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Abstract

Stackelberg security games (SSG) have received a significant amount of attention in the literature

for modeling the strategic interactions between a defender and an adversary, in which the defender

has a limited amount of security resources to protect a set of targets from a potential attack by

the adversary. SSGs are at the heart of several significant decision-support applications deployed

in real world security domains. All of these applications rely on standard assumptions made

in SSGs, including that the defender and the adversary each have a single objective which is

to maximize their expected utility. Given the successes and real world impact of previous SSG

research, there is a natural desire to push towards increasingly complex security domains, leading

to a point where considering only a single objective is no longer appropriate.

My thesis focuses on incorporating multiple objectives into SSGs. With multiple conflict-

ing objectives for either the defender or adversary, there is no one solution which maximizes all

objectives simultaneously and tradeoffs between the objectives must be made. Thus, my the-

sis provides two main contributions by addressing the research challenges raised by considering

SSGs with (1) multiple defender objectives and (2) multiple adversary objectives. These con-

tributions consist of approaches for modeling, calculating, and analyzing the tradeoffs between

objectives in a variety of different settings. First, I consider multiple defender objectives resulting

xi



from diverse adversary threats where protecting against each type of threat is treated as a sepa-

rate objective for the defender. Second, I investigate the defender’s need to balance between the

exploitation of collected data and the exploration of alternative strategies in patrolling domains.

Third, I explore the necessary tradeoff between the efficacy and the efficiency of the defender’s

strategy in screening domains. Forth, I examine multiple adversary objectives for heterogeneous

populations of boundedly rational adversaries that no longer strictly maximize expected utility.

The contributions of my thesis provide the novel game models and algorithmic techniques

required to incorporate multiple objectives into SSGs. My research advances the state of the

art in SSGs and opens up the model to new types of security domains that could not have been

handled previously. As a result, I developed two applications for real world security domains that

either have been or will be tested and evaluated in the field.
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Chapter 1: Introduction

Security is an ever-present challenge for governments and organizations worldwide. This chal-

lenge stems from the fundamental fact that, regardless of the domain, there will always be a

limited availability of security resources. As a result, perfect security is never achievable. There-

fore, it is critical for decision makers to leverage these limited security resources to the fullest

extent possible. Decision makers thus seek principled, mathematical approaches for allocating

their security resources to protect against potential adversaries.

Game theory has become a well-established paradigm for modeling security domains which

feature complex resource allocation problems. In particular, Stackelberg security games (SSG)

have received a significant amount of attention in the literature for modeling such domains

[Conitzer and Sandholm, 2006; Kiekintveld et al., 2009; Paruchuri et al., 2008; Jain et al., 2010a].

Security games capture the strategic interactions between a defender (e.g., security agency) and

an adversary (e.g., terrorist, criminal). The goal of the defender is to develop a strategy for allo-

cating a limited amount of security resources to protect a set of targets. The adversary is able to

observe the defender’s strategy and then plans an attack on one of the targets. Given the ability

of the adversary to conduct surveillance, the optimal strategy for the defender is an intelligent

randomization over resource allocation strategies.

1



SSGs are at the heart of several significant decision-support applications deployed in the real

world. Examples of these applications include ARMOR used at Los Angeles International Air-

port (LAX) to randomize road checkpoints and canine patrols [Pita et al., 2008], IRIS deployed

by the United States Federal Air Marshals Service to assign air marshals to international flights

[Tsai et al., 2009], PROTECT utilized by the United States Coast Guard to schedule boat patrols

for protecting ports [Shieh et al., 2012], and TRUSTS developed for the Los Angeles Sheriffs

Department to generate patrol schedules through the local metro system [Yin et al., 2012].

In all of these applications, both the defender and the adversary are modeled as having a

single objective which is to maximize their expected utility. However, as the research on SSGs

has advanced, there has been a push towards increasingly complex security domains where the

assumption of the players optimizing a single objective may no longer be sufficient. Indeed,

allocating resources in virtually any real-world security domain is inherently a multi-objective

decision making process. There are any number of quantitative and qualitative considerations

that a decision maker could take into account when selecting a strategy to implement. However,

previous work reduced the multiple objectives that may have been present in the respective secu-

rity domains into a single objective either for computational efficiency or simplicity of analysis.

My thesis focuses on modeling more of the complexity present in security domains and ad-

dresses the research challenges raised by introducing multiple objectives into security games. The

first part of my thesis considers situations where the defender is trying to achieve multiple objec-

tives at the same time. The second part of my thesis considers protecting against heterogeneous

populations of boundedly rational adversaries with multiple objectives. The two topics are nat-

urally interconnected but also introduce unique research challenges. The technical contributions

of my thesis serve to remove the restriction of only modeling players with a single objective and
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(a) Metro Systems (b) Traffic Patrolling

(c) Aviation Passsenger Screening (d) Fishery Protection

Figure 1.1: Different domains for Stackelberg security games.

allows for the development of decision aids that construct higher fidelity games models of the

underlying domain and offer finer granularity in the resulting analysis.

1.1 Multiple Defender Objectives

The first part of my thesis considers defenders with multiple objectives. There are numerous

scenarios where the defender would want to optimize multiple objectives when selecting which

resource allocation strategy to implement. One such scenario is when the defender needs to

protect against a diverse set of adversaries and each adversary poses a unique threat to defender.

Given their uniqueness, it may be difficult to know beforehand the exact priority that should be
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given to defending against each of these adversaries. An alternative approach is to treat protecting

against each threat as an explicit objective for the defender, turning the security game and the

underlying resource allocation problem into a multi-objective optimization problem.

In order to capture the fact that the defender is explicitly considering multiple objective during

the decision making process, I introduced a new model referred to as a multi-objective security

game (MOSG). Instead of receiving a single payoff based on the strategy chosen, the defender

now receives a vector of payoffs, i.e., one payoff for each of the multiple objectives. For any

well-formed multi-objective optimization problem, there is going to conflict or competition be-

tween the objectives. The implication then for security games where the defender has multiple

objectives is that no single defender strategy can maximize all of the objectives simultaneously.

Thus, it becomes necessary to make compromises and determine how to trade off the performance

with respect the multiple objectives. For some domains this may be a straightforward process and

weights can be assigned to each objective indicating their relative importance. By specifying the

weights a priori, the multi-objective optimization problem can be reduced to a single-objective

optimization problem. For other domains this process may impossible or undesirable as either the

objective weights are unknown or there is interest in considering the multiple objectives explicitly

to gain an understanding of the space of compromise solutions and their relative tradeoffs.

Focusing on security domains with multiple explicit objectives for the defender raises sev-

eral challenges. Unlike standard single-defender-objective SSGs, which have a single optimal

solution in terms of defender payoff, MOSGs have a set of Pareto optimal solutions referred to

as the Pareto frontier. A solution is said to be Pareto optimal if and only if there exists no other

solution with equal or better performance across all objectives. The defender would only want to

consider solutions on the Pareto frontier, as for any other solution there would exist at least one
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Pareto optimal solution which yields strictly equal or better performance across all objectives.

Therefore, the goal of the defender is to find the solutions which make up the Pareto frontier.

One of the main contributions of the first part of my thesis is Iterative-ε-Constraints, a general

algorithm for generating the Pareto frontier in multi-objective optimization problems. The Pareto

frontier can be generated by solving a sequence of constrained single-objective optimization prob-

lems (CSOP), where one primary objective is selected to be maximized while lower bounds are

specified for the other secondary objectives. Solving each CSOP produces a Pareto optimal so-

lution and adjusting the lower bound constraints on the secondary objectives generates different

solutions on the Pareto frontier. Thus, Iterative-ε-Constraints uses an iterative approach in gen-

erating the sequence of CSOPs to systematically explore the solution space to find the Pareto

frontier. To find the individual solutions that make up the Pareto frontier, I introduced an exact

approach for solving a mixed-integer linear programming formulation of each CSOP. Additional

contributions include developing heuristics and approximate approaches that achieve speedup

by exploiting the structure of MOSGs, increasing the scalability of Iterative-ε-Constraints while

providing solution quality guarantees on approximating the Pareto frontier.

These insights and technical contributions have been utilized and expanded upon to create

two applications. The first application is STREETS (STrategic Randomization with Exploration

and Exploitation in Traffic patrol Schedules), which I developed to assist the Singapore Ministry

of Home Affairs (MHA) in mitigating reckless driving on the Singapore road network. The idea

is to provide a game-theoretic approach for deciding when and where to deploy traffic patrols so

as to provide the maximum influence on driver behavior. Given the frequent interaction between

the police and drivers, there is a significant amount of data on the times and locations of traffic vi-

olations. However, this data is collected when the defender issues citations and thus is inherently
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available only for patrolled locations. Therefore, STREETS considers two conflicting objectives:

(1) minimizing reckless driving by concentrating patrols on areas with high levels of recorded vi-

olations (i.e., exploitation); and (2) maximizing the dispersal of patrols to ensure data is collected

from all areas (i.e., exploration). STREETS represents the first use of SSGs to explicitly consider

the tradeoff between exploration and exploitation when computing the defender’s strategy.

The second application is DARMS (Dynamic Aviation Risk Management System) which pro-

vides a new approach for the Transportation Security Administration (TSA) to improve aviation

passenger screening security by more directly incorporating risk into their operating procedures.

In passenger screening, there is an inherent tradeoff between efficacy (maximizing detection of

potential threats) and efficiency (maximizing passenger throughput). The high level idea is that

fewer resources should be dedicated to screening lower risk passengers and more resources dedi-

cated to screening higher risk passengers, with the goal of finding the balance between screening

efficiency and efficacy. The innovation in DARMS is that the screening for each passenger is con-

ditioned on both the passenger’s risk level and flight. I introduced a novel game model, Threat

Screening Games (TSGs), to capture the interaction between the TSA and a potential terrorist.

The TSG model can solved to determine the level of screening that should be applied to passen-

gers in each flight / risk category pair. A proof of concept for DARMS was completed in March

2015 and will be evaluated in an actual airport as part of a pilot study in December 2015.

1.2 Multiple Adversary Objectives

The second part of my thesis considers adversaries with multiple objectives. Additionally, for

a wide variety of security domains (particularly those outside of counter-terrorism settings), the
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human adversaries facing the defender are not perfect rational or utilizing maximizing as is as-

sumed by classical game theory. Instead, these adversaries can be thought of as being boundedly

rational [Simon, 1955], meaning that their decision making process is constrained by a combi-

nation of factors such as the availability of accurate information, the cognitive ability to process

information, as well as the availability of time in which to make a decision. Considering bound-

edly rational adversaries with multiple objectives poses a number of significant challenges from

both a modeling and an algorithmic perspective.

One of the first modeling challenges is even identifying the objectives of the adversary. Un-

like the defender, who can be consulted with to elicit information, little may be known as to what

objectives guide the decision making process of the adversary. To address this challenge, I in-

corporated work on human behavior models, specifically the subjective utility quantal response

(SUQR) model [Nguyen et al., 2013]. SUQR suggests that rather than responding to expected

utility, adversaries respond to subjective utility, a weighted summation over multiple known ob-

jectives. SUQR builds off the Quantal Response (QR) model [McKelvey and Palfrey, 1995]

which assumes the existence of latent objectives which impact the decision making process and

the weights associated with these latent objectives vary probabilistically. Thus, even with a fixed

set of weights for the known objectives, SUQR predicts a distribution over the actions of the ad-

versary, providing a measure of robustness against not explicitly considering the latent objectives.

SUQR has been demonstrated to better predict the actions of populations of human subjects when

compared against other leading human behavior models including QR [Nguyen et al., 2013].

Even after identifying the objectives that the adversary is likely to be considering, a second

modeling challenge for the defender is dealing with the uncertainty over the weights that the

adversary assigns to each objective. In many security domains with human adversaries, it is
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difficult or impossible for the defender to know the exact adversary they are playing against. This

type of uncertainty is typically represented by considering a heterogeneous population of potential

adversary types that the defender could encounter. Each of these adversary types is defined by

a unique weight vector over the objectives. These unique weights mean that different adversary

types will respond differently to the defender’s strategy. The defender needs to optimize against

all of the adversary responses but this can be difficult if the defender does not know the likelihood

of encountering each adversary type. Absent this information, taking a more robust approach for

selecting the defender’s strategy becomes a reasonable compromise.

To handle scenarios involving heterogeneous populations of boundedly rational adversaries

with multiple objectives, I proposed a novel robust maxmin SUQR model which maximizes the

worst case defender’s payoff against any of the potential adversary responses. Introducing this

new model raised an algorithmic challenge in terms of scalability. From a computational per-

spective, SUQR is both nonlinear and nonconvex, making the defender’s optimization problem

of solving for the optimal strategy more challenging to solve. The challenges associated with

handling one SUQR adversary are exacerbated when the defender must protect against a set of

such adversaries simultaneously. This is particularly true for domains where the defender strategy

space is exponential in size which is the case for essentially any real world security setting.

The main contribution of the second part of my thesis is MIDAS (MaxImin Defense Against

SUQR) which computes robust defender strategies for large-scale SSGs with heterogeneous pop-

ulations of boundedly rational adversaries with multiple objectives. MIDAS is the first algorithm

to address both robustness and scalability simultaneously for such SSGs through a novel com-

bination of a robust maximin formulation and incremental strategy generation. Building off the

8



insights of [Yang et al., 2012, 2013, 2014; Haskell et al., 2014], MIDAS offers two key innova-

tions: (i) a robust game model that generates defender strategies that hedge against the uncertainty

over a heterogeneous population of adversaries and (ii) a tractable mixed-integer linear program

formulation approximating the robust game model.

In collaboration with the United States Coast Guard (USCG), MIDAS was used to create

an application called ARMOR-Fish for protecting fisheries in the Gulf of Mexico, where illegal

fishing seriously threatens the health of local fish stocks. The USCG uses surface and air assets to

conduct patrols in order to deter and interdict illegal fishermen entering the exclusive economic

zone of the United States from Mexico. By using historical data on illegal fishing sightings

and interdictions, I was able to learn and construct a population of SUQR adversary types, i.e.,

the weights different adversary types assigned to the multiple objectives. ARMOR-Fish was

then used to produce aircraft patrol schedules that met the specifications and requirements of the

USCG, who began live testing of these patrol schedules in the Gulf of Mexico from July 2014 to

September 2014. ARMOR-Fish is currently under review by the USCG for further deployment

in the Gulf of Mexico as well as in other fisheries around the nation.

1.3 Thesis Overview

The structure of the thesis is organized as follows: Chapter 2 discusses the necessary background

material for Stackelberg security games. Chapter 3 reviews the relevant research to provide the

proper context for the contributions of the thesis. Chapter 4 considers multiple defender ob-

jectives resulting from diverse adversary threats where protecting against each type of threat
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is treated as a separate objective for the defender. Chapter 5 investigates the defender’s bal-

ance between the exploitation of collected data and the exploration of alternative strategies in

patrolling domains. Chapter 6 explores the defender’s tradeoff between strategy efficacy and

strategy efficiency in screening domains. Chapter 7 examines multiple adversary objectives for

heterogeneous populations of boundedly rational adversaries. Chapter 8 summarizes the thesis

and presents possible directions for future work.
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Chapter 2: Background

2.1 Stackelberg Security Games

Stackelberg Security Games (SSGs) [Conitzer and Sandholm, 2006; Kiekintveld et al., 2009;

Paruchuri et al., 2008] are composed of two players, a leader and a follower, where the leader

(denoted as the defender) must protect a set of targets from the follower (denoted as the adver-

sary). The defender has a finite number of resources r with which to protect the set of targets

T against the adversary. A pure strategy for the defender is typically an assignment of the r

resources to either patrols or targets (depending on the type of SSG), while a pure strategy for

the adversary is typically the target that is to be attacked. Each target t ∈ T is assigned a set of

payoffs {Rat , P at , Rdt , P dt }: Rat is the reward earned by an adversary if they successfully attack

target t, while P at is the penalty received by an adversary for an unsuccessful attack on target t.

Conversely, if the defender assigns a resource to protect target t and an adversary attacks target

t, the defender receives a reward Rdt . If an adversary attacks target t and the defender has not

assigned a resource to protect target t, the defender receives a penalty P dt . In order to be a valid

SSG, it must hold that Rat > P at and Rdt > P td, which means that assigning a resource to cover a

target more often is always beneficial for the defender and disadvantageous for the adversary.
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Careful planning by the defender is necessary as the amount of available security resources

is limited, i.e., r< |T |, and not all targets can be covered. As the leader in this Stackelberg game,

the defender commits to a strategy first. The adversary is then able to conduct surveillance and

thus learn the defender’s strategy before selecting their own strategy which is a best response.

The standard solution concept for a two-player Stackelberg game is a Strong Stackelberg Equi-

librium (SSE), in which the defender selects an optimal strategy based on the assumption that the

adversary will choose an optimal response while breaking ties in favor of the defender.

The defender strategy space A contains all valid allocations of the security resources. Ai is

the ith defender pure strategy and is an assignment of all the security resources. Ai is represented

as a column vector Ai = 〈Ait〉T , where Ait indicates whether target t is covered by Ai. For

example, in an SSG with 4 targets and 2 resources, Ai = 〈1, 1, 0, 0〉 represents the pure strategy

of assigning one resource to target t1 and another to target t2. The optimal resource allocation

strategy for the defender will be a mixed (i.e., randomized) strategy over the set of defender pure

strategies A, as any deterministic defender strategy would easily be exploited by the adversary.

The defender’s mixed strategy can then be represented as a vector a = 〈ai〉, where ai∈ [0, 1] is the

probability of choosing Ai. There is also a more compact marginal representation for defender

strategies. Let x be the marginal strategy, where xt =
∑

Aj∈A aiAti is the probability that target

t is covered. Thus, depending on the particular type of security game, the defender is trying to

find either the optimal mixed strategy a or the optimal marginal strategy x.

There have been many algorithms and models developed to solve SSGs, including DOBSS

[Paruchuri et al., 2008] which solves SSGs using a mixed-integer linear program, ASPEN [Jain

et al., 2010a] which solves SSGs that contain a greater number of defender resources and larger

strategy space, ORIGAMI [Kiekintveld et al., 2009] which provides a polynomial time algorithm
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for SSGs that contain no scheduling constraints, along with HUNTER [Yin and Tambe, 2012] and

RECON [Yin et al., 2011] which compute robust strategies for security games. However, these

algorithms do not apply to SSGs with multiple objectives for either the defender or the adversary.

2.2 Human Behavior Models

Classical game theory assumes that all players are perfectly rational and will select the strategies

that maximize their expected utilities. However, this is often not a reasonable assumption for

security domains with human adversaries. [Yang et al., 2012] was the first to address human

adversaries in security games by incorporating the quantal response (QR) model [McKelvey and

Palfrey, 1995] from the behavioral economics literature. QR predicts a probability distribution

over adversary actions where actions with higher expected utility have a greater chance of being

chosen. By anticipating possible adversary deviation from the optimal action, strategies com-

puted with QR are more robust to uncertainty in human decision making. [Jiang et al., 2013a]

generalized the QR model to be robust against all adversary models satisfying monotonicity (i.e.,

higher expected utility actions are selected more frequently than lower expected utility actions),

but this approach struggles to scale up to larger security games.

[Nguyen et al., 2013] extended the QR model by proposing that humans respond to subjec-

tive utility, a weighted summation over multiple objectives (such as avoiding defender coverage,

seeking adversary reward, and avoiding adversary penalty), when making decisions. [Nguyen

et al., 2013] proposes the subjective utility quantal response (SUQR) model which was shown to

outperform QR in human subject experiments. As result, most subsequent research on boundedly

rational human adversaries in security games has focused on the SUQR model.
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An SUQR adversary type ω can be represented as a the weight vector ω = {ω1, ω2, ω3}

which encodes the relative importance of xt, Rat , and P at , respectively, in the decision making

process of the adversary. Recall that the SUQR model selects a probability distribution over

adversary actions rather than deterministically selecting the utility maximizing adversary action.

Given defender strategy x, the probability that adversary ω will attack target t is

qt (ω |x) =
eω1xt+ω2Rat+ω3Pat∑
t′ e

ω1xt′+ω2Rat′+ω3Pat′
.

If an adversary chooses to attack target t, then for a given defender strategy x, the defender’s

expected utility is defined as

Ut (x) = xtR
d
t + (1− xt)P dt .

For a known adversary type ω, the defender’s optimization problem is then

max
x

F (x |ω) ,
∑
t

Ut (x) qt (ω |x) ,

which can be solved to find the optimal defender marginal strategy x.
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Chapter 3: Related Work

3.1 Stackelberg Security Games

Stackelberg security games (SSGs) have received a significant amount of attention in the literature

[Basilico et al., 2009; Dickerson et al., 2010; Korzhyk et al., 2011b,a; Letchford and Conitzer,

2013; Letchford et al., 2012; Letchford and Vorobeychik, 2013]. Early work in this area was not

explicitly focused on security but rather on developing the necessary theoretic and algorithmic

concepts necessary to solve general Stackelberg games. [von Stengel and Zamir, 2004] first ex-

plored the commitment to mixed (i.e., randomized) strategies in Stackelberg games. [Conitzer

and Sandholm, 2006] introduced the first general approach for solving Stackelberg games known

as Multiple LPs which solves a linear program for every pure strategy of the adversary. Improv-

ing upon Multiple LPs, DOBSS [Paruchuri et al., 2008] uses a mixed-integer linear program to

solve for the leader’s strategy in general Stackelberg games with a single optimization problem.

Additionally, DOBSS represented the first optimal approach for solving Bayesian Stackelberg

games, where the leader may face one of multiple follower types.

[Kiekintveld et al., 2009] formalized the Stackelberg security game model and presented

the ORIGAMI and ERASER algorithms. ORIGAMI provided a polynomial time algorithm for

solving SSGs with no resource constraints, e.g., spatio-temporal constraints if the resource must
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conduct patrols. Meanwhile, ERASER provided a compact representation of the defender strat-

egy space for multiple resources, improving the ability to scale up to larger SSGs. Addition-

ally, ERASER was able to handle the type of resources constraints that were not considered by

ORIGAMI. ASPEN [Jain et al., 2010a] further enhanced scalability by utilizing a branch-and-

price approach that considers only the most relevant defender pure strategies to incrementally

solve for the optimal solution, thereby significantly improving the efficiency of solving SSGs.

The extensive literature on SSGs has resulted in a number of decision-support applications

including ARMOR [Pita et al., 2008], IRIS [Tsai et al., 2009], GUARDS [Pita et al., 2011],

PROTECT [Shieh et al., 2012], TRUSTS [Yin et al., 2012] and RaPtoR [Varakantham et al.,

2013]. All of these applications were developed to suggest resource allocation strategies for

protecting physical infrastructure such as airports, ports, and metro systems. However, all of

these decision aids only consider a single objective for both the defender and the adversary.

Additionally, there is an assumption that the adversary is perfectly rational and selects the strategy

that maximizes expected utility given the strategy of the defender.

A recent trend in SSGs is looking to the significant volume of research dedicated to develop-

ing computational models of human behavior to help relax the strong assumption that the adver-

sary is a perfectly rational utility maximizer. [Simon, 1955] introduced the concept of bounded

rationality where the decision maker may not have the time or resources to compute the opti-

mal strategy and thus deviates from strictly maximizing utility. Unlike perfect rationality, Luce’s

Choice Axiom [Luce, 1959] proposes that strategy selection is a probabilistic process as opposed

to a deterministic process. The Quantal Reponse (QR) model [McKelvey and Palfrey, 1995]

builds off of that proposition to suggest that people probabilistically respond to expected utility,

where strategies with higher expected utility are selected more often than strategies with lower
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expected utilities. The selection of suboptimal strategies is parameterized by an estimate of the

decision maker’s rationality level and is motivated by the existence of other latent objectives in-

fluencing the decision making process. Taking inspiration from the Lens model [Brunswik, 1952]

and Multi-Attribute Utility Theory [Keeney and Raiffa, 1976], the Subjective Utility Quantal Re-

sponse model (SUQR) [Nguyen et al., 2013] expands upon QR by explicitly considering multiple

weighted objectives in the decision making process (while still allowing for the existence of other

latent objectives). Subsequent research [Cui and John, 2014; Kar et al., 2015] has analyzed which

set of objectives should be included in the SUQR model.

Incorporating human behavioral models into SSGs represents an important progression that

has been demonstrated to improve the performance of defender strategies in both simulations and

human subject experiments [Pita et al., 2010; Yang et al., 2012, 2013; Nguyen et al., 2013; Cui

and John, 2014]. By introducing stochasticity in strategy selection, behavioral models such as

QR and SUQR are able to better predict the actions of real human adversaries and thus lead the

defender to choose strategies that perform better in practice. Utilizing these types of boundedly

rational human behavioral models raises two fundamental research challenges that previous work

in SSGs has tried to address separately: scalability and robustness.

While perhaps counter-intuitive, modeling adversaries which behave suboptimally (from an

expected utility perspective) makes the defender’s optimization problem computationally more

difficult to solve. Both QR and SUQR are non-linear non-convex models which present chal-

lenges particularly when considering large-scale security domains. This issue of scalability for

SSGs with boundedly rational adversaries has received attention in the literature. [Yang et al.,

2012] presented a mixed-integer linear program approximation for QR, improving tractability.

Additionally, [Yang et al., 2013] introduces a cutting planes approach which handle resource
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constraints and uses a master-slave formulation to iteratively solve for the optimal strategy. How-

ever, [Yang et al., 2012, 2013] both only consider a single boundedly rational adversary.

However, in many domains the defender could encounter multiple types of boundedly rational

human adversaries. Thus, a separate line of SSG research has focused on achieving robustness

against uncertainty in the defender’s model of the adversary. [Yang et al., 2014] proposed a

Bayesian approach which learns a Gaussian distribution over adversary types but has two poten-

tial drawbacks. First, the assumption that the adversary types are normally distributed is difficult

to justify in practice. Second, even if the adversaries are normally distributed, a large amount

of data is needed to learn the Gaussian distribution. Alternatively, [Haskell et al., 2014] intro-

duced a maximin approach which does not use a distribution over the adversary types. Instead,

the defender chooses a strategy that maximizes the worst-case performance over a set of adver-

sary types. Primarily interested in robustness, these approaches for handling multiple boundedly

rational adversaries cannot handle large-scale SSGs with complex resource constraints.

My thesis serves to merge these two research threads for the first time by simultaneously

addressing scalability and robustness while handling heterogeneous populations of boundedly

rational adversaries with multiple objectives. Each thread alone is impractical for important real-

world security domains such as environmental crime. Large-scale SSGs with complex resource

constraints and multiple boundedly rational adversary types present a number of modeling and

computational challenges. However, overcoming these challenges is critical as they are precisely

the characteristics that define many real-world security domains.
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3.2 Multi-Objective Optimization

Expanding beyond a single objective for either the defender or the adversary turns the process of

strategy selection into a multi-objective optimization problem. The techniques for solving multi-

objective optimization problems can be broken down into three categories [Hwang and Masud,

1979]: a priori, interactive, and a posteriori methods. This classification is determined by the

phase in which the decision maker expresses their preferences.

If the preferences of the decision maker are known a priori [Steuer, 1989; Zadeh, 1963]

then this information can be incorporated into the solution process by assigning each objective a

weight according to its relative importance. This weighted summation technique [Chankong and

Haimes, 1983] effectively turns a multi-objective optimization problem into a single-objective op-

timization problem which implies the existence of a single optimal solution. However, it is often

difficult for the decision maker to both know and articulate their preferences, especially if prior

knowledge as to the shape of the solution space is limited. Bayesian security games [Paruchuri

et al., 2008] are solved using this formulation with the weights representing the probability dis-

tribution over adversary types. Another issue is that not all preferences over multiple objectives

can be expressed as simple weighted summations, more complex preferences may be desired.

Interactive methods [Alves and Clmaco, 2007; Luque et al., 2009; Tappeta and Renaud, 1999]

involve alternating between computation and dialogue phases. In the computation phase, a set of

solutions are computed and presented to the decision maker. In the dialogue phase, the decision

maker is asked about their preferences over the set of solutions. The decision maker can thus

guide the search process with their responses toward a preferable solution. By using preference

elicitation, only a subset of the Pareto frontier needs to be generated and reviewed. The drawback
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is that the decision maker never has the opportunity to view the entire Pareto frontier at once and

could potentially miss out on a more preferable solution. In addition, solutions must be computed

in an online manner which requires synchronization between the system and the decision maker.

Finally, there will be instances where the preferences of the decision maker are only known

a posteriori. In this situation, the entire Pareto frontier (or a representative subset) is generated

and presented to the decision maker. While this approach is the most expensive computationally,

it provides the most information, enabling the decision maker to make a more informed decision

as tradeoffs between objectives can be observed directly. The three most common a posteriori

approaches are weighted summation [Kim and de Weck, 2005], evolutionary algorithms [Coello

et al., 2007], and the ε-constraint method [Haimes et al., 1971].

When weighted summation [Chankong and Haimes, 1983] and its successors are used as a

generative approach, the true weights of the decision maker are not known. Thus, it is necessary

to sample many different combinations of weights in order to generate the Pareto frontier. Solving

for one assignment of weights, w, produces a Pareto optimal solution. Since the weight vector

is an artificial construct which may not have any real meaning in the optimization problem, it is

difficult to know how to update the weights in order to generate different solutions on the Pareto

frontier. Another limitation of weighted summation is that it is only guaranteed to find Pareto-

optimal solutions in the convex region of the Pareto frontier. The weighted p-power method

[Lightner and Director, 1981] and the weighted minimax method [Li et al., 1999] were introduced

as improved versions of weighted summation capable of handling nonconvex problems.

Another approach for generating the Pareto frontier which has seen significant application

[Abido, 2003; Giuliano and Johnston, 2008; Toffolo and Lazzaretto, 2002] is multi-objective

evolutionary algorithms (MOEA) [Deb, 2001]. This class of algorithms is inspired by biological
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concepts such as reproduction, mutation, recombination, and selection. A population of candidate

solutions is maintained and evolved over multiple generations, where the likelihood of survival

for individual solutions is determined by a fitness function. A key advantage of evolutionary algo-

rithms such as NSGA-II [Deb et al., 2002], SPEA-2 [Zitzler et al., 2001], and GDE3 [Kukkonen

and Lampinen, 2005] is that there is no need to solve optimization problems as the assignment of

decision variables are passed down genetically from generation to generation. However, due to

the stochastic nature of evolutionary algorithms, the solutions returned by these approaches are

not Pareto-optimal but rather approximate solutions. Additionally, it is not possible to bound this

level of approximation, making evolutionary algorithms unsuitable for the security domains on

which are the focus of this thesis, where quality guarantees are critical.

The third approach is the ε-constraint method in which the Pareto frontier is generated by

solving a sequence of constrained single-objecitve optimization problems (CSOP). One objective

is selected as the primary objective to be maximized while lower bound constraints are added for

the other secondary objectives. By varying the constraints, different solutions on the Pareto fron-

tier can be generated. The original ε-constraint method [Chankong and Haimes, 1983] discretizes

the objective space and solves a CSOP for each grid point. This approach is computationally

expensive since it exhaustively searches the high-dimensional space formed by the secondary ob-

jectives. There has been work to improve upon the original ε-constraint method. In [Laumanns

et al., 2006], an adaptive constraint variation scheme is proposed which is able make use of infor-

mation obtained from previously computed subproblems. However, the exponential complexity

of O(kn−1), where k is the number of solutions in the Pareto frontier and n is the number of

objectives, limits its application as the Pareto frontier can be large or even continuous for many

real world multi-objective optimization problems. Another approach, the augmented ε-constraint
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method [Mavrotas, 2009] reduces computation by using infeasibility information from previously

solved CSOPs. However, this approach returns a predefined number of points and thus cannot

bound the level of approximation for the Pareto frontier.

Security domains demand both efficiency as well as solution quality guarantees when pro-

viding decision support. Given these requirements, my thesis provides the first approach for

solving SSGs with multiple defender objectives by utilizing and improving upon the ε-constraint

method through the following innovations: (1) using a recursive, tree-based algorithm to search

the objective space instead of a predefined grid, (2) dynamically generating CSOPs using adap-

tive constraints from previously computed CSOPs, and (3) exploiting infeasibility information to

avoid unnecessary computation. These innovations result in only needing to solveO(nk) CSOPs

and additionally serve to provide approximation bounds on missing Pareto optimal solutions.
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Chapter 4: Multiple Defender Objectives (Diverse Adversary Types)

Game theory is an increasingly important paradigm for modeling security domains which feature

complex resource allocation [Basilico et al., 2009; Conitzer and Korzhyk, 2011]. Security games,

an important class of attacker-defender Stackelberg games, are at the heart of several significant

deployed decision-support applications. Such systems include ARMOR at the Los Angeles In-

ternational Airport (LAX) [Pita et al., 2008], IRIS deployed by the US Federal Air Marshals

Service [Tsai et al., 2009], GUARDS developed for the US Transportation Security Administra-

tion [An et al., 2011a], and PROTECT used at the Port of Boston by the US Coast Guard [An

et al., 2011a].

While multiple objectives may have been present in these domains, the games are modeled

as having the defender optimizing a single objective as the necessary solution concepts did not

exist. However, there are domains where the defender has to consider multiple objectives simul-

taneously. For example, the Los Angeles Sheriff’s Department (LASD) needs to protect the city’s

metro system from ticketless travelers, common criminals, and terrorists.1 From the perspective

of LASD, each one of these attacker types presents a unique threat. Fare evaders are directly re-

sponsible for lost revenue by not purchasing the appropriate tickets, criminals can commit crimes

against property and persons which undermine the perceived safety of the metro system, and
1http://sheriff.lacounty.gov
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terrorists can inflict massive casualties, causing long-term system-wide disruptions, and spread-

ing fear through the general public. Given that preventing these threats yield different types of

benefit, protecting against each type of attacker could correspond to an objective for LASD.

With a diverse set of attacker types, selecting a security strategy is a significant challenge as

no single strategy can maximize all of the objectives. Thus, tradeoffs must be made as increas-

ing protection against one attacker type may increase the vulnerability to another attacker type.

However, it is not clear how LASD should weigh the objectives when determining the security

strategy to use. One could attempt to establish methods for converting the benefits of protecting

against each attacker type into a single objective. However, this process can become convoluted

when attempting to compare abstract notions such as safety and security with concrete concepts

such as ticket revenue.

Bayesian security games [An et al., 2011a; Conitzer and Sandholm, 2006; Jain et al., 2010b;

Kiekintveld et al., 2009; Paruchuri et al., 2008] have been used to model domains where the

defender is facing multiple attacker types. The threats posed by the different attacker types are

weighted according to the relative likelihood of encountering that attacker type. However, there

are three potential factors limiting the applicability of Bayesian security games: (1) the defender

may not have information on the probability distribution over attacker types, (2) it may be impos-

sible or undesirable to directly compare the defender rewards for different attacker types, and (3)

only one solution is given, hiding the trade-offs between the objectives from the end user.

We propose a new game model, multi-objective security games (MOSG), which combines

game theory and multi-objective optimization. Such a model is suitable for domains like the

LASD metro system, as the threats posed by the attacker types (ticketless travelers, criminals,
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and terrorists) are treated as different objective functions which are not aggregated, thus elimi-

nating the need for a probability distribution over attacker types. Unlike Bayesian security games

which have a single optimal solution, MOSGs may have a set of Pareto optimal (non-dominated)

solutions which is referred to as the Pareto frontier. By presenting the Pareto frontier to the end

user, they are able to better understand the structure of their problem as well as the tradeoffs

between different security strategies. As a result, end users are able to make a more informed

decision on which strategy to enact. For instance, LASD has suggested that rather than having

a single option handed to them, they would be interested in being presented with a set of alter-

native strategies from which they can make a final selection. Overall, there has been a growing

trend towards multi-objective decision making in a wide variety of areas, including transportation

[Brauers et al., 2008] and energy [Pohekar and Ramachandran, 2004]. We are pursuing along in

the same direction but now from a game-theoretic perspective.

Our key contributions include (i) Iterative-ε-Constraints, an algorithm for generating the

Pareto frontier for MOSGs by producing a sequence of constrained single-objective optimiza-

tion problems (CSOP); (ii) an exact approach for solving a mixed-integer linear program (MILP)

formulation of a CSOP (which also applies to multi-objective optimization in more general Stack-

elberg games); (iii) heuristics that exploit the structure of security games to speed up solving the

MILPs; and (iv) an approximate approach for solving CSOPs, which greatly increases the scala-

bility of our approach while maintaining quality guarantees. Additionally, we provide analysis of

the complexity and completeness for all of our algorithms, detailed experimental results evaluat-

ing the effect of MOSG properties and algorithm parameters on performance, as well as several

techniques for visualizing the Pareto frontier.
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The structure of this chapter is as follows: Section 4.1 motivates our research by providing

a detailed description of the LASD domain. Section 4.2 formally introduces the MOSG model

as well as multi-objective optimization concepts such as the Pareto frontier and Pareto optimal-

ity. Section 4.3 introduces the Iterative-ε-Constraints algorithm for solving a series of CSOPs to

generate the Pareto frontier. Section 4.4 presents the MILP formulation for solving each CSOP.

Section 4.5 proposes heuristics which can be used to constrain our MILP formulation, including

three algorithms (ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-MIN-COV) for computing on

lower bounds defender coverage. Section 4.6 introduces an approximate algorithm (ORIGAMI-

A) for solving CSOPs based on the defender coverage heuristics. Section 4.7 provides experi-

mental results for all of our algorithms and heuristics as well as analysis on the properties of the

MOSG model. Section 4.8 discusses a number of approaches for visualizing the Pareto frontier as

a step in the decision making process for selecting a security policy to implement. We conclude

this chapter and outline future research directions in Section 4.9.

4.1 Motivating Domain

There are a variety of real-world security domains in which the defender has to consider multiple,

and potentially conflicting, objectives when deciding upon a security policy. In this section, we

focus on the one specific example of transportation security, in which LASD is responsible for

protecting the Los Angeles metro system, shown in Figure 4.1.2 The metro system consists of 70

stations and maintains a weekday ridership of over 300,000 passengers. The LASD is primarily

concerned with protecting the metro system from three adversary types: ticketless travelers, crim-

inals, and terrorists. A significant number of the rail stations feature barrier-free entrances that
2http://www.metro.net/riding metro/maps/images/rail map.pdf
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Figure 4.1: Map of the Los Angeles rail system.

do not employ static security measures such as metal detectors or turnstiles. Instead randomized

patrols and inspections are utilized in order to verify that passengers have purchased a valid ticket

as well as to generally maintain security of the system. Thus, LASD must make decisions on

how best to allocate their available security resources as well as on how frequently to visit each

station.

Each of the three adversary types are distinct and present a unique set of challenges which

may require different responses by LASD. For example, each adversary may have different pref-

erences over the stations they choose to target. Ticketless travelers may choose to fare evade

at busier stations thinking that the larger crowds decrease the likelihood of having their ticket
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checked. Whereas, criminals may prefer to commit crimes at less frequented stations, as they be-

lieve the reduced crowds will result in a smaller security presence. Finally, terrorists may prefer

to strike stations which hold economic or cultural significance, as they believe that such choice

of targets can help achieve their political goals.

LASD may also have different motivation for preventing the various adversary types. It is

estimated that fare evasion costs the Los Angeles metro system over $5 million in lost revenue

each year [Iseki et al., 2008]. Deploying security policies that target ticketless travelers can help to

recuperate a portion of this lost revenue as it implicitly encourages passengers to purchase tickets.

Pursuing criminals will reduce the amount of property damage and violent crimes, increasing the

overall sense of passenger safety. In 2010, 1216 “part one crimes” were reported on the metro

system, which includes homicide, rape/attempted rape, assault, robbery, burglary, grand theft,

and petty theft.3 Most significantly, the rail system experienced its first and only slaying when

a man was fatally stabbed on the subway in August 2011. Finally, due to the highly sensitive

nature of the information, statistics regarding the frequency and severity of any terrorist threats

targeting the transit system are not made available to the public. However, the city of Los Angeles

is well known to be a high priority target given the much publicized foiling of attempted terrorist

attacks at LAX in 2000 and 2005. Additionally, trains and subway systems are common targets

for terrorism, as evidenced by the devastating attacks on Madrid in 2004 and London in 2005.

Thus, despite the relatively low likelihood of a terrorist attack, security measures designed to

prevent and mitigate the effects of terrorism must always remain a priority, given the substantial

number of lives at risk.
3http://thesource.metro.net/2011/09/21/statistics-on-crime-on-metro-buses-and-trains/
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LASD is required to simultaneously consider all of the threats posed by the different adver-

sary types in order to design effective and robust security strategies. Thus, defending against each

adversary type can be viewed as an objective for LASD. While these objectives are not strictly

conflicting (e.g. checking tickets at a station may lead to a reduction in crime), focusing security

measures too much on one adversary may neglect the threat posed by the others. As LASD has

finite resources with which to protect all of the stations in the city, it is not possible to protect all

stations against all adversaries at all times. Therefore, strategic decisions must be made such as

where to allocate security resources and for how long. These allocations should be determined

by the amount of benefit they provide to LASD. However, if protecting against different adver-

saries provides different, incomparable benefits to LASD, it may be unclear how to specify such a

decision as maximizing a single objective for automated analysis (as in ARMOR and similar sys-

tems). Instead, a more interactive process whereby the decision support system presents possible

solutions to the decision-makers for further analysis and human judgment may be preferable

For a domain such as the Los Angeles metro system, an MOSG model could be of use, as

it can capture the preferences and threats of the adversary types as well as the benefit to LASD

of preventing these threats. Solving the MOSG produces a set of candidate solutions with each

solution corresponding to a security policy and a set of expected payoffs for LASD, one for each

adversary. Thus, different solutions can be compared to better understand the trade-offs between

the different objectives. LASD can then select the security policy they feel most comfortable with

based on the information they have available. For this type of evaluation process to occur, we

must be able to both generate and visualize the Pareto frontier. Our research focuses primarily on

developing efficient algorithms for solving MOSGs and generating the Pareto frontier (Sections

4.3 through 4.6), but we also touch on issues relating to visualization (Section 4.8).
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4.2 Multi-Objective Security Games

A multi-objective security game (MOSG) is a multi-player game between a defender and n at-

tacker types.4 The defender tries to prevent attacks by covering targets T = {t1, t2, . . . , t|T |}

using m identical resources which can be distributed in a continuous fashion amongst the tar-

gets. The MOSG model adopts the Stackelberg framework in which the defender acts first by

committing to a strategy that the attackers are able to observe and best respond. The defender’s

strategy can be represented as a coverage vector c∈C where ct is the amount of coverage placed

on target t and represents the probability of the defender successfully preventing any attack on

t [Kiekintveld et al., 2009]. This formulation assumes that the covering of each target costs the

same amount of resources, specifically one defender resource. It is this assumption that allows

for the equivalence between the amount of resources placed on a target and the probability of that

target being covered. Thus, given a budget of m resources, the defender could choose to fully

protect m targets. However, given the Stackelberg paradigm, such a deterministic strategy would

perform poorly, as the attackers can easily select one of the targets that are known to be unpro-

tected. Therefore, the defender has incentive to consider mixed strategies where resources are

allocated to a larger set of partially protected targets. While an attacker is still able to observe this

mixed strategy, when the MOSG is actually played there is uncertainty on the attacker’s part as

to whether a target will be covered or not. More formally, C={〈ct〉|0 ≤ ct ≤ 1,
∑

t∈T ct ≤ m}

describes the defender’s strategy space. The mixed strategy for attacker type i, ai = 〈ati〉, is a

vector where ati is the probability of attacking t.

4The defender may actually face multiple attackers of different types, however, these attackers are not coordinated
and hence the problem we address is different than in [Korzhyk et al., 2011b].
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U defines the payoff structure for an MOSG, with Ui defining the payoffs for the security

game played between the defender and attacker type i. U c,di (t) is the defender’s utility if t is

chosen by attacker type i and is fully covered (ct = 1). If t is uncovered (ct = 0), the defender’s

penalty is Uu,di (t). The attacker’s utility is denoted similarly by U c,ai (t) and Uu,ai (t). A property

of security games is thatU c,di (t) > Uu,di (t) andUu,ai (t) > U c,ai (t) which means that placing more

coverage on a target is always beneficial for the defender and disadvantageous for the attacker

[Kiekintveld et al., 2009]. For a strategy profile 〈c,ai〉 for the game between the defender and

attacker type i, the expected utilities for both agents are given by:

Udi (c,ai)=
∑
t∈T

atiU
d
i (ct, t), Uai (c,ai)=

∑
t∈T

atU
a
i (ct, t)

where Udi (ct, t) = ctU
c,d
i (t)+(1−ct)Uu,di (t) and Uai (ct, t) = ctU

c,a
i (t)+(1−ct)Uu,di (t) are the

payoff received by the defender and attacker type i, respectively, if target t is attacked and is

covered with ct resources.

The standard solution concept for a two-player Stackelberg game is Strong Stackelberg Equi-

librium (SSE) [von Stengel and Zamir, 2004], in which the defender commits first to an optimal

strategy based on the assumption that the attacker will be able to observe this strategy and then

choose an optimal response, breaking ties in favor of the defender. We denote Udi (c) and Uai (c)

as the payoff received by the defender and attacker type i, respectively, when the defender uses

the coverage vector c and attacker type i attacks the best target while breaking ties in favor of the

defender.
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With multiple attacker types, the defender’s utility (objective) space can be represented as a

vector Ud(c)=〈Udi (c)〉. An MOSG defines a multi-objective optimization problem:

max
c∈C

(
Ud1 (c), . . . , Udn(c)

)

We associate a different objective with each attacker type because, as pointed out in Section 4.1,

protecting against different attacker types may yield types of payoff to the defender which are not

directly comparable. This is in contrast to Bayesian security games, which uses probabilities to

combine the objectives into a single weighted objective, making the assumption about identical

units of measure for each attacker type.

Solving such multi-objective optimization problems is a fundamentally different task than

solving a single-objective optimization problem. With multiple objectives functions there exist

tradeoffs between the different objectives such that increasing the value of one objective decreases

the value of at least one other objective. Thus for multi-objective optimization, the traditional

concept of optimality is replaced by Pareto optimality.

Definition 1. (Dominance). A coverage vector c ∈ C is said to dominate c′ ∈ C if Udi (c) ≥

Udi (c′) for all i=1, . . . , n and Udi (c) > Udi (c′) for at least one index i.

Definition 2. (Pareto Optimality) A coverage vector c ∈ C is Pareto optimal if there is no other

c′ ∈ C that dominates c. The set of non-dominated coverage vectors is called Pareto optimal

solutions C∗ and the corresponding set of objective vectors Ω = {Ud(c)|c ∈ C∗} is called the

Pareto frontier.

This chapter gives algorithms to find Pareto optimal solutions in MOSGs. For many multi-

objective optimization problems, the Pareto frontier contains a large or even infinite number of
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solutions. In these situations, it is necessary to generate a subset of Pareto optimal solutions that

can approximate the true Pareto frontier with quality guarantees. The methods we present in

this chapter are a starting point for further analysis and additional preference elicitation from end

users, all of which depends on fast approaches for generating the Pareto frontier. This analysis

can include creating visual representations of the Pareto frontier, a topic discussed in Section 4.8.

4.3 Iterative-ε-Constraints

Using the ε-constraint method, we translate a multi-objective optimization problem into the fol-

lowing constrained single-objective optimization problem (CSOP) by transforming all but one of

the optimizations into a set of constraints b.

max
c∈C

Ud1 (c)

Ud2 (c) ≥ b2

Ud3 (c) ≥ b3

. . .

Udn(c) ≥ bn

This allows for the use of standard optimization techniques to solve for a single Pareto optimal

solution, which is a vector of payoffs v = (Ud1 (c), . . . , Udn(c)). The Pareto frontier is then

generated by solving multiple CSOPs produced by modifying the constraints in b.

This section presents Iterative-ε-Constraints (Algorithm 1), an algorithm for systematically

generating a sequence of CSOPs for an MOSG. After each CSOP is generated, it is passed to
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Figure 4.2: Pareto frontier for a bi-objective MOSG.

a solver Φ and if a solution is found that information is used to generate additional CSOPs. In

Section 4.4, we present a MILP approach which guarantees the Pareto optimality of each CSOP

solution. While in Section 4.6, we introduce a faster, approximate approach for solving CSOPs.

4.3.1 Algorithm for Generating CSOPs

Iterative-ε-Constraints uses the following four key ideas: (1) The Pareto frontier for an MOSG

can be found by solving a sequence of CSOPs. For each CSOP, Ud1 (c) is selected as the primary

objective, which will be maximized. Lower bound constraints b are then added for the secondary

objectives Ud2 (c), . . . , Udn(c). (2) The sequence of CSOPs can be iteratively generated by ex-

ploiting previous Pareto optimal solutions and applying Pareto dominance. (3) It is possible for

a CSOP to have multiple coverage vectors c that maximize Ud1 (c) and satisfy b. Thus, lexico-

graphic maximization is needed to ensure that the CSOP solver Φ only returns Pareto optimal

solutions. (4) It may be impractical (even impossible) to generate all Pareto optimal points if the
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frontier contains a large number of points or is continuous. Therefore, a parameter ε is used to

discretize the objective space, trading off solution efficiency versus the degree of approximation

in the generated Pareto frontier.

We now present a simple MOSG example with two objectives and ε = 5. Figure 4.2 shows

the objective space for the problem as well as several points representing the objective payoff

vectors for different defender coverage vectors. In this problem, Ud1 will be maximized while b2

constrains Ud2 , meaning that the utility of the second objective Ud2 should be no less than b2. The

initial CSOP is unconstrained (i.e., b2 = −∞), thus the solver Φ will maximize Ud1 and return

solution A=(100,10). Based on this result, we know that any point v = {v1, v2} (e.g., B) in the

objective space is not Pareto optimal if v2 < 10, as it would be dominated by A. We then generate

a new CSOP, updating the bound to b2 = 10 + ε. Solving this CSOP with Φ produces solution

C=(80, 25) which can be used to generate another CSOP with b2 = 25 + ε. Both D=(60,40)

and E=(60,60) satisfy b2 but only E is Pareto optimal. Lexicographic maximization ensures that

only E is returned and dominated solutions are avoided (details in Section 4.4). The method then

updates b2 = 60 + ε and Φ returns F=(30,70), which is part of a continuous region of the Pareto

frontier from Ud2 = 70 to Ud2 = 78. The parameter ε causes the method to select a subset of the

Pareto optimal points in this continuous region. In particular this example returns G=(10,75) and

in the next iteration (b2 = 80) finds that the CSOP is infeasible and terminates. The algorithm

returns a Pareto frontier of A, C, E, F, and G.

Iterative-ε-Constraints systematically updates a set of lower bound constraints b to generate

the sequence of CSOPs. Each time we solve a CSOP, a portion of the n−1 dimensional space

formed by the secondary objectives is marked as searched with the rest divided into n−1 subre-

gions (by updating b for each secondary objective). These n−1 subregions are then recursively
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searched by solving n−1 CSOPs with updated bounds. This systematic search forms a branch

and bound search tree with a branching factor of n−1. As the depth of the tree increases, the

CSOPs are more constrained, eventually becoming infeasible. If a CSOP is found to be infea-

sible, no child CSOPs are generated because they are guaranteed to be infeasible as well. The

algorithm terminates when all of the leaf nodes in the search tree are infeasible, meaning the

entire secondary objective space has been searched.

Algorithm 1: Iterative-ε-Constraints(b={b2, . . . , bn})
1 if b /∈ previousBoundsList then
2 append(previousBoundsList,b) ;
3 c← Φ(b) ;
4 if c is a feasible solution then
5 v← {Ud1 (c), . . . , Udn(c)};
6 for 2 ≤ i ≤ n do
7 b′ ← b;
8 b′i ← vi + ε ;
9 if b′ 6≥ s, ∀s ∈ infeasibleBoundsList then

10 Iterative-ε-Constraints(b′) ;

11 else append(infeasibleBoundsList,b) ;

Figure 4.3 shows the type of search tree generated by Iterative-ε-Constraints. In this simple

example, there are three objectives and thus the search tree has a branching factor of 2. The

number at the top of each node represents the order in which the nodes were processed. Along

each branch, we show information about b and v being passed down from parent to child. This

information is used to create the set of lower bound constraints for the child CSOP which is then

passed to the solver Φ. In total, seven CSOPs are computed with three feasible CSOPs (Iterations

1, 2, and 4) and four infeasible CSOPs (Iterations 3, 5, 6, and 7). Figure 4.4 shows the process

taking place within a CSOP with four objectives, where a vector v of n− 1 objective lower

bounds is used to formulate the constraints of a CSOP which maximizes the remaining, primary
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Figure 4.3: Example Iterative-ε-Constraints search tree for three objectives.

Figure 4.4: Internal process for an example CSOP with four objectives.

objective. This CSOP is then passed to CSOP solver Φ which produces a vector v of n objective

payoff values.
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4.3.2 Search Tree Pruning

By always going from less constrained CSOPs to more constrained CSOPs, Iterative-ε-

Constraints is guaranteed to terminate. However, there are several issues which can cause the

algorithm to be inefficient. The first issue is redundant computation caused by multiple CSOPs

having identical sets of lower bound constraints. When this occurs, the set of child CSOPs gen-

erated for each duplicate parent CSOP would also be identical. Given the recursive nature of the

algorithm, these duplicate CSOPs can result in an exponential increase in the number of CSOPs

that are solved. This issue can be addressed by recording the lower bound constraints for all

previous CSOPs in a list called previousBoundsList and pruning any new CSOP which matches

an element in this list. The second issue is the unnecessary computation of CSOPs which are

known to be infeasible based on previously computed CSOPs. This can be achieved by record-

ing the lower bound constraints for all CSOPs previously found to be infeasible in a list called

infeasibleBoundsList and pruning any new CSOP for which all lower bounds constraints are

greater than or equal to the lower bound constraints of a CSOP in the list. These two heuristics

form the baseline pruning rules that are used when evaluating Iterative-ε-Constraints in Section

4.7.

It is possible to further exploit the concept of Pareto dominance in order to create a more

effective pruning heuristic. For example, it is possible for two sets of lower bound constraints, b1

and b2, to result in the same vector of objective payoffs v. This situation is obviously undesirable

not only due to the time spent on the CSOPs corresponding to b1 and b2 but also because both

CSOPs will have a full set of child CSOPs that need to be processed. While generating some

duplicate solutions is unavoidable, steps can be taken to reduce their occurrence. Solving a CSOP
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creates a mapping of constraints to payoffs, Φ(b) → v. Each such mapping provides useful

information as it creates a dominated region in which no additional CSOPs need to be solved.

Specifically, if we have a mapping Φ(b) → v, then we can prune any CSOP corresponding

to b′ such that b′ ≥ b and b′ ≤ v. This is the case because for any such b′ the payoffs

found by solving the CSOP are guaranteed to be v. Since b′ ≥ b, b′ is inherently at least as

constrained as b. Given that the CSOP is a maximization problem, if b maps to v then a more

constrained problem b′ ≤ v must also map to v. Thus, in Iterative-ε-Constraints, we can record

all of the constraint-payoff mappings in solutionsMap. Then before attempting to solve a CSOP

corresponding to b̂, we first check to see if b̂ resides within any of the dominated regions defined

by any of the mappings in solutionsMap. We compare this more sophisticated pruning rule to

the baseline pruning rule in Section 4.7.5.

4.3.3 Approximation Analysis

When the Pareto frontier contains a large or infinite number of points, it may be undesirable or

impossible to produce the entire Pareto frontier. Thus, the set of solutions returned in such situ-

ations is an approximation of the true Pareto frontier. In this section, we prove that the solutions

found by Iterative-ε-Constraints are Pareto optimal, if Φ is exact, and then provide formal bounds

on the level of approximation in the generated Pareto frontier. We refer to the full Pareto frontier

as Ω and the set of solutions found by Iterative-ε-Constraints as Ωε.

Theorem 3. Solutions in Ωε are non-dominated, i.e., Ωε⊆Ω.

Proof. Let c∗ be the coverage vector such that Ud(c∗) ∈ Ωε and assume that it is dominated by

a solution from a coverage vector c̄. That means Udi (c̄) ≥ Udi (c∗) for all i = 1, . . . , n and for

some j, Udj (c̄) > Udj (c∗). This means that c̄ was a feasible solution for the CSOP for which c∗
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was found to be optimal. Furthermore, the first time the objectives differ, the solution c̄ is better

and should have been selected in the lexicographic maximization process. Therefore c∗ 6∈ Ωε

which is a contradiction.

We have just shown that each solution in Ωε is indeed Pareto optimal. However, the use

of ε introduces a degree of approximation in the generated Pareto frontier. Specifically, by not

generating the full Pareto frontier, we are approximating the shape of Ω. One immediate question

is to characterize the efficiency loss caused by this approximation. Here we define a bound to

measure the largest efficiency loss as a function of ε:

ρ(ε) = max
v∈Ω\Ωε

min
v′∈Ωε

max
1≤i≤n

(vi − v′i)

This approximation measure is widely used in multi-objective optimization (e.g. [Bringmann

et al., 2011]). It computes the maximum distance between any point v ∈ Ω \ Ωε on the frontier

to its “closest” point v′ ∈ Ωε computed by our algorithm. Here, the distance between two points

is the maximum difference of different objectives.

Theorem 4. ρ(ε) ≤ ε.

Proof. It suffices to prove this theorem by showing that for any v ∈ Ω \ Ωε, there is at least one

point v′ ∈ Ωε such that v′1 ≥ v1 and v′i ≥ vi − ε for i > 1.

Algorithm 2 recreates the sequence of CSOP problems generated by Iterative-ε-Constraints

by ensuring the bounds b ≤ v throughout. Since Algorithm 2 terminates when we do not update

b, this means that v′i+ε > vi for all i > 1. Summarizing, the final solution b and v′ = Ud(Φ(b))

satisfy b ≤ v and v′i > vi − ε for all i > 1. Since v is feasible for the CSOP with bound b, but

Φ(b) = v′ 6= v then v′1 ≥ v1. �
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Given Theorem 4, the maximum distance for every objective between any missed Pareto

optimal point and the closest computed Pareto optimal point is bounded by ε. Therefore, as ε ap-

proaches 0, the generated Pareto frontier approaches the complete Pareto frontier in the measure

ρ(ε). For example if there are k discrete solutions in the Pareto frontier and the smallest distance

between any two is δ then setting ε = δ/2 will make Ωε = Ω. In this case, since each solu-

tion corresponds to a non-leaf node in our search tree, the number of leaf nodes is no more than

(n − 1)k. Thus, our algorithm will solve at most O(nk) CSOPs. This is a significant improve-

ment over [Laumanns et al., 2006], which solvesO(kn−1) CSOPs as a result of recomputing each

cell in an adaptive grid every time a solution is found. Our approach limits recomputing regions

of objective space through our pruning heuristics and by moving from less constrained to more

constrained CSOPs.

Algorithm 2: For v ∈ Ω \ Ωε, find v′ ∈ Ωε satisfying v′1 ≥ v1 and v′i ≥ vi − ε for i > 1

1 Let b be the constraints in the root node, i.e., bi = −∞ for i > 1 ;
2 repeat
3 c← Φ(b), v′ ← Ud(c), b′ ← b;
4 for each objective i > 1 do
5 if v′i + ε ≤ vi then
6 bi ← v′i + ε ;
7 break;

8 until b = b′;
9 return Φ(b) ;

4.4 MILP Approach

In Section 4.3, we introduced a high level search algorithm for generating the Pareto frontier by

producing a sequence of CSOPs. In this section we present an exact approach for defining and

solving a mixed-integer linear program (MILP) formulation of a CSOP for MOSGs. In Section
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4.5, we go on to show how heuristics that exploit the structure and properties of security games

can be used to improve the efficiency of our MILP formulation.

As stated in Section 4.3, to ensure the Pareto optimality of solutions, lexicographic maxi-

mization is required to sequentially maximize all the objective functions while still respecting

the constraints in b. Thus, for each CSOP we must solve n MILPs, where each MILP is used

to maximize one objective. For the λth MILP in the sequence, the variable dλ is maximized,

which represents the defender’s payoff for security game / objective λ. This MILP is constrained

by having to maintain the maximized values d∗j for 1 ≤ j < λ found by previous MILPs in

the sequence as well as satisfy lower bound constraints bk for λ < k ≤ n corresponding to the

remaining uncomputed MILPs in the sequence.

We present our MILP formulation for a CSOP for MOSGs in Figure 4.5. This is similar to the

MILP formulations for security games presented in [Kiekintveld et al., 2009] and elsewhere with

the exception of the key Equations 4 and 5. Equation 1 is the objective function, which maximizes

the defender’s payoff for objective λ, dλ. In Equations 2 and 3, M is a large constant relative to

the maximum payoff value for any objective. Equation 2 defines the defender’s expected payoff

di for each objective i based on the target selected by attacker type i. The constraint places an

upper bound of Udi (ct, t) on di, but only for the attacked target. For every other target, M on the

right hand side causes the constraint to be arbitrarily satisfied.

Similarly, Equation 3 defines the expected payoff ki for attacker type i based on the target

selected for attack. The first part of the constraint specifies that ki−Uai (ct, t) ≥ 0, which implies

that ki must be at least as large as the maximal payoff for attacking any target. The second part

forces ki − Udi (ct, c) ≤ 0 for the target selected by attacker type i. If the selected target is not

maximal, this constraint is violated.
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max dλ (4.1)
1 ≤ i ≤ n, ∀t ∈ T : di − Udi (ct, t) ≤M(1− ati) (4.2)
1 ≤ i ≤ n, ∀t ∈ T : 0 ≤ ki − Uai (ct, t) ≤M(1− ati) (4.3)

1 ≤ j < λ : dj = d∗j (4.4)
λ < k ≤ n : dk ≥ bk (4.5)

1 ≤ i ≤ n, ∀t ∈ T : ati ∈ {0, 1} (4.6)
∀j ∈ A :

∑
t∈T a

t
i = 1 (4.7)

∀t ∈ T : 0 ≤ ct ≤ 1 (4.8)∑
t∈T ct ≤ m (4.9)

Figure 4.5: Lexicographic MILP formulation for a CSOP.
Taken together, Equations 1-3 imply that the strategies for both the defender and attacker type

λ are best-responses with respect to each other. However, the same cannot be said about the de-

fender’s strategy with respect to all of the other attacker types because the defender’s payoffs for

those objectives are not included in the objective function. It is for this reason that lexicographic

maximization is necessary, ensuring that defender strategy is the best response with respect to all

attacker types and the constraints in b.

Equation 4 constrains the feasible region to solutions that maintain the values of objectives

maximized in previous iterations of the lexicographic maximization. Equation 5 guarantees that

the lower bound constraints in b will be satisfied for all objectives which have yet to be optimized.

If a mixed strategy is optimal for the attacker, then so are all the pure strategies in the support

of that mixed strategy. Thus, we only consider the pure strategies of the attacker [Paruchuri

et al., 2008]. Equations 6 and 7 constrain attackers to pure strategies that attack a single target.

Equations (8) specifies that the coverage for each target ct is in the range [0,1]. Finally, Equation

9 ensures the amount of defender coverage used is no greater than the total number of defender

resources, m.
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Variable Definition Dimension
λ Current Objective −
m Number of Defender Resources −
n Number of Attacker Types −
Z Huge Positive Constant −
T Set of Targets |T |
a Attacker Coverage atj n× |T |
b Objective Bounds bj (n− 1)× 1
c Defender Coverage ct |T | × 1
d Defender Payoff dj n× 1
d∗ Maximized Defender Payoff d∗j n× 1
k Attacker Payoff kj n× 1
Ud Defender Payoff Structure Udj (ct, t) n× |T |
Ua Attacker Payoff Structure Uaj (ct, t) n× |T |

Figure 4.6: MILP formulation definitions for a CSOP.

As noted earlier, this MILP is a modified version of the optimization problem formulated

in [Kiekintveld et al., 2009] and is specific for security games. Similar modifications can be made

to more generic Stackelberg games, such as those used for the Decomposed Optimal Bayesian

Stackelberg Solver (DOBSS) [Paruchuri et al., 2008], giving a formulation for generalized multi-

objective Stackelberg games beyond security games.

4.5 Improving MILP Efficiency

Once the MILP has been formulated as specified in Section 4.4, it can be solved using an opti-

mization software package such as CPLEX. It is possible to increase the efficiency of the MILP

formulation by using heuristics to constrain the decision variables. A simple example of a gen-

eral heuristic which can be used to achieve speedup is placing an upper bound on the defender’s

payoff for the primary objective. Assume d1 is the defender’s payoff for the primary objective

in the parent CSOP and d′1 is the defender’s payoff for the primary objective in the child CSOP.

As each CSOP is a maximization problem, it must hold that d1 ≥ d′1 because the child CSOP is

44



more constrained than the parent CSOP. Thus, the value of d1 can be passed to the child CSOP

to be used as an upper bound on d′1.

In addition to placing bounds on the defender payoff, it is possible to constrain the defender

coverage in order to improve the efficiency of our MILP formulation. Thus, we introduce three

approaches for translating constraints on defender payoff into constraints on defender cover-

age. These approaches (ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-MIN-COV) achieve this

translation by computing the minimum coverage needed to satisfy a set of lower bound con-

straints b such that Udi (c) ≥ bi, for 1 ≤ i ≤ n. This minimum coverage is then added to the

MILP in Figure 4.5 as constraints on the variable c, reducing the feasible region and leading to

significant speedup as verified in experiments.

4.5.1 ORIGAMI-M

ORIGAMI-M (Algorithm 3), is a modified version of the ORIGAMI algorithm [Kiekintveld

et al., 2009] and borrows many of its key concepts. The “M” in the algorithm name refers to

the fact that ORIGAMI-M is designed for security games with multiple objectives. At a high

level, ORIGAMI-M starts off with an empty defender coverage vector c, a set of lower bound

constraints b, and m defender resources. The goal is to update c such that it uses the minimum

amount of defender resources to satisfy the constraints in b. If a constraint bi is violated, i.e.,

Udi (c) < bi, ORIGAMI-M updates c by computing the minimum additional coverage necessary

to satisfy bi. Since we focus on satisfying the constraints one objective at a time, the constraints

for other objectives that were satisfied in previous iterations may become unsatisfied again. The

reason is that the additional coverage may alter the targets selected for attack by one or more
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Figure 4.7: Example of ORIGAMI-M incrementally expanding the attack set by increasing cov-
erage.

attacker types, possibly reducing the defender’s payoff for those objectives below their once sat-

isfied constraints. Therefore, all of the constraints in b must be checked repeatedly until there are

no violated constraints. If all m defender resources are exhausted before b is satisfied, then the

CSOP is infeasible.

The process for calculating the minimum coverage for a single constraint bi is built on two

assumption of security games [Kiekintveld et al., 2009]: (1) the attacker chooses the target that

is optimal with respect its own payoffs; (2) if multiple targets are optimal, the attacker breaks

ties by choosing the target that yields the highest defender payoff. The first property intuitively

establishes that the attacker is a fully rational decision maker. The second property may seem

less intuitive given the adversarial nature of the defender and the attacker. In theory, the player

acting first in a Stackelberg game may force the adversary to play specific inducible actions in the

follower’s optimal set of actions by the threat of a slight perturbation of the optimal strategy, as

described in [von Stengel and Zamir, 2004]. In practice, the assumption that the attacker breaks
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ties in favor of the defender has been used in a number of real-world applications of Stackelberg

security games. There has been work to remove these assumptions with models that consider

uncertainty about the attacker, such as the imperfect rationality of human decision making [Pita

et al., 2009; Yang et al., 2012]. However, we focus on the base model with standard assumptions

for our initial multi-objective work and leave extensions for handling these types of uncertainty

to future work.

The set of optimal targets for attacker type i, given coverage c, is referred to as the attack set,

Γi(c). Accordingly, adding coverage on target t /∈ Γi does not affect the attacker type i’s strategy

or payoff. Thus, if c does not satisfy bi, we only consider adding coverage to targets in Γi. Γi

can be expanded by increasing coverage such that the payoff for each target t ∈ Γi is equivalent

to the payoff for the target t′ /∈ Γi with the highest payoff as defined by Uai (ct′ , t
′). Adding an

additional target to the attack set can only benefit the defender since the defender receives the

optimal payoff among targets in the attack set.

Figure 4.7 shows a simple example of ORIGAMI-M with four targets. The vertical axis is the

payoff for attacker type i, Uai (c), while each target t is represented as the range [U c,ai (t), Uu,ai (t)].

The blue rectangles depict the amount of coverage placed on each target. Before Iteration 1, the

targets are sorted in descending order according to Uai (c), resulting in the ordering t1 > t2 >

t3 > t4 as well as Γi = {t1}. After Iteration 1, enough coverage has been added to t1 that

Uai (c1, t1) = Uu,ai (t2), meaning Γi has been expanded to include t2. In Iteration 2, coverage

is placed on both t1 and t2 in order to push attacker type i’s payoff for these targets down to

Uu,ai (t3), adding t3 to Γi. The process is again repeated in Iteration 3 with coverage now being

added to t1, t2, and t3 until t4 can be induced into Γi.
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Algorithm 3: ORIGAMI-M(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 covLeft←m−

∑
t∈T ct;

5 next← 2;
6 while next ≤ |T | do
7 addedCov[t]← empty coverage vector;
8 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

9 x← max1≤t<next U
c,a
i (t);

10 noninducibleNextTarget← true;
11 else
12 x← Uai (cnext, tnext);

13 for 1 ≤ t < next do
14 addedCov[t]← x−Uu,a

i (t)

Uc,a
i (t)−Uu,a

i (t)
− ct;

15 if
∑
t∈T addedCov[t] > covLeft then

16 resourcesExceeded← true;
17 ratio[t]← 1

Uu,a
i (t)−Uc,a

i (t)
,∀1 ≤ t < next;

18 addedCov[t] = ratio[t]·covLeft∑
1≤t≤next ratio[t]

,∀1 ≤ t < next;

19 if Udi (c + addedCov) ≥ bi then
20 c′ ←MIN-COV(i, c,b,next);
21 if c′ 6= null then
22 c← c′;

23 else
24 c← c + addedCov;

25 break;

26 else if resourcesExceeded ∨ noninducibleNextTarget then
27 return infeasible;
28 else
29 c← c + addedCov;
30 covLeft −=

∑
t∈T addedCov[t];

31 next++;

32 if next = |T |+ 1 then
33 if covLeft > 0 then
34 c←MIN-COV(i, c,b,next);
35 if c = null then
36 return infeasible;

37 else
38 return infeasible;

39 return c ;

The idea for ORIGAMI-M is to expand the attack set Γi until bi is satisfied. Targets are

added to Γi in descending order according to attacker payoff, Uai (ct, t), which requires sorting
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the list of targets (Line 3). The attack set Γi initially contains only the first target in this sorted

list, while the variable next represents the size that the attack set will be expanded to. In or-

der to add the next target to Γi, the attacker’s payoff for all targets in Γi must be reduced to

Uai (cnext, tnext) (Line 12). However, it might not be possible to do this. Once a target t is fully

covered by the defender, there is no way to decrease the attacker’s payoff below U c,ai (t). Thus,

if max1≤t<next U
c,a
i (t) > Uai (cnext, tnext) (Line 8), then it is impossible to induce attacker type

i to choose target tnext. In that case, we can only reduce the attacker’s payoff for targets in

the attack set to max1≤t<next U
c,a
i (t) (Line 9) and set the noninducibleNextTarget flag (Line

10). Then for each target t ∈ Γi, we compute the amount of additional coverage, addedCov[t],

necessary to reach the required attacker payoff (Line 14). If the total amount of additional cov-

erage exceeds the amount of remaining coverage (Line 15), denoted by variable covLeft, then

the resourcesExceeded flag is set (Line 16) and addedCov is recomputed with each target in Γi

being assigned a ratio of the remaining coverage so as to maintain the attack set (Line 18).

Once the addedCov vector has been computed, we check to see if c + addedCov satisfies

bi (Line 19). If it does, there may exist a coverage c′ which uses less defender resources and

still satisfies bi. To determine if this is the case, we developed a subroutine called MIN-COV,

described in detail below, to compute c′ (Line 20). If c′ = null, then c + addedCov is the

minimum coverage which satisfies bi (Line 24), otherwise c′ is the minimum coverage (Line 22).

In either case, c is updated to the new minimum coverage and then compared against b to check

for violated constraints (Line 2).

If c + addedCov does not satisfy bi, we know that further expansion of the attack set is nec-

essary. Thus, c is updated to include addedCov (Line 29), the amount of coverage in addedCov
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is deducted from the running total of remaining coverage covLeft (Line 30), and next is incre-

mented (Line 31). However, if either the resourcesExceeded or noninducibleNextTarget flag

have been set (Line 26), then further expansion of the attack set is not possible. In this situation,

bi as well as the CSOP are infeasible and ORIGAMI-M terminates. If the attack set is expanded

to include all targets (Line 32), i.e., next = |T |+1, then it may be possible to satisfy bi if there

is still defender resources remaining. Thus, we update c to the output generated by calling MIN-

COV. If c=null, then bi is unsatisfiable and ORIGAMI-M returns infeasible, otherwise c is the

minimum coverage.

If c∗ is the coverage vector returned by ORIGAMI-M then Equation (8) of our MILP formu-

lation can be replaced with c∗t ≤ ct≤1,∀t∈T . If, instead, ORIGAMI-M returns infeasible then

there is no feasible solution that satisfies b and thus there is no need to attempt solving the CSOP

with Φ.

When MIN-COV (Algorithm 4) is called, we know that the coverage c induces an attack set

of size next−1 and does not satisfy bi, while c+addedCov induces an attack set of size next and

satisfies bi. Thus, MIN-COV is designed to determine if there exists a coverage c∗ that uses more

coverage than c and less coverage than c+addedCov while still satisfying bi. This determination

can be made by trying to induce a satisfying attack on different targets and comparing the resulting

coverage vectors. As c + addedCov is the minimum coverage needed to induce an attack set of

size next, we only need to consider attacks on the first next−1 targets. Thus, for each target tj ,

1≤ j <next (Line 5), we generate the coverage vector c′ that induces an attack on tj and yields

a defender payoff of at least bi. MIN-COV returns c∗ (Line 26), which represents the c′ that uses

the least amount of defender resources while satisfying bi. The variable minResources denotes
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Algorithm 4: MIN-COV(i, c,b, next)

1 Input: Game index i, initial coverage c, lower bound b, size of expanded attack set next;
2 c∗ ← null;
3 minResources← m;
4 baseCov←

∑
t∈T ct;

5 for 1 ≤ j < next do
6 feasible← true;
7 c′ ← c ;

8 c′j ←
bi−Uu,a

i (tj)

Uc,a
i (tj)−Uu,a

i (tj)
;

9 c′j ← max(c′j , cj);
10 if c′j > 1 then
11 break;

12 covSoFar← baseCov + c′j − cj ;
13 for 1 ≤ k ≤ |T | do
14 if j 6= k ∧ Uai (c′tk , tk) > Uai (c′tj , tj) then

15 c′k =
Ua

i (c′tj
,tj)−Uu,a

i (tk)

Uc,a
i (tk)−Uu,a

i (tk)
;

16 if c′k < ck ∨ c′k > 1 then
17 feasible← false;
18 break;

19 covSoFar+= c′k−ck;
20 if covSoFar ≥ minResources then
21 feasible← false;
22 break;

23 if feasible then
24 c∗ ← c′;
25 minResources← covSoFar ;

26 return c∗

the amount of coverage used by the current minimum coverage and is initialized to m, the total

number of defender resources.

For each coverage c′, we initialize c′ with c (Line 7) and then compute the coverage cj on

target tj needed to yield a defender payoff of bi (Line 8). We can never remove any coverage that

has already been placed, so we ensure that c′j≥cj (Line 9). If c′j>1, then no valid coverage of tj

could satisfy bi and thus there is no need to compute c′ for tj . Otherwise, we update the coverage

for every other target tk, 1≤ k≤ |T | j 6= k. Placing c′j coverage on tj yields an attacker payoff

Uai (c′j , tj). Since our goal is to induce an attack on tj , we must ensure that the attacker payoff
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for every tk is no greater than for tj , i.e., Uai (c′j , tj) ≥ Uai (c′k, tk), by placing additional coverage

(Line 15). If either c′k < ck or c′k > 1 (Line 16) then no feasible coverage c′ exists for tj . The

variable covSoFar tracks the amount of resources used by c′, if at any point this value exceeds

minResources then c′ for tj cannot be the minimum defender coverage (Line 20).

If the coverage for all targets tk is updated successfully then we know that: (1) c′ satisfies

bi and (2) c′ is the current minimum coverage. For (1), we have ensured tj is in the attack set

Γi. By the properties of security games, the attacker will select the target t ∈ Γi that yields the

highest defender payoff. Thus, in the worst case from the defender’s perspective, t= tj and gives

the defender a payoff of at least bi. Since covSoFar is compared to minResources everytime the

coverage for a target is updated, (2) is inherently true if all targets have been updated. Having

found a new minimum coverage, we update c∗←c′ and minResources← covSoFar.

4.5.2 Binary Search ORIGAMI-M

The ORIGAMI-M algorithm expands the attack set Γi one target at a time until either the current

lower bound constraint is satisfied or determined to be infeasible. If the satisfying attack set is

large, it may become computationally expensive to incrementally expand and evaluate the satisfi-

ability of Γi. Thus, we introduced a modified version of ORIGAMI-M called ORIGAMI-M-BS

(Algorithm 5)which uses binary search to find the minimum coverage vector c which satisfies the

lower bound constraints in b. Intuitively, for a violated constraint i, we are performing binary

search to find the size of the smallest attack set which satisfies the lower bound constraint bi.

The natural range for the size of Γi is between 1 and |T |, therefore we use the respective bounds

lower = 0 and upper = |T | + 1 for our binary search. The size of the attack set to be evaluated

is determined by next = (upper+lower)/2. We record the size of the smallest satisfying attack
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set with µ, which is initially set to |T |+1. The coverage vector corresponding to the smallest

satisfying attack set is c+ and is initialized to null.

For an attack set of a given size, the procedure for placing coverage on targets is identical

to the procedure in ORIGAMI-M. The set of targets is sorted in descending order according

to attacker payoff, Uai (ct, t) (Line 3). Then it is necessary to compute the vector of additional

coverage, addedCov, that must be added to the first next−1 targets so that Γi is expanded to

include tnext. There are three possible scenarios when evaluating an attack set: (1) An attack

set of size next cannot be induced due to either an insufficient amount of defender resources

(Line 19) or a noninducible target (Line 12). Therefore, the smallest satisfying attack set must

be smaller than size next so we update upper = next (Line 24). (2) An attack set of size next

can be induced but it does not satisfy the lower bound constraint bi. Thus, we know that if a

satisfying attack set exists it must be larger than size next so we update lower = next (Line 31).

(3) An attack set of size next can be induced and satisfies the lower bound constraint bi (Line 25).

While the current attack set is a satisfying attack set, it may be possible to find a smaller attack

set which also satisfies bi. Thus, we update upper = next (Line 26) and if the current attack set

is the smallest satisfying attack set found so far we update c+ = c+addedCov (Line 27) and

µ=next (Line 28).

The binary search loop is repeated while upper−lower>1 (Line 9). After loop termination,

if c+ =null and upper< |T |+1 (Line 32), then the constraint bi is not satisfiable and the CSOP

is infeasible (Line 39). We know this because upper is updated whenever an attack set either

satisfies bi (Line 26), exceeds the available resources (Line 24), and/or contains a noninducible

target (Line 24). Thus, upper < |T |+1 would indicate that at least one attack set was found

to exceed defender resources or contain a noninducible target, but no satisfying attack set was
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Algorithm 5: ORIGAMI-M-BS(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 covLeft←m−

∑
t∈T ct;

5 lower← 0;
6 upper← |T |+ 1;
7 µ← |T |+ 1;
8 c+ ← null;
9 while upper− lower > 1 do

10 next = (upper + lower)/2;
11 addedCov[t]← empty coverage vector;
12 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

13 x← max1≤t<next U
c,a
i (t);

14 noninducibleNextTarget← true;
15 else
16 x← Uai (cnext, tnext);

17 for 1 ≤ t < next do
18 addedCov[t]← x−Uu,a

i (t)

Uc,a
i (t)−Uu,a

i (t)
− ct;

19 if
∑
t∈T addedCov[t] > covLeft then

20 resourcesExceeded← true;
21 ratio[t]← 1

Uu,a
i (t)−Uc,a

i (t)
,∀1 ≤ t < next;

22 addedCov[t] = ratio[t]·covLeft∑
1≤t≤next ratio[t]

,∀1 ≤ t < next;

23 if resourcesExceeded ∨ noninducibleNextTarget then
24 upper = next;

25 if Udi (c + addedCov) ≥ bi then
26 upper = next;
27 if next < µ then
28 c+ ← c + addedCov;
29 µ← next;

30 else
31 lower = next;

32 if c+ 6= null ∨ upper = |T |+ 1 then
33 c′ ←MIN-COV(i, c,b, µ);
34 if c′ 6= null then
35 c← c′;

36 else
37 c← c+;

38 else
39 return infeasible;

40 return c;
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found given that c+ = null. However, if c+ = null and upper = |T |+1, then it is still possible

that a coverage satisfying bi exists because it means the attack set has been expanded to the full

set of targets and there is still remaining coverage. In this situation, as well as when c+ 6=null,

MIN-COV is called to produce a coverage c′ (Line 33). If c′ 6= null, then c′ is the minimum

coverage which satisfies bi and we update c ← c′ (Line 35). Otherwise, the coverage c+ found

during the binary search is the minimum coverage and we update c← c+ (Line 37). The updated

c is then checked for violated constraints (Line 2 ) and the entire process is repeated until either

all constraints are satisfied or b is determined to be infeasible.

4.5.3 Direct MIN-COV

Both ORIGAMI-M and ORIGAMI-M-BS rely on the MIN-COV subroutine which is called when

the smallest satisfying attack set is found. However, it is not necessary to first compute the

satisfying attack set before calling MIN-COV. The only benefit of precomputing the attack set

is to reduce the number of coverage vectors that must be computed in MIN-COV. The minimum

coverage for satisfying b can be computed directly using MIN-COV, if we set the size of the attack

set to be |T |+ 1. In this way, MIN-COV will generate, for every target t, the coverage necessary

to induce a satisfying attack on t. These coverages will be compared and the smallest, feasible,

satisfying coverage will be selected. Thus, we introduced DIRECT-MIN-COV (Algorithm 6)

which bypasses computing the smallest satisfying attack set and uses MIN-COV to compute the

minimum coverage c needed to satisfy b. Additionally, due to every target being considered for

an attack there is no need to sort the targets by Uai (ct, t), as in ORIGAMI-M and ORIGAMI-M-

BS. In all three algorithms (ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-MIN-COV), MIN-

COV is called only once for each violated constraint, the only difference being the number of
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coverage vectors computed. Despite DIRECT-MIN-COV having to generate more coverages via

MIN-COV than either ORIGAMI-M or ORIGAMI-M-BS, the intuition is that there could be

potential computational savings in not having to first compute Γi. As we show in Section 4.7, the

fastest algorithm for computing lower bounds on the defender coverage depends on the specific

properties of the MOSG such as the number of resources and targets.

Algorithm 6: DIRECT-MIN-COV(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 c←MIN-COV(i, c,b, |T |+ 1);
4 if c = null then
5 return infeasible;

6 return c ;

4.6 Approximate Approach

In the previous section, we showed heuristics to improve the efficiency of our MILP approach.

However, solving MILPs, even when constrained, is computationally expensive. Thus, we present

ORIGAMI-A (Algorithm 7), an extension to these heuristics which eliminates the computational

overhead of MILPs for solving CSOPs. The key idea of ORIGAMI-A is to translate a CSOP

into a feasibility problem which can be solved using any one of the three algorithms described

in Section 4.5. We will use Ψ to refer to whichever algorithm (ORIGAMI-M, ORIGAMI-M-

BS, or DIRECT-MIN-COV) is used as the subroutine in ORIGAMI-A. A series of feasibility

problems is generated using binary search in order to approximate the optimal solution to the

CSOP. This decomposition of the CSOP provides computational savings as we have developed

efficient algorithms for solving the individual feasibility problems. Each of the three algorithms

that can be used as a subroutine (Ψ) in ORIGAMI-A are polynomial in the number of targets,
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while the number of calls to Ψ by ORIGAMI-A is bounded by O(n log r), where r denotes the

length of the range formed by the objective values. Thus, ORIGAMI-A is polynomial in the size

of the MOSG, while solving even a single iteration of lexicographic maximization for the exact

MILP formulation is NP-hard, based on the result from [Conitzer and Sandholm, 2006] which

proved the computational complexity of Bayesian security games. As a result, this algorithmic

approach is much more efficient and the level of approximation between the computed solution

and the Pareto optimal solution can be bounded.

Algorithm 7: ORIGAMI-A(b, α)

1 c← empty coverage vector;
2 b+1 ← mint∈T U

u,d
1 (t);

3 b+ ← {b+1 } ∪ b ;
4 for 1 ≤ i ≤ n do
5 lower ← b+i ;
6 upper ← maxt∈T U

c,d
i (t);

7 while upper − lower > α do
8 b+i ←

upper+lower
2 ;

9 c′ ← Ψ(b+);
10 if c′ = violated then
11 upper ← b+i ;

12 else
13 c← c′;
14 lower ← b+i ;

15 b+i ← Udi (c);

16 return c ;

The subroutine Ψ is used to compute the minimum coverage vector necessary to satisfy a set

of lower bound constraints b. As our MILP approach is an optimization problem, lower bounds

are specified for the secondary objectives but not the primary objective. We can convert this

optimization problem into a feasibility problem by creating a new set of lower bounds constraints

b+ by adding a lower bound constraint b+1 for the primary objective to the constraints b. We set

b+1 = mint∈T U
u,d
1 (t), the lowest defender payoff for leaving a target uncovered. Now instead of
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finding the coverage c which maximizes Ud1 (c) and satisfies b, we use Ψ to determine if there

exists a coverage vector c such that b+ is satisfied.

ORIGAMI-A finds an approximately optimal coverage vector c by using Ψ to solve a series

of feasibility problems. This series is generated by sequentially performing binary search on the

objectives starting with initial lower bounds defined in b+. For objective i, the lower and upper

bounds for the binary search are, respectively, b+i and maxt∈T U
c,d
1 (t), the highest defender pay-

off for covering a target. At each iteration, b+ is updated by setting b+i = (upper + lower)/2

and then passed as input to Ψ. If b+ is found to be feasible, then the lower bound is updated

to b+i and c is updated to the output of Ψ, otherwise the upper bound is updated to b+i . This

process is repeated until the difference between the upper and lower bounds reaches the termina-

tion threshold, α. Before proceeding to the next objective, b+i is set to Udi (c) in case the binary

search terminated on an infeasible problem. After searching over each objective, ORIGAMI-A

will return a coverage vector c such that Ud1 (c∗)− Ud1 (c) ≤ α, where c∗ is the optimal coverage

vector for a CSOP defined by b.

The solutions found by ORIGAMI-A are no longer Pareto optimal. Let Ωα be the objec-

tive space of the solutions found by ORIGAMI-A. We can bound its efficiency loss using the

approximation measure ρ(ε, α)=maxv∈Ω minv′∈Ωα max1≤i≤n(vi − v′i).

Theorem 5. ρ(ε, α) ≤ max{ε, α}.

Proof. Similar to the proof of Theorem 4, for each point v ∈ Ω, we can use Algorithm 2 to find

a CSOP with constraints b which is solved using ORIGAMI-A with coverage c such that (1)

bi ≤ vi for i > 1 and (2) v′i ≥ vi − ε for i > 1 where v′ = Ud(c).
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Assume that the optimal coverage is c∗ for the CSOP with constraints b. It follows that

Ud1 (c∗) ≥ v1 since the coverage resulting in point v is a feasible solution to the CSOP with

constraints b. ORIGAMI-A will terminate if the difference between lower bound and upper

bound is no more than α. Therefore, v′1 ≥ Ud1 (c∗) − α. Combining the two results, it follows

that v′1 ≥ v1 − α.

Therefore, for any point missing in the frontier v ∈ Ω, we can find a point v′ ∈ Ωα such that

1) v′1 ≥ v1 − α and v′i ≥ vi − ε for i > 1. It then follows that ρ(ε, α) ≤ max{ε, α}. �

4.7 Evaluation

The purpose of this section is to analyze how the choice of approach and properties of MOSGs

impact both the runtime and solution quality of Iterative-ε-Constraints. We perform this evalua-

tion by running the full algorithm in order to generate the Pareto frontier for randomly-generated

MOSGs. For our experiments, the defender’s covered payoff U c,di (t) and attacker’s uncovered

payoff Uu,ai (t) are uniformly distributed integers between 1 and 10, for all targets. Conversely,

the defender’s uncovered payoff Uu,di (t) and attacker’s covered payoff U c,ai (t) are uniformly dis-

tributed integers between -1 and -10, for all targets. Unless otherwise mentioned, the default setup

for each experiment is 3 objectives, 25 targets, ε = 1.0, and α = 0.001. The amount of defender

resourcesm is fixed at 20% of the number of targets. ORIGAMI-M is the default subroutine used

in ORIGAMI-A. For experiments comparing multiple formulations, all formulations were tested

on the same set of MOSGs. A maximum cap on runtime for each sample is set at 1800 seconds.

We solved our MILP formulations using CPLEX version 12.1. The results were averaged over

30 trials and include error bars showing standard error.
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4.7.1 Runtime Analysis

This section evaluates how different factors (e.g., the number of targets) impact the time needed

to generate the Pareto frontier using five different formulations. We refer to the baseline MILP

formulation as MILP-B. The MILP formulation adding a bound on the defender’s payoff for

the primary objective is MILP-P. MILP-M uses ORIGAMI-M to compute bounds on defender

coverage. MILP-P can be combined with MILP-M to form MILP-PM. The algorithmic approach

using ORIGAMI-A will be referred to by name. For analyzing the effect of the number of targets

on runtime, we evaluate all five formulations for solving CSOPs. We then select ORIGAMI-A

and the fastest MILP formulation, MILP-PM, to evaluate the effect of the remaining factors.

4.7.1.1 Effect of the Number of Targets

This section presents results showing the efficiency of our different formulations as the num-

ber of targets is increased. In Figure 4.8, the x-axis represents the number of the targets in the

MOSG. The y-axis is the number of seconds needed by Iterative-ε-Constraints to generate the

Pareto frontier using the different formulations for solving CSOPs. Our baseline MILP formula-

tion, MILP-B, has the highest runtime for each number of targets we tested. By adding an upper

bound on the defender payoff for the primary objective, MILP-P yields a runtime savings of 36%

averaged over all numbers of targets compared to MILP-B. MILP-M uses ORIGAMI-M to com-

pute lower bounds for defender coverage, resulting in a reduction of 70% compared to MILP-B.

Combining the insights from MILP-P and MILP-M, MILP-PM achieves an even greater reduction

of 82%. Removing the computational overhead of solving MILPs, ORIGAMI-A is the most effi-

cient formulation with a 97% reduction. For 100 targets, ORIGAMI-A requires 4.53 seconds to

generate the Pareto frontier, whereas the MILP-B takes 229.61 seconds, a speedup of greater than

60



Figure 4.8: Effect of target scale up on the runtime of Iterative-ε-Constraints with different CSOP
solvers.

50 times. Even compared to fastest MILP formulation, MILP-PM at 27.36 seconds, ORIGAMI-

A still achieves a 6 times speedup. Additionally, since a small α value is used (0.001), there is

only negligible loss in solution quality. A more detailed analysis of solution quality is presented

in Section 4.7.3. T-test yields p-value< 0.001 for all comparisons of different formulations when

there are 75 or 100 targets.

We conducted an additional set of experiments to determine how both MILP-PM and

ORIGAMI-A scale up for an order of magnitude increase in the number of targets by testing

on MOSGs with between 200 and 1000 targets. Based on the trends seen in Figure 4.9, we can

conclude that ORIGAMI-A significantly outperforms MILP-PM for MOSGs with large num-

ber of targets. Therefore, the number of targets in an MOSG is not a prohibitive bottleneck for

generating the Pareto frontier using ORIGAMI-A.
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Figure 4.9: Effect of additional target scale up on the runtime of Iterative-ε-Constraints with the
most efficient exact CSOP solver (MILP-PM) and the approximate CSOP solver (ORIGAMI-A).

4.7.1.2 Effect of the Number of Objectives

Another key factor on the efficiency of Iterative-ε-Constraints is the number of objectives which

determines the dimensionality of the objective space that Iterative-ε-Constraints must search. We

ran experiments for MOSGs with between 2 and 6 objectives. For these experiments, we fixed

the number of targets at 10. Figure 4.10 shows the effect of scaling up the number of objectives.

The x-axis represents the number of objectives, whereas the y-axis indicates the average time

needed to generate the Pareto frontier. For both MILP-PM and ORIGAMI-A, we observe an

exponential increase in runtime as the number of objectives is scaled up. For both approaches,

the Pareto frontier can be computed in under 5 seconds for 2 and 3 objectives. At 4 objectives,

the runtime increases to 126 seconds for MILP-PM and 28 seconds for ORIGAMI-A. With 5

objectives, the separation between the two algorithm increases with respective runtimes of 917

and 669 seconds, with 7 trials with MILP-PM and 6 trials with ORIGAMI-A timing out after 1800

seconds. Whereas, with 6 objectives neither approach is able to generate the Pareto frontier before

the runtime cap of 1800 seconds. The reason for this exponential runtime increase is two-fold.
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Figure 4.10: Effect of objective scale up on the runtime of Iterative-ε-Constraints.

First, there is an increase in the number of generated solutions because the Pareto frontier now

exists in a higher dimensional space. Second, each solution on the Pareto frontier takes longer

to generate because the lexicographic maximization needed to solve a CSOP requires additional

iterations. These results show that the number of objectives, and not the number of targets, is the

key limiting factor in solving MOSGs.

4.7.1.3 Effect of Epsilon

A third critical factor on the running time of Iterative-ε-Constraints is the value of the ε parameter

which determines the granularity of the search process through the objective space. In Figure

4.11, results are shown for ε values of 0.1, 0.25, 0.5, and 1.0. Both MILP-PM and ORIGAMI-

A see a sharp increase in runtime as the value of ε is decreased due to the rise in the number

of CSOPs solved. For example, with ε = 1.0 the average Pareto frontier consists of 49 points,

whereas for ε= 0.1 that number increases to 8437. Due to the fact that ε is applied to the n − 1

dimensional objective space, the increase in the runtime resulting from decreasing ε is exponential
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Figure 4.11: Effect of epsilon on the runtime of Iterative-ε-Constraints.

in the number of secondary objectives. Thus, using small values of ε can be computationally

expensive, especially if the number of objectives is large.

4.7.2 Objective Similarity Analysis

In previous experiments, all payoffs were sampled from a uniform distribution resulting in inde-

pendent objective functions. However, it is possible that in a security setting, the defender could

face multiple attacker types which share certain similarities, such as the same relative preferences

over a subset of targets.

4.7.2.1 Effect of Objective Distribution

As the objective payoffs become similar, there is less conflict between the objectives. Less con-

flict means there is a reduction in the possible tradeoff between objectives, as it becomes in-

creasingly likely that multiple objectives will be maximized simultaneously. As a result, the

Pareto frontier is made up of fewer solutions, which means it can be generated more efficiently

by Iterative-ε-Constraints.
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Figure 4.12: Effect of objective similarity on the runtime of Iterative-ε-Constraints using
ORIGAMI-A for a varying number of objectives.

To evaluate the effect of objective similarity on runtime, we used a single security game to

create a Gaussian function with standard deviation σ from which all the payoffs for an MOSG are

sampled. Figure 4.12 shows the results for using ORIGAMI-A to solve MOSGs with between

3 and 7 objectives using σ values of 0, 0.25, 0.5, 1.0, and 2.0. For σ = 0, the payoffs for all

security games are the same, resulting in Pareto frontier consisting of a single point. In this

extreme example, the number of objectives does not impact the runtime. However, as the number

of objectives increases, less dissimilarity between the objectives is needed before the runtime

starts increasing dramatically. For 3 and 4 objectives, the amount of similarity has negligible

impact on runtime. With 5 objectives, a significant runtime increase is observed, going from an

average of 32 seconds at σ = 0.25 to 1363 seconds at σ = 2.0. This effect is further amplified

as the number of objectives is increased. At 6 objectives, Iterative-ε-Constraints is unable to

finish within the 1800 second time limit with σ > 1.0, while the same is true for 7 objectives

with σ > 0.5. We conclude that it is possible to scale to larger number of objectives if there is

similarity, as defined in this section, between the attacker types.
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4.7.2.2 Effect of Objective Clustering

In Section 4.7.2.1, the payoffs for each objective function are sampled from the same Gaussian

distribution. This implies that all of the objective functions are related in their structure. How-

ever, there could be situations where one or more objectives are similar but other objectives are

independently distributed. In this model, the set of related objectives can be viewed as forming

a cluster while the remaining objectives are divergent from this cluster. A cluster is defined by

two parameters. The first parameter is the number of objectives in the cluster as compared to

the number of divergent objectives. A cluster size of 4 means that all of the objectives are in

the cluster and thus all similar. In contrast, a cluster size of 1 implies that all objective func-

tions are independently distributed. The second parameter is the value of σ which is the standard

deviation defining the Gaussian distribution from which the objectives in the cluster are drawn,

i.e., the degree of similarity between the related objectives. In Figure 4.13, we show the runtime

results for MOSGs with 4 objectives for different cluster sizes and values of σ. We observe a

trend in which the average runtime rises as the value of σ is increased. This is a logical result

as larger values of σ mean that there is greater dissimilarity between the objectives within the

cluster. When the cluster size is between 2 and 4, increasing σ always results in an increase in the

runtime. When the cluster contains only 1 objective, the runtimes for all values of σ are similar

because all objectives are independently distributed.

Another trend we would expect to observe is that as the size of the cluster decreases, the

runtime would increase as fewer objectives are similar and more are independently distributed.

However, this trend only holds for σ=0, when all of the objectives within the cluster are exactly

identical. For σ > 0, we observe a substantially different runtime trend. With σ = 1 and σ = 2,
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Figure 4.13: Effect of objective clustering size on the runtime of Iterative-ε-Constraints using
ORIGAMI-A for varying levels of intra-cluster Gaussian distribution.

the runtime starts low for clusters of size 4 and then increases dramatically when the size of the

cluster is reduced to 3. Beyond 3 objectives, the runtime begins to decrease along with the cluster

size until the runtime becomes similar for all values of σ at cluster size 1. It is counterintuitive that

the worst runtimes are achieved with three similar objectives and one independently distributed

objective. Upon close analysis of the experiment output files, the increase in runtime is the result

of solving more CSOPs and having a larger Pareto frontier. In Figure 4.14, we can see that a

comparison of the number of solutions in the Pareto frontier closely resembles the trends seen in

the comparison of runtimes. Thus, one possible hypothesis could be that having three somewhat

related objectives and one independently distributed objective allows for greater tradeoff between

the objective payoffs than four independently distributed objectives.
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Figure 4.14: Effect of objective clustering on size of the Pareto frontier generated by Iterative-ε-
Constraints using ORIGAMI-A for varying levels of intra-cluster Gaussian distribution.

4.7.3 Solution Quality Analysis

4.7.3.1 Effect of Epsilon

If the Pareto frontier is continuous, only a subset of that frontier can be generated. Thus, it is

possible that one of the Pareto optimal points not generated by Iterative-ε-Constraints would be

the most preferred solution, were it presented to the end user. In Section 4.3.3, we proved that the

maximum utility loss for each objective resulting from this situation could be bounded by ε. We

conducted experiments to empirically verify our bounds and to determine if the actual maximum

objective loss was less than ε.

Ideally, we would compare the Pareto frontier generated by Iterative-ε-Constraints to the true

Pareto frontier. However, the true Pareto frontier may be continuous and impossible for us to

generate, thus we simulate the true frontier by using ε = 0.001. Due to the computational cost

associated with such a value of ε, we fix the number of objectives to 2. Figure 4.15 shows the

results for ε values of 0.25, 0.5, 0.75, and 1.0. The x-axis represent the value of ε, whereas the

y-axis represents the maximum objective loss when comparing the generated Pareto frontier to
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Figure 4.15: Effect of epsilon on solution quality of the Pareto frontier generated by Iterative-ε-
Constraints using MILP-PM and ORIGAMI-A compared against a Pareto frontier generated by
MILP-PM using ε = 0.001.

the true Pareto frontier. We observe that the maximum objective loss is less than ε for each value

of ε tested. At ε = 1.0, the average maximum objective loss is only 0.75 for both MILP-PM

and ORIGAMI-A. These results verify that the bounds for our algorithms are correct and that

in practice we are able to generate a better approximation of the Pareto frontier than the bounds

would suggest.

4.7.3.2 Comparison against Uniform Weighting

We introduced the MOSG model, in part, because it eliminates the need to specify a probability

distribution over attacker types a priori. However, even if the probability distribution is unknown

it is still possible to use the Bayesian security game model with a uniform distribution. We con-

ducted experiments to show the potential benefit of using MOSG over Bayesian security games

in such cases. We computed the maximum objective gain produced by using a point in the Pareto

frontier generated by Iterative-ε-Constraints as opposed to the Bayesian solution. If v′ is the so-

lution to a uniformly weighted Bayesian security game then the equation for maximum objective
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Figure 4.16: Effect of epsilon on the benefit of the Pareto frontier generated by Iterative-ε-
Constraints using MILP-PM and ORIGAMI-A over the single solution generated by a uniformly
weighted Bayesian security game.

loss is maxv∈Ωε maxi(vi − v′i). Figure 4.16 shows the results for ε values of 0.25, 0.5, 0.75, and

1.0. At ε = 1.0, the maximum objective gain was 1.81 for both MILP-PM and ORIGAMI-A.

Decreasing ε all the way to 0.25 increases the maximum objective gain by less than 15% for both

algorithms. These results suggests that ε has limited impact on maximum objective gain, which

is a positive result as it implies that solving an MOSG with a large ε can still yield benefits over

a uniform weighted Bayesian security game.

4.7.4 Constraint Computation Analysis

A key property of the ORIGAMI-M algorithm is that it computes the minimum coverage sat-

isfying a vector b of lower bound constraints by attempting to satisfy one constraint at a time

until no violated constraints remain. In the process of computing the additional coverage needed

to satisfy the current constraint it is possible that previously satisfied constraints could become

violated. It is important to understand the frequency with which this phenomenon occurs as it can

have serious implications for the efficiency of the algorithm. Thus, we performed experiments
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Figure 4.17: Effect of objective scale up on the number of constraints computed per call to
ORIGAMI-M for Iterative-ε-Constraints using ORIGAMI-A.

which recorded the number of constraints that had to be satisfied for each call to ORIGAMI-M.

The number of constraints is inherently linked to the number of objectives, thus we tested how the

number of constraints computed was affected when scaling up the number of objectives. Figure

4.17 shows the average number of computed constraints for MOSGs with between 2 and 5 objec-

tives and 10 targets. With 2 objectives, the number of constraints computed is 1.78, implying that

on average ORIGAMI-M finds the minimal coverage with one pass through the constraints. Ad-

ditionally, it means that there are situations where solving the first constraint results in a coverage

which also satisfies the second constraint. For MOSGs with 5 objectives, the average number of

computed constraints is 5.3 which again implies that ORIGAMI-M mostly requires just one pass

through the constraints. However, it also indicates that there are instances where previously satis-

fied constraints become violated and must be recomputed. Fortunately, these violated constraints

appear to be infrequent and do not seem to produce a cascading effect of additional violated

constraints. These results suggest that ORIGAMI-M is able to efficiently compute the minimum

coverage and is capable of scaling up to larger number of objectives.
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4.7.5 Improved Pruning

In Section 4.3.2, we introduced two sets of pruning rules to improve the efficiency of Iterative-ε-

Constraints. As shown in Section 4.7.1.2, the number of objectives is one of the key contributors

to runtime when solving MOSGs. Thus, in order to perform a comparison, we evaluated each

set of pruning heuristics as the number of objectives is increased. In Figure 4.18, we show

results which demonstrate the impact of the improved pruning heuristic. The x-axis represents the

number of objectives in the MOSG, while the y-axis represents the average runtime for Iterative-

ε-Constraints to compute the Pareto frontier. For MOSGs with 2 or 3 objectives, there is little

difference in the average runtimes between the original and improved pruning heuristics. When

the number of objectives is increased to 4, the benefit of the improved pruning heuristic emerges,

reducing the average runtime from 34.5 to 23.1 seconds. At 5 objectives the improved pruning

heursitic results in significant computational savings, reducing the average runtime by almost

28% (813.8 versus 588.7 seconds). Even with the improved set of pruning heuristics, Iterative-

ε-Constraintsis still not able to finish in under the 1800 second time limit. These results indicate

that by further exploiting the concept of Pareto dominance, it is possible obtain modest runtime

improvements.

4.7.6 ORIGAMI-A Subroutine Analysis

The ORIGAMI-A algorithm relies on ORIGAMI-M to compute the minimum coverage necessary

to satisfy a set of lower bound constraints. ORIGAMI-M is a critical subroutine which is called

multiple times for each CSOP, thus making efficiency paramount. In Figure 4.9, we showed the

ability of ORIGAMI-M to scale up to large number of targets. However, any improvement to

the subroutine used by ORIGAMI-A could lead to significant computation savings. Thus, in this
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Figure 4.18: Effect of pruning heuristic on the runtime of Iterative-ε-Constraints using
ORIGAMI-A for a varying number of objectives.

section, we describe two approaches that either modify or replace ORIGAMI-M in an attempt to

improve the efficiency of ORIGAMI-A.

4.7.6.1 Comparing the Effect of the Number of Targets

In Figure 4.19, we compare the ability of both ORIGAMI-M-BS and DIRECT-MIN-COV to

scale up the number of targets as opposed to ORIGAMI-M. We evaluated the three algorithms

for MOSGs with between 200 and 1000 targets. The x-axis indicates the number of targets in the

MOSG, whereas the y-axis represents the average time needed to generate the Pareto frontier. The

runtime results for ORIGAMI-M-BS are counterintuitive, as the inclusion of binary search fails

to provide any improvement over ORIGAMI-M. In fact, for every number of targets tested the

runtime for ORIGAMI-M-BS is greater than ORIGAMI-M. The difference in runtime between

the two algorithms remains essentially constant at 2 seconds for each number of targets tested.
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Figure 4.19: Effect of ORIGAMI-A subroutine on the runtime of Iterative-ε-Constraints for a
varying number of targets.

This result suggests that despite having different formulations, ORIGAMI-M and ORIGAMI-M-

BS are evaluating a similar number of attack sets. Additionally, the runtimes for DIRECT-MIN-

COV are worse than either ORIGAMI-M or ORIGAMI-M-BS for every number of targets tested,

except for ORIGAMI-M-BS at 200 targets. As the number of targets is increased, the disparity

between the runtimes for the two ORIGAMI-M algorithms and DIRECT-MIN-COV widens.

4.7.6.2 Comparing the Effect of the Ratio of Defender Resources to Targets

We sought to better understand why neither of the two new proposed algorithms were able to

improve upon the performance of ORIGAMI-M. In particular, we wanted to determine why in-

crementally expanding the attack set (ORIGAMI-M) was faster than performing binary search

(ORIGAMI-M-BS), even for MOSGs with 1000 targets.

For all of our experiments, the ratio of defender resources to targets was fixed at m
|T | = 0.2.

Intuitively, the higher this ratio is, the larger the average size of the attack set will be. With rela-

tively more resources, the defender can place additional coverage so as to induce the attacker into
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considering a larger number of targets. Thus, the small m
|T | ratio that we had been using previously

meant the average size of the attack set would also be small. This greatly favors ORIGAMI-M

which expands the attack set one target at time and returns as soon as it has found a satisfying

attack set. In contrast, ORIGAMI-M-BS always evaluates log n attack sets regardless of the m
|T |

ratio. To evaluate the effect of m
|T | on the performance of our three algorithms, we conducted

experiments on MOSGs with 400 targets and m
|T | ratios ranging between 0.2 and 0.8. In Figure

4.20, we show the results for this set of experiments. The x-axis indicates the m
|T | ratio, whereas

the y-axis indicates the average time to generate the Pareto frontier. A clear pattern emerges

from these results: (1) if m
|T | < 0.5 then the ordering of the algorithms from most to least effi-

cient is ORIGAMI-M, ORIGAMI-M-BS, DIRECT-MIN-COV; (2) if m
|T | ≥ 0.5 then the ordering

is reversed to DIRECT-MIN-COV, ORIGAMI-M-BS, ORIGAMI-M. What is interesting is that

ORIGAMI-M-BS is never the optimal algorithm. If m
|T | is small then it is better to incrementally

expanding the attack set using ORIGAMI-M, whereas when m
|T | is large it is more efficient to not

precompute the smallest satisfying attack set as in DIRECT-MIN-COV. This result suggests that

the optimal subroutine for ORIGAMI-A is dependent on the underlying properties of the MOSG

and thus could vary from domain to domain.

Additionally, there is a discernible trend across all three algorithms as the value of m
|T | is

varied. Specifically, the average runtime as a function of m
|T | resembles a bell curve centered at

m
|T | = 0.6. This is a result of the combinatorial nature of placing coverage on targets. Therefore,

when m
|T | = 0.2 there are significantly more targets than defender resources and there is only so

much that can be done to prevent attacks. Since there are fewer ways to configure the coverage,

the Pareto frontier contains fewer solutions. At the other extreme, when m
|T | = 0.8 the amount of

defender resources is essentially equivalent to the number of targets. It is then possible to generate
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Figure 4.20: Effect of ORIGAMI-A subroutine on the runtime of Iterative-ε-Constraints for vary-
ing resource-target ratios.

a coverage which maximizes all objectives simultaneously, leading to a Pareto frontier consisting

of a single solution. Then as m
|T | approaches 0.6 from either direction the runtime increases as

there are more ways to place coverage and thus more solutions in the Pareto frontier. Due to the

large number of possible defender coverages to consider, each individual CSOP also takes longer

to solve, which is a phenomenon that has also been observed in single objective security games

as described in [Jain et al., 2012].

4.8 Visualization

The goal of our research is to provide decision support for decision-makers faced with multi-

objective optimization problems. As mentioned previously, solving a multi-objective optimiza-

tion problem involves generating the Pareto frontier. Once the Pareto frontier has been obtained,

it must still be presented to the end user who then selects one of the candidate solutions based on

their preferences, background knowledge, etc. One challenge associated with multi-objective op-

timization is how to present information about the Pareto frontier to the user so as to best facilitate
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their decision-making process. The most naı̈ve approach is to present the contents of the Pareto

frontier in a tabular format. However, this approach suffers from one significant drawback, a lack

of visualized spatial information. A table cannot convincingly convey the shape and structure

of the Pareto frontier as well as the tradeoff between different objectives and solutions. Thus,

visualization is an important component for presenting the Pareto frontier to the user.

In Section 4.1, we highlighted the Los Angeles rail system as a motivating domain for

MOSGs. To recall, the LASD is responsible for protecting 70 stations in the rail system against

three potential attacker types: ticketless travelers, criminals, and terrorists. We use the LASD

domain as a case study to compare different methods for visualization in security domains, which

is only possible using our algorithms for calculating the Pareto frontier.

We model the LASD domain as an MOSG with 3 objectives, 70 targets, and 14 defender

resources. Iterative-ε-Constraints with ε = 1.0 was then used to generate the Pareto frontier

which contained 100 solutions. It is this Pareto frontier that we use to compare the different

visualization techniques.

4.8.1 Euclidean Plots

The elements of the Pareto frontier exist in an n-dimensional space, where n is the number of

objectives. Visualizing the Pareto frontier for n = 2 is intuitive as solutions can be represented

in two-dimensional Euclidean space, as shown in Figure 4.2, by the payoffs obtained for each

objective. This approach allows the tradeoff between the two objectives to be directly observed

in a comprehensible form. An advantage of using Euclidean plots is that because the solutions

are represented as points, the plots can display a large number of solutions without overwhelming

the user. For n = 3 the Pareto frontier can still be plotted in Euclidean space. In Figure 4.21,
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Figure 4.21: Euclidean plot of the Pareto frontier for the LASD domain.
the sample Pareto frontier from the LASD domain is visualized in three-dimensional Euclidean

space. This example illustrates one of the drawbacks of using a Euclidean plot for n = 3. It is

difficult to evaluate the tradeoffs in payoff for defending against ticketless travelers, criminals,

and terrorists based on a single figure. Thus, interactive components such as animation or figure

manipulation become necessary and present an additional barrier to the user’s understanding.

4.8.2 Scatter Plots

One of the standard methods for visualizing the Pareto frontier is the scatter plot matrix [van

Wijk and van Liere, 1993], where n dimensions are visualized using
(
n
2

)
two dimensional scatter

plots, in which each pair of dimensions has a scatter plot showing their relation. With each

scatter plot, the end user is able to gain a fundamental understanding of the tradeoffs between the

payoffs for the two objectives. Similar to Euclidean plots, scatter plots are capable of efficiently

displaying a large number of solutions. One extension on the standard bi-objective scatter plot

is the addition of a third color dimension [Lotov et al., 2004], resulting in
(
n
3

)
possible scatter

plots. This color dimension can be represented as either a continuous gradient or as a discrete
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Figure 4.22: Bi-objective scatter plot matrix of the Pareto frontier for the LASD domain.

Figure 4.23: Tri-objective scatter plot matrix for the Pareto frontier for the LASD domain.
set of colors mapping to specific segments of the possible objective values. Examples of both

bi-objective and tri-objective (with discrete coloring) scatter plots for the LASD domain can be

seen in Figures 4.22 and 4.23, respectively. For the LASD domain, the tri-objective scatter plot

matrix is preferable because the entire Pareto frontier can be visualized in a single figure, rather

than the three figures required for the bi-objective scatter plot matrix. This eliminates the need

for the end user to synthesize data between multiple scatter plots in order to obtain the global

perspective. For both approaches, the decision making process becomes more difficult as the

number of objectives is increased due to the polynomial number of scatter plots that must be

generated.
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4.8.3 Parallel Coordinates

Parallel Coordinates [Inselberg, 1997] is another common approach used for visualizing the

Pareto frontier. In this approach, n parallel lines are used to represent the range of values for

each objective. A Pareto-optimal solution is displayed as a polyline that intersects each parallel

line at the point corresponding to the payoff received for that objective. Figure 4.24 shows the

Pareto frontier for the LASD domain using the Parallel Coordinates approach. The main advan-

tage of Parallel Coordinates is that the entire Pareto frontier, regardless of dimensionality, can be

presented in a single figure. This eliminates any issues associated with having to process data

from multiple sources. However, due to the usage of polylines rather than points, the Pareto fron-

tier can become incomprehensible to the user if the number of solutions in the Pareto frontier is

large. This is an issue for the LASD domain because the Pareto frontier consists of 100 candidate

solutions, making it difficult to distinguish each individual solution. The number of Pareto opti-

mal solutions can be influenced during processing by adjusting the value of ε as well as during

post-processing by employing a filter to prevent certain solutions from being displayed. However,

the number of solutions may need to be dramatically reduced before the Pareto frontier becomes

comprehensible.

4.8.4 Overall Trends

There is currently no one-size-fits-all visualization approach, the appropriate technique must be

determined for each domain based on factors such as the number of objectives and the size of

the Pareto frontier. For example, scatter plot matrices are better suited to situations where the

dimensionality of the Pareto frontier is low but the number of solutions it contains is high, whereas
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Figure 4.24: Parallel coordinates representation of the Pareto frontier for the LASD domain.
Parallel Coordinates is better suited to situations with high dimensionality but fewer candidate

solutions.

Based on the properties of the domain, we conclude that tri-objective scatter plot is the best

approach for visualizing the Pareto frontier of the LASD MOSG because it allows for the most

compact and coherent visual representation. It captures the entire Pareto frontier in a single figure

which should be intuitive even for non-technical decision makers. By generating and visualizing

the Pareto frontier in this way, LASD can gain a significant amount of knowledge about their do-

main and the tradeoffs that exist between different security strategies. This can be more insightful

than finding a single solution, even if it were generated using well thought out weightings for the

objectives. Finally, since the tri-objective scatter plot does not rely on animation or manipulation,

information about the Pareto frontier can be disseminated easily to large groups and included in

printed reports.
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We have demonstrated the ability to visualize the Pareto frontier for the LASD domain which

has 3 objectives. As the dimensionality of the objective space increases, the Pareto frontier nat-

urally becomes more complex and difficult to understand. However, for most multi-objective

optimization problems the total number of objectives is relatively small (n ≤ 5). Even for do-

mains which require large number of objectives, it may be possible to reduce the dimensionality

of the Pareto frontier in order to focus the decision making process only on the most salient ob-

jectives. Dimension reduction is possible in two situations: (1) some objectives are insignificant

in that their range of Pareto-optimal values is small; (2) there exists a strong correlation between

multiple objectives. This reduction is typically performed using machine learning techniques

with the most common approach being Principal Component Analysis (PCA) [Jolliffe, 2002]. So

if, in the future, LASD requires a higher fidelity model with more attacker types, it may become

necessary to use such dimension reduction techniques in order to visualize the Pareto frontier.

4.9 Chapter Summary

We draw upon insights from game theory and multi-objective optimization to introduce a new

model, multi-objective security games (MOSG), for domains where security forces must balance

multiple objectives. Instead of a single optimal solution, MOSGs have a set of Pareto-optimal

(non-dominated) solutions, known as the Pareto frontier, which represents the space of trade offs

between the objectives. A single Pareto optimal solution can be found by solving a CSOP for

a given set of constraints b. The Pareto frontier is then generated by solving multiple CSOPs

produced by modifying the constraints in b. The contributions presented in this chapter include:

(i) an algorithm, Iterative-ε-Constraints, for generating the sequence of CSOPs; (ii) an exact
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approach for solving an MILP formulation of a CSOP; (iii) heuristics that achieve speedup by

exploiting the structure of security games to further constrain the MILP; (iv) an approximate

approach for solving a CSOP built off those same heuristics, increasing the scalability of our

approach with quality guarantees. Additional contributions of this chapter include proofs on

the level of approximation, detailed experimental evaluation of the proposed approaches and

heuristics, as well as a discussion on techniques for visualizing the Pareto frontier.

Now that we have demonstrated that generating and analyzing the Pareto frontier is a viable

solution concept for multi-objective security games, we plan to further extend our MOSG model

in the future. One possible direction to explore is having multiple objectives for the attacker. This

could model situations where the attacker explicitly considers multiple criteria when selecting a

target, such economic significance, political significance, cost to attack, etc. As a result, the prob-

lem becomes even more difficult for the defender, as it is unknown what process the attacker is

using to weigh the objectives in order to select a target. Such an extension may require the devel-

opment of new solution concepts that rely on robust optimization techniques. Another possible

direction to investigate is irrational behavior in attackers. In the current MOSG model, full ratio-

nality for the defender and all attackers is assumed. However, in practice we know that humans

are not fully rational or strictly utility maximizing. Thus, if we wish to build robust model suit-

able for real world deployment then we must account for this irrationality. Work has been done

in this area for single-objective security games [Pita et al., 2009; Yang et al., 2012], which we

would seek to extend to the multi-objective case. However, one immediate consequence is that

ORIGAMI-M, ORIGAMI-M-BS, and DIRECT-MIN-COV all rely on full rationality and thus

would either need to be modified or replaced. These extensions will result in a higher fidelity

MOSG model that is applicable to an even larger, more diverse set of domains.
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Chapter 5: Multiple Defender Objectives (Exploration /

Exploitation)

Traffic safety is a significant concern in cities throughout the world. Of the large number of

people injured or killed in traffic accidents, a vast majority of these casualties are a direct result

of reckless driving. It is for this reason, that the Singapore Police Force and their counterparts in

other cities use traffic patrols to persuade drivers to comply with traffic laws through the threat of

citations and fines. Such patrols must be randomized to avoid predictability and provide adequate

coverage of different areas of a city. Yet, lack of randomization is a well-known problem in

human patrol scheduling [Tambe, 2011] and when such randomization must also take into account

speed-distance calculations, potential traffic delays, and historical data on traffic violations to

ensure appropriate coverage of different areas in a city like Singapore, it presents a very difficult

challenge for human schedulers.

Stackelberg security games (SSG) have become an increasingly popular paradigm for mod-

eling security patrolling problems. In SSGs, the defender (i.e., the security agency) commits to

a mixed strategy that the adversary (i.e., criminal, terrorist, or in our domain, reckless driver)

is able to first observe and then best respond [Korzhyk et al., 2010; Basilico et al., 2009]. This

mixed strategy represents a probability distribution over the possible patrol schedules. Research
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on SSGs has resulted in several real-world systems deployed to protect transportation infras-

tructure such as airports, ports, and train stations [Tambe, 2011]. These systems have focused

predominantly on counter-terrorism domains. Of the few applications that have branched out

from counter-terrorism, e.g., TRUSTS [Yin et al., 2012; Jiang et al., 2013b], none have focused

on traffic patrolling.

The purpose of this chapter is to introduce a new game-theoretic application, STREETS

(STrategic Randomization with Exploration and Exploitation in Traffic patrol Schedules), which

we developed to assist the Singapore Ministry of Home Affairs (MHA) in scheduling randomized

traffic patrols on the Singapore road network. We model this problem as a Stackelberg game with

one defender (the police) and multiple adversaries (drivers). STREETS represents a novel appli-

cation of Stackelberg games and required addressing several research challenges. First, road net-

works are complex and dynamic systems, with unpredictable delays associated with congestion,

traffic signals, etc. The presence of this type of uncertainty complicates the process of planning

traffic patrols. Second, the game being played at the heart of STREETS is massive in scale in

terms of both the number of possible patrol strategies as well as the number of adversaries repre-

senting the thousands of drivers who use the Singapore road network. Third, the repeated nature

of the traffic patrolling domain results in an abundance of data on traffic, accidents, citations, etc.

However, this data is collected when the defender issues citations and thus is inherently available

only for patrolled locations. Therefore, it is important to avoid confirmation bias [Nickerson,

1998] from over relying on the data, which can lead to self-reinforcing behavior and undesired

consequences.
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No previous work on SSGs has addressed these challenges in combination, and in fact none

has addressed the challenge of avoiding confirmation bias – leading us to introduce a new con-

cept of exploration versus exploitation in SSGs. Therefore, STREETS required us to develop

a new SSG game model and an entirely new algorithm combining three key features. First, to

capture the inherent stochasticity of a road network, we use a Markov Decision Process (MDP)

to model the defender’s patrol scheduling problem. Second, to formulate a game with an expo-

nential number of patrol strategies and a large number of adversaries, we adopt a compact game

representation which converts the defender’s strategy space to a network flow through a transi-

tion graph. Additionally, we use two sampling approaches that improve efficiency by considering

only a subset of either adversary types or game states when solving the game. Third, while we

exploit all available data to improve patrol effectiveness, to prevent overfitting this data, we intro-

duce an entropy-based approach. The idea being that the defender should patrol all areas of the

road network with at least some probability to avoid confirmation bias and to give the perception

of omnipresence to drivers. This creates a tradeoff between exploitation (minimizing reckless

driving by focusing on high violation areas) and exploration (maximizing omnipresence by dis-

persing patrols). We explicitly formulate this tradeoff as a bi-objective optimization problem.

Rather than having one optimal patrol strategy, the patrolling agency can now choose from the

space of optimal tradeoff strategies located on the Pareto frontier.

STREETS was developed in collaboration with the Singapore Ministry of Home Affairs.

STREETS is currently being evaluated by Singapore Police Force.
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5.1 Domain

Traffic safety is a significant concern in cities throughout the world. Of the large number of

people injured or killed in traffic accidents, a vast majority of these casualties are a direct result

of reckless driving. For example, Singapore experienced 7,188 injury accidents in 2012, resulting

in 168 fatalities. Perhaps just as alarming is the 330,909 traffic violations recorded during that

same period for a vehicle population of only 965,192 [SPF, 2013]. It is sobering statistics like

these that compel the Singapore Traffic Police (TP) and their counterparts in other cities to use

traffic patrols to enforce traffic laws through the threat of citations and fines.

Since the number of roads and highways is typically very large, it is not possible to have

enough resources to patrol every road and highway at every time. Therefore, a major challenge

for TP is to compute patrol strategies on when and where different groups have to patrol so as to

reduce the number of violations and accidents.

Due to our collaboration with the Future Urban Mobility (FM) 1 center in Singapore, we

are able to obtain both the traffic volumes, violations, and accidents occurring on all the major

roads and highways across Singapore. By using this data, we construct models of traffic behav-

ior on various roads and then using the techniques developed in the next section, we generate

randomized patrol strategies.

5.2 Model

We formally model the interaction between the police and drivers as a defender-attacker Stackel-

berg game. This game played by the defender and the adversaries takes place on a graph which
1FM is part of the Singapore MIT Alliance for Research and Technology (SMART) initiative.
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models a road network where vertices represent intersections and edges represent road segments.

The graph features a temporal dimension, where traversing a road segment takes some (non-

deterministic) amount of time. The defender has a maximum patrol duration of h hours. The

defender (the police) commits to a randomized patrol strategy, which is used to generate daily pa-

trol schedules for each of the r resources. A daily patrol schedule consists of a trajectory through

the graph, i.e., a sequence of road segments to patrol and the times they are to be patrolled.

The adversaries (drivers) also follow a schedule but we assume this trajectory through the

graph is fixed on a daily basis (travelling to work, school, etc.). Adversaries are able to observe

the presence (or lack thereof) of police patrols over a period of time, in the process obtaining an

accurate estimation of the probability of encountering the police on any given day. To construct

the graph for the road network in the Singapore Central Business District (CBD), shown in Figure

5.1(a), we used data from OpenStreetMap (OSM)2.

A normal form representation of this game, as used in the original work on Stackelberg se-

curity games [Paruchuri et al., 2008], would require us to explicitly enumerate pure strategies for

the defender (patrol schedules) as well as for all of the adversaries (obey or violate decisions).

This would be an extremely large number of player actions, even for small instances of our traffic

patrolling domain. Therefore, we need a technique that allows us to scale up.

5.2.1 Achieving Scaleup

We adopt a compact representation in the form of a transition graph, which converts the game,

from the defender’s perspective, into a spatio-temporal flow problem. Rather than computing a

probability distribution over full patrol schedules, the defender now has to compute the optimal
2http://www.openstreetmap.org/
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(a) Singapore OpenStreetMap Graph
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Figure 5.1: Converting the Singapore road network into a spatio-temporal Markov Decision Pro-
cess (MDP).

flow through the transition graph. Such a flow can be interpreted as a marginal coverage vector.

These marginals can then be used to reconstruct daily patrol schedules for the defender.

This transition graph formulation is similar to the approach used in TRUSTS which modeled

patrolling a train line. However, the traffic patrolling domain features a number of complexities

that make our use of a transition graph within a Stackelberg game novel. One of the biggest

complexities is the continuous nature of traffic patrolling. Not tied to following predetermined

transportation schedules (e.g. train schedules in TRUSTS), a traffic patroller, generally speaking,

can be almost anywhere within the road network at any given time. To avoid having to adopt a

continuous-time model, and the associated computational overhead, we discretize time to a gran-

ularity of m minutes. Therefore, a vertex is added to the transition graph for every intersection in

the road network every m minutes until the patrol duration of h hours is reached.

5.2.1.1 Defender Model

In reality, there may be unexpected delays that disrupt the defender’s daily patrol schedules. In

a road network, a patroller can be delayed from its schedule due to a variety of factors including
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congestion or traffic signals. The defender must account for stochasticity in traffic delays when

planning patrols. Therefore, we now define an MDP 〈S,A, T,R〉 to represent the defender’s

patrol scheduling problem:

• S is a finite set of states. Each state s ∈ S is a tuple (l, τ), where l is the current location

(i.e., intersection in the road network) of the defender and τ is the current time.

• A is a finite set of actions. The set of actions available from a given state s= (l, τ), A(s),

is the set of road segments which originate from location l.

• T (s, a, s′) is the probability of ending up in the state s′ after performing action a in state s.

• R(s, a, s′) is the immediate reward for the defender from ending up in state s′ after per-

forming action a in state s. However, our main focus is on the game-theoretic reward (i.e.,

expected number of violations) as a result of the defender patrolling strategy. Thus, for

the remainder of this chapter, we assume, without loss of generality, that R(s, a, s′) = 0,

∀s, a, s′.

Figure 5.1(b) shows a toy example of the MDP with three locations (A,B,C) and three time

periods (5,10,15). The solid black arrows indicate the transitions available from each vertex.

The dashed arrows represent uncertainity in the domain, e.g., anticipating going from (B, 5) →

(A, 10) but being delayed and ending up in (A, 15). The defender strategy is represented by the

probability placed on each edge in the MDP rather than over whole patrols.

5.2.1.2 Adversary Model

The set of adversaries consists of the drivers using the road network, who are assumed to always

violate the law in the absence of police presence. A driver type is defined for each state-action
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pair s, a in the MDP and we refer to this type as < s, a >. This formulation represents the

driver entering the transition graph (road network) at a specified vertex (intersection) and time,

traversing an edge (road segment), and then exiting at the destination vertex at a later time. Thus,

the trajectory of each driver type in the game is modeled as a single road segment. The reasoning

being that a driver may change their behavior for different roads, choosing to violate the law on

some road segments and comply with the law on others. Thus, if the decision to violate or not is

made on a road-by-road basis and the decision for one road segment does not affect the decision at

another, then there is no need to model driver types with trajectories with multiple road segments.

Given a fixed trajectory consisting of a single road segment, the only decision made by each

individual driver type is the frequency with which they will obey the law as opposed to violate

the law. This decision is influenced by the defender’s patrol strategy, which we assume to be

known to the drivers. If the perceived likelihood of encountering a police officer is high, then the

driver will choose to obey the law more frequently [Koper, 1995]. More precisely, we define a

coverage threshold t(s, a) for driver type <s, a> that represents the probability of encountering

a patroller above which the driver will always obey the law. Starting from always violating in the

absence of police patrols, we model that the probability of violating the law decreases linearly as

the frequency patrols increases until the threshold t(s, a) is reached and driver type <s, a > no

longer violates.

We use v(s, a) to denote the average daily traffic volume along the road segment during the

time range [τ, τ + m). Similarly, we use c(s, a) to denote the yearly violation / citation count

along the road segment during the time range [τ, τ + m). We combine the traffic volume and

violation count data to define the prior associated with type <s, a> as p(s, a)= c(s,a)
365×v(s,a) . This

provides the defender with a distribution over all the adversary types in the game. Through the
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Future Urban Mobility (FM) research centre, we were able to obtain traffic volume and violation

count data for the Singapore CBD. We processed this data and utilized it to populate the values

of v(s, a), c(s, a), and p(s, a) which serve as input in our game.

5.3 Generating Randomized Patrols

Remember that the defender is trying to achieve two objectives simultaneously: (1) minimize

violations; and (2) maximize omnipresence. These objectives are conflicting as they drive the

defender towards different patterns of behavior. The desire to minimize violations incentivizes

the defender to exploit the traffic data and patrol only in areas where violations have occurred

before. Meanwhile, the desire to maximize omnipresence incentivizes exploration so that all

areas of the road network are patrolled at least occasionally. Given two conflicting objectives,

some tradeoff between exploration and exploitation must be made.

We borrow from work on randomized MDPs [Paruchuri et al., 2006] to formalize the tradeoff

between exploration and exploitation. For discrete probability distributions, we know that en-

tropy provides a useful measure of randomness. The MDP policy which maximizes entropy is a

uniform random policy π̂. Given this, one way to evaluate the level of exploration achieved is to

determine the ratio of randomness compared to π̂. To do this, we introduce a parameter β = [0, 1].

An MDP policy π is said to be β-random if the following condition holds π(s, a) ≥ βπ̂(s, a)

∀s, a. Thus, fixing a β value can be thought of as placing constraints on π, forcing it to perform

a certain amount of exploration.

However, it is difficult to know a priori how to balance the objectives. Therefore, our ap-

proach is to generate a set of optimal compromise solutions which form the Pareto frontier using
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Variable Definition
c(s, a) yearly violation count for type <s, a>
v(s, a) daily traffic volume for type <s, a>
p(s, a) prior for type <s, a> set to c(s,a)

365×v(s,a)
t(s, a) coverage threshold for type <s, a>
o(s, a) probability of type <s, a> obeying the law
π̂ uniform Markov policy (maximizes entropy)
β tradeoff parameter between violations / entropy

Figure 5.2: Linear program formulation definitions for the STREETS game model.

the tradeoff parameter β, where β = 0 represents full exploitation and β = 1 represents full

exploration. We present a bi-objective linear program which takes β as input and can be solved

to generate a point on the Pareto frontier. Different points on the Pareto frontier can be generated

by varying the value of β. The Pareto frontier can then be presented to the end user, who selects

their desired solution based any qualitative or quantitative measures they choose.

5.3.1 LP Formulation

We can construct a linear program (LP) to solve the MDP formulation of the defender’s problem.

Let x(s, a, s′) denote the marginal probability of the defender reaching state s, executing action

a, and ending up in state s′. Similarly, let w(s, a) be the marginal probability of the defender

reaching state s and performing action a. The probability of adversary type <s, a> obeying the

law which is denoted by o(s, a).
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We define the bi-objective linear program as follows:

min
w, x

∑
s,a

p(s, a) [1− o(s, a)] (5.1)

s.t.x
(
s, a, s′

)
= w (s, a)T

(
s, a, s′

)
, ∀s, a, s′ (5.2)∑

s′, a′

x
(
s′, a′, s

)
=
∑
a

w (s, a) , ∀s (5.3)

∑
a

w(s+, a) = r (5.4)

∑
s, a

x(s, a, s−) = r (5.5)

w(s, a) ≥ 0,∀s, a (5.6)

o(s, a) ≤ w(s, a)

t(s, a)
,∀s, a (5.7)

0 ≤ o(s, a) ≤ 1, ∀s, a (5.8)

w(s, a) ≥ βπ̂(s, a)
∑
a′

w(s, a′),∀s, a (5.9)

Equation 5.1 is the objective function which minimizes the total expected number of violations

in the system. This is a zero-sum game where each violation has the same utility and thus our

goal of minimizing the total expected violations means that the minimax defender strategy is

also the Strong Stackelberg Equilibrium (SSE) strategy. Constraints 5.2-5.6 are flow constraints,

which combine to enforce that x and w represent feasible patrolling strategies with respect to

the transition function T . Constraints 5.2 and 5.3 define the relationship between x and w,

while Constraints 5.4 and 5.5 ensure the flow out of the dummy source state s+ as well as into

the dummy sink state s− are equal to r. Constraint 5.7 computes o(s, a) as the ratio between

the coverage placed on the road segment w(s, a) and the coverage threshold of adversary type
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<s, a>, t(s, a). For 0≤w(s, a)≤ t(s, a), adversary type <s, a> will obey the law a fraction

of the time, specifically w(s, a)/t(s, a). Constraint 5.8 is used to ensure that o(s, a) represents

a valid probability, i.e., o(s, a) ∈ [0, 1], when w(s, a) > t(s, a). (This places no restrictions on

w(s, a), as Constraint 5.7 is an inequality constraint.)

Given β and π̂ as input, Constraint 5.9 ensures that the patrolling strategy achieves at least a

fraction (i.e., β) of the randomness of the maximal entropy policy, π̂, which is a uniform random

policy. For example, if two actions a1 and a2 are available from state s, then π̂(s, a1) and π̂(s, a2)

would both be 0.5. For β = 0.2, Constraint 5.9 specifies that at least 10% (0.5× 0.2) of the flow

coming out of state s, i.e.,
∑

aw(s, a), must be directed to each action available from s, in this

case a1 and a2. This constraint allows for a tradeoff between two objectives: (1) minimizing

violations (β= 0), and (2) maximizing entropy (β= 1). The Pareto frontier can be generated by

solving the LP for different values of β.

5.4 Additional Scaleup

For longer patrol lengths, the resulting linear program can grow quite large. To address this

challenge we used constraint and state sampling [De Farias and Van Roy, 2004].

5.4.1 Driver Type Sampling

One approach for using constraint sampling in our problem is driver type sampling. Sampling

a subset of the driver types reduces the size of the LP, as only the constraints (i.e., Constraints

5.7 and 5.8) and variables (i.e., o(s, a)) associated with the sampled driver types are considered.

Evaluation becomes more complicated after introducing constraint sampling as we can no longer
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just look at the objective value obtained by solving the sampled LP, as it only accounts for viola-

tions committed by sampled driver types. However, the defender may still implicitly influence the

behavior of unsampled driver type <s, a> by placing coverage on the road segment associated

with <s, a> in order to position themselves to interact with the sampled driver types. Thus, we

use Monte Carlo simulation to sample patrol schedules from the Markov strategy computed for

the sampled LP and evaluate the schedules against all driver types.

5.4.2 State Sampling

We can also improve efficiency by only considering a sampled subset of states obtained in a

principled manner by using a coarser time granularity. For example, doubling the time granularity

m cuts the size of the state space in half. However, some extra steps are required when generating

patrol schedules or evaluating the patrol strategy generated from the state-sampled LP on the

original MDP using Monte Carlo sampling. In either case, if a state s = (l, τ) is reached which

does not exist in the set of sampled states, then a look up is performed for the policy from state

s′ = (l, τ ′), where s′ is the state in the set of sampled states closest in time to s with the same

location l.

5.5 Evaluation

To evaluate STREETS, we conducted a set of simulations using actual traffic volume and viola-

tion count data from the Central Business District of Singapore provided to us by the Singapore

LTA. For each simulation, we compute the Pareto frontier with an granularity of 0.2 on the β
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parameter which controls the tradeoff between minimizing violations and maximizing omnipres-

ence. The Pareto frontier allows us to compare a fully game-theoretic approach with β = 0 (all

exploitation) against a uniform random approach with β = 1 (all exploration), as well as every-

thing in between. Unless otherwise specified, the default experimental setup features a patrol

length of 240 minutes, a 5 minute time granularity, 1 defender resource, and a coverage threshold

t(s, a) of 0.1 for all drivers. All results are averaged over 30 simulations.

5.5.1 Analysis of Tradeoffs

5.5.1.1 Defender Resources

In Figure 5.3(a), we evaluate the effect on the number of expected violations as we vary the

number of defender resources r. The x-axis is the value of β used when solving the LP

formulation, while the y-axis is the total expected number of violations in the game, i.e.,∑
s,a p(s, a) [1− o(s, a)], achieved by the defender’s (Pareto) optimal patrol strategy. As a base-

line, we can use these experiments to compare a game-theoretic approach (β = 0) against a

uniform random approach (β=1).

From these results, we observe three general trends. First, increasing r leads to a reduction

in the expected number of traffic violations in the road network. Second, the benefit of each

additional defender resource diminishes as r increases. Third, as β increases, so does the number

of expected violations. This makes sense, as the defender is moving closer to a uniform random

strategy and farther away from optimizing based on the violations data. It is interesting to see that

β=1 yields almost the same number of expected violations for all values of r because a uniform

random strategy does not allow for coordination (even implicitly) between resources.
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Figure 5.3: Effect of defender resources and driver threshold on the expected violations of
STREETS.

5.5.1.2 Coverage Threshold

In Figure 5.3(b), we evaluate the effect on the number of expected violations as we test three

different values for driver coverage threshold, t(s, a). For t(s, a)=1, we observe the highest level

of violations as well as minimal difference between the performance of the full game-theoretic

strategy (β= 0) and the full uniform random strategy (β= 1). This seems reasonable given that

for t(s, a)=1 it is difficult to dissuade drivers, who are fully deterred from violating only if their

road segment is patrolled with probability 1. Decreasing t(s, a) to 0.1, yields a similar level of

violations for β = 1, but with β = 0, the game-theoretic approach, which is very deliberate in

how it allocates it patrols, results in a reasonable decrease in violations. Finally, at t(s, a)=0.01,

essentially any amount of patrolling on a road segment will convince the driver types to obey. As

a result, the game-theoretic strategy leads to an even greater reduction in the expected number of

violations.

5.5.1.3 Patrol Duration

In Figure 5.4, we evaluate the effect on runtime as we vary the patrol duration between 2 and

6 hours. Once again the x-axis is β, but now the y-axis is the runtime needed to solve the LP

99



0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

R
u

n
ti

m
e 

(s
ec

on
d

s)

Beta

2 hours

3 hours

4 hours

5 hours

6 hours

Figure 5.4: Effect of patrol duration on the runtime of STREETS.

formulation. Intuitively, the results show that the runtime increases as the patrol duration is

increased. Additionally, as β is varied, we observe significantly reduced runtimes at the two

extremes (β = 0 and β = 1), as in both cases, the LP is a single objective optimization problem

where the other objective is ignored.

5.5.2 Scalability

STREETS is currently focused on generating randomized traffic patrols for the Singapore CBD.

However, the eventual goal for STREETS is to scale to the entire city. Therefore, we evaluate

two scaleup approaches to project how they would perform on larger problem sizes.

5.5.2.1 Driver Type Sampling

In Figure 5.5(a), we evaluate the effect on runtime for different orders of magnitude of sampled

driver types. The original game contains 10346 driver types. Reducing the number of driver types

to 1000 via uniform random sampling results in a reasonable decrease in runtime. Further de-

creasing the number of sampled driver types to 100 and 10 only marginally improves the runtime.

Meanwhile, in Figure 5.5(b), we evaluate the effect on solution quality as we vary the number

of sampled driver types. For the smallest number of sampled types, the game-theoretic strategy
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Figure 5.5: Effect of driver type sampling on the runtime and the expected violations of
STREETS.

performs only as well as the uniform random strategy which ignores information about the driver

types. Furthermore, the number of violations goes down as the number of sampled types goes

up. However, the modest runtime improvements combined with the non-negligible loss in solu-

tion quality suggests there are limitations on driver type sampling as a technique for improving

scalability.

5.5.2.2 State Sampling

In Figure 5.6(a), we evaluate the effect on runtime as we vary the time granularity m between

2 and 6 minutes. The x-axis is the time granularity and the y-axis is the runtime need to solve

the LP formulation for β= 0.5. We observe an exponential decay in runtime as m is increased.

This results in an almost order-of-magnitude runtime decrease by going from m= 2 to m= 6.

Meanwhile, in Figure 5.6(b), we evaluate the effect on solution quality as we vary m. The x-axis

is still the time granularity m, but the y-axis is now the expected violations of the state-sampled

strategy when evaluated on the MDP for m = 2. We chose to evaluate on m = 2 as it was the

smallest value of m that we could solve exactly without any sampling. Despite increasing m,

the number of expected violations is virtually unchanged. The combination of these runtime and
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Figure 5.6: Effect of state sampling on the runtime and the expected violations of STREETS.

solution quality results are a clear sign that state sampling via adjusting the time granularity can

provide the type of scalability needed to handle patrolling over entire cities.

5.6 Chapter Summary

In this chapter we presented STREETS, a application which we developed to assist the Singapore

MHA in scheduling randomized traffic patrols in the Singapore CBD. STREETS is currently in

the process of being evaluated by the Singapore Police Force. We have already discussed how

this work introduces novelties (MDP formulation, compact game representation, exploration /

exploitation) over previous game-theoretic approaches for patrolling domains [Tambe, 2011].

There is a body of literature examining how to allocate traffic patrols [Adler et al., 2013; Lee

et al., 1979; Koper, 1995] as well as how to influence driver behavior [Ritchey and Nicholson-

Crotty, 2011]. That work has established the relation between traffic patrols and their impact on

improving traffic safety, which is the basis off which STREETS is built. Much of the related

research is prescriptive in nature, offering guidelines and suggestions, but stopping short of pro-

viding an implementable approach for patrolling. Our work presents a new perspective on the
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problem by modeling the interaction between the police and drivers as a game. Importantly, we

provide a principled approach for generating randomized schedules.
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Chapter 6: Multiple Defender Objectives (Efficacy / Efficency)

Screening people before allowing entry into a secure area is a standard practice throughout the

world, e.g., screening countermeasures are used to secure border crossings, sports stadiums, gov-

ernment buildings, etc. Of course, a majority of people will be familiar with airport passenger

screening, where each passenger must pass through physical screening consisting of a combina-

tion of countermeasures (e.g. x-ray and walk-through metal detector) before boarding their flight.

Given the significant projected future growth in aviation, agencies such as the Transportation Se-

curity Administration (TSA) in the United States are developing dynamic, risk-based screening

approaches which optimize the use of resources so as to maintain a high level of security while

handling increased passenger volume [AAAE, 2014].

The screening domains we consider involve a screener inspecting a screenee with the goal of

preventing the screenee from passing through with an attack method that could be used to cause

harm in a secure area. For example, terrorists with non-metallic explosives may attempt to pass

through airport screening undetected in order to attack a flight. The screener utilizes different

types of screening countermeasures that have: (i) different levels of effectiveness for detecting

different attack methods; and (ii) different capacities in terms of the number of screenees that

can be processed within a given time window. Effective screening may require a screenee to go
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through multiple screening countermeasures, but the screener may not be able to use the most

effective screening countermeasure combination for every screenee. Hence, the screener may

exploit available information to categorize screenees to help determine the appropriate scrutiny

to apply.

To address the challenge of how to optimally utilize limited screening resources so as to min-

imize the risk of a successful attack by an adversary, we introduce a formal threat screening game

(TSG) model. TSGs are played between a screener and an adversary, where the screener com-

mits to a screening strategy, assigning a randomized combination of screening countermeasures

to each screenee. The adversary is able to observe the screening strategy and best responds by

posing as a screenee and selecting an attack method. The utility of the screener captures the goal

of minimizing the risk of an attack across all screenees for all attack methods. The TSG model is

inspired by research on security games [Tambe, 2011].

While airport passenger screening is our motivating domain, the purpose of this chapter is to

introduce models, algorithms, and insights that are applicable to screening for different kinds of

threats (e.g., cargo screening). Our contributions include: (1) the generalized TSG model; (2) an

NP-hardness proof for computing the equilibrium of TSGs; (3) a scheme for decomposing TSGs

into smaller subgames to improve scalability; (4) a column generation approach to solve TSGs

which includes a novel compact multidimensional knapsack slave formulation and heuristics for

faster computation; and (5) a minimax regret-based tradeoff analysis for handling uncertainty

in the number of screenees and choosing a robust screening strategy. Finally, we empirically

evaluate the potential benefit of using a TSG screening approach.

Related Work Screening games [Stiglitz and Weiss, 1994] have been used in settings with

asymmetric information to model the uninformed leader screening multiple followers according

105



to their actions, which is different from our use of screening. Closer to our application domain,

inspection games [Avenhaus et al., 1996] have looked at inspections for arms control. While

the goal is similar to ours, our model has many additional features (e.g., teams) leading to a

combinatorial explosion. Our model is inspired by security games [Kiekintveld et al., 2009; Jain

et al., 2010b; An et al., 2011b; Korzhyk et al., 2010; Pita et al., 2011; Shieh et al., 2014] and

variants such as audit games [Blocki et al., 2013, 2015], adversarial patrolling games [Basilico

et al., 2009; Vorobeychik et al., 2014]; however, the properties of threat screening domains are

better modeled as a TSG. These properties include (1) a number of non-adversarial screenees that

affect the screening of the adversary, (2) multiple resources with varying efficiencies working in

teams to screen, and (3) categorization of screenees.

Regarding screening for threats, there have been studies on how to improve screening effi-

ciency [Ormerod and Dando, 2014] and how to screen optimally [McLay et al., 2010; Persico

and Todd, 2005]. However, these do not model the game-theoretic aspect of the problem. [Wang

et al., 2015] looked at a game-theoretic approach, but with a basic model that did not feature

multiple screening countermeasures, screenee categories, and attack methods.

6.1 Motivating Domain

While threat screening games are broadly applicable to a variety of domains, in this section we

focus on one concrete domain where the TSG model is particularly relevant.

In the United States, the Transportation Security Administration (TSA) is tasked with screen-

ing around 800 million air passengers annually. The TSA utilizes a number of screening coun-

termeasures for screening passengers, e.g., X-RAY machines, walk-through metal detectors

106



(WTMD), advanced imaging technology (AIT) machines, explosive trace detection (ETD) units.

Each passenger is required to go through some combination of these screening countermeasures

before boarding their flight, with the goal of minimizing the threat of a terrorist passing through

screening and attacking a flight (via on-body or carry-on non-metallic explosives, etc.).

The TSA’s current DARMS (Dynamic Aviation Risk Management System) initiative aims to

enhance aviation security [AAAE, 2014]. In our joint work with the TSA, we focus solely on the

passenger screening component of DARMS. Whereas the TSA previously screened all passengers

equally, recently they have begun to perform risk-based screening through programs such as

TSA PreX R© in which passengers can choose to submit to background checks in order to receive

expedited screening. The idea being that fewer resources should be dedicated to screening lower

risk passengers and more resources dedicated to screening higher risk passengers, improving

overall screening efficiency and efficacy. In DARMS, the TSA assigns passengers a risk level

based on available information such as flight history, frequent flyer membership, TSA PreX R©

status, etc. The TSA also assigns a value to each flight that measures its attractiveness as a target

for terrorists based on gathered intelligence.

The innovation in DARMS is that the screening for each passenger is conditioned on both the

passenger’s risk level and flight. Our goal is exploit this flexibility by using the TSG model to

compute the optimal screening strategy, given the available screening resources.
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6.2 Game Model

A threat screening game (TSG) is a Stackelberg game played between the screener (leader) and

an adversary (follower). The adversary attempts to conceal their attack method by posing as one

of the other benign screeenees.

TSG Model A TSG specification includes a set of screenees S and a set of attack methods

(AMs) M indexed by {1, . . . , |M |}. Then, all possible AMs for every screenee is represented

as A = {µs1,1, . . . , µs1,|M |, µs2,1, . . . , µs|S|,|M |}. The screener’s action is to allocate screening

resources to A. However, the screener can allocate resources only at the level of granularity of

each screenee. Thus, any resource may be allocated to {µsi,1, . . . , µsi,|M |} for each si ∈ S. The

adversary’s action is to pose as a screenee s and use an AM indexed by m, i.e, choose one of

µs,m ∈ A.

The goal of the screener is to detect the adversary. The utility for the screener is given in

terms of when the screener successfully detects the adversary Udσ(µs,m) or is unable to detect the

adversary Uuσ (µs,m). As our motivating domain is zero-sum, we assume a zero-sum game so the

adversary’s utility is negation of these, i.e., Uda = −Udσ and Uua = −Uuσ .

The complete specification of a TSG includes many characteristics, which we list below.

• Resource types: The set of types of resources is Λ, and resource of type λ ∈ Λ can be used Cλ

times.

• Teams: A screenee must be screened by a single valid team, where a team is formed by single

usage of each resource type in given subset of Λ. Thus, we can uniquely assign a type ψ to

each team, where ψ ∈ Λ. The set of all valid team types is given apriori, and denoted by Ψ.
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Given capacity for each resource type Cλ, we have the following capacity constraints for the

number of usages Tψ of team type ψ:

∀λ.
∑

ψ∈Ψ Iλ∈ψTψ ≤ Cλ

where Iλ∈ψ is the indicator for resource type λ belonging to the team type ψ. Thus, allocations

are stated in terms of allocating teams to screenees.

• Screenee categories: Screenees in same category are indistinguishable w.r.t. utility for both

players. More formally, given the set of categories Ξ, if s, s′ ∈ ξ for some ξ ∈ Ξ then

Udσ(µs,m) = Udσ(µs′,m) for allm (same forUuσ ). Thus, we writeUdσ(µξ,m) instead ofUdσ(µs,m)

(same for Uuσ ). The number of screenees in each category ξ is Nξ. Then, all screenees in a

category are screened equally in expectation (unequal screening makes the adversary pose as

the least screened screenee, thereby wasting resources).

Equivalence class of actions: Due to utility equivalence in any category, the adversary’s choice

of screenee s reduces to choice of screenee category ξ (µξ,m). Similarly, the screener’s action

specifies the number of team usages (of different types) allocated to each screenee category

(nψ,ξ).

• Effectiveness: Teams vary in the level of protection they provide against AMs. Formally, for a

team of type ψ screening s ∈ ξ there is a vector ~Eψ,ξ of size |M | such that the mth component

~Eψ,ξ(m) is the level of protection (probability of perfect detection) against AM indexed by m.

Observe that given a team for the same AM effectiveness can vary by screenee category.

• Adversary restrictions: Θ is a partition of the screenee categories. An adversary with re-

striction θ ∈ Θ can only pose as a screenee in categories within θ, i.e. his action space is
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restricted12. The adversary knows his own restriction, but the defender does not. The defender

knows a prior distribution Wθ over the adversary restriction.

Example: Consider a scaled-down airport screening example, focusing on one hour of screen-

ing. The defender has two resource types: Metal detector (D) and Explosive trace detector (E),

i.e., Λ = {D,E}. The capacities CD is 100 and CE is 10. In particular, the D machine can

screen 100 people in one hour, and the E machine can screen 10 people in one hour. Three team

types are possible: Ψ = {{D, E}, {D}, {D}}. Screenees are partitioned into three categories:

Ξ = {〈f1,r1〉, 〈f1,r2〉, 〈f2,r2〉}, where f1,f2 are two flights and r1,r2 are two risk levels. Note

that no screenee in risk level r1 can buy a ticket for f2. The number of people arriving are given

by Nf1, r1 = 20, Nf1, r2 = 20, Nf2, r2 = 30. There are two attack methods: µ = {g, e} that

denote guns and explosives. Team D,E has ~ED,E,ξ(i) = 1 for any category ξ and AM i. Team E

has ~EE,ξ(g) = 0.1, ~EE,ξ(e) = 1 for any category ξ. Team D is tuned to work more efficiently for

risk level r1, thus ~ED,ξ(g) = 1, ~ED,ξ(e) = 0.4 for ξ =f1,r1, and ~ED,ξ(g) = 0.9, ~ED,ξ(e) = 0.1

otherwise. Adversary has two restrictions θ1, θ2: θ1 is 〈f1,r1〉 and θ2 is 〈f2,r2〉, 〈f1,r2〉, i.e., Θ

partitions Ξ by risk levels or in other words, the adversary is given his risk level and he can only

choose flights and AMs. The defender knows the probability Wθ1 = 0.2 and Wθ2 = 0.8. The

utility of screener is stated Udσ(µξ,i) = 0 for any ξ, i, and Uuσ (µξ,g) = −2, Uuσ (µξ,e) = −5 for

ξ = f2, r2, and −1 otherwise.

We present two additional characteristics that allow for a compact representation of TSGs.

Default team type: We call a resource type sufficient if Cλ ≥
∑

ξNξ, i.e., this resource can

be used in every screening. We do not include any sufficient resource type in the set of resources
1This cannot be modeled using adversary types, as simulating restriction on actions would need to set utility for

disallowed actions as −∞. This does not make sense in a zero sum game.
2An easy extension is to also allow restriction on AMs. For sake of exposition we focus on restriction in choice of

screenee category.
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types Λ. In addition, we also posit a default team type indexed by letter δ, where the maximum

possible number of default teams is more than the number of screenees. In other words, the

default team type is formed from either the sufficient resource types or denotes no screening. In

generally, the default team provides basic (light) screening. Again, we do not include the default

team in the set of team types Ψ.

Sliced Game: The screening problem also has a temporal dimension. Screenees arrive not all

at once, but, over time. We model this by slicing the game into into time slots. The number of

time slots in a day is η. Our description above is just for one time slot. To accommodate multiple

time slots, we use superscript τ for relevant variables to indicate the time slot we are referring to,

and we skip τ when it is clear that we are referring to one time slot only. We abstract away from

the continuous nature of arrival of screenees, assuming a steady flow that allows parallel use of

resources.

About Notations

Resource type: λ ∈ Λ; capacity: Cλ

Team type: ψ ∈ Ψ ⊆ 2Λ; default type δ /∈ Ψ

Screenee Ξ partition of screenees; category: ξ ∈ Ξ

Adv. action Choose ξ,m represented as µξ,m

Adv. restr. Θ partition of Ξ; θ ∈ Θ

Team alloc nψ,ξ: allocation of team type ψ to ξ

AM indexed by m, also referred to as m

Efficiency ~Eψ,ξ: detection prob. of each m by ψ in ξ

Pure action space A pure allocationA can be represented by a non-negative integer valued matrix

M τ,A of size |Ψ| × |Ξ|. The ψ, ξ entry nτ,Aψ,ξ is the number of usages of team type ψ allocated
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to screenees of category ξ for time slot τ . We have
∑

ψ n
τ,A
ψ,ξ ≤ N τ

ξ since every screenee is

screened at most by one team and any leftover screenees nτ,Aδ,ξ = N τ
ξ −

∑
ψ n

τ,A
ψ,ξ are screened

by the default team. Thus, every screenee is screened by a team. The number of usages of team

type ψ for allocation A, given by ~T τ,Aψ =
∑

ξ n
τ,A
ψ,ξ , must satisfy the capacity constraints. Thus,

the set of all valid allocations P τ (A ∈ P τ ) for time slot τ is given by matrices formed from the

different integral values nτψ,ξ that satisfy the inequalities

∑
ψ Iλ∈ψ

∑
ξ n

τ
ψ,ξ ≤ Cτλ and

∑
ψ n

τ
ψ,ξ ≤ N τ

ξ
(6.1)

The adversary chooses a screenee category (within restriction θ) and chooses an AM, which

we state as µτξ,m and ξ /∈ θ implies the adversary cannot choose µτξ,m for any AM m.

Example Continued: Continuing the airport example, the default team is D. A allocation

allocates the other two team types to three screenee categories. A possible allocation is inspecting

10 screenees in category 〈f1,r1〉 with D,E and the remaining 10, 20, 30 screenees in categories

〈f1,r1〉, 〈f1,r2〉, 〈f2,r2〉 respectively with the default team D. Since all screenees in a category are

screened equally, the 10 screenees in category 〈f1,r1〉 to be screened by D,E are chosen at random

from the 20 overall screenees in 〈f1,r1〉.

Mixed Strategy Given probabilities p1, . . . p|P τ | (
∑
pi ≤ 1) over all valid pure allocations

A1, . . . , A|P τ | (Ai ∈ P τ ), we get the matrix M τ =
∑

i piM
τ
Ai

. The elements nτψ,ξ of M τ

stand for the expected number of teams of type ψ allocated to screenees in category ξ; nτψ,ξ is a

real number. The numbers nτψ,ξ lie in the convex hull of the integral points given by equation 6.1.

We denote that as nτψ,ξ ∈ conv(P τ ).
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Utilities Given the mixed strategy above, and the fact that all screenees in category ξ are screened

equally, we can interpret nτψ,ξ/Nξ (and nτδ,ξ/Nξ) as the probability that screenee in category ξ will

be screened by team of type ψ (and δ). Then, the level of protection against AMs for adversary

in category ξ is given by the vector ~xτξ =
∑

ψ n
τ
ψ,ξ

~Eψ,ξ/N
τ
ξ + (N τ

ξ −
∑

ψ n
τ
ψ,ξ)

~Eδ,ξ/Nξ with

each component ~xτξ (m) being the level of protection against AMm. Given the adversary’s choice

µτξ,m, the defender’s utility Uσ(~x1
ξ , . . . , ~x

η
ξ , µ

τ
ξ,m) is

~xτξ (µτξ,m)Udσ(µτξ,m) + (1− ~xτξ (µτξ,m))Uuσ (µτξ,m)

Analogously, for the adversary Ua(~x1
ξ , . . . , ~x

η
ξ , µ

τ
ξ,m) is

~xτξ (µτξ,m)Uda (µτξ,m) + (1− ~xτξ (µτξ,m))Uua (µτξ,m)

SSE computation The Strong Stackelberg equilibrium (SSE) computation is given by the fol-

lowing optimization

max
dθ,nψ,ξ

∑
θWθdθ

∀θ, τ,m, ξ ∈ θ. dθ ≤ Uσ(~x1
ξ , . . . , ~x

η
ξ , µ

τ
ξ,m),

∀τ, ξ. ~xτξ =
∑
ψ n

τ
ψ,ξ

~Eψ,ξ+(Nτ
ξ −

∑
ψ n

τ
ψ,ξ)

~Eδ,ξ
Nξ

,

∀τ. nτψ,ξ ∈ conv(P τ )
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Algorithm 8: MODULAR SOLVER

1 For each τ , form the sub-game Gτ .
2 ∆P τ ← ComputeEquilibrium(Gτ ) for each τ
3 return ∆P 1, . . . ,∆P η

6.3 Algorithmic Approach

6.3.1 Separation

It may seem natural that, since the TSG is sliced into η time slots, the equilibrium can be com-

puted by solving the sub-game Gτ for each time slot (assuming adversary conducts one attack

in each time slot) separately and then combining the mixed strategy for each sub-game to get a

mixed strategy for the overall game, as shown in Algorithm 8. However, rather surprisingly, this

technique does not work in general non zero-sum TSGs.

Counterexample: Consider a game with four screenee s1, s2, s3, s4 and one

AM 1 that is sliced into two parts G1, G2, with each sub-game having two

screenees and just one resource. The resource can detect the AM perfectly.

G1 µs1,1 µs2,1

d u d u

Def. 0 -20 0 -22

Adv. 3 5 3 5

G2 µs3,1 µs4,1

d u d u

Def. 0 -2 0 -3

Adv. 2 5 2 5

The optimal strategy for screener in G1 is to allocate the resource to µs1,1 with 0.5 prob.

and µs2,1 with 0.5. The adversary chooses µs1,1 and get payoff 4, and screener gets payoff −10.

Similarly, the optimal strategy for screener in G2 is also 0.5 and 0.5. adversary attacker chooses

µs3,1 and get payoff 3.5, and screener gets payoff −1.

Now, observe that simply combining the equilibrium of the two sub-game makes the adver-

sary choose µs1,1 gaining 4, and screener gets −10. However, if in G2 the strategy is changed
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to 1 on µs4,1, then the adversary chooses µs3,1 gaining 5 and screener gets −2. Thus, simply

combining the equilibrium of the two sub-games is not the most optimal solution.

Next, we present conditions that allow use of Algorithm 8:

Theorem 1. Algorithm 8 produces a Stackelberg equilibrium when all sliced sub-games satisfy

the condition: Uσ = −cUa, where c > 0 is any real number. Uσ and Ua are the screener’s and

adversary’s utility (detected or undetected) respectively.

Proof Sketch. The proof works by first proving that the best adversary’s best responses from each

sub-game from Algorithm 8 is indeed the overall best response. Then, for contradiction, we show

that if there is a distribution ∆P0 that provides higher utility to the screener overall, then there is

a sub-game i such that the marginal of ∆P0 in this sub-game ∆P i0 provides higher utility that the

SSE for the sub-game.

Our game is zero-sum, and hence satisfies the condition above. Thus, we drop the time

superscript τ and focus on a sub-game and solve the following optimization O

max
dθ,nψ,ξ

∑
θWθdθ

∀θ,m, ξ ∈ θ. dθ ≤ Uσ(~xξ, µξ,m),

∀ξ. ~xξ =
∑
ψ nψ,ξ

~Eψ,ξ+(Nξ−
∑
ψ nψ,ξ)

~Eδ,ξ
Nξ

,

nψ,ξ ∈ conv(P )

Simplified notation To handle the large number of variables, we introduce short hand for

them. Let (Udσ(µξ,m)−Uuσ (µξ,m)) ~Eψ,ξ(m)
Nξ

be Iψ,ξ,m. Also, let Iψ−δ,ξ,m = Iψ,ξ,m − Iδ,ξ,m

and NξIδ,ξ,m + Uuσ (µξ,m) = −Jm,ξ. Then, the inequality with dθ can be written as

dθ ≤
∑

ψ nψ,ξIψ−δ,ξ,m − Jm,ξ . LetX = [X1, . . . , X |P |] denote the matrix of size |Ψ||Ξ|×|P |
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with each Xp denoting a pure strategy. Xp is formed by arranging the columns of the pure allo-

cation matrix one after another. Xp
ψ,ξ denotes the allocation of team type ψ to screenee category

ξ in Xp. The constraint that n lies in the conv(P ) is given by replacing n by Xq where q is a

vector of probabilities over P .

Thus, the optimization problem O is given by

max
d,q

∑
θWθdθ

∀θ, ξ ∈ θ,m. −dθ +
∑

ψ Iψ−δ,ξ,m
∑

p∈P X
p
ψ,ξqp ≥ Jm,ξ,∑

p∈P qp = 1, q ≥ 0

6.3.2 Relaxation and Projection

Theorem 2. Problem O is NP-Hard to compute.

Proof Sketch. We do a reduction from independent set problem. The core of hardness inO is due

to team formation. Thus, we work with the special case with one screenee category 1 and one

AM 1. In this case we show that solving the resultant LP is equivalent to solving an integer LP

with constraints given by equation 6.1. Given a graph, we construct an integer LP instance of our

problem by choosing a team type ψ for each vertex, resource types for each vertex and each edge

(with all capacities 1). It is shown that the integer LP solution is the size of the max. independent

set.

We use a slightly modified column generation approach with heuristics that provide fast com-

putation for problem O, inspired by [Yang et al., 2013]. The outline is provided in Algorithm 9.

We start by solving a relaxed version Orelax of O obtained by relaxing equation 6.1. The relaxed
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Algorithm 9: SCREEN
1 P ← φ; z ← 1;X ← φ
2 do
3 n̂, d̂← Solve(Orelax); P ← P ∪X
4 z,X, q, cut← l1PROJECTION(n̂, P )
5 Orelax ← Add the constraint cut to Orelax
6 while z 6= 0
7 return X, q

problem solution n̂may not be a valid mixed strategy, as shown in a counterexample in Appendix.

Orelax is shown below

max
d,n

∑
θWθdθ

∀θ, ξ ∈ θ,m. −dθ +
∑

ψ Iψ−δ,ξ,mnψ,ξ ≥ Jm,ξ,

∀λ.
∑

ψ Iλ∈ψ
∑

ξ nψ,ξ ≤ Cλ,

∀ξ.
∑

ψ nψ,ξ ≤ Nξ, ∀ψ, ξ. nψ,ξ ≥ 0

The l1PROJECTION algorithm finds the l1 distance z of n̂ to the mixed strategy space

(conv(P )) in the original problem O. In the process, it also finds the l1 projection of n̂ onto

conv(P ), expressed as a convex combination of pure strategies in set X with the coefficients

given by set q. In addition, it also finds the deep cut separating n̂ and conv(P ) via the dual (eas-

ily inferable using minimum norm duality theorem [Luenberger, 1997] from functional analysis).

Clearly, if z is zero then n̂, d̂ is a valid solution, and we obtain our desired result in X, q. Other-

wise the cut is added to the problemOrelax, and the loop repeats. Note that we reuse the generated
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pure strategies X from one run of l1PROJECTION in the next run. In l1PROJECTION, the op-

timization is

min
z,q

∑
ψ,ξ zψ,ξ

∀ψ, ξ. zψ,ξ +
∑

p∈P X
p
ψ,ξqp ≥ n̂ψ,ξ,

∀ψ, ξ. zψ,ξ −
∑

p∈P X
p
ψ,ξqp ≥ −n̂ψ,ξ,∑

p∈P qp = 1, q ≥ 0, z ≥ 0

The first two set of constraints specify −z ≤ ||n̂− n||1 ≤ z. We do column generation (master-

slave decomposition) to solve the above master problem (called l1-primal). The dual variables

for the primal are vψ,ξ, v′ψ,ξ for the two set of inequalities and o for the equality. Let y = v − v′.

In the column generation iteration, given a y, o, we find the next pure strategy to add by solving

the following compact integer linear program formulation of the slave (called Sep-Oracle):

max
n

∑
ψ,ξ nψ,ξyψ,ξ + o

∀λ.
∑

ψ Iλ∈ψ
∑

ξ nψ,ξ ≤ Cλ,

∀ξ.
∑

ψ nψ,ξ ≤ Nξ, ∀ψ, ξ. nψ,ξ ∈ {0, 1, . . .}

This novel slave formulation and the heuristics used to solve the slave sets us apart from [Yang

et al., 2013]. Analogous to security games, we call the above problem “defender oracle” for

varying y. The defender oracle is an instance of unbounded multidimensional knapsack.

Lemma 1. The defender best response oracle problem is hard to approximate to any constant

factor, unless P=NP.

Proof Sketch. The same reduction used in Theorem 2 can be used as a PTAS (approximation

preserving) reduction here, with the fact that independent set is hard to approximate.
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Algorithm 10: l1PROJECTION(n̂, d̂, P )

1 do
2 z, q ← Solve(l1-primal, P )
3 y, o← ReadDualV alues(z, q)
4 P ′ ← Solve-Sep-Oracle(y, o);P ← P ∪ P ′
5 while P ′ 6= φ
6 Get X, q from positive values in q; get cut from the y, o
7 return z,X, q, cut

The pure strategy maximizing the slave objective is added back to the master, if the objective

is positive. However, it is sufficient to find a pure strategy that makes the objective positive in

each iteration. Thus, we try the following alternatives:

• Best Response: Solve the defender oracle exactly.

• Better Response: Relax the defender oracle to a LP and obtain a solution ñ. If ñ is integral then

it is the same as the best response, so we use ñ and stop. Otherwise, generate a fixed number of

pure strategies by randomly increasing components of bñc while still being feasible, checking

if any yields a positive objective. Try the better response heuristic first, if it fails solve the

defender oracle exactly.

• Slave Iteration Cutoffs: Stop after a given threshold number of iterations (for both better or

best reponse).

Also, given dual solution y∗, o∗, the hyperplane
∑

ψ,ξ nψ,ξy
∗
ψ,ξ + o∗ = 0 is a deep cut in

Orelax.

6.3.3 Addressing Uncertainty

Up to this point, we have assumed that the screenee distribution Nξ is known exactly. However,

there may be uncertainty in real-world screening domains. We consider uncertainty to be limited
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to K distributions Nk for k ∈ {1, . . . ,K}, where Nk
ξ specifies the number of screenees in

category ξ. We assume a probability pk for each distribution being realized.

Given pk, one approach for handling uncertainty could be to use the expected number of

screenees in each category when computing the screening strategy. However, this approach is

undesirable as underestimating and overestimating Nξ yield different challenges for the screener

and cannot be equivocated. Underestimating Nξ can lead to an overflow of screenees being

assigned to a particular resource team type, causing the workload of screening resources to exceed

capacity. Overestimating Nξ can lead to underflow where screening resource capacity that could

have been used elsewhere remains unused leading to regret in screener utility.

Therefore, we propose an alternative approach for handling uncertainty overNξ. We compute

the optimal screening strategy for each Nk and then evaluate that screening strategy on every

other distribution Nk′ to compute the weighted average percentage of overflow screenees and the

weighted average screener utility regret. Importantly, the evaluation criteria are kept separate,

resulting in a multi-objective space with a compromise solution for each screening strategy that

trades off between overflow passengers and screener utility regret. We can then compute the

Pareto frontier, enabling the screener to choose their desired Pareto optimal screening strategy.

6.4 Evaluation

We evaluate our threat screening game model as well as the associated algorithms and heuristics

using experiments inspired by the TSA DARMS passenger screening domain. The game payoffs

are zero-sum and randomly generated with Uua uniformly distributed in [1,10] and Uuσ =−Uua .

The remaining game payoffs Udσ and Uda are fixed to 0. The default settings for each experiment
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Figure 6.1: Solution quality comparison of three screening approaches and an example game
instance highlighting the benefit of dynamic screening.

are (unless otherwise noted): 4 screenee risk levels, 5 screening resource types, 8 screening team

types, and 1 time window. All results are averaged over 30 randomly generated game instances.

6.4.1 Screening Approach

TSGs optimize the allocation of screening resources by exploiting screenee categories defined

as 〈flight, risk level〉 in this domain. To show the benefit of using this screenee categorization,

we compare the resulting dynamic screening strategy against two baseline approaches: (1) a

uniform approach which solves the TSG with an additional constraint that all screenees must be

screened using the same screening strategy, and (2) a static approach which solves the TSG with

an additional constraint that all screenees with the same risk level must be screened using the

same screening strategy across all flights. Figure 6.1(a) shows the solution quality comparison of

the three approaches, where the x-axis is the number of flights and the y-axis is screener utility.

As expected, the dynamic approach is able to achieve higher screener utility than both the uniform

and static approaches for all numbers of flights. Figure 6.1(b) shows a comparison for a specific

game instance with 5 flights and provides intuition as to why the dynamic approach performs so

well. The inability to strategically adjust screening flight by flight results in both the uniform
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Figure 6.2: Runtime comparison of the baseline approach and column generation approach for
solving threat screening games.

and static approaches protecting some flights adequately (Flight 5), while leaving other flights

vulnerable (Flight 3), leading to lower screener utility.

6.4.2 Algorithmic Approach

The baseline algorithm for solving TSGs involves enumerating every pure strategy of the screener.

To illustrate the importance of column generation, we consider a small game with 2 screening re-

source types, 2 screening team types, and 12 screenees per flight (3 at each risk level). Figure

6.2 shows a runtime comparison of the two algorithms for varying numbers of flights. We ob-

serve that the baseline algorithm is unable to scale beyond 2 flights. For 3 flights, the screener

has 16,777,216 pure strategies and the baseline algorithm runs out of memory, while column

generation easily scales up.

6.4.3 Heuristics

Figure 6.3 shows a runtime and solution quality comparison of best response and better response

with varying slave iteration cutoffs. Runtime results are presented in Figure 6.3(a), with the x-

axis denoting the number of flights as well as the type of slave response (i.e., best or better), and

the y-axis indicating the runtime needed to reach the different cutoffs. As expected, the runtimes
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Figure 6.3: Runtime and solution quality comparison of the best response and better response
heuristics with varying slave iteration cutoffs.

for both responses increase as either the number of flights and/or the slave iteration cutoff is

increased, with better response requiring less runtime for all but one setting tested. Solution

quality results are presented in Figure 6.3(b), where the x-axis again indicates the number of

flights and slave response type, but now the y-axis is the screener utility of the solution returned

when the slave iteration cutoff is reached. We observe for both response types that the screener

utility increases as the slave iteration cutoff is increased, as well as that better response achieves a

higher screener utility than best response in all cases. While the first result is intuitive, the second

result is perhaps not. While better response may produce suboptimal pure strategies with respect

to helping minimize the one-norm distance, the randomness in the better response may provide a

more diverse set of pure strategies, resulting in higher screener utility.

6.4.4 Uncertainty

To evaluate our approach for handling uncertainty, we consider 50 possible screenee distribu-

tions and assume a uniform probability for each of the distributions being realized. Figure 6.4

presents the space of tradeoffs for the resulting screening strategies, with the average percentage

of overflow screenees on the x-axis and the average screener utility regret on the y-axis.
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Figure 6.4: Tradeoff between overflow screenees and solution quality loss of different screening
strategies when handling passenger distribution uncertainty.

Of the 50 screening strategies, only 4 reside on the Pareto frontier and should be considered

by the screener. Within the Pareto optimal screening strategies, we observe that accepting slightly

higher average regret can reduce the average percentage of overflow screenees from almost 8%

to around 5%. Performing this kind of analysis allows the screener to make a more informed

decision and select a screening strategy that is more robust to uncertainty.

6.5 Chapter Summary

We have introduced a model for TSGs that effectively utilizes limited screening resources. Ad-

ditionally, we proved theoretical properties of TSGs and presented algorithms for computing the

optimal screening strategy. While we used physical screening to motivate our model, where we

are engaged in joint work with the TSA on airport passenger screening, TSGs are applicable to

any type of domain where a strategic adversary is trying to pass through a screening process.

Beyond the (1) TSG model, our contributions are (2) an NP-hardness proof for computing the

equilibrium of TSGs, (3) a decomposing scheme for TSGs; (4) a column generation approach to

solve TSGs; and (5) a minimax regret-based tradeoff analysis for handling uncertainty.
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Chapter 7: Multiple Adversary Objectives (Bounded Rationality)

Incorporating human behavioral models [McKelvey and Palfrey, 1995; Camerer, 2003] into se-

curity games represents an important progression that has been demonstrated to improve the per-

formance of defender patrol strategies in both simulations and human subject experiments [Pita

et al., 2010; Yang et al., 2012, 2013; Nguyen et al., 2013]. Behavioral models allow for the relax-

ation of the one of the strongest assumptions in classical game theory: namely, that the adversary

is a perfectly rational utility maximizer. Instead, behavioral models, such as the quantal response

(QR) model [McKelvey and Palfrey, 1995] and the subjective utility quantal response (SUQR)

model [Nguyen et al., 2013], feature stochasticity in human decision making. These models are

able to better predict the actions of real human adversaries and thus lead the defender to choose

strategies that perform better in practice. Boundedly rational human behavioral models raise two

fundamental research challenges that previous work has tried to address separately: scalability

and robustness.

While perhaps counter-intuitive, modeling adversaries which behave suboptimally actually

makes the defender’s optimization problem computationally more difficult. Both QR and SUQR

are non-linear models and are difficult to use directly in large-scale security domains. This issue

of scalability for large-scale security games with boundedly rational adversaries has received
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attention in the literature. [Yang et al., 2012] presented a mixed-integer linear programming

(MILP) approximation for QR and SUQR models which improves tractability. Additionally,

[Yang et al., 2013] introduces a cutting planes approach which can handle general patrol schedules

and uses a master-slave formulation to iteratively generate deep cuts. We emphasize that the work

[Yang et al., 2012, 2013] only allows for a single boundedly rational adversary.

However, in many domains the defender could encounter multiple different types of bound-

edly rational human adversaries. Thus, a separate line of security games research has focused on

achieving robustness against uncertainty in the true adversary model. [Yang et al., 2014] proposed

a Bayesian approach which learns a Gaussian distribution over adversary types. This approach

has two potential drawbacks. First, the assumption that the adversary types are normally dis-

tributed is difficult to justify in practice. Second, even if the adversaries are normally distributed,

a large amount of data is needed to learn the Gaussian distribution. Alternatively, [Haskell et al.,

2014] introduced a maximin approach which does not use a distribution over the adversary types.

Instead, the defender chooses a patrol that maximizes the worst-case expected defender reward

over a set of adversary types. In an effort to scale up, [Yang et al., 2014; Haskell et al., 2014]

focused on security games with a simplified defender strategy space that do not have complicated

patrol schedules.

My thesis merges these two research threads for the first time by addressing scalability and

robustness simultaneously. Each thread alone is impractical for important real-world security

domains, such as environmental crime. Security games with complicated patrol schedules and

multiple boundedly rational adversary types present a number of modeling and computational

challenges. However, overcoming these challenges is critical as they are precisely the charac-

teristics that define real-world security games. Our main contribution here is MIDAS (MaxImin
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Defense Against SUQR) which computes robust defender patrols for large-scale security games

with a heterogeneous adversary population. Building off the insights of [Yang et al., 2012, 2013,

2014; Haskell et al., 2014], we offer two key innovations: (i) a robust model that generates pa-

trols that hedge against uncertainty about a heterogeneous population of adversaries and (ii) a

tractable MILP approximation of our robust problem. We develop key theoretical properties of

MIDAS and also compare MIDAS against previous approaches in simulation.

In collaboration with the United States Coast Guard (USCG), we have applied MIDAS to

protect fisheries in the Gulf of Mexico, where illegal, unreported, and unregulated (IUU) fishing

seriously threatens the health of local fish stocks. The USCG has both surface and air assets with

which to deter IUU fishing. We frame the interaction between the USCG and illegal fisherman

from Mexico (henceforth called Lanchas) as a Stackelberg security game. By using historical

data on Lancha sightings, we learn and construct a set of SUQR adversary types. However,

there is not sufficient data to accurately construct a probability distribution over Lancha types.

Generation of robust defender strategies for this domain has previously been explored in [Haskell

et al., 2014]. However, that work was more of a hot spot prediction model and it did not account

for actual USCG schedules. In contrast, MIDAS constructs patrol schedules directly, resulting in

higher quality patrol schedules for the USCG. The USCG began live testing of patrol schedules

generated using MIDAS in July 2014.

7.1 Related Work

Game theory has been successfully applied to security problems such as the protection of net-

works [Manshaei et al., 2013; Nguyen et al., 2009; Pı́bil et al., 2012] and physical infrastructure
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[Tambe, 2011]. In particular, the Stackelberg game model with its leader-follower paradigm has

been used extensively in security domains. Stackelberg games capture the fact that, in the real

world, the defender (i.e., the security agency) must commit first to a strategy that may be observed

and then exploited by adversaries. Given this first mover advantage, it is critical to understand

and predict how adversaries will respond to a given strategy in order to find the best strategy.

Classical game theory assumes that the adversary is perfectly rational and will always select the

best available action in response to the defender’s strategy. In some domains, such as network

security [Clark et al., 2012; Lu et al., 2013], this assumption is reasonable as the game is played

by software agents. For other domains, particularly those with human adversaries, a theoretically

optimal defender strategy under standard rationality assumptions can perform poorly in practice.

Under the assumption of perfect rationality, the adversary will always select just one action (the

utility maximizing action). This assumption can lead to non-robust strategies for the defender.

As such, human behavioral models are becoming an increasingly important aspect of secu-

rity games research. [Yang et al., 2012] was the first to address human adversaries in security

games by incorporating the quantal response (QR) model [McKelvey and Palfrey, 1995] from

the social psychology literature. QR predicts a probability distribution over adversary actions

where actions with higher utility have a greater chance of being chosen. By anticipating possible

adversary deviation from the optimal action, strategies computed with QR are more robust to un-

certainty in human decision making. [Jiang et al., 2013a] generalized the QR model to be robust

against all adversary models satisfying monotonicity (i.e., higher utility actions are selected more

frequently than lower utility actions), but this approach struggles to scale up to larger security

games. [Nguyen et al., 2013] extended the QR model by proposing that humans use “subjective

utility”, a weighted linear combination of factors (such as defender coverage, adversary reward,
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and adversary penalty), to make decisions. [Nguyen et al., 2013] proposes the subjective utility

quantal response (SUQR) model which was shown to outperform QR in predicting the actions of

participants of human subject experiments, thus leading to better defender strategies.

Building off that foundation, [Yang et al., 2013] presented an efficient cutting planes approach

for solving security games with a large defender strategy space and a single adversary following a

QR model. Meanwhile, two approaches have emerged for handling security games with multiple

human adversary types. [Yang et al., 2014] utilized a Bayesian approach which learns a distribu-

tion over a set of SUQR types from available data. This distribution was assumed to be normal

so as to minimize the number of parameters that need to be learned. Alternatively, [Haskell et al.,

2014] developed a robust version of [Yang et al., 2014] and applies it to the fishery protection

domain where only limited data about the adversaries is available. Borrowing from the robust

optimization literature [Ben-Tal and Nemirovski, 2002; Bertsimas et al., 2011], a maximin ap-

proach is used to optimize defender expected utility against the worst-case type from the set of

possible adversary types. However, [Yang et al., 2013] handles only one adversary type, while

[Yang et al., 2014] and [Haskell et al., 2014] both fail to scale up. Neither of these two threads

of research is individually able to handle the needs of security game applications in real-world

domains such as environmental crime.

Most security problems do not feature static deployments, but rather have dynamic deploy-

ments that evolve in time and space. Thus, it is imperative to consider the capabilities of and

restrictions on security resources such as personnel, cars, boats, and aircraft. Additionally, the

adversaries in most physical security domains are likely to be humans, who have biases and limi-

tations in their decision making process. This bounded rationality makes it difficult to predict the
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actions of the adversary and in turn for the defender to optimize their strategy. As a further com-

plication, rather than a single adversary type there is usually a set of potential adversary types that

may be encountered and it is critical to be robust against uncertainty in adversary type. Prior work

on boundedly rational adversaries in security games has addressed only one of the challenges of

scalability and robustness.

My thesis proposes MIDAS which improves upon prior work by providing a holistic model

that better captures the practicalities of large-scale, real-world security domains. More specifi-

cally, MIDAS enhances the incremental cut generation technique for solving large-scale security

games with a single boundedly rational adversary type from [Yang et al., 2013] by using a ro-

bust maximin formulation for handling the uncertainty posed by multiple potential boundedly

rational adversary types. Additionally, the QR model used in [Yang et al., 2013] for modeling

boundedly rational adversary types is replaced with the SUQR model. Thus, MIDAS addresses

the challenges of both scalability and robustness simultaneously, representing the first and only

approach for solving security games with patrols schedules and multiple boundedly rational ad-

versary types.

7.2 Background

We consider a Stackelberg security game (SSG) where the defender uses M available resources

to protect a set of targets T = {1, . . . , |T |} from a set of boundedly rational adversaries Ω. For

the remainder of this chapter we will focus on the SUQR behavioral model and treat ω ∈ Ω as

an SUQR adversary type. SUQR outperforms QR and other human behavioral models in human
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subject experiments. As a result, SUQR is widely considered to be the state of the art for modeling

boundedly rational adversaries in security games.

Each target t ∈ T is assigned a set of payoffs {Rat , P at , Rdt , P dt }: Rat is the reward earned by

an adversary if they successfully attack target t, while P at is the penalty received by an adversary

for an unsuccessful attack on target t. Conversely, if the defender assigns a resource to protect

target t and an adversary attacks target t, the defender receives a reward Rdt . If an adversary

attacks target t and the defender has not assigned a resource to protect target t, the defender

receives a penalty P dt . It should be noted that the payoffs for all adversary types in Ω are identical,

it is the parameters of the SUQR behavioral model that distinguish between types in Ω.

The defender commits to a mixed strategy that the adversaries are able to observe and then

respond to by choosing a target to attack (Korzhyk, Conitzer, and Parr 2010; Basilico, Gatti,

and Amigoni 2009). We denote the jth defender pure strategy as Aj , which is an assignment of

all the security resources. Aj is represented as a column vector Aj = 〈Atj〉T , where Atj indi-

cates whether target t is covered by Aj . For example, in an SSG with 4 targets and 2 resources,

Aj = 〈1, 1, 0, 0〉 represents the pure strategy of assigning one resource to target 1 and another

to target 2. Let A = {Aj} be the collection of feasible assignments of resources, i.e., the set

of defender pure strategies. The defender’s mixed strategy can then be represented as a vector

a = 〈aj〉, where aj ∈ [0, 1] is the probability of choosing Aj . For large-scale security games, the

number of pure strategies can grow so large that A cannot be represented explicitly in practice
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making it impossible to optimize a directly. However, there is a more compact ”marginal” rep-

resentation for defender strategies. Let x be the marginal strategy, where xt =
∑

Aj∈A ajAtj is

the probability that target t is covered. The set of all feasible marginal distributions is

Xf =

x : xt =
∑
Aj∈A

ajAtj , t ∈ T,
∑
Aj∈A

aj = 1, a ≥ 0

 .

We treat ω ∈ Ω as an SUQR adversary type with the weight vector ω = {ω1, ω2, ω3} which

encodes the relative importance of xt, Rat , and P at , respectively, in the decision making process

of the adversary. Recall that the SUQR model selects a probability distribution over adversary

actions rather than deterministically selecting the utility maximizing adversary action. Given

defender strategy x, the probability that adversary ω will attack target t is

qt (ω |x) =
eω1xt+ω2Rat+ω3Pat∑
t′ e

ω1xt′+ω2Rat′+ω3Pat′
.

If an adversary chooses to attack target t, then for a given defender strategy x, the defender’s

expected utility is

Ut (x) = xtR
d
t + (1− xt)P dt .

Against a known adversary type ω ∈ Ω, the defender’s optimization problem is then

max
x∈X

F (x |ω) ,
∑
t

Ut (x) qt (ω |x) , (7.1)
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which can be solved for a defender mixed strategy a. However, in this chapter we consider an

entire population of heterogeneous adversaries in Ω. Thus, the optimization problem above is

inadequate.

7.3 Adversary Uncertainty

7.3.1 Bayesian Estimation

If we have a distribution P over the set Ω of all possible types, then the expected utility maximiz-

ing problem is

max
x∈Xf

�
Ω
F (x |ω)P (dω) . (7.2)

Problem (7.2) maximizes the expected defender utility, where the expectation is over the adver-

sary types. In practice Problem (7.2) requires P to be estimated from sample data. Estimation of

P presents two potential issues: first, it assumes that the types in Ω are normally distributed in

order to use convenient update rules; second, large amounts of data are required. This method is

referred to as Bayesian SUQR [Yang et al., 2014].

7.3.2 Maximin

Robust optimization offers up remedies for the shortcomings of Bayesian SUQR. Maximin does

not require large amounts of data, but it can still utilize data when it is available even if only in

small quantities. It is also less sensitive to assumptions about the nature of the underlying data,

for instance the assumption that P is a normal distribution.
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We treat Ω as an uncertainty set in line with robust optimization. For convenience, we assume

that Ω is finite. This assumption is reasonable in practice since we will only ever have finitely

many observations of the adversary. Then we solve the robust optimization problem

max
x∈Xf

min
ω∈Ω

F (x |ω) (7.3)

to get a patrol for the defender, where again F (x |ω) is the expected utility corresponding to

type ω. Problem (7.3) is a nonlinear, nonconvex, nonsmooth optimization problem. For easier

implementation, we transform Problem (7.3) into the constrained problem

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} , (7.4)

by introducing a dummy variable s ∈ R to replace the nonsmooth objective with a collection of

smooth constraints.

7.4 Mixed-Integer Linear Programming

By considering a human behavior model such as SUQR, Problem (7.4) becomes a nonlinear

nonconvex optimization problem. In the general case, this problem class has been shown to

be NP-hard to solve to optimality. Our idea in this section is to introduce a tractable MILP

approximation scheme.

An approximate approach for solving Problem (7.1) with a single boundedly rational adver-

sary was presented in [Yang et al., 2012, 2013]. This approach is based on a piecewise linear

approximation that leads naturally to an MILP. In this section, we generalize this approach to
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create MIDAS, an algorithm for solving the robust Problem (7.4) with a set of boundedly rational

adversaries.

First notice that, F (x |ω), the defender’s payoff against a single adversary type ω ∈ Ω can

be written out as

F (x |ω) =
∑
t

Ut (x) qt (ω |x) =

∑
t

((
Rdt − P dt

)
xt + P dt

)
eω1xt+ω2Rat+ω3Pat∑

t e
ω1xt+ω2Rat+ω3Pat

which is a fractional function N (x |ω) /D (x |ω) where

N (x |ω) =
∑
t

((
Rdt − P dt

)
xt + P dt

)
eω1xt+ω2Rat+ω3Pat

and D (x |ω) =
∑

t e
ω1xt+ω2Rat+ω3Pat . The goal in this section is to estimate the optimal value,

which we will denote s∗, of Problem (7.4), i.e., the defender receives a payoff of at least s∗ against

every adversary type ω ∈ Ω. We use a binary search to compute s∗ by updating a parameter r.

We know that r ≤ s∗ if there exists some x ∈ Xf such that

r ≤ N (x |ω)

D (x |ω)
, ∀ω ∈ Ω.

Equivalently, we can rearrange the terms to require

r D (x |ω)−N (x |ω) ≤ 0, ∀ω ∈ Ω.
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Therefore, to check if r ≤ s∗, we solve

min
x∈Xf , ξ∈R

{ξ : ξ ≥ r D (x |ω)−N (x |ω) , ∀ω ∈ Ω} . (7.5)

If the optimal value of the above problem is less than or equal to zero, then r ≤ s∗; otherwise,

r > s∗; then r is adjusted appropriately. However, Problem (7.5) is still nonlinear and nonconvex.

Thus, we need to find a tractable approximation to implement this scheme.

7.4.1 Linear Approximation

The nonlinearity and nonconvexity of Problem (7.5), whose objective function is a summation

of nonlinear functions in x, can be overcome by approximating each nonlinear function with a

piecewise linear function with K pieces. The functions r D (x |ω)−N (x |ω) in the constraints

of Problem (7.5) can be approximated with piecewise linear functions L (x |ω) of the form:

L (x |ω) =
∑
t∈T

(
r−P dt

)(
ft(0|ω) +

K∑
k=1

γωtkxtk

)
−
∑
t∈T

(
Rdt−P di

) K∑
k=1

µωtkxtk

where γωtk is the slope of the function ft(xt|w) in the kth segment while µωtk is the correspond-

ing slope of xtft(xt|ω). With this approximation, we then solve the feasibility check problem
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min
x,ξ

ξ (7.6)

s.t. ξ ≥ L (x |ω) , ∀ω ∈ Ω, (7.7)

0 ≤ xtk ≤ 1/K, ∀t, k = 1 . . .K, (7.8)

ztk/K ≤ xtk, ∀t, k = 1 . . .K − 1, (7.9)

xt(k+1) ≤ ztk, ∀t, k = 1 . . .K − 1, (7.10)

ztk ∈ {0, 1}, ∀t, k = 1 . . .K − 1, (7.11)

xt =
∑
Aj∈A

ajAtj , ∀t, (7.12)

∑
Aj∈A

aj = 1, (7.13)

x, a ≥ 0. (7.14)

7.4.2 Column Generation

In this subsection we produce a tractable scheme for solving Problem (7.6) - (7.14). First, we

derive a relaxation of Problem (7.6) - (7.14). Second, we show how to iteratively improve this

approximation via a network flow problem: to that end Problem (7.6) - (7.14) is used to add new

constraints to the relaxed version of the problem, and column generation is used in service of

solving Problem (7.6) - (7.14) which then uses the network flow representation. Our network

flow problem differs substantially from earlier work, which focused on aviation security and

environmental crime, because of the generality of our formulation.
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To begin, we approximate the constraint x ∈ Xf with a linear relaxation

{
x : Ĥ x ≤ ĥ

}
,

which represents a subset of linear boundaries of Xf . Then we solve the relaxation

max
x, s∈R

{
s : s ≤ F (x |ω) , ∀ω ∈ Ω, Ĥ x ≤ ĥ

}
(7.15)

using the binary search method, i.e. Problem (7.6) - (7.14).

Given a candidate x̃, we check if x̃ ∈ Xf by solving the projection problem

min
z∈R|T |,a∈RJ

∑
t∈T

zt (7.16)

s.t.Aa− x̃ ≤ z, (7.17)

− z ≤ Aa− x̃, (7.18)∑
Aj∈A

aj = 1, (7.19)

a ≥ 0. (7.20)

Problem (7.16) - (7.20) finds the best 1-norm approximation of x in Xf , and returns the optimal

value zero if x ∈ Xf . Otherwise, we find a violated constraint which we add to the approximation

Ĥ x ≤ ĥ.

Problem (7.16) - (7.20) has a large number of variables since A is exponentially large. We

solve (7.16) - (7.20) using a column generation method similar to the one introduced in [Jain

et al., 2010a]. We solve a restriction of Problem (7.16) - (7.20) with a subset of columns Â ⊂ A
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where a is now understood as a vector in a ∈ R|Â|, with aj = 0 for all j with Aj /∈ Â. Then we

check for columns Aj to add to Â by computing the reduced costs of variables aj with Aj /∈ Â

via the dual problem.

The dual to Problem (7.16) - (7.20) is

max
y, u

x̃T y + u (7.21)

s.t.AT y + u ≤ 0, (7.22)

− 1 ≤ y ≤ 1, (7.23)

which has a large number of constraints due to the presence of the matrix A. For a subset of

columns Â ⊂ A (abusing notation since these are matrices), we have the relaxation of the dual

max
y, u

x̃T y + u (7.24)

s.t. ÂT y + u ≤ 0, (7.25)

− 1 ≤ y ≤ 1, (7.26)

g ≥ 0. (7.27)

We are looking for a column Aj such that

ATj y + u ≤ 0
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is violated. So, we solve the slave problem

max
Aj∈A

{
yTAj

}
+ u (7.28)

and identify a violated constraint if the optimal value of this problem is positive. Specifically, we

solve Problem (7.28) using the technique in [Jain et al., 2010a], i.e. we use a maximum reward

network flow problem (since Problem (7.28) is a maximization problem).

To setup this network flow problem, we create a source node with supply 1, and a sink node

with demand 1. We have a fixed time horizon, n = 0, 1, . . . , N stages, so we create a node (n, t)

for every target and every time. The variables in this problem are the flow between nodes,

µ(t,n), (t′,n+1)

which indicate a transition in the asset from target t at time n to target t′ at time n + 1 in the

next period. Effectively, we are taking a transition graph representation on the state space TN+1.

This formulation has the advantage of allowing us to express constraints on feasible patrols. The

maximum reward network flow problem is then of the form

max
µ

{∑
n∈N

yt
∑
n,t

µ(t,n), (t′,n+1) : network flow constraints on µ

}
.

The preceding network flow problem is a linear programming problem. This problem class is

well studied and many efficient solution algorithms (such as the Simplex algorithm) exist that

can obtain an exact optimal solution. We also point out that the preceding network flow problem

can be solved efficiently for any underlying network topology.
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7.5 Problem Properties

This section summarizes some key problem properties. The main points are to better understand

our approximation scheme, to confirm that our cut generation scheme produces deep cuts, and to

see how the standard Bayesian estimation approach relates to our robust approach.

7.5.1 MILP Approximation Error

Our underlying approach is a piecewise linear approximation to a nonconvex problem. We want to

better understand the error bound for this approximation and the resulting solution quality of the

corresponding MILP. We will show that all of the nonconvex functions we are approximating have

bounded Lipschitz constants. Thus, since their variability is bounded, we have an upper bound

on the piecewise linear approximation error as a function of the fineness of the discretization.

Recall that we are approximating the feasibility check problem, which solves

min
x∈Xf

max
ω∈Ω
{r D (x |ω)−N (x |ω)} ,

by linearly interpolating the functions r D (x |ω)−N (x |ω) for all ω ∈ Ω. The first step in our

approximation analysis is to estimate the Lipschitz constant of r D (x |ω) − N (x |ω) for fixed

ω ∈ Ω.

Lemma 2. The Lipschitz constant of r D (x |ω)−N (x |ω) for any ω ∈ Ω is bounded above by

∑
t

e1+maxtRat+maxt Pat +
∑
t

(
Rdt − P dt

)
e1+maxtRat+maxt Pat .
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Proof. By direct computation, r D (x |ω)−N (x |ω) is equal to

r
∑
t

eω1xt+ω2Rat+ω3Pat −
∑
t

((
Rdt − P dt

)
xt + P dt

)
eω1xt+ω2Rat+ω3Pat .

So

|r D (x |ω)−N (x |ω)− r D
(
x′ |ω

)
+N

(
x′ |ω

)
|

≤
∑
t

|eω1xt+ω2Rat+ω3Pat −
∑
t

((
Rdt − P dt

)
xt + P dt

)
eω1xt+ω2Rat+ω3Pat

− eω1x′t+ω2Rat+ω3Pat −
∑
t

((
Rdt − P dt

)
x′t + P dt

)
eω1x′t+ω2Rat+ω3Pat |

≤
∑
t

|eω1xt+ω2Rat+ω3Pat − eω1x′t+ω2Rat+ω3Pat |

+
∑
t

|
((
Rdt − P dt

)
xt + P dt

)
eω1xt+ω2Rat+ω3Pat −

((
Rdt − P dt

)
x′t + P dt

)
eω1x′t+ω2Rat+ω3Pat |.

We have

|eω1xt+ω2Rat+ω3Pat − eω1x′t+ω2Rat+ω3Pat | ≤ eω2Rat+ω3Pat eω1 |xt − x′t|.

Additionally,

|xteω1xt − x′teω1x′t | ≤|xteω1xt − xteω1x′t |+ |xteω1x′t − x′teω1x′t |

≤xteω1 |xt − x′t|+ eω1 |xt − x′t|

≤2eω1 |xt − x′t|.
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Now use the fact that eω2Rat+ω3Pat eω1 is bounded above by

e1+maxt Pat +maxtRat ,

and 2eω1 is bounded above by 2 e. Using Lemma 3 and the triangle inequality, for any x, x′ ∈ Xf

we compute

|max
ω∈Ω
{r D (x |ω)−N (x |ω)} −max

ω∈Ω

{
r D

(
x′ |ω

)
−N

(
x′ |ω

)}
|

≤ rmax
ω∈Ω
|D (x |ω)−D

(
x′ |ω

)
|+ max

ω∈Ω
|N (x |ω)−N

(
x′ |ω

)
|.

We can expand on the previous Lipschitz computation to produce an error estimate for the

overall piecewise linear approximation, by using the following fact to bound the Lipschitz con-

stant of

max
ω∈Ω
{r D (x |ω)−N (x |ω)} .

Lemma 3. Let X be a given set, and f1 : X → R and f2 : X → R be two real-valued functions

on X . Then,

(i) | infx∈X f1 (x)− infx∈X f2 (x) | ≤ supx∈X |f1 (x)− f2 (x) |, and

(ii) | supx∈X f1 (x)− supx∈X f2 (x) | ≤ supx∈X |f1 (x)− f2 (x) |.

Proof. To verify part (i), note

143



inf
x∈X

f1 (x) = inf
x∈X
{f1 (x) + f2 (x)− f2 (x)}

≤ inf
x∈X
{f2 (x) + |f1 (x)− f2 (x) |}

≤ inf
x∈X

{
f2 (x) + sup

y∈Y
|f1 (y)− f2 (y) |

}

≤ inf
x∈X

f2 (x) + sup
y∈Y
|f1 (y)− f2 (y) |,

giving

inf
x∈X

f1 (x)− inf
x∈X

f2 (x) ≤ sup
x∈X
|f1 (x)− f2 (x) |.

By the same reasoning,

inf
x∈X

f2 (x)− inf
x∈X

f1 (x) ≤ sup
x∈X
|f1 (x)− f2 (x) |,

and the preceding two inequalities yield the desired result. Part (ii) follows similarly.

7.5.2 Projection

The feasible region of our problem, Xf , is exactly the same as the one found in [Yang et al.,

2013]. Thus, the results of the cut generation algorithm are unchanged and we obtain deep cuts.

The results are repeated here for completeness.

Lemma 4. (i) If x̃ /∈ Xf , let (y∗, g∗, u∗) be the dual variables at the optimal solution of Problem

((7.16)) - ((7.20)). Then the hyperplane (y∗)T x− (g∗)T b + u∗ = 0 separates x̃ and Xf .

(ii) Furthermore, (y∗)T x− (g∗)T b + u∗ = 0 is a deep cut.
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As in [Yang et al., 2013], we now consider a modified norm minimization problem. The idea

is that we weight the norm towards an optimal solution using local rate of change information

about the objective. In our case, the objective G (x) = minω∈Ω F (x |ω) is a nondifferentiable

function, so we use the subgradient instead of the gradient. The subgradient is

∂G (x) = conv {∇xF (x |ω) : F (x |ω) = G (x)} .

For a subgradient s ∈ ∂G (x), we use the objective
∑

t (st + ξ) zt where ξ > 0 is chosen so that

st + ξ > 0 for all t.

7.5.3 Duality

Here we comment on the relationship of our approach to Bayesian estimation. Bayesian esti-

mation is a classical and widespread tool for incorporating information under uncertainty. To

reveal this relationship, we compute the dual of the constrained variant of Problem (7.3) which

we reprint here for convenience:

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} .

The constraints above cause Lagrange multipliers to appear; so we can compute the standard

Lagrangian dual. To proceed we first introduce the Lagrange multipliers which lie in R|Ω| (since

there are only finitely many adversary types). We let R|Ω|+ denote the set of nonnegative vectors

in R|Ω|.
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Let

P (Ω) ,

{
Λ ∈ R|Ω|+ :

∑
ω∈Ω

Λ (ω) = 1

}

be the space of probability measures on Ω, it is a subset of R|Ω|. We will see shortly that these

probability measures are the decision variables in the dual to Problem (7.4).

Theorem 3. The dual to Problem (7.4) is

min
Λ∈P(Ω)

{
d (Λ) , max

x∈Xf

∑
ω∈Ω

F (x |ω) Λ (ω)

}
. (7.29)

Proof. Let Λ ∈ R|Ω|+ be the Lagrange multiplier for the constraint s ≤ F (x |ω) for all ω ∈ Ω.

We obtain the Lagrangian

L (x, s, Λ) = s+
∑
ω∈Ω

[F (x |ω)− s] Λ (ω) .

The Lagrangian dual problem is then

min
Λ∈R|Ω|

+

max
x∈Xf , s∈R

{L (x, s, Λ)} .

We see that the inner maximization problem d (Λ) yields the implied constraint
�

Ω Λ (dω) = 1

via

max
s∈R

s

(
1−

∑
ω∈Ω

Λ (ω)

)
,
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which is equal to infinity unless the equality
∑

ω∈Ω Λ (ω) = 1 holds. Thus, we have the dual

problem

min
Λ∈R|Ω|

+

{
max
x∈Xf

∑
ω∈Ω

F (x |ω) Λ (ω) :
∑
ω∈Ω

Λ (ω) = 1

}
.

We emphasize that the dual decision variables are prior distributions on the set of types.

Notice that for any fixed Λ ∈ P (Ω), we see that we have a Bayesian problem since we can treat

Λ as a prior distribution. For Λ, we can then perform Bayesian estimation as usual. Thus, we see

that the dual problem is a search for the “best” prior distribution. As a corollary, we reason that

standard Bayesian estimation gives us an upper bound on the optimal value to Problem (7.3).

Corollary 1. (i) maxx∈Xf minω∈Ω F (x |ω) ≤ minΛ∈P(Ω) d (Λ).

(ii) Let Λ ∈ P (Ω) be any prior distribution, then maxx∈Xf minω∈Ω F (x |ω) ≤ d (Λ).

Proof. Follows from weak duality for Problem (7.4),

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} ≤ min
Λ∈P(Ω)

max
x∈Xf

∑
ω∈Ω

F (x |ω) Λ (ω)

which gives

max
x∈Xf

min
ω∈Ω

F (x |ω) ≤ min
Λ∈P(Ω)

max
x∈Xf

∑
ω∈Ω

F (x |ω) Λ (ω)

since

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} = max
x∈Xf

min
ω∈Ω

F (x |ω) .
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7.6 Evaluation

In this section, we evaluate MIDAS in the fishery protection domain, where the USCG must

patrol the Gulf of Mexico to prevent Mexican fishermen (Lanchas) from entering the United

States Exclusive Economic Zone (EEZ) and fishing illegally. The zero-sum Stackelberg game

we consider is played on a square grid, where each grid cell is a potential target. The defender

(USCG) commits to a mixed strategy over fixed length patrols, where each target can be visited at

most once. Additionally, all patrols must start and end in the first row of the grid. Meanwhile, the

Lanchas select their mixed strategies over targets based on the SUQR behavioral model where

each adversary has a unique weight vector ω. For our experiments, the game payoffs are randomly

generated with Rat uniformly distributed in [1,10] and P dt uniformly distributed in [-10,-1]. The

remaining game payoffs, Rdt and P at , are fixed at 10 and -10, respectively. Note that Rat and P at

are the same for all adversaries. All the adversary types ω ∈ Ω used in the experiments were

learned from USCG data. The default settings for each experiment are: five piecewise linear

segments, a set of ten adversary types (i.e., |Ω| = 10), and a patrol length equal to half the

number of targets rounded down (i.e. b |T |2 c). We varied the dimensions of the square grid from

5× 5 to 8× 8 and created thirty randomly generated game instances for each grid size.

7.6.1 Linear Approximation

In MIDAS, we use a linear approximation to estimate the nonlinear SUQR behavioral model.

The classic tradeoff when using approximation techniques is between solution quality and run-

time. Thus, it is important to understand how the granularity of the approximation affects the

performance of MIDAS. Figure 7.1(a) shows how varying the number of segments (5, 10, and
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Figure 7.1: Effect of the number of piecewise linear segments on the solution quality and the
runtime of the MIDAS algorithm.

20) used in the linear approximations impacts the defender’s utility. The x-axis indicates the size

of the grid, while the y-axis is the maximin utility obtained by the defender mixed strategy com-

puted by MIDAS. For all grid sizes, we observe that increasing the number of segments results

in higher utility for the defender as we would expect. In particular, going from 5 to 10 segments

has a significant impact on the defender utility, whereas going from 10 to 20 segments produces

diminishing returns and a much smaller improvement.

The other half of the tradeoff is how the number of segments impacts the runtime of MIDAS.

Increasing the number of segments increases the number of variables and constraints in MIDAS,

leading to a larger optimization problem which presumably would take longer to solve. The
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results from varying the number of segments used in the linear approximation are shown in Figure

7.1(b). The x-axis again indicates the size of the grid, while the y-axis is now the runtime of

MIDAS in seconds. For grid sizes 5 × 5 through 7 × 7, we see that the runtime increases as the

number of segments is increased. However, for the 8 × 8 grid, MIDAS actually runs faster for

10 and 20 segments than it does with 5 segments. One possible explanation is that while each

iteration of MIDAS algorithm takes longer to compute with more segments, the quality of the

cuts generated by the separation oracle improves as the feasible marginal space is represented

with higher granularity. Closer examination of the data for the 8 × 8 grid suggests that this is

indeed the case as MIDAS with 5 segments averages with 125 calls to the separation oracle and

patrol generation slave, while 10 and 20 segments average 82 and 70, respectively.

In practice, it is up to the end user to determine the right tradeoff between approximation

quality and runtime. Our numerical experiments here offer guidance in this regard.

7.6.2 Adversary Types

The primary purpose of MIDAS is to provide a scalable approach for generating game-theoretic

patrols protecting against a set of adversaries with complex human behavior models such as

SUQR. Therefore, we want to evaluate the effect of the number of adversary types on MIDAS

to ensure that it serves its intended function. In Figure 7.2(a), we present the results for the

defender maximin utility obtained by varying the number of adversary types on different grid

sizes. Given that MIDAS computes a robust maximin strategy, we would expect that the defender

utility monotonically decreases as the set of adversary types expands, as each additional type

could present a new possible worst case for the defender. While overall this trend holds, we

occasionally observe that the defender utility increases as the size of Ω is increased. One possible

150



-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2

25 36 49 64
D

ef
en

de
r 

U
til

ity
Number of Targets

10 adversaries
20 adversaries
40 adversaries
80 adversaries

(a) Defender Utility

0
2000
4000
6000
8000

10000
12000
14000

25 36 49 64

R
un

tim
e 

(s
ec

on
ds

)

Number of Targets

10 adversaries
20 adversaries
40 adversaries
80 adversaries

(b) Runtime

Figure 7.2: Effect of the number of adversary types on the solution quality and the runtime of the
MIDAS algorithm.

explanation may be the interaction between the linear approximation and the robust maximin

formulation. Using 5 piecewise segments may be leading to a coarse approximation in which

the monotincity properties no longer hold. As with the number of piecewise linear segments, we

would expect that increasing the number adversary types would also lead to an increase in the

runtime. In Figure 7.2(b), we present the runtime results for MIDAS as the size of Ω is increased,

which fall in line with our expectations. In particular, for the 8 × 8 grid we see a significant

runtime increase as Ω is expanded. However, we also see that the runtimes are relatively constant

for a small number of targets.
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7.6.3 Approach Comparison

Thus far, we have evaluated the performance of MIDAS as the scale of security games is in-

creased with respect to size of the grid or the size of Ω. Now we want to compare how well

MIDAS performs against other approaches that have introduced for solving security games with

multiple boundedly rational adversaries. The first approach we will compare against is Average,

in which a single adversary type ωavg is constructed by averaging the weight vectors of the ad-

versary types in Ω. After obtaining ωavg, we can use MIDAS to solve the security game for

Ω = {ωavg}. The second approach we will compare against is Marginal, which is the robust

maximin formulation from [Haskell et al., 2014] that ignores resource assignment constraints to

produce a marginal coverage distribution over the targets. To compute the Marginal strategy,

we run MIDAS for a single iteration which produces a marginal defender strategy without con-

sidering resource assignment constraints that is then mapped into a probability distribution over

patrols using the one-norm projection. The third approach is Robust which involves running the

MIDAS algorithm to completion.

In Figure 7.3(a), we compare the worst case defender utility of the three approaches against

sets of varying numbers of boundedly rational adversaries. The x-axis shows the number of

adversary types in Ω, while the y-axis indicates the worst case defender utility of the strategies

computed by the different approaches against Ω. Perhaps unsurprisingly, the Average approach

performs the worst out of the three across all sizes of Ω. The defender is optimizing against an

artificially constructed adversary type ωavg that is not in the set Ω. By not considering the extreme

points in Ω, the resulting defender’s strategy is highly susceptible to being exploited by at least

one adversary type which would define the worst case defender utility. The Marginal approach
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Figure 7.3: Solution quality and runtime comparison of three approaches for handling heteroge-
neous populations of adversary types.

shows improvement by being robust against all the types in Ω, even while it initially ignores

the resource assignment constraints. Finally, Robust uses MIDAS to its full potential and shows

additional benefit of considering resource assignment constraints by outperforming Marginal for
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all sizes of |Ω|. Figure 7.3(b) shows a similar analysis as before but now for average case defender

utility. We can see that despite optimizing against the worst case, Robust provides consistent

performance in the average case, outperforming both Average and Marginal for |Ω| > 10

In addition to defender utility, runtime can provide another point of comparison between the

three approaches, which we analyze in Figure 7.3(c). Here the x-axis again indicates the number

of adversary types in Ω, while the y-axis is now the runtime needed to generate the defender’s

strategy using each approach. One would expect that Average, considering one adversary type,

would run faster than Robust, considering |Ω| adversary types. By considering more types, the

defender’s optimization becomes larger with more variables and constraints. Indeed, we observe

that Robust takes longer than Average for all sizes of Ω. The gap between the two approaches

seems to grow as the number of adversaries is increased, particularly for |Ω| = 80. However, the

runtime improvement of Average is likely not enough to make up for the poor solution quality

in real-world domains. Meanwhile, Marginal produces an essentially fixed runtime by solving

only a single iteration of MIDAS and thus requires the least amount of runtime between the three

approaches. Given the high stakes of real-world security domains, it is easy to imagine scenarios

where security agencies would prefer the improved solution quality of Robust over the improved

runtime of Marginal.

7.7 Chapter Summary

The use of bounded rationality models like QR and SUQR in security games is becoming increas-

ingly popular in order to generate strategies that perform better against real human adversaries.

154



These models raise two main research challenges: (i) scalability when handling resource assign-

ment constraints and (ii) robustness when handling multiple boundedly rational adversaries. Up

to this point, previous work has addressed these challenges individually. My thesis addresses

both scalability and robustness simultanesouly by introducing a new algorithm, MIDAS. The

key feature of MIDAS is the combination of incremental cut generation with a robust minimax

formulation. Our experiments demonstrate that MIDAS can scale up to security games with com-

plex resource allocation constraints in the form of spatio-temporal patrols. Additionally, MIDAS

outperforms previous approaches for protecting against multiple adversaries by providing better

solution quality guarantees in terms of worst-case performance. The overall performance of MI-

DAS suggests that it represents the state of the art for complex security game with boundedly

rational adversaries.
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Chapter 8: Conclusion and Future Directions

The success of research on Stackelberg security games has produced a number of applications

deployed in real world security domains to provide resource allocation decision support. Exam-

ples of these applications include ARMOR used at Los Angeles International Airport (LAX) to

randomize road checkpoints and canine patrols [Pita et al., 2008], IRIS deployed by the United

States Federal Air Marshals Service to assign air marshals to international flights [Tsai et al.,

2009], PROTECT utilized by the United States Coast Guard to schedule boat patrols for protect-

ing ports [Shieh et al., 2012], and TRUSTS developed for the Los Angeles Sheriffs Department

to generate patrol schedules through the local metro system [Yin et al., 2012]. One commonality

between these applications is that both the defender and the adversary are modeled as having a

single objective which is to maximize their expected utility. However, the underlying decision

making process in many real world security domains is inherently multi-objective and the as-

sumption of the players optimizing a single objective may no longer be adequate in such settings.

My thesis focuses on modeling more of the complexity present in security domains and ad-

dresses the research challenges raised by introducing multiple objectives into security games.

My research serves to remove the restriction of only modeling players with a single objective

and allows for the development of decision aids that construct higher fidelity games models of
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the underlying domain and offer finer granularity in the resulting analysis. My thesis is able to

achieve this by providing the following contributions:

8.1 Contributions

• Multiple Defender Objectives : In order to capture the fact that the defender is explic-

itly considering multiple objective during the decision making process, I introduced a new

model referred to as a multi-objective security game (MOSG). With multiple objectives,

MOSGs do not have a single optimal solution but rather a space of compromise solutions

known as the Pareto frontier. Thus, I presented the Iterative-ε-Constraints algorithm which

uses an iterative approach in generating a sequence of subproblems to systematically ex-

plore the solution space to find the Pareto frontier. To compute the individual solutions that

make up the Pareto frontier, I introduced an exact approach for solving a mixed-integer

linear programming formulation of each subproblem. Additional contributions include de-

veloping heuristics and approximate approaches that achieve speedup by exploiting the

structure of MOSGs, increasing the scalability of Iterative-ε-Constraints while providing

solution quality guarantees on approximating the Pareto frontier.

• Multiple Adversary Objectives : In addition to considering multiple objectives, human ad-

versaries in many security domains are often boundedly rational in their decision making

and thus are not utility maximizing as is assumed by classical game theory. The behavior

for such adversaries was captured using the Subjective Utility Quantal Response (SUQR)

model and learning the weights associated with the different objectives from data collected
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in real-world security domains. To handle such settings, I introduced the MIDAS algo-

rithm which computes robust defender strategies for large-scale SSGs with heterogeneous

populations of boundedly rational adversaries with multiple objectives. MIDAS is the first

algorithm to address both robustness and scalability simultaneously for such SSGs through

a novel combination of a robust maximin formulation and incremental strategy generation.

This novel combination of features establishes MIDAS as the current state of art for solving

complex security games featuring boundedly rational adversaries with multiple objectives.

8.2 Future Directions

8.2.1 Multiple Defender and Adversary Objectives

My thesis presents models and techniques for solving SSGs in which either the defender or the

adversary are considering multiple objectives. Thus, a logical extension would be to address

SSGs where both the defender and the adversary are trying to optimize multiple objectives. Such

SSGs could be modeled and solved using the contributions provided by this thesis. However,

scalability is already an challenge that had to be addressed when solving SSGs where only one

of the players has multiple objectives. Thus, having both players with multiple objectives further

exacerbates the challenge of scalability and would open up numerous research challenges that

would require modeling and algorithmic contributions.

Given the imperative to find ways of addressing scalability, one possible direction to explore

is parallelized computation. Iterative-ε-Constraints produces the Pareto frontier by generating a

sequence of constrained single-objective optimization problems (CSOP). Currently, those CSOPs
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are solved sequentially using a recursive depth-first tree search. However, there is nothing pre-

venting the CSOPs from being solved in parallel. Thus, as a first step, a queue could be created

where the CSOPs are placed as they are generated, with multiple threads servicing that queue.

Expanding this idea further could lead to a significant redesign in the way Iterative-ε-Constraints

explores the solution space, including possibly using multiple starting CSOPs as opposed to just

one. Additionally, with each CSOPs being more difficult to solve now with multiple adversary

objectives, it would be worthwhile to investigate the potential roles for pruning, heuristics, and

coordination between the parallel processes to improve computational efficiency. For example,

MIDAS uses incremental strategy generation to improve scalability, and it may be possible to

share the strategies generated to solve one CSOP when solving subsequent CSOPs.

The potential impact of modeling a security game with multiple objectives for both the de-

fender and the adversary is significant. At a high level, this new type of security game provides a

mathematical framework which better approximates the type of strategic decision making prob-

lems found in the real world where it is inherent that multiple competing objectives, factors,

constraints, etc. must be balanced. In the process, it opens up of a whole new set of domains

which can be modeled as security games as well as the possibility to develop higher fidelity

models for domains in which security games have already been applied.

8.2.2 Adversary Uncertainty

My thesis also presents models and techniques for addressing adversary uncertainty in the form of

facing heterogeneous populations of boundedly rational adversaries with multiple objectives. The

particular approach I proposed for handling such uncertainty was a robust maximin formulation

which provides solution quality guarantees with respect to worst case performance. However,
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the resulting strategies can be conservative with regards to performance in the average case. On

the opposite end of the spectrum, a Bayesian approach provides the optimal solution if the exact

distribution over the adversaries is known. However, learning such a distribution would require

a significant amount of data that is either not available in real world settings or would incur

considerable costs in terms of time and resources to acquire.

Thus, another possible direction of future research could be to explore alternative approaches

for addressing adversary uncertainty. More specifically, it may be possible to develop an inter-

mediate approach between the robust and Bayesian approaches which can exploit any available

data to fullest extent possible while also remaining robust. Such an approach could start out as

fully robust and then as more data about the adversaries is collected in the real word the more

the adversary models in the game are refined. The idea being that the infusion of additional data

serves to mitigate the adversary uncertainty and, as a result, the generated strategies become less

and less conservative over time. The end result would be an enhanced version of the MIDAS

algorithm which generates better defender strategies the longer it is in use.

A further expansion of this idea could involve incorporating the concepts of exploration and

exploitation from the STREETS algorithm. By considering exploration, the defender strategy

could be constructed to reduce the uncertainty over the adversaries, i.e., allocating the security

resources in such a way so as to learn valuable information about the adversaries. Explicitly

considering this type of value of information (VoI) when generating strategies could reduce the

cost of acquiring a more accurate adversary model. Additionally, even after the model of the

adversaries becomes more refined, exploration would ensure that MIDAS is continuing to learn

and adapt to any emerging trends in adversary behavior.
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