to assist in allocating or scheduling their limited security resources. These 

applications of game theory, based on the “security games” paradigm, are leading to fundamental 

research challenges: one major challenge is modeling human bounded rationality. More specifically, the 

security agency, assisted with an automated decision aid, is assumed to act with perfect rationality against 

a human adversary; it is important to investigate the bounded rationality of these human adversaries to 

improve effectiveness of security resource allocation. This paper for the first time provides an empirical 

investigation of adversary bounded rationality in opportunistic crime settings, where modeling bounded 

rationality is particularly crucial. We conduct extensive human subject experiments, comparing ten 

different bounded rationality models, and illustrate that: (a) while previous research proposed the use of 

the stochastic choice “quantal response” model of human adversary, this model is significantly 

outperformed by more advanced models of “subjective utility quantal response”; (b) Combinations of 

the well-known prospect theory model with these advanced models lead to an even better performance 

in modeling human adversary behavior; (c) while it is important to model the non-linear human weighing 

of probability, as advocated by prospect theory, our findings are the exact opposite of prospect theory in 

terms of how humans are seen to weigh this non-linear probability.  

 

1. Introduction 

In recent years, the Stackelberg Security Games (SSG) model has received significant attention 

for its success in modeling physical security problems and application to real world settings, such 

as scheduling patrols conducted by the US Coast Guards at multiple major US ports (Shieh et al. 

2012), scheduling police patrols at major airports such as LAX (Pita et al. 2008), allocating federal 

air marshals on flights of US Air Carriers and several other applications (Tambe 2011). SSG 

provides a game theory-based representation of the interaction between an attacker and defender, 
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and provides computational tools to optimize the defender’s action based on possible attacker 

moves (Tambe 2011, Korzyk, Conitzer and Parr 2010, Gatti 08).  

In SSG, the defender (leader) moves first by choosing to play a particular defense strategy. The 

adversary (follower) observes this strategy and then chooses a best response strategy. In order to 

prevent the adversary from predicting the defenders actions, the defender must play a distribution 

over strategies, known as a mixed strategy, rather than a single fixed one. The Stackelberg 

equilibrium computation involves finding the utility maximizing mixed strategy, taking into 

consideration the adversary’s response. Traditionally, SSG assumes a model of a perfectly rational 

adversary. This model is justified when considering domains such as counter-terrorism, where the 

adversary has sufficient time and motivation to launch a single carefully planned attacks (e.g., see 

(Southers 2011)); in other domains such as urban crime, this assumption appears weak. It is known 

that adversaries in these domains are boundedly rational (Zhang et al. 2014) and moreover, human 

subjects do not generally demonstrate perfect rationality in their decisions (Camerer and Chongn 

2004; Costa-Gomes et al. 2011). Failure to account for this bounded rationality can lead to non-

optimal defender strategies in SSG and hence significant losses for the defender. Therefore, 

constructing a reliable model of the adversary behavior is vital for security against urban crime. 

  Models of bounded rationality have received lot of attention recently (Gal, Pfeffer 2007; 

Ficici, Pfeffer 2008; Nguyen et al. 2013). Two commonly used models are Prospect Theory (PT) 

and Quantal Response (QR). Prospect Theory (Kahneman, Tversky 1979) models decision making 

under uncertainty and captures bounded rationality by mapping the real probability values to a 

person’s interpretation of probabilities through a non-linear probability weighing function, while 

also accounting for his risk preference. Quantal Response (McKelvey and Palfrey 1995) models 

bounded rationality of human subjects by introducing uncertainty into their decision making 

process.  

In SSG literature, variations and combinations of PT and QR models have been investigated 

(Yang et al. 2013; Nguyen et al. 2013; Cui et al. 2014). However, only recently a different category 

of adversaries have been investigated: opportunistic adversaries (Zhang et al. 2014). A significant 

portion of urban crime is opportunistic in nature (Zhang et al. 2014); these adversaries, in addition 

to not being completely rational, are flexible in execution of crime and seeking opportunities for 

crime. 

This paper for the first time focuses on empirical investigation of human adversary modeling 

in opportunistic crime setting. Quantal Biased Random Movement (QBRM) is one of few models 

proposed to model adversary decision making in opportunistic crimes (Zhang et al. 2014). We 

conduct extensive human subject experiments, comparing ten different bounded rationality models, 

and show that: (1) although previous research proposed the use of the well-known stochastic choice 

QR model of human adversary, this model is significantly outperformed by more advanced models 

of Subjective Utility Quantal Response (SUQR) in the context of opportunistic crime; (2) while it 

is important to model the non-linear human weighing of probability, proposed by prospect theory, 

our findings contradict with prospect theory in terms of how humans are seen to weigh this non-

linear probability; and (3) combinations of the well-known prospect theory model with SUQR 

models lead to an even better performance in modeling human adversary behavior.   
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2. Background  

2.1. Stackelberg Security Game   

A Stackelberg Security Game (SSG) is a game model that captures the interaction between a 

single defender (leader) and one adversary (follower) (Tambe 2011). The defender protects a set of 

targets 𝑇 with limited number of resources from attack by the adversary. A pure strategy of the 

defender is an assignment of the security resources to the targets. A mixed strategy is a probability 

distribution over the set of all possible pure strategies, which is succinctly represented as a vector 

𝑥  of size |T| in which each element of vector represents the probability of covering a target 

(Korzhyk, Conitzer, and Parr 2010). SSG assumes strategic adversaries who learn the defender’s 

strategy by conducting long-term surveillance; the adversary’s pure strategy best response is then 

to choose a target to attack that maximizes the adversary’s expected utility. The utility of the 

adversary is given by 𝑈𝑎
𝑐(𝑡)  and 𝑈𝑎

𝑢(𝑡)  when the adversary attacks the target 𝑡 and it is covered 

or uncovered, respectively (the utility of the defender is given by 𝑈𝑑
𝑐(𝑡) and 𝑈𝑑

𝑢(𝑡), respectively). 

Given the defender mixed strategy 𝑥, the adversary’s expected utility in attacking target t is given 

by the following equation  

𝑈𝑎(𝑡, 𝑥) = 𝑥𝑡𝑈𝑎
𝑐(𝑡) + (1 − 𝑥𝑡)𝑈𝑎

𝑢(𝑡). (1) 

The equilibrium in this game corresponds to the optimal strategy 𝑥  that maximizes the 

defender’s utility assuming the adversary provides his best response. However, Equation 1 assumes 

a perfectly rational adversary, which may be appropriate in domains such as counter-terrorism. 

However, in domains such as opportunistic crime settings discussed next, the adversary’s behavior 

may be governed by models of bounded rationality (Nguyen et al. 2013). We review human 

behavior model accounting for adversary bounded rationality in SSG in Section 2.3.  

2.2. Opportunistic Security Game  

SSG assumes strategic adversaries who learn the defender’s strategy and then decide an attack 

plan which will not change. However, in domains such as urban crime and theft on trains, the 

attackers (adversary) are opportunistic, i.e., they are flexible about their plan and seek opportunities 

for crime rather than strategically planning attacks. For example, a thief may decide not to steal if 

he observes a police officer, and may move to another area to seek opportunities for committing a 

crime. Recent work (Zhang et al. 2014) explores a model (Quantal Biased Random Movement) of 

opportunistic attackers within a game interaction between the defender and attackers. Specifically, 

the authors describe three characteristics of an opportunistic attacker: (i) opportunistically and 

repeatedly seeks to commit crimes, using a boundedly rational process to select the next crime 

location; (ii) reacts to real-time information at execution time rather than planning attacks in 

advance; and (iii) has limited observation of defender strategy. Section 4 of this paper evaluates 

QBRM model along with other models for bounded rationality in OSG domain.  

2.3. Human Behavior Models  

 In this section, we describe details of some human behavior models that have been explored in 

the literature, including SUQR, PT and QBRM. 
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2.3.1. Subjective Utility Quantal Response (SUQR) (Conditional Logit) 

In a recent work on SSG (Nguyen et al. 2013), the authors combined two key notions of 

decision making: Subjective Expected Utility (SEU) (Fischhoff, Goitein, and Shapira 1981) and 

Quantal Response (McKelvey and Palfrey 1995), and proposed the SUQR model. The SUQR 

model is mathematically equivalent to the conditional logit model in discrete choice theory.  

QR models the uncertainty in the decisions made by an agent. Traditionally, the utility 

maximizing rational agent chooses the action 𝑎𝑖 that provides highest utility 𝑢𝑖. In the logit QR 

model, the rationality assumption is relaxed by positing that the decision making agent chooses an 

action 𝑎𝑖 with probability proportional to 𝑒𝑢𝑖. In the context of SSG, given the defender’s mixed 

strategy 𝑥, the probability of the adversary choosing to attack target 𝑡 is given by 

𝑞𝑡(𝑥) =  
𝑒𝜆𝑈𝑎(𝑡,𝑥)

∑ 𝑒𝜆𝑈𝑎(𝑡′,𝑥)
𝑡′∈𝑇

 
 

(2) 

Other models of QR have assumed a power function for formulation of 𝑞𝑡, which is given by 

𝑞𝑡(𝑥) =  
𝑈𝑎(𝑡, 𝑥)𝜆

∑ 𝑈𝑎(𝑡′, 𝑥)𝜆
𝑡′∈𝑇

 
 

(3) 

In Subjective Expected Utility (SEU) - as proposed in behavioral decision-making (Savage 

1972; Fischhoff et al. 1981) - the key idea is that individuals have their own evaluations of different 

factors during decision making process. In an SSG, the factors considered by an adversary in 

choosing the target to attack include the marginal coverage on target 𝑡 (𝑥𝑡) and the subject’s reward 

and penalty for the attacker (𝑅𝑡
𝑎, 𝑃𝑡

𝑎). Inspired by the idea of SEU, a subjective utility function for 

the adversary in an SSG setting is as follows: 𝑤1𝑥𝑡 + 𝑤2𝑅𝑡
𝑎 + 𝑤3𝑃𝑡

𝑎, where the weights, 𝑤𝑖, denote 

the relative importance given to these factors by the adversary. While unconventional at first glance, 

this model leads to higher prediction accuracy than the classic expected value function (Nguyen et 

al. 2013). This might be due to the fact that human decision making process may be based on simple 

heuristics. 

The SUQR model replaces the expected value function in logit QR model with the SEU 

function. In the SUQR model, the probability that the adversary chooses target 𝑡 is given by: 

𝑞𝑡(𝑥) =  
𝑒𝑤1𝑥𝑡+𝑤2𝑅𝑡

𝑎+𝑤3𝑃𝑡
𝑎

∑ 𝑒𝑤1𝑥𝑡′+𝑤2𝑅𝑡′
𝑎 +𝑤3𝑃𝑡′

𝑎

𝑡′∈𝑇

 

 

(4) 

2.3.2. Prospect Theory 

Prospect theory (PT) is an alternative model to expected utility theory that models decision 

making under risk. It is one of the most successful theories of decision making under risk and has 

been applied in a wide variety of contexts (Tversky and Kahneman 1992). This model is descriptive 

and tries to model real-life choices rather than optimal decisions. 

There are two functions in prospect theory: the probability weighing function (equation 5) and 

the value function (equation 6).  The probability weighing function models human interpretation of 

probability and suggests that people weigh probability non-uniformly. More specifically, the 

original PT suggests that people tend to overweigh low probabilities and underweight high 

probabilities, capturing the idea that people tend to overreact to small probability events, but 
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underreact to large probabilities. Some works in this domain propose and experiment with 

parametric models (equation 5) that capture a wide range of probability weighing functions 

(Gonzalez and Wu 1999)  

𝑓(𝑝) =
𝛿𝑝𝛾

(𝛿𝑝𝛾 + (1 − 𝑝)𝛾)
 

(5) 

Another aspect of prospect theory is the value function (equation 6), which passes through a 

reference point, c, and is S-shaped and asymmetrical. 

𝑉(𝑈) = {
𝑈𝛼                   𝑈 ≥ 𝑐

−𝜃(−𝑈)𝛽      𝑈 < 𝑐
 

(6) 

The interpretation of this equation is that, contrasting a rational agent, who uses expected 

utility, and cares about the absolute value, an agent with bounded rationality cares about relative 

value to 𝑐, while unit losses hurt more than unit gains feel good. Finally, the model assumes that 

humans evaluate each target with the following equation:  

𝑈(𝑡, 𝑥) = 𝑓(𝑥𝑡) ∗ 𝑉(𝑈𝑎
𝑐(𝑡)) + 𝑓(1 − 𝑥𝑡)𝑉(𝑈𝑎

𝑢(𝑡)) (7) 

where 𝑈(𝑡, 𝑥) is the overall or expected utility of the outcomes to the individual making the 

decision, with respect to potential outcomes and their respective probabilities.  

2.3.3. Quantal Biased Random Movement 

Quantal Biased Random Movement (QBRM) is a model proposed to describe an opportunistic 

attacker’s behavior in a defender-attacker interaction on graphs (Zhang et al. 2014).  The defender 

moves from node to node on the graph according to some strategic transition matrix, in the hope of 

dissuading the attacker from committing crimes (not in an effort to catch the attacker). The 

adversary likewise moves from node to node seeking opportunities for crime at each node. The 

adversary may commit a crime if no defender is present at a node, but does not commit a crime if 

a defender is present, which models the flexibility of his plans. The adversary also has a belief 

about the defender’s position, which is based on the defender’s coverage probability over different 

stations and trains. The belief of the attacker, 𝑐𝑏, about the defender’s position at any given time is 

a probability distribution over possible defender positions, and it also depends on real-time 

observations.  That is, if a defender is currently observed, then the attacker’s belief about the 

position of the observed defender matches the actual position, otherwise it is a probability 

distribution based on the stationary distribution. Given belief 𝑐𝑏
𝑡  at time 𝑡 and current position 𝑖 of 

the adversary, the adversary has an expected utility 𝑈(𝑗|𝑖, 𝑐𝑏
𝑡 ) of moving to position 𝑗.  

The adversary is also assumed to have bounded rationality, hence the QR model is used to 

model his choice of actions. More specifically, the probability of the adversary moving from 

position i to position 𝑗 is given by the following equation: 

𝑞𝑗(𝑖, 𝑐𝑏
𝑡 ) =  

𝑈(𝑗| 𝑖, 𝑐𝑏
𝑡 )𝜆

∑ 𝑈(𝑘|𝑖, 𝑐𝑏
𝑡 )𝜆

𝑘

 
(8) 

The authors provide algorithms to compute the optimal strategy of the defender, given 

parameters of the adversary model.  

In this paper we use a setting similar to OSG, but explore a variety of different models of the 

adversary. And to the best of our knowledge, our work is the first paper to perform human subject 

experiments in the context of OSG. 
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3. Experiments 

3.1. Experimental Procedure 

 We conducted online experiments with human subjects to evaluate the performance of various 
models of human behavior in OSG settings. To simulate urban crimes, we deployed an online 

treasure hunting game, set in a metro transportation system, in which human subjects, recruited 
from Amazon Mechanical Turk (AMT), played the role of a treasure hunter. To reduce potential 
bias that could arise from asking participants to engage in illegal behavior, we created a familiar 
gaming scenario of treasure hunting to simulate opportunistic theft. So these players attempt to 
maximize the rewards they receive by accumulating stars from metro stations in a limited time. 
Each participant played eight games in total: two practice games, two validation games, and four 

main games. To ensure that players understood instructions, each player first played two practice 
games. After each player action in these practice games, we provided them with feedback on their 
choices. Players then played two simple validation games, but they were not informed that these 
were validation games. The results of players who did not score a set threshold in the validation 
rounds were discarded, in order to eliminate invalid data 

 Before playing the game, players were provided with detailed instructions explaining the game 

mechanics (which were also available for review at any time during the game). After the game, a 
brief survey was used to gather data about the players’ perception of the game, demographics, and 
risk seeking tendencies. 

3.2. Main Games Description  

In the main games, human subjects collect rewards by visiting any of the six stations (see an 

example in Figure 1), while avoiding officers on patrol. Each station has a known reward, indicated 

by the number of stars (e.g., Station 2 has 4 stars in Figure 1). These stars are guarded by two 

officers, and each officer patrols three stations. If a player (human) arrives at a station when there 

is no officer present, his total reward increases by the number of stars of that station; if the officer 

is present at the station, he does not gain any reward, but does not pay any penalty either.  The 

player’s objective is to maximize the total reward. Players must carefully choose which stations to 

visit, considering the available information about rewards and officers’ coverage distribution on 

stations.  Players can travel to any station (including the current one) from their current station by 

train (the dotted lines in Figure 1). Sub-windows contain additional information including total 

reward, remaining game time, link to full instructions, and the message board. The message board 

provides information about future available actions, warning messages in case of illegal moves, 

and also descriptions of the current situation.  

The officers patrol (move around) stations according to a pre-determined strategy which is 

calculated offline using an optimization algorithm similar to the one presented in (Zhang et al. 

2014). Given the topology of the metro system and the stars at each station, a randomized patrolling 

strategy is generated, which can be used to determine the stationary coverage. The stationary 

coverage probabilities of each station and trains are revealed to the players, but the exact transition 

matrix is hidden. This means that players can see the percentage of the time that officers spend on 

average at each station and on the trains (e.g., 64% of time on Station 1 in Figure 1), and determine 
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their probability of encountering an officer at a station. During the game, players cannot observe 

where officers are actually located, unless they encounter the officer at a station. 

Each player starts each main game at a random station, and is given a limited amount of game 

time (100 units). For both the player and the officer, visiting a station takes one unit of time, and 

traveling to a new station takes a number of time units equal to the minimum distance between 

source and destination station along train routes. A connected line between two stations in the graph 

(called an edge) illustrates a route between the two stations with unit distance.   

The game can finish in one of three ways: (1) the player exceeds 45 minutes limit to read the 

instruction and play all the games or (2) uses up all 100 units of time for each game, and finally (3) 

each game is randomly terminated after a station visit, which happens with a 10% probability after 

each such visit. The random termination encourages the players to choose each action carefully, as 

there is a chance the game may terminate after each visit. The termination randomizer is also used 

to model attackers exiting the metro system (Zhang et al. 2014).  

Figure 1. Game interface  

3.2.1. Pilot Study 

We ran pilot studies to help design the game and prepare the instructions in order to avoid 

future confusion for AMT players. We interviewed subject matter experts to create an initial 

prototype. Then, we recruited 21 undergraduate students from the University of Southern 

California’s subject pool to serve as research participants in a set of pilot experiments. Participants 

played the game, and were then interviewed by study staff to determine how well they understood 

the game. We asked participants a set of questions about the instructions, their decisions in playing 

the game (such as staying at any station or moving to other stations), as well as their understanding 

of the coverage probability of a selected station. Based on the feedback, we improved the game 

interface in multiple ways, such as adding animated cartoons, graphic representation of coverage 

probabilities with red bars, etc.  

3.2.2. Main Games Design 

Recall that our study has practice games, validation games and main games. In all main games, 
there were six stations, but each game had different layouts, different distributions of rewards at 
each station, and different stationary coverage probabilities. Figure 2 shows the layout for the four 
main games; two are based on real world transportation systems and the other two are random 
topologies (expanding these graph structures is part of our future work). In the experiments, these 

four games were shown in random order.  
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Graph a   Graph b 

Graph c Graph d 

Figure 2. Four main game layouts 

To factor out the influence of range and summation of stars, the number of stars at each station 

is a random integer between 2 and 10; additionally, the summation of stars present at all six stations 

is kept constant and equal to 40 for all games.  

The text along the edges in Figure 2 shows the partitioning of the stations covered by two 

officers. This 2-way partitioning is determined offline based on the following requirements: (i) each 

officer must patrol half of the total stations, (ii) each station is patrolled by one and only one officer, 

(iii) the nodes patrolled by an officer must form a connected graph, and (iv) an officer can get to 

any of his covered stations without passing any stations covered by the other officer.  

3.2.3. Participants 

To be eligible to participate, AMT participants must have played more than 500 games on AMT 

with at least 95% acceptance rate. The games were played in three sets of experiments. In each set, 

out of about 70 participants, at least 55 unique human subjects successfully completed the games; 

i.e. successfully passed the validation games, and played a set of four games. In total, 167 unique 

human subjects successfully passed the validation games and their data were used for evaluation. 

3.2.4. Compensation 

To motivate the subjects to participate in the study, they were compensated based on their total 

reward on top of a base compensation. We paid AMT users per the following policy: $1 for 

participating in the study, plus $0.01 per reward unit (star).   

4. Opportunistic Adversary Behavior Model 

It has been shown that addressing adversaries’ bounded rationality is an essential factor in 

successful performance of SSG algorithms. In previous work on opportunistic crime, QBRM was 

used to describe human behavior. However, to the best of our knowledge, no research has been 

done to descriptively study how well human behavior models capture opportunistic attacker 

behavior and their choices. Here, we propose ten different models and compare them using different 

metrics computed on the experimental data. These models are based on variations of Prospect 
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Theory, Logit Quantal Response and Subjective Utility Quantal Response. We list these models in 

Table1 below.  

 

Table 1- Summary of models used for human bounded rationality in OSG 

Category  Model Abbrv. 
Generic Mathematical 

Formulation 

Quantal 

Response  

Logit Quantal Response Equilibrium QR 𝑞𝑡(𝑖) =
𝑒𝜆𝑈 (𝑖)

∑ 𝑒𝜆𝑈 (𝑗)
𝑗

 

Quantal Biased Random Movement   QBRM 𝑞𝑡(𝑖) =
𝑈(𝑖)𝜆

∑ 𝑈(𝑗)𝜆
𝑗

 

 

 

SUQR 

(see the 

factors 

𝒇𝒌 in text) 

SUQR with Stationary Probability (SP) 

as one factor 
SUQR-SP 

𝑞𝑡(𝑖) =
𝑒∑ 𝑤𝑘𝑓𝑘(𝑖)𝑘

∑ 𝑒∑ 𝑤𝑘𝑓𝑘(𝑗)𝑘
𝑗

 

See eqn. 9 

SUQR with Projected Probability (PP) SUQR-PP  
Same as above except 

using PP instead of SP 

SUQR with Stationary Probability with 

conditional weights for observed (o) 

and not observed (n) case 

SUQR-SP-

C 

Same as SUQR-SP, except 

two different set of 

weights 

SUQR with Projected Probability with 

conditional weights 

SUQR-PP-

C 

Same as above except 

using PP instead of SP 

 

 

Prospect 

Theory  

QBRM with PT weighting function on 

projected probability 
PT-QBRM 

Use 𝑓(𝑝)  instead of 𝑝  in 

QBRM. See equation 5. 

SUQR-SP-C with weighting function 

for stationary probability 

PT-SUQR-

C 

Use 𝑓(𝑝)  instead of 𝑝  in 

SUQR-SP. See equation 5 

SUQR-SP-C with weighting function  

& value function on Absolute 

Attractiveness  

PT-SUQR-

C-VA 

Use 𝑓(𝑝)  instead of 𝑝 , 

𝑉(𝑎𝑡𝑡)  instead of 𝑎𝑡𝑡  in 

SUQR-SP. See eqn. 5,6 

SUQR-SP-C with weighting function 

for stationary coverage and value 

function on relative attractiveness 

PT-SUQR-

C-VRA 

Same as above except 

using 𝑉 on relative 𝑎𝑡𝑡 

 

4.1. Models Description  

4.1.1. First Category: Quantal Response 

In this category, the Quantal Response model refers to the logit quantal response formulation 

presented in equation 2. The utility is computed as the expected reward of the adversary 

(expectation over the randomness in defender’s strategy) in choosing a certain move (details are in 

[Zhang et al. 2014]).  

Quantal Biased Random Movement is the other model in this category which uses the power 

function form of quantal response as in equation 3.    

4.1.2. Second  Category: Subjective Utility Quantal Response  

In this category, instead of expected reward, subjective utility is used. The key factors we found 

to be the most important are number of stars at destination station (also called the attractiveness, or 
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att), stationary coverage probability (referred to as SP or sta) or projected coverage probability 

(referred to PP or proj) of destination station, the distance between the current station and the 

destination station (dist), and the connectivity degree of the destination station (con). Thus, for 

examples in SUQR-SP we get  

                                ∑ 𝑤𝑘𝑓𝑘(𝑖)𝑘 =  𝑤𝑎𝑡𝑡𝑎𝑡𝑡𝑖 + 𝑤𝑠𝑡𝑎𝑠𝑡𝑎𝑖+ 𝑤𝑑𝑖𝑠𝑑𝑖𝑠𝑖 +  𝑤𝑐𝑜𝑛𝑐𝑜𝑛𝑖                     (9) 

We considered two variation of SUQR models.  The first uses a single set of weights whether 

the attacker currently observes the officer or not. The second uses two sets (conditional or C) of 

weights, one when the officer is observed and the other when not.   

4.1.3. Third  Category: Using Prospect Theory Weighting Function and (or) Value Function  

In this category, we developed models based on combinations of SUQR/QR with Prospect 

Theory. In PT-QBRM, PT-SUQR-C, and PT-SUQR-C-VA, instead of using the actual 

projected/stationary coverage probability, we used the weighted probability obtained through 

equation 5. In PT-SUQR-C-VA, in addition to the weighting function for coverage probability, the 

value function (equation 6) was also used for the number of stars at each station (attractiveness).  

In PT-SUQR-C-VRA, instead of using the absolute value of the attractiveness in the value function, 

we used its relative value given the current and destination station, i.e. if the player moves from a 

station with 10 stars to a station with 2 stars, he loses 8 stars and if he moves from a station with 6 

stars to a station with 8 stars, he gains 2 stars. The idea of using the relative attractiveness and 

relative coverage probability is based on the anchoring bias theory, and the fact that people make 

decisions based on comparison between available options.  

4.2. Model Prediction Accuracy  

We used four metrics to evaluate how well different models predict human decision making 
compared to the actual responses of human participants in our experiments. 

4.2.1. Root-Mean-Square Error (RMSE)  

RMSE represents the deviation between model’s prediction of attacker’s movement (�̂�) and the 
actual proportion movements of AMT players from each station to others (𝑝). The prediction 
probability (�̂�) and proportion movements (𝑝) both distinguish between the situations that the 
attacker observes and not observer the officer.  

𝑅𝑀𝑆𝐸(�̂�) =√𝑀𝑆𝐸(�̂�) where MSE (�̂�) = 
1

𝑛
∑(�̂� − 𝑝)

2
 

4.2.2. Weighted Absolute Percentage Error (WAPE) 

Although RMSE is used often in statistical modeling, it is more sensitive toward outliers, and 
WAPE can provide a more accurate measure of model fit in these situations 

𝑊𝐴𝑃𝐸 =
∑ |�̂� − 𝑝|

∑ 𝑃
 

4.2.3. Akaike information criterion (AIC) 
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AIC is a measure of relative quality of a model and of the information lost when a given model 

is used. The model with the smallest AIC is the best fitted model among other models, but absolute 

AIC cannot provide any information about a particular model’s goodness of fit.  

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) where 𝑘 is the number of parameters in the model 

4.2.4. Student's t-test 

We used Student's t-test to evaluate the prediction accuracy of the proposed models. Model’s 
Prediction were used to study if one model is significantly better than another model. 

5. Experimental Results  

5.1. Extraction of Model Parameters 

We divided the data into training (70%) and testing (30%) datasets. Test data was not used in 

learning the parameters, and kept aside for evaluation of different models.  

To learn the Prospect Theory parameters, the training data set was randomly divided into 10 

training and validation sets, and for each combination of PT parameters, the training data set was 

randomly divided (80/20% split) 10 times to obtain 10 training and validation sets. For each 

combination of PT parameters, the average error on the validation sets was calculated. Then the PT 

parameters combination which results in the least average error were selected, and used further to 

estimate the QBRM or SUQR parameters. To estimate the 𝜆 in QBRM, QR, and weights (w’s) in 

SUQR, Maximum Likelihood Estimation Method (MLE) was used. 
 

Table 2- Model parameters and their values 

Model Parameters 

Logit Quantal Response Equilibrium 𝜆 =0.3645 

Quantal Biased Random Movement 𝜆 =1.1955 

SUQR with SP as one factor < 𝑤𝑎𝑡𝑡 , 𝑤𝑠𝑡𝑎 , 𝑤𝑑𝑖𝑠 , 𝑤𝑐𝑜𝑛 > = <0.3853,-4.6033,-0.7031,0.145> 

SUQR with PP as one factor < 𝑤𝑎𝑡𝑡 , 𝑤𝑝𝑟𝑜𝑗 , 𝑤𝑑𝑖𝑠 , 𝑤𝑐𝑜𝑛 > = <0.2136,-2.5495,-0.6937,0.0327> 

SUQR with Stationary Probability  

with conditional weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑠𝑡𝑎

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜  , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑠𝑡𝑎

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4206,-4.2065,-0.4281,0.2451,0.4106,-4.9489,-0.7634,0.0427> 

SUQR with Projected Probability with 

conditional weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.1915,-1.8435,-0.7485,0.0834,0.2584,-3.3138,-0.6021,0.0418> 

QBRM with PT weighting function on PP                            𝜆 =1.2351 , 𝛿 = 1.8, 𝛾 = 0.6 

SUQR-SP-C with weighting function 

for stationary probability 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4159,-2.8093,-0.4286,0.2505,0.4085,-3.1953,-0.7479,0.0903 

< 𝛿, 𝛾 > = <3.4, 1.6> 

SUQR-SP-C with weighting function 

& value function on Absolute 

Attractiveness 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4159,-2.8093,-0.4286,0.2505,0.4085,-3.1953,-0.7479,0.0903> 

< 𝛿, 𝛾, 𝛼 > = <3.4, 1.6,1> 

SUQR-SP-C with weighting function 

for stationary coverage and value 

function on relative attractiveness 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.6676,-2.8474,-0.5193,0.221,0.6114,-3.2045,-0.8618,0.0648> 

< 𝛿, 𝛾, 𝛼, 𝜃, 𝛽 > = <3.2, 1.6, 0.8, 0.4, 1.2> 
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In our analysis, the best 𝛼 parameter for model PT-SUQR-C-VA was equal to 1, which makes 

the model PT-SUQR-C-VA equivalent to model PT-SUQR-C; i.e. introduction of the value function 

on absolute attractiveness does not provide any improvement over PT-SUQR-C. Hence, we did not 

consider PT-SUQR-C-VA in our evaluation.  

After normalizing the weights (multiplying 𝑤𝑎𝑡𝑡 by 10, 𝑤𝑑𝑖𝑠 with 5 and 𝑤𝑐𝑜𝑛 by 4), it can be 

seen that attractiveness and coverage probabilities are more important than the other factors. The 

weights for these two factors are very similar across models without prospect theory’s functions.  

5.2. Results  

After determining the parameters of the models, we used the resulting models to predict human 
decisions and compared them to actual decisions on the test data set. The following are our main 
observations from the experiment results, starting with significant deviation from perfectly rational 

play by human subjects. 

 Human decision-making does not conform to the traditional game theoretic 

assumption of perfect rationality. Traditional game theory assumes perfect rationality on the part 

of all players. While an enormous body of work in behavioral game theory has questioned this 

assumption, research in adversary behavior models in Stackelberg security games (Yang et al. 

2013) have further illustrated that human behavior is far from perfectly rational. In this paper, we 

confirm these findings in the context of opportunistic crime settings. Table 2 shows that the 

rationality factor (𝜆) for QR model is 0.3 which is extremely low considering the fact that 𝜆 = 0 

corresponds to complete irrationality level (uniform decision making for all targets) and 𝜆 = ∞  

corresponds to perfect rationality level.   

QR is a well-established model of human decision making tracing its origins to (McFadden 

1973), and with significant support over the past several decades (McKelvey and Palfrey 1995). 

The following observation conveys an important finding that an alternative model provides a 

superior performance to QR. 

 SUQR performs better than QR model. Previously, (Nguyen et al. 2013) performed a 

brief comparison between QR and SUQR models. Indeed, our work provides the first 

comprehensive comparison between QR and SUQR; in particular, it compares QR with four 

different versions of SUQR examining over 176 human decision instances.  Table 3 shows the p-

value of student’s t-test for absolute error on the test data set between QR and SUQR models. As 

seen in the table, all P-values are smaller than 0.1, which supports the claim that SUQR models 

result in a better fit compared to QR at 90% confidence level.  

Indeed, the fact that SUQR outperforms QR provides support to the claim that human subjects 

are not making decision rationally; since QR is based on expected utility (a completely rational 

decision maker seeks to maximize the expected utility) while SUQR is a linear combination of 

different factors.  

Table 3- Student’s t-test comparing QR with SUQR models 

p-value SUQR-SP SUQR-SP-C PT-SUQR-C PT-SUQR-C-VRA 

QR    0.0749     0.045685 0.00571 0.000 

 

PT is a landmark theory and the following four observations relate to incorporation of elements of 

this theory to improve our model prediction accuracy.  
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 Considering human non-linear weighting of probability improves model prediction 

accuracy. Past research in human behavior models in the context of Stackelberg security games, 

including research focused on SUQR (Nguyen et al 2013), has not comprehensively addressed 

human (non-linear) weighting of probability. Yet this weighting of probability is an important 

aspect of PT. Table 4 presents a summary of model performance on test data illustrating the 

importance of probability weighting. As can be seen, the models that use the PT weighting function 

perform better than their counterparts without the PT weighting function: PT-QBRM vs QBRM 

and PT-SUQR-C vs SUQR-SP-C (these models only have the probability weighting function and 

not the value function). More specifically, in PT-QBRM and PT-SUQR-C models, instead of using 

the actual coverage probability, the players’ weighting of coverage probability were considered. 

Furthermore, PT-SUQR-C performs better than PT-QBRM, which further supports the claim that 

SUQR provides better performance compared to the Quantal Response models. 

  

Table 4- Model prediction accuracy1 

Model AIC RMSE WAPE 

Perfectly Rational - 0.1964 0.8562 

QR 8801.0 0.1868 0.7944 

QBRM 8748.2 0.18 0.7494 

SUQR-SP 8461.0 0.1748 0.7211 

SUQR-PP 8572.3 0.17669 0.7385 

SUQR-SP-C 8442.6 0.17019 0.7138 

SUQR-PP-C 8554.7 0.17490 0.7324 

PT-QBRM 8623.4 0.17831 0.7372 

PT-SUQR-C 8363.9 0.16422 0.6843 

PT-SUQR-C-VRA 8361.8 0.16388 0.6841 

 

 Considering human perception of relative attractiveness results in further 

improvement of the SUQR model. Table 4 shows that PT-SUQR-C-VRA model has the best 

values among all the models across all prediction accuracy metrics. This model deploys the 

perception of the relative attractiveness as well as the perception of coverage probability. As stated 

in section 5.1, addressing human perception of absolute attractiveness provides no improvement 

over PT-SUQR-C model.  

 

Figure 3. Box plot of actual prediction errors 

                                                      
1 (Cui et al. 2014) has also compared human behavior models using AIC metric but in SSG domain and 

without the test data set.    
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Figure 3 shows the box-plots of the errors for all nine models. The box-plot is a common 

method to show the distribution of the data based on minimum, 1st quartile, median, 3rd quartile and 

maximum statistics. The two end whiskers represent the minimum and maximum values of the 

prediction error; the orange and blue boxes are the 1st and 3rd quartiles, respectively. Besides the 

fact that PT-SUQR-C-VRA model has the lowest average error as shown in Table 4, Figure 3 

illustrates that it also has the least variability among all models, and hence, it provides the best fit 

for human bounded rationality in OSG domain. 

 PT-SUQR-C and PT-SUQR-C-VRA perform better than others. PT-SUQR-C and PT-

SUQR-C-VRA have the least RMSE and WAPE errors among all models. Moreover, these two 

models have the smallest AIC values which means they do not over fit the data, since AIC 

compensates for the greater number of parameters in these models compared to others. Between 

these two models, PT-SUQR-C-VRA has the lowest values with respect to all four error metrics; 

however the difference is not statistically significant.  

In order to achieve high accuracy, one of these two models can be deployed depending on 

complexity requirements; PT-SUQR-C provides a relatively less complex model, but it still 

performs better than other models. Table 5 also provides the p-value of Students’ t-test for 

comparing PT-SUQR-C-VRA with other models.  
 

Table 5. P-value for Student's t-test for comparing models 

p-value QR QBRM SUQR-SP SUQR-PP SUQR-SP-C SUQR-PP-C PT-QBRM PT-SUQR-C 

PT-SUQR-
C-VRA 

0.005 0.097 0.3411 0.1613 0.4348 0.2111 0.1764 0.9948 

 
 Players’ probability weighting function is S-shaped, exactly opposite of the PT 

standard model of human weighting of probability: Figure 4a demonstrates the weighing 

probability functions which indicates that human subjects’ perception of low probabilities (less than 

0.13) is below the actual values while their perception of high probabilities is above the actual 

value. For both of these models, the weighting function is S-shaped which is opposite of the inverse 

S-shaped function proposed by Prospect Theory. Previous works such as (Alarie, Dionne 2001) 

also found S-shaped weighing functions for probability.  Figure 4b illustrates the value function for 

players’ perception of relative attractiveness. It appears that the human subjects value gains more 

than they dislike losses, which is also the opposite of what is usually found in PT.  
 

  

Figure 4. (a) coverage probability weighting function (b) value function   
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6. Conclusions 

With the growing number of automated decision aids based on game-theoretic algorithms in daily 
use by security agencies, investigations of bounded rationality models of human adversary decision 
making are now critical, in order to ensure effective security resource allocation and scheduling. 
This paper for the first time provides an empirical investigation of adversary bounded rationality in 
opportunistic crime settings, where modeling bounded rationality is particularly crucial. Based on 

data from extensive human subject experiments, we compare nine different bounded rationality 
models, and illustrate that: (a) while previous research proposed the use of the quantal response 
model of human adversary, this model is significantly outperformed by the SUQR model which 
uses linear combination of target features - thus further indicating  that human decision making is 
not based on maximizing expected utility; (b) combinations of the well-known prospect theory 
model SUQR leads to an even better performance in modeling human adversary behavior; (c) while 

it is important to model the non-linear human weighting of probability, as advocated by prospect 
theory, our data suggests that human weighting of probability is “S-shaped” as opposed to the 
“inverse S-shape” advocated in prospect theory; (d) models based on relative weighting of values, 
i.e., gain and loss from current state, provide better modeling accuracy than absolute weighting. 
These and other findings outlined in this paper provides important advice for practical 
implementations of decision-aids. Indeed, as police departments begin to adopt these decision aids, 

modeling and testing these findings in practice in the real-world provides an important next step 
for future work. 
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