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Abstract
Building on the successful applications of Stackel-
berg Security Games (SSGs) to protect infrastruc-
ture, researchers have begun focusing on applying
game theory to green security domains such as pro-
tection of endangered animals and fish stocks. Pre-
vious efforts in these domains optimize defender
strategies based on the standard Stackelberg as-
sumption that the adversaries become fully aware
of the defender’s strategy before taking action. Un-
fortunately, this assumption is inappropriate since
adversaries in green security domains often lack
the resources to fully track the defender strategy.
This paper (i) introduces Green Security Games
(GSGs), a novel game model for green security do-
mains with a generalized Stackelberg assumption;
(ii) provides algorithms to plan effective sequential
defender strategies — such planning was absent in
previous work; (iii) proposes a novel approach to
learn adversary models that further improves de-
fender performance; and (iv) provides detailed ex-
perimental analysis of proposed approaches.

1 Introduction
Poaching and illegal over-fishing are critical international
problems leading to destruction of ecosystems. For exam-
ple, three out of nine tiger species have gone extinct in the
past 100 years and others are now endangered due to poach-
ing [Secretariat, 2013]. Law enforcement agencies in many
countries are hence challenged with applying their limited re-
sources to protecting endangered animals and fish stocks.

Building upon the success of applying SSGs to protect in-
frastructure including airports [Pita et al., 2008], ports [Shieh
et al., 2012] and trains [Yin et al., 2012], researchers are
now applying game theory to green security domains, e.g.,
protecting fisheries from over-fishing [Brown et al., 2014;
Haskell et al., 2014] and protecting wildlife from poaching
[Yang et al., 2014]. There are several key features in green
security domains that introduce novel research challenges.
First, the defender is faced with multiple adversaries who
carry out repeated and frequent illegal activities (attacks),
yielding a need to go beyond the one-shot SSG model. Sec-
ond, in carrying out such frequent attacks, the attackers gen-

erally do not conduct extensive surveillance before perform-
ing an attack and spend less time and effort in each attack,
and thus it becomes more important to model the attackers’
bounded rationality and bounded surveillance. Third, there
is more attack data available in green security domains than
in infrastructure security domains, which makes it possible to
learn the attackers’ decision making model from data.

Previous work in green security domains [Yang et al.,
2014; Haskell et al., 2014] models the problem as a game
with multiple rounds and each round is a SSG [Yin et al.,
2010] where the defender commits to a mixed strategy and the
attackers respond to it. In addition, they address the bounded
rationality of attackers using the SUQR model [Nguyen et
al., 2013]. While such advances have allowed these works to
be tested in the field, there are three key weaknesses in these
efforts. First, the Stackelberg assumption in these works —
that the defender’s mixed strategy is fully observed by the at-
tacker via extensive surveillance before each attack – can be
unrealistic in green security domains as mentioned above. In-
deed, the attacker may experience a delay in observing how
the defender strategy may be changing over time, from round
to round. Second, since the attacker may lag in observing
the defender’s strategy, it may be valuable for the defender
to plan ahead; however these previous efforts do not engage
in any planning and instead rely only on designing strategies
for the current round. Third, while they do exploit the avail-
able attack data, they use Maximum Likelihood Estimation
(MLE) to learn the parameters of the SUQR model for indi-
vidual attackers which we show may lead to skewed results.

In this paper, we offer remedies for these limitations.
First, we introduce a novel model called Green Security
Games (GSGs). Generalizing the perfect Stackelberg as-
sumption, GSGs assume that the attackers’ understanding
of the defender strategy may not be up-to-date and can be
instead approximated as a convex combination of the de-
fender strategies used in recent rounds. Previous models
in green security domains, e.g., such as [Yang et al., 2014;
Haskell et al., 2014] can be seen as a special case of GSGs, as
they assume that the attackers always have up-to-date infor-
mation, whereas GSGs allow for more generality and hence
planning of defender strategies.

Second, we provide two algorithms that plan ahead —
the generalization of the Stackelberg assumption introduces
a need to plan ahead and take into account the effect of de-



fender strategy on future attacker decisions. While the first
algorithm plans a fixed number of steps ahead, the second one
designs a short sequence of strategies for repeated execution.

Third, the paper also provides a novel framework that in-
corporates learning of parameters in the attackers’ bounded
rationality model into the planning algorithms where, instead
of using MLE as in past work, we use insights from Bayesian
updating. All proposed algorithms are fully implemented and
we provide detailed empirical results.

2 Motivation and Defining GSGs
Our motivating example assumes a perfectly rational attacker
purely for simplicity of exposition. In the rest of the paper,
we consider attackers with bounded rationality.

Figure 1: Snare poaching

Example 1. Consider a
ranger protecting a large area
with rhinos. The area is di-
vided into two subareasN1 and
N2 of the same importance.
The ranger chooses a subarea
to guard every day and she can
stop any snaring by poachers
in the guarded area. The ranger has been using a uniform
random strategy throughout last year. So for this January, she
can choose to continue using the uniform strategy throughout
the month, catching 50% of the snares. But now assume that
the poachers change their strategy every two weeks based on
the most recently observed ranger strategy. In this case, the
ranger can catch 75% of the snares by always protecting N1

in the first two weeks of January, and then switching to always
protecting N2: At the beginning of January, the poachers are
indifferent between the two subareas due to their observation
from last year. Thus, 50% of the snares will be placed in N1

and the ranger can catch these snares in the first half of Jan-
uary by only protecting N1. But after observing the change
in ranger strategy, the poachers will switch to only putting
the snares in N2. The poachers’ behavior change can be ex-
pected by the ranger and the ranger can catch 100% of the
snares by only protecting N2 starting from mid-January. (Of
course the poachers must then be expected to adapt further).

This example conceptually shows that the defender can
benefit from planning strategy changes in green security do-
mains. We now define GSG as an abstraction of the problem
in green security domains (borrowing some terminology from
Stackelberg Security Games [Yin et al., 2010]).

Definition 1. A GSG is a T (< ∞) round repeated game
between a defender andLGSG attackers and (i) The defender
hasK guards to protectN (≥ K) targets. (ii) Each round has
multiple episodes and in every episode, each guard can pro-
tect one target and each attacker can attack one target. (iii) In
round t, the defender chooses a mixed strategy at the begin-
ning of the round, which is a probability distribution over all
pure strategies, i.e.,N chooseK assignments from the guards
to targets. In every episode, the guards are assigned to tar-
gets according to an assignment randomly sampled from the
mixed strategy. (iv) Each target i ∈ [N ] has payoff values P ai ,
Rai , P di , Rdi (“P” for “Penalty”, “R” for “Reward”, “a” for
“attacker” and “d” for “defender”). If an attacker attacks

target i which is protected by a guard, the attacker gets utility
P ai , and the defender gets Rdi . If target i is not protected, the
attacker gets utility Rai , and the defender gets P di . Rdi > P di
andRai > P ai . (v) The defender’s utility in round t is the total
expected utility calculated over all attackers.

Each round of the repeated game corresponds to a period of
time, which can be a time interval (e.g., a month) after which
the defender (e.g., warden) communicate with local guards
to assign them a new strategy. We divide each round into
multiple episodes for the players to take actions.

Consistent with previous work on green security games
[Yang et al., 2014; Haskell et al., 2014], we divide the pro-
tected area into subareas or grid cells and treat each subarea
or cell as a target. Different targets may have different im-
portance to the defender and the attackers due to differences
in resource richness and accessibility. We therefore associate
each target i ∈ [N ] with payoff values. A mixed defender
strategy can be represented compactly by a coverage vector
c = 〈ci〉 where 0 ≤ ci ≤ 1 is the probability that target
i is covered by some guard and it satisfies

∑N
i=1 ci ≤ K

[Kiekintveld et al., 2009; Korzhyk et al., 2010]. If an at-
tacker attacks target i, the expected utility for the defender is
Udi (c) = ciR

d
i + (1 − ci)P di given defender strategy c. We

denote the mixed defender strategy in round t as ct.

Definition 2. A GSG attacker is characterized by his mem-
ory length Γ, coefficients α0, ...αΓ and his parameter vector
ω. In round t, A GSG attacker with memory length Γ re-
sponds to a convex combination of the defender strategy in
recent Γ + 1 rounds, i.e., he responds to ηt =

∑Γ
τ=0 ατ c

t−τ

where
∑Γ
τ=0 ατ = 1 and ct = c0 if t ≤ 0. In every episode of

round t, a GSG attacker follows the SUQR model and chooses
a random target to attack based on his parameter vector ω in
the SUQR model.

We aim to provide automated decision aid to defenders
in green security domains who defend against human ad-
versaries such as poachers who have no automated tools —
hence we model the poachers as being boundedly rational and
having bounded memory. We approximate a GSG attacker’s
belief of the defender’s strategy in round t as a convex com-
bination of the defender strategy in the current round and the
last Γ rounds. This is because the attackers may not be capa-
ble of knowing the defender’s exact strategy when attacking;
naturally, they will consider the information they get from the
past. Further, human beings have bounded memory, and the
attackers may tend to rely on recent information instead of
the whole history. The Stackelberg assumption in [Yang et
al., 2014; Haskell et al., 2014] can be seen as a special case
of this approximation with α0 = 1. In this paper, we assume
all attackers have the same memory length Γ, coefficients ατ
and these values are known to the defender. c0 is the defender
strategy used before the game starts and is known to players.

To model the bounded rationality of the human attackers
such as poachers, we use the SUQR model, which has per-
formed the best so far against human subjects in security
games [Nguyen et al., 2013]. In this model, an attacker’s
choice is based on key properties of each target, including the
coverage probability, the reward and the penalty, represented



Notation
T,N,K # of rounds, targets and guards, respectively.
L,Γ # of attackers and memory length of attackers.
ct Defender strategy in round t.
ηt Attackers’ belief of defender strategy in round

t, which is a convex combination of ct.
ατ Coefficient of ct−τ when calculating ηt.
ωl Parameter vector of the SUQR model for at-

tacker l. ωl1, ωl2 and ωl3 are the coefficient on
ci, Rai , P ai respectively in the SUQR model.

qi The probability of attacking target i.
Et Defender’s expected utility in round t.

Table 1: Summary of key notations.

by the parameter vector ω = (ω1, ω2, ω3). Given η as the at-
tacker’s belief (with ηi the belief of the coverage probability
on target i), the probability that an attacker with parameter ω
attacks target i is

qi(ω, η) =
eω1ηi+ω2R

a
i +ω3P

a
i∑

j e
ω1ηj+ω2Ra

j +ω3Pa
j

(1)

Following the work of Yang et. al [2014], in this paper, we as-
sume the group of attackers may have heterogeneous weight-
ing coefficients, i.e., each attacker l ∈ [L] is associated with
a parameter vector ωl = (ωl1, ω

l
2, ω

l
3).

A GSG defender strategy profile [c] is defined as a se-
quence of defender strategies with length T , i.e., [c] =
〈c1, ..., cT 〉. The defender’s expected utility in round t is
Et([c]) =

∑
l

∑
i qi(ω

l, ηt)Udi (ct). The objective of the de-
fender is to find the strategy profile with the highest average
expected utility over all rounds, i.e., to maximize E([c]) =∑T
t=1E

t([c])/T .

3 Planning in GSGs
The defender can potentially improve her average expected
utility by carefully planning changes in her strategy from
round to round in a GSG. In this section, we consider the case
where the attackers’ parameter vectors ω1, ..., ωL, are known
to the defender. For clarity of exposition, we will first focus
on the case where α0 = 0 and Γ = 1. This is the special
case when the attackers have one round memory and have no
information about the defender strategy in the current round,
i.e., the attackers respond to the defender strategy in the last
round. We discuss the more general case in Section 5.

To maximize her average expected utility, the defender
could optimize over all rounds simultaneously. However,
this approach is computationally expensive when T is large:
it needs to solve a non-convex optimization problem with
NT variables (cti) as the defender must consider attacker re-
sponse, and the attacking probability has a non-convex form
(see Equation 1). An alternative is the myopic strategy, i.e.,
the defender can always protect the targets with the highest
expected utility in the current round. However, this myopic
choice may lead to significant quality degradation as it ig-
nores the impact of ct in the next round.

Therefore, we propose an algorithm named PlanAhead-M
(or PA-M) that looks ahead a few steps (see Algorithm 1).

Algorithm 1 Plan Ahead(ω, M )
Output: a defender strategy profile [c]

1: for t=1 to T do
2: ct = f-PlanAhead(ct−1, ω,min{T − t+ 1,M})

PA-M finds an optimal strategy for the current round as if it
is the M th last round of the game. If M = 2, the defender
chooses a strategy assuming she will play a myopic strategy
in the next round and end the game. When there are less than
M − 1 future rounds, the defender only needs to look ahead
T−t steps (Line 2). PA-T corresponds to the optimal solution
and PA-1 is the myopic strategy. Unless otherwise specified,
we choose 1 < M < T . Function f-PlanAhead(ct−1, ω,m)
solves the following mathematical program (MP).

maxct,ct+1,...ct+m−1

∑m−1
τ=0 Et+τ (2)

s.t Eτ =
∑
l

∑
i qi(ω

l, ητ )Udi (cτ ), τ = t, .., t+m− 1(3)

ητ = cτ−1, τ = t, .., t+m− 1 (4)∑
i c
τ
i ≤ K, τ = t, .., t+m− 1 (5)

This is a non-convex problem when m > 0 and can be solved
approximately with local search approaches.

Although we show in the experiment section that PA-2 can
provide significant improvement over baseline approaches in
most cases, there exist settings where PA-2 can perform arbi-
trarily badly when compared to the optimal solution. The in-
tuition is that the defender might make a suboptimal choice in
the current round with an expectation to get a high reward in
the next round; however, when she moves to the next round,
she plans for two rounds again, and as a result, she never gets
a high reward until the last round.

Target Rd
i P d

i

N1 2 1
N2 X 3

Example 2. Consider a guard
protecting two subareas with payoff
values shown on the right (X � 1).
For simplicity of the example, as-
sume the defender can only choose pure strategies. There
is one poacher with a large negative coefficient on coverage
probability, i.e., the poacher will always snare in the subarea
that is not protected in the last round. The initial defender
strategy is protecting N1, meaning the attacker will snare in
N2 in round 1. According to PA-2, the defender will protect
N1 in round 1 and plan to protect N2 in round 2, expecting
a total utility of 3 + X . However, in round 2, the defender
chooses N1 again as she assumes the game ends after round
3. Thus, her average expected utility is 3(T−1)+X

T ≈ 3. On
the other hand, if the defender alternates betweenN1 andN2,
she gets a total utility ofX+2 for two consecutive rounds and
her average utility is at least X2 � 3.

PA-2 fails in such cases because it over-estimates the utility
in the future. To remedy this, we generalize PA-M to PA-M-γ
by introducing a discount factor 0 < γ ≤ 1 for future rounds
when T − t < M − 1, i.e., substituting Equation 2 with

maxct,ct+1,...ct+m−1

∑m−1

τ=0
γτEt+τ (6)

While PA-M-γ presents an effective way to design sequen-
tial defender strategies, we provide another algorithm called
FixedSequence-M (FS-M) for GSGs (see Algorithm 2). FS-
M not only has provable theoretical guarantees, but may also



Algorithm 2 Fixed Sequence
Output: defender strategy profile [c]

1: (a1, ..., aM ) = f-FixedSequence(ω,M).
2: for t=1 to T do
3: ct = a(t mod M)+1

ease the implementation in practice. The idea of FS-M is
to find a short sequence of strategies with fixed length M
and require the defender to execute this sequence repeatedly.
If M = 2, the defender will alternate between two strate-
gies and she can exploit the attackers’ delayed response. It
can be easier to communicate with local guards to imple-
ment FS-M in green security domains as the guards only need
to alternate between several types of maneuvers. Function
f-FixedSequence(ω,M) calculates the best fixed sequence of
length M through the following MP.

maxa1,...,aM
∑M
t=1E

t (7)

s.t Et =
∑
l

∑
i qi(ω

l, ηt)Udi (at), t = 1, ...,M (8)

η1 = aM (9)
ηt = at−1, t = 2, ...,M (10)∑
i a
t
i ≤ K, t = 1, ..,M (11)

Theorem 1 shows that the solution to this MP provides a
good approximation of the optimal defender strategy profile.

Theorem 1. In a GSG with T rounds, α0 = 0 and Γ = 1,
for any fixed length 1 < M ≤ T , there exists a cyclic de-
fender strategy profile [s] with periodM that is a (1− 1

M )Z−1
Z+1

approximation of the optimal strategy profile in terms of the
normalized utility, where Z = d TM e.

We leave the detailed proof to the online appendix1. Ac-
cording to Theorem 1, when a GSG has many rounds (T �
M ), the cyclic sequence constructed by repeating a1, ...aM is
a 1− 1/M approximation.

4 Learning and Planning in GSGs
In Section 3, we assume that the parameter vectors ω1, ..., ωL

in the attackers’ bounded rationality model are known. Since
the defender may not know these parameter values precisely
at the beginning of the game in practice, we now aim to learn
the attackers’ average parameter distribution from attack data.
Previous work in green security domains [Yang et al., 2014;
Haskell et al., 2014] treats each data point, e.g., each snare or
fishnet, as an independent attacker and applies MLE to select
the most probable parameter vector. However, some of the
assumptions made in previous work in proposing MLE may
not always hold as MLE works well when a large number of
data samples are used to estimate one set of parameters [Elia-
son, 1993]. Here we show that estimating ω from a single
data point using MLE can lead to highly biased results.

Example 3. Consider a guard protecting two targets in
round 1. The payoff structure and initial defender strategy
are shown in Table 2 where X � 1 and 0 < δ � 1. An at-
tacker with parameter vector ω = (−1, 0, 0) will choose N1

or N2 with the probability ≈ 0.5, as ω1 = −1 means he has
1http://ijcai2015cs.yolasite.com/

Algorithm 3 Learn-BU (η, χ,{ω̂}, p)
Output: p̄ – a probability distribution over {ω̂} = {ω̂1, ..., ω̂S}.
1: for i=1 to N do
2: for s=1 to S do
3: p̄i(s) = p(s)qi(ω̂

s,η)∑
r p(r)qi(ω̂

r,η)

4: for s=1 to S do
5: p̄(s) =

∑
i χip̄i(s)∑

i χi

a slight preference on targets with lower coverage probability
(see Equation 1). If the attacker attacks N1, applying MLE
will lead to an estimation of ω = (+∞, ·, ·), meaning the
attacker will always choose the target with higher coverage
probability. This is because the probability of attacking N1

is 1 given ω1 = +∞, which is higher than that of any other
parameter value. Similarly, if the attacker attacks N2, an ex-
treme parameter of (−∞, ·, ·) is derived from MLE. These ex-
treme parameters will mislead the defender in designing her
strategy in the following round.

Target Rdi P di Rai P ai c0i
N1 1 −1 1 −1 0.5 + δ
N2 1 −X 1 −1 0.5− δ

Table 2: Payoff structure of Example 3.

We therefore leverage insights from Bayesian Updating.
For each data point, we estimate a probability distribution
over parameter values instead of selecting the ω vector that
maximizes the likelihood of the outcome. This approach is
also different from maximum a posteriori probability (MAP)
because MAP still provides single value estimates, whereas
Bayesian Updating uses distributions to summarize data.

Algorithm 3 describes the learning algorithm for one round
of the game. Rather than learning single parameter values,
one from each attack, we learn a probability distribution.
The input of the algorithm includes the number of attacks χi
found on each target i ∈ [N ], the attackers’ belief of the de-
fender strategy η, and the prior distribution p = 〈p1, ..., pS〉
over a discrete set of parameter values {ω̂} = {ω̂1, ..., ω̂S},
each of which is a 3-element tuple. If an attacker attacks tar-
get i, we can calculate the posterior distribution of this at-
tacker’s parameter by applying Bayes’ rule based on the prior
distribution p (Line 3). We then calculate the average poste-
rior distribution p̄ over all attackers (Line 5).

Based on Algorithm 3, we now provide a novel frame-
work that incorporates the learning algorithm into PA-M(-γ)
as shown in Algorithm 4. The input p1 is the prior distribution
about the attackers’ parameters before the game starts. This
prior distribution is for the general population of attackers and
we need to learn the distribution of the L attackers we are fac-
ing in one game. The main idea of the algorithm is to use the
average posterior distribution calculated in round t (denoted
as p̄t) as the prior distribution in round t+1 (denoted as pt+1),
i.e.,pt+1 = p̄t. Given prior pt, Function f-PlanAhead in Line
2 is calculated through Equation 2 – 5 by substituting Equa-
tion 3 with Et = L

∑
s

∑
i p
t(s)qi(ω̄

s, ct−1)Udi (ct). Note
that there was no probability term in Equation 3 because there
we know exactly the parameter values of the attackers. After
we collect data in round t, we apply Learn-BU (Algorithm 3)



Algorithm 4 BU-PA-M-γ(p1)
Output: Defender strategy profile 〈c1, ...cT 〉.
1: for t=1 to T do
2: ct = f-PlanAhead(ct−1, ω,min{T − t,M − 1})
3: p̄t = Learn-BU(ct−1, χt, {ω̂}, pt)
4: pt+1 = p̄t

again and update the prior for next round (Line 3). This is a
simplification of the more rigorous process which enumerates
the matchings (exponentially many) between the data points
and attackers and updates the distribution of each attacker
separately when the attack data is anonymous (the guard may
only find the snares placed on ground without knowing the
identity of the poacher).

When incorporating Algorithm 3 into FS-M, we divide
the game into several stages, each containing more than M
rounds, and only update the parameter distribution at the end
of each stage. As FS-M may not achieve its average expected
utility if only a part of the sequence is executed, updating the
parameter distribution in every round may lead to low utility.

5 General Case
Generalization from Γ = 1 and α0 = 0 to Γ > 1 and/or
α0 ∈ [0, 1] can be achieved via generalizing ηt. PA-M(-γ)
can be calculated by substituting Constraint 4 with ητ =∑M
k=0 αkc

τ−k, and FS-M can be calculated by changing
Constraints 9-10 accordingly. Theorem 2 shows the theoreti-
cal bound of FS-M with Γ > 1 and the proof is similar to that
of Theorem 1 (see online appendix1 for details).

Theorem 2. In a GSG with T rounds, for any fixed length
Γ < M ≤ T , there exists a cyclic defender strategy profile
[s] with period M that is a (1 − Γ

M )Z−1
Z+1 approximation of

the optimal strategy profile in terms of the normalized utility,
where Z = dT−Γ+1

M e.

6 Experimental Results
We test all the proposed algorithms on GSGs motivated by
scenarios in green security domains such as defending against
poaching and illegal fishing. Each round corresponds to 30
days and each poacher/fisherman will choose a target to place
snares/fishnets every day. All algorithms are implemented in
MATLAB with the fmincon function used for solving MPs
and tested on 2.4GHz CPU with 128 GB memory. All key
differences noted are statistically significant (p < 0.05).

6.1 Planning Algorithms
We compare proposed planning algorithms PA-M(-γ) and
FS-M with baseline approaches FS-1 and PA-1. FS-1 is
equivalent to calculating the defender strategy with a per-
fect Stackelberg assumption, which is used in previous work
[Yang et al., 2014; Haskell et al., 2014], as the defender uses
the same strategy in every round and the attackers’ belief co-
incides with the defender strategy. PA-1 is the myopic strat-
egy which tries to maximize the defender’s expected utility in
the current round. We assume c0 is the MAXIMIN strategy.

We first consider the special case (α0 = 0, Γ = 1) and
test on 32 game instances of 5 attackers, 3 targets, 1 guard

and 100 rounds with random reward and penalty chosen from
[0, 10] and [−10, 0] respectively (denoted as Game Set 1). We
run 100 restarts for each MP. Figure 2(a) shows that PA-M(-
γ) and FS-M significantly outperform FS-1 and PA-1 in terms
of the defender’s average expected utility (AEU). This means
using the perfect Stackelberg assumption would be detrimen-
tal to the defender if the attackers respond to last round’s strat-
egy. For PA-M, adding a discount factor γ may improve the
solution. Figure 2(b) shows FS-M takes much less time than
PA-M overall as FS-M only needs to solve one MP through-
out a game while PA-M solves a MP for each round.

We also test on 32 games with 100 attackers, 10 targets, 4
guards and 100 rounds (denoted as Game Set 2) in the spe-
cial case (see Figure 2(c)). We set a 1-hour runtime limit for
the algorithms and again, FS-M and PA-M(-γ) significantly
outperform FS-1 and PA-1 in solution quality.

We then test general cases on Game Set 2. Figure 2(d)
shows the defender’s AEU with varying α0 when Γ = 1. In
the extreme case of α0 = 1, i.e., the attackers have perfect
knowledge of the current defender strategy, the problem re-
duces to a repeated Stackelberg game and all approaches pro-
vide similar solution quality. However, when α0 < 0.5, FS-2
and PA-2 provide significant improvement over FS-1 and PA-
1, indicating the importance of planning.

We further test the robustness of FS-2 when there is slight
deviation in α0 with Γ = 1 (see Figure 3). For example,
the value of 5.891 in the 2nd row, 1st column of the table
is the defender’s AEU when the actual α0 = 0 and the de-
fender assumes (estimates) it to be 0.125 when calculating
her strategies. Cells in the diagonal show the case when the
estimation is accurate. Cells in the last row show results for
baseline algorithm FS-1. FS-1 uses the Stackelberg assump-
tion and thus the estimated value makes no difference. When
the actual value slightly deviates from the defender’s estimate
(cells adjacent to the diagonal ones in the same column), the
solution quality does not change much if the actual α0 > 0.5.
When the actual α0 < 0.5, FS-2 outperforms FS-1 signifi-
cantly even given the slight deviation.

In Figure 2(e), we compare algorithms assuming Γ = 2,
α1 = α2 = 0.5 and α0 = 0. As expected, PA-M withM > 1
and FS-M with M > 2 significantly outperforms FS-1 and
PA-1. The improvement of FS-2 over FS-1 is negligible, as
any fixed sequence of length 2 can be exploited by the attack-
ers with memory length = 2.

Figure 2(f) shows the solution quality of PA-M when the
defender assumes the attackers’ memory length is 3 but the
actual value of Γ varies from 1 to 4. When Γ is slightly over-
estimated (actual Γ = 1 or 2), PA-M still significantly out-
performs the baseline algorithm FS-1 and PA-1. However,
when Γ is under-estimated (actual Γ = 4), the attackers have
longer memory than the defender’s estimate and thus the at-
tackers can exploit the defender’s planning. This observation
suggests that it is more robust to over-estimate the attackers’
memory length when there is uncertainty in Γ. We defer to
future work to learn ατ and Γ from attack data.

6.2 Learning and Planning Framework
When the parameter vectors {ωl} are unknown, we compare
Algorithm 3 with the baseline learning algorithm that uses
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(c) Solution quality (Game Set 2)
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(e) Solution quality (Γ = 2)
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Figure 2: Experimental results show improvements over algorithms from previous work.
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Figure 3: Robustness against uncertainty in α0 when Γ = 1

MLE (denoted as MLE) when incorporated into planning al-
gorithms. In each game of Game Set 2, we randomly choose
{ωl} for the 100 attackers from a three-dimensional normal
distribution with mean µ = (−17.81, 0.72, 0.47) and covari-

ance Σ =

(
209.48 −2.64 −0.71
−2.64 0.42 0.24
−0.71 0.24 0.36

)
. We use BU to de-

note the case when an accurate prior (µ and Σ) is given to
the defender. Recall that the defender plays against 100 at-
tackers throughout a game, and BU aims to learn the param-
eter distribution of these 100 attackers. BU′ represents the
case when the prior distribution is a slightly deviated estima-
tion (a normal distribution with random µ′ and Σ′ satisfying
‖µi − µ′i‖ ≤ 5 and ‖Σ′ii − Σii‖ ≤ 5). KnownPara repre-
sents the case when the exact values of {ωl} are known to the
defender. We set a time limit of 30 minutes for the planning
algorithms. Figure 2(g) – 2(h) show that BU and BU′ sig-
nificantly outperform MLE. Indeed, the solution quality of
BU and BU′ is close to that of KnownPara, indicating the
effectiveness of the proposed learning algorithm. Also, BU
and BU′ run much faster than MLE as MLE solves a convex
optimization problem for each target in every round.

7 Conclusion and Related Work

So far, the field had been lacking an appropriate game-
theoretic model for green security domains: this paper pro-
vides Green Security Games (GSG) to fill this gap. GSG’s
generalization of the Stackelberg assumption which is com-
monly used in previous work has led it provide two new plan-
ning algorithms as well as a new learning framework, provid-
ing a significant advance over previous work in green security
domains [Yang et al., 2014; Haskell et al., 2014].

Additional related work includes criminological work on
poaching and illegal fishing [Lemieux, 2014; Beirne and
South, 2007], but a game-theoretic approach is completely
missing in this line of research. Planning and learning in re-
peated games against opponents with bounded memory has
been studied [Sabourian, 1998; Powers and Shoham, 2005;
Chakraborty et al., 2013; de Cote and Jennings, 2010; Baner-
jee and Peng, 2005]. However, most of the work considers
the case where each player chooses one action from his finite
action set in each round of the game, while we focus on the
problem motivated by real-world green security challenges
where the players can choose a mixed strategy and imple-
ment it for multiple episodes in each round; thus previous ap-
proaches fail to apply in our domains. We further handle mul-
tiple boundedly rational attackers each with a different SUQR
model, leading to a need to learn heterogeneous parameters
in the SUQR model, which was not addressed in this prior
work which assume a single fully rational attacker. Previ-
ous work on learning in repeated SSGs [Marecki et al., 2012;
Letchford et al., 2009; Blum et al., 2014] has mainly focused
on learning the payoffs of attackers assuming perfectly ratio-
nal attackers. In contrast, we not only generalize the Stackel-
berg assumption to fit green security domains but also provide
algorithms to learn the parameters in the attackers’ bounded
rationality model. By embedding models of bounded ratio-
nality in GSG, we complement previous work that focus on
modeling human bounded rationality and bounded memory
[Rubinstein, 1997; Cowan, 2005].
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1 Proof for Theorem 1
Theorem 1. In a GSG with T rounds, α0 = 0 and Γ = 1,

for any fixed length 1 < M ≤ T , there exists a cyclic de-
fender strategy profile [s] with periodM that is a (1− 1

M )Z−1
Z+1

approximation of the optimal strategy profile in terms of the
normalized utility, where Z = d T

M e.
The intuition is to divide the optimal sequence into sections

with length M − 1 and bound the defender’s expected utility
in each section.

Definition 1. A cyclic defender strategy profile for a GSG
is a profile consisting of a cyclic sequence of strategies, i.e.,
∃T̄ , such that ∀t > T̄ , ct = ct−T̄ , T̄ is denoted as the period
of the strategy profile.

Proof of Theorem 1: Use U(x1, x2) to denote the de-
fender’s normalized expected utility in a round where de-
fender strategy x2 is used in this round and defender strategy
x1 is used in the previous round. Then 0 ≤ U(x1, x2) ≤ 1.
For the optimal defender strategy profile [c], denote the nor-
malized utility as Uopt.
〈b1, ..., bM 〉 is a strategy sequence whose average nor-

malized expected utility for the last M − 1 rounds, i.e.,
Ub =

∑M
t=2 U(bt−1,bt)

M−1 , is maximized. 〈a1, ..., aM 〉 is a
strategy sequence such that the average normalized expected
utility of the sequence when it forms a cycle, i.e., Ua =
U(aM ,a1)+

∑M
t=2 U(at−1,at)

M , is maximized. Then

M ∗ Ua = U(aM , a1) +
∑M

t=2
U(at−1, at)

≥ U(bM , b1) +
∑M

t=2
U(bt−1, bt)

≥
∑M

t=2
U(bt−1, bt)

= (M − 1) ∗ Ub

Let Z = d T
M e. Construct a cyclic defender strategy profile

[s] by repeating the strategy sequence 〈a1, ..., aM 〉. Then

T ∗ U([s]) = U(c0, s1) +
∑T

t=2
U(st−1, st) (1)

≥ (Z − 1) ∗M ∗ Ua (2)
≥ (Z − 1) ∗ (M − 1) ∗ Ub (3)

Strategy profile [s] contains Z − 1 complete cycles (starting
with a2) with an average normalized utility Ua. The first in-
equality is derived by ignoring the first round and the last
incomplete cycle when mod(T,M) 6= 1.

On the other hand, for the optimal defender strategy profile
[c] = [c]opt, we know that for any consecutive sequence of
lengthM , the average normalized utility of lastM−1 rounds
can be no more than Ub. So we divide the strategy profile into
d T
M−1e pieces, each piece with length M − 1 except the last

piece. Then for each piece, the sum of normalized utility is no
more than Ub ∗ (M −1). Otherwise, if the sum of normalized
utility of the ith piece is higher than Ub ∗ (M − 1), then the
strategy sequence < c(i−1)(M−1), ..., ci(M−1) > contradicts
the optimality of < b1, ..., bM >. Thus,

T ∗ Uopt = U(c0, c1) +
∑T

t=2
U(ct−1, ct) (4)

≤ Ub ∗ (M − 1) ∗ d T

M − 1
e (5)

≤ (T +M − 1) ∗ Ub (6)

The last inequality is yield by conceptually completing the
last piece. Combining these results, we get

U([s])

Uopt
≥ (Z − 1) ∗ (M − 1)

T +M − 1

≥ (Z − 1) ∗ (M − 1)

Z ∗M +M

= (1− 1

M
) ∗ Z − 1

Z + 1

So [s] is a (1− 1
M )Z−1

Z+1 approximation of the optimal strat-
egy profile in terms of the normalized utility.

According to Theorem 1, when the game has many rounds
(T � M ), the cyclic sequence constructed by repeating
a1, ...aM is a 1 − 1/M approximation. While in exper-
iments this non-convex MP is solved approximately, with
large number of random restarts, we may be able to achieve
this 1− 1/M approximation.

2 Proof of Theorem 2
Theorem 2. In a GSG with T rounds, for any fixed length

Γ < M ≤ T , there exists a cyclic defender strategy profile
[s] with period M that is a (1 − Γ

M )Z−1
Z+1 approximation of



the optimal strategy profile in terms of the normalized utility,
where Z = dT−Γ+1

M e.
Proof of Theorem 2: Use U([x], x0) to denote the de-

fender’s normalized expected reward in a round where de-
fender strategy x0 is used in this round, and defender strat-
egy sequence [x] = 〈x−Γ, ..., x−1〉 is used in the previous Γ
rounds. Then 0 ≤ U([x], x0) ≤ 1. For the optimal defender
strategy profile [c], denote the normalized utility as Uopt.
〈b1, ..., bM 〉 is a strategy sequence whose average normal-

ized expected utility for lastM−Γ rounds, is maximized and
the value is denoted as Ub. 〈a1, ..., aM 〉 is a strategy sequence
such that the average normalized expected utility of the se-
quence when it forms a cycle is maximized and the value is
denoted as Ua. Then

M ∗ Ua ≥
∑M

t=Γ+1
U(bt−1, bt)

= (M − Γ) ∗ Ub

Construct a defender strategy profile [s] by repeating the
strategy sequence 〈a1, ..., aM 〉. Then

T ∗ U([s]) ≥ (Z − 1) ∗M ∗ Ua (7)
≥ (Z − 1) ∗ (M − Γ) ∗ Ub (8)

Strategy profile [s] contains bT−Γ
M c complete cycles (starting

from the first round with aΓ) with average normalized reward
Ua. As Z = dT−Γ+1

M e, bT−Γ
M c = Z − 1. The inequality 7

is derived by ignoring the first round and the last incomplete
cycle if any (when mod(T,M) 6= Γ).

On the other hand, for the optimal defender strategy pro-
file [c] = [c]opt, we know that for any consecutive sequence
of length M , the average normalized reward of last M − Γ
rounds can be no more thanUb. So we divide the strategy pro-
file into d T

M−Γe pieces, each piece with length M −Γ except
the last piece. Then for each piece, the sum of normalized
reward is no more than Ub ∗ (M − Γ). Thus,

T ∗ Uopt ≤ Ub ∗ (M − Γ) ∗ d T

M − Γ
e (9)

≤ (T +M − Γ) ∗ Ub (10)

The inequality 10 is yield by conceptually completing the last
piece. Combine 7 - 10, we get

U([s])

Uopt
≥ (Z − 1) ∗ (M − Γ)

T +M − Γ

≥ (Z − 1) ∗ (M − Γ)

M + Z ∗M

= (1− Γ

M
) ∗ Z − 1

Z + 1

Equation is derived from the definition of Z, as T − Γ ≤
Z ∗M − 1 ≤ Z ∗M . So the cyclic strategy profile [s] is a
(1− Γ

M )Z−1
Z+1 approximation of the optimal strategy profile in

terms of normalized utility.


