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Abstract 

There are a growing number of automated decision aids 

based on game-theoretic algorithms in daily use by 

security agencies to assist in allocating or scheduling 

their limited security resources. These applications of 

game theory, based on the “security games” paradigm, 

are leading to fundamental research challenges: one 

major challenge is modeling human bounded rationality. 

More specifically, the security agency, assisted with an 

automated decision aid, is assumed to act with perfect 

rationality against a human adversary; it is important to 

investigate the bounded rationality of these human 

adversaries to improve effectiveness of security 

resource allocation. In (Abbasi et al, 2015), the authors 

provide an empirical investigation of adversary bounded 

rationality in opportunistic crime settings. In this paper, 

we propose two additional factors in the “subjective 

utility quantal response” model.  

1. Introduction 

In recent years, the Stackelberg Security Games (SSG) model 

has received significant attention for its success in modeling 

physical security problems and application to real world 

settings, such as scheduling patrols conducted by the US 

Coast Guards at multiple major US ports (Shieh et al. 2012), 

allocating federal air marshals on flights of US Air Carriers, 

and several other applications (Tambe 2011). SSG provides 

a game theory-based representation of the interaction 

between an attacker and defender, and provides 

computational tools to optimize the defender’s action based 

on possible attacker moves (Tambe 2011, Korzyk, Conitzer 

and Parr 2010, Gatti 08).  

In SSG, the defender (leader) moves first by choosing to 

play a particular defense strategy. The adversary (follower) 

observes this strategy and then chooses a best response 

strategy. In order to prevent the adversary from predicting 

the defenders actions, the defender must play a distribution 

over strategies, known as a mixed strategy, rather than a 

single fixed one. The Stackelberg equilibrium computation 

involves finding the utility maximizing mixed strategy, 

taking into consideration the adversary’s response. 

Traditionally, SSG assumes a model of a perfectly rational 

adversary, but in domains such as urban crime, this 

assumption appears weak. It is known that adversaries in 

these domains are boundedly rational (Zhang et al. 2014) and 

moreover, human subjects do not generally demonstrate 

perfect rationality in their decisions (Camerer and Chongn 

2004; Costa-Gomes et al. 2011). Failure to account for this 

bounded rationality can lead to non-optimal defender 

strategies in SSG and hence significant losses for the 

defender. Therefore, constructing a reliable model of the 

adversary behavior is vital for security against urban crime. 

  Models of bounded rationality have received 

significant attention recently (Gal, Pfeffer 2007; Ficici, 

Pfeffer 2008; Nguyen et al. 2013). A commonly used model 

is Quantal Response (McKelvey and Palfrey 1995), which 

models bounded rationality of human subjects by 

introducing uncertainty into their decision making process.  

In SSG literature, variations of Quantal Response (QR) 

models have been investigated (Yang et al. 2013; Nguyen et 

al. 2013; Cui et al. 2014). However, only recently a different 

category of adversaries have been investigated: opportunistic 

adversaries (Zhang et al. 2014). A significant portion of 

urban crime is opportunistic in nature (Zhang et al. 2014); 

these adversaries, in addition to not being completely 

rational, are flexible in execution of crime and in seeking 

opportunities for crime. 

In (Abbasi et al, 2015), the authors investigate human 

adversary models in an opportunistic crime setting. This 

paper focuses on expanding one of the presented models -- 

Subjective Utility Quantal Response (SUQR) -- and 

compares it with other proposed models. We show that the 

new SUQR model outperforms the already presented SUQR 

in the context of opportunistic crime.  

2. Background  

2.1. Stackelberg Security Game   

A Stackelberg Security Game (SSG) is a game model that 

captures the interaction between a single defender (leader) 

and one adversary (follower) (Tambe 2011). The defender 
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protects a set of targets 𝑇 with limited number of resources 

from attack by the adversary. A pure strategy of the defender 

is an assignment of the security resources to the targets. A 

mixed strategy is a probability distribution over the set of all 

possible pure strategies, which is succinctly represented as a 

vector 𝑥  of size |T| in which each element of the vector 

represents the probability of covering a target (Korzhyk, 

Conitzer, and Parr 2010). SSG assumes strategic adversaries 

who learn the defender’s strategy by conducting long-term 

surveillance; the adversary’s pure strategy best response is 

then to choose a target to attack that maximizes the 

adversary’s expected utility. The utility of the adversary is 

given by 𝑈𝑎
𝑐(𝑡)  and 𝑈𝑎

𝑢(𝑡)  when the adversary attacks the 

target 𝑡  and it is covered or uncovered, respectively (the 

utility of the defender is given by 𝑈𝑑
𝑐(𝑡)  and 𝑈𝑑

𝑢(𝑡) , 

respectively). Given the defender mixed strategy 𝑥 , the 

adversary’s expected utility in attacking target t is given by 

the following equation  

𝑈𝑎(𝑡, 𝑥) = 𝑥𝑡𝑈𝑎
𝑐(𝑡) + (1 − 𝑥𝑡)𝑈𝑎

𝑢(𝑡). (1) 

The equilibrium in this game corresponds to the optimal 

strategy 𝑥 that maximizes the defender’s utility assuming the 

adversary provides his best response. However, Equation 1 

assumes a perfectly rational adversary, which may be 

appropriate in domains such as counter-terrorism. However, 

in domains such as opportunistic crime settings discussed 

next, the adversary’s behavior may be governed by models 

of bounded rationality (Nguyen et al. 2013). We review 

human behavior models accounting for adversary bounded 

rationality in SSG in Section 2.3.  

2.2. Opportunistic Security Game (OSG) 

SSG assumes strategic adversaries who learn the defender’s 

strategy and then decide an attack plan that will not change. 

However, in domains such as urban crime and theft on trains, 

the attackers (adversary) are opportunistic, i.e., they are 

flexible about their plan and seek opportunities for crime 

rather than strategically planning attacks. For example, a 

thief may decide not to steal if he observes a police officer, 

and may move to another area to seek opportunities for 

committing a crime. Recent work (Zhang et al. 2014) 

explores a model (Quantal Biased Random Movement) of 

opportunistic attackers within a game interaction between 

the defender and attackers. Specifically, the authors describe 

three characteristics of an opportunistic attacker: (i) 

opportunistically and repeatedly seeks to commit crimes, 

using a boundedly rational process to select the next crime 

location; (ii) reacts to real-time information at execution time 

rather than planning attacks in advance; and (iii) has limited 

observation of defender strategy. Section 0 of this paper 

evaluates the QBRM model along with other models for 

bounded rationality in the OSG domain.  

2.3. Human Behavior Models  

In this section, we describe details of some human behavior 

models that have been explored in the literature, including 

SUQR and QBRM. 

2.3.1. Subjective Utility Quantal Response (SUQR) 
(Conditional Logit) 

In a recent work on SSG (Nguyen et al. 2013), the authors 

combined two key notions of decision making -- Subjective 

Expected Utility (SEU) (Fischhoff, Goitein, and Shapira 

1981) and Quantal Response (McKelvey and Palfrey 1995) 

-- and proposed the SUQR model. The SUQR model is 

mathematically equivalent to the conditional logit model in 

discrete choice theory.  

QR models the uncertainty in the decisions made by an 

agent. Traditionally, the utility maximizing rational agent 

chooses the action 𝑎𝑖 that provides highest utility 𝑢𝑖. In the 

logit QR model, the rationality assumption is relaxed by 

positing that the decision making agent chooses an action 𝑎𝑖 

with probability proportional to 𝑒𝑢𝑖 . In the context of SSG, 

given the defender’s mixed strategy 𝑥, the probability of the 

adversary choosing to attack target 𝑡 is given by 

𝑞𝑡(𝑥) =  
𝑒𝜆𝑈𝑎(𝑡,𝑥)

∑ 𝑒𝜆𝑈𝑎(𝑡′,𝑥)
𝑡′∈𝑇

 
 

(2) 

Other models of QR have assumed a power function for 

formulation of 𝑞𝑡, which is given by 

𝑞𝑡(𝑥) =  
𝑈𝑎(𝑡, 𝑥)𝜆

∑ 𝑈𝑎(𝑡′, 𝑥)𝜆
𝑡′∈𝑇

 
 

(3) 

In Subjective Expected Utility (SEU) - as proposed in 

behavioral decision-making (Savage 1972; Fischhoff et al. 

1981) - the key idea is that individuals have their own 

evaluations of different factors during decision making 

process. In a SSG, the factors considered by an adversary in 

choosing the target to attack include the marginal coverage 

on target 𝑡 (𝑥𝑡) and the reward and penalty for the attacker 

(𝑅𝑡
𝑎, 𝑃𝑡

𝑎). Inspired by the idea of SEU, a subjective utility 

function for the adversary in an SSG setting is as 

follows:  𝑤1𝑥𝑡 + 𝑤2𝑅𝑡
𝑎 + 𝑤3𝑃𝑡

𝑎 , where the weights, 𝑤𝑖 , 

denote the relative importance given to these factors by the 

adversary. While unconventional at first glance, this model 

leads to higher prediction accuracy than the classic expected 
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value function (Nguyen et al. 2013). This might be due to the 

fact that human decision making process may be based on 

simple heuristics. 

The SUQR model replaces the expected value function 

in logit QR model with the SEU function. In the SUQR 

model, the probability that the adversary chooses target 𝑡 is 

given by: 

𝑞𝑡(𝑥) =  
𝑒𝑤1𝑥𝑡+𝑤2𝑅𝑡

𝑎+𝑤3𝑃𝑡
𝑎

∑ 𝑒𝑤1𝑥𝑡′+𝑤2𝑅𝑡′
𝑎 +𝑤3𝑃𝑡′

𝑎

𝑡′∈𝑇

 

 

(4) 

2.3.2. Quantal Biased Random Movement 

Quantal Biased Random Movement (QBRM) is a model 

proposed to describe an opportunistic attacker’s behavior in 

a defender-attacker interaction on graphs (Zhang et al. 

2014).  The defender moves from node to node on the graph 

according to some strategic transition matrix, in the hope of 

dissuading the attacker from committing crimes (not in an 

effort to catch the attacker). The adversary likewise moves 

from node to node seeking opportunities for crime at each 

node. The adversary may commit a crime if no defender is 

present at a node, but does not commit a crime if a defender 

is present, which models the flexibility of his plans. The 

adversary also has a belief about the defender’s position, 

which is based on the defender’s coverage probability over 

different stations and trains. The belief of the attacker, 𝑐𝑏, 

about the defender’s position at any given time is a 

probability distribution over possible defender positions, and 

it also depends on real-time observations.  That is, if a 

defender is currently observed, then the attacker’s belief 

about the position of the observed defender matches the 

actual position, otherwise it is a probability distribution 

based on the stationary distribution. Given belief 𝑐𝑏
𝑡  at time 

𝑡 and current position 𝑖 of the adversary, the adversary has 

an expected utility 𝑈(𝑗|𝑖, 𝑐𝑏
𝑡 ) of moving to position 𝑗.  

The adversary is also assumed to have bounded 

rationality, hence the QR model is used to model his choice 

of actions. More specifically, the probability of the adversary 

moving from position i to position 𝑗 is given by the following 

equation: 

𝑞𝑗(𝑖, 𝑐𝑏
𝑡 ) =  

𝑈(𝑗| 𝑖, 𝑐𝑏
𝑡 )𝜆

∑ 𝑈(𝑘|𝑖, 𝑐𝑏
𝑡 )𝜆

𝑘

 
(5) 

The authors provide algorithms to compute the optimal 

strategy of the defender, given parameters of the adversary 

model.  

In this paper we use a setting similar to OSG, but explore 

a variety of different models of the adversary. And to the best 

of our knowledge, our work is the first to perform human 

subject experiments in the context of OSG. 

3. Experiments 

3.1. Experimental Procedure 

We used the data from (Abbasi et al, 2015) to evaluate the 

performance of various models of human behavior in OSG 

settings. To simulate urban crimes, an online treasure 

hunting game was developed, which was set in a metro 

transportation system. Human subjects, recruited from 

Amazon Mechanical Turk (AMT), played the role of a 

treasure hunter. These players attempt to maximize the 

rewards they receive by accumulating stars from metro 

stations in a limited time. Each participant played eight 

games in total: two practice games, two validation games, 

and four main games. After each practice round, players 

were provided with feedback on their choices. Then they 

played two simple validation games, but they were not 

informed that these were validation games. The results of 

players who did not score a set threshold in the validation 

rounds were discarded, in order to eliminate invalid data 

 Before playing the game, players were provided with 

detailed instructions explaining the game mechanics (which 

were also available for review at any time during the game). 

After the game, a brief survey was used to gather data about 

the players’ perception of the game, demographics, and risk 

seeking tendencies. 

3.2. Main Games Description  

In the main games, human subjects collect rewards by 

visiting any of the six stations (see an example in Figure 1), 

while avoiding officers on patrol. Each station has a known 

reward, indicated by the number of stars. These stars are 

guarded by two officers, and each officer patrols three 

stations (there is no overlap in officer patrol). If a player 

(human) arrives at a station when there is no officer present, 

his total reward increases by the number of stars of that 

station; if the officer is present at the station, he does not gain 

any reward, but does not pay any penalty either.  The player’s 

objective is to maximize the total reward. Players must 

carefully choose which stations to visit, considering the 

available information about rewards and officers’ coverage 

distribution on stations.  Players can travel to any station 

(including the current one) from their current station by train 

(the dotted lines in Figure 1). Sub-windows contain 

additional information including total reward, remaining 

game time, link to full instructions, and the message board.  

The officers patrol (move around) stations according to 

a pre-determined strategy which is calculated offline using 
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an optimization algorithm similar to the one presented in 

(Zhang et al. 2014). Given the topology of the metro system 

and the stars at each station, a randomized patrolling strategy 

is generated, which can be used to determine the stationary 

coverage. The stationary coverage probabilities of each 

station and trains are revealed to the players, but the exact 

transition matrix is hidden. During the game, players cannot 

observe where officers are actually located, unless they 

encounter the officer at a station. 

Each player starts each main game at a random station, 

and is given a limited amount of game time (100 units). For 

both the player and the officer, visiting a station takes one 

unit of time, and traveling to a new station takes a number of 

time units equal to the minimum distance between source 

and destination station along train routes. A connected line 

between two stations in the graph (called an edge) illustrates 

a route between the two stations with unit distance.   

The game can finish in one of three ways: (1) the player 

exceeds the 45 minutes limit to read the instruction and play 

all the games or (2) uses up all 100 units of time for each 

game, and finally (3) each game is randomly terminated after 

a station visit, which happens with a 10% probability after 

each such visit. The random termination encourages the 

players to choose each action carefully, as there is a chance 

the game may terminate after each visit. The termination 

randomizer is also used to model attackers exiting the metro 

system (Zhang et al. 2014).  

3.2.1. Main Games Design 

Recall that our study has practice games, validation games, 

and four main games. In all main games, there were six 

stations, but each game had different layouts, different 

distributions of rewards at each station, and different 

stationary coverage probabilities. In the experiments, the 

four games were shown in random order.  

3.2.2. Participants 

To be eligible to participate, AMT participants must have 

played more than 500 games on AMT with at least 95% 

acceptance rate. The games were played in three sets of 

experiments. In each set, out of about 70 participants, at least 

55 unique human subjects successfully completed the 

games; i.e. successfully passed the validation games, and 

played a set of four games. In total, 167 unique human 

subjects successfully passed the validation games and their 

data were used for evaluation. 

4. New SUQR Model  

Previous work on opportunistic crime (Abbasi et al, 2015) 

studied how well human behavior models capture 

opportunistic attacker behavior and their choices. These 

models are based on variations of Logit Quantal Response 

and Subjective Utility Quantal Response. We list these 

models in Table1.  

Here, we propose a new SUQR (SUQR-S&F) model and 

compare it with other models using different metrics 

computed on the experimental data. 

In (Abbasi et al, 2015) the authors presented SUQR models 

with the following features: number of stars at destination 

station (also called the attractiveness, or att), stationary 

coverage probability (referred to as SP or sta) or projected 

coverage probability (referred to PP or proj) of destination 

station, the distance between the current station and the 

destination station (dist), and the connectivity degree of the 

destination station (con). Thus, for example, SUQR-SP is  

∑ 𝑤𝑘𝑓𝑘(𝑖)𝑘 = 𝑤𝑎𝑡𝑡𝑎𝑡𝑡𝑖+ 𝑤𝑠𝑡𝑎𝑃𝑟𝑜𝑗𝑖+ 𝑤𝑑𝑖𝑠𝑑𝑖𝑠𝑖 + 𝑤𝑐𝑜𝑛𝑐𝑜𝑛𝑖  (6)       

There were two variations of SUQR models in (Abbasi et al, 

2015).  The first uses a single set of weights whether the 

attacker currently observes the officer or not. The second 

uses two sets (conditional or C) of weights, one when the 

officer is observed and the other when not. 

 

 

 

 

 

 

 

 

 
Figure 1. Game interface 
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In this paper, we introduce a new version of SUQR with 

additional indicator features that refer to an attacker’s 

preference to stay at (leave) the current station when he was 

successful (failed) there in the last round. This is to test the 

hypothesis that if the player successfully attacked a station, 

he gives additional positive weight to that station and boosts 

his probability of attack at the same station in the next round. 

On the other hand, if the player failed to attack his current 

station, he gives negative weight to the station which boost 

his probability of attacking other stations.  This 

phenomenon, often referred to as “repeat-victimization”, is 

well-known in criminology (Short et al, 2009), making it of 

interest in the OSG domain. 

5. Model Prediction Accuracy  

We used four metrics to evaluate how well different models 

predict human decision making: 
 

5.1.  Root-Mean-Square Error (RMSE)  

RMSE represents the deviation between model’s prediction 

of attacker’s movement (�̂�) and the actual proportion 

movements of AMT players from each station to others (𝑝). 

The prediction probability (�̂�) and proportion movements 

(𝑝) both distinguish between the situations that the attacker 

observes and does not observe the officer. Here, 𝑛 is the 

number of data points.  

𝑅𝑀𝑆𝐸(�̂�) =√𝑀𝑆𝐸(�̂�) where MSE (�̂�) = 
1

𝑛
∑(�̂� − 𝑝)

2
(7) 

5.2. Weighted Absolute Percentage Error (WAPE) 

WAPE can provide a more accurate measure of model fit in 

when we have outliers  

   𝑊𝐴𝑃𝐸 =  ∑ |�̂� − 𝑝| ∑ 𝑃⁄    (8) 

5.3. Akaike information criterion (AIC) 

AIC is a measure of relative quality of a model and of the 

information lost when a given model is used. The model with 

the smallest AIC is the best fit model among other models, 

but absolute AIC cannot provide any information about a 

particular model’s goodness of fit.  

5.4. Average Weighted Error (AWE) 

In RMSE and WAPE metrics, the prediction error is 

weighted equally for all stations. However, under-prediction 

in a station with higher rewards will result in higher penalty 

for the defender. Therefore, we consider weighted errors 

(WE) as follow:  

𝑊𝐸 = ∑ ∑ ∑ ∑ max (0, 𝑝𝑖,𝑗,𝑘,𝑙 − 𝑝𝑖,𝑗,𝑘,𝑙
̂ ) 𝑎𝑡𝑡𝑗,𝑘,𝑙 

𝑖=6
𝑖=1

𝑗=6
𝑗=1

𝑘=4
𝑘=1

𝑙=3
𝑙=1 (10) 

where 𝑝𝑖,𝑗,𝑘,𝑙 is the proportion movements from station 𝑖 to station 

𝑗 in graph 𝑘 in experiment 𝑙   

6. Experimental Results  

The following are our main observation from the experiment 

results, starting with significant deviation from perfectly 

rational play by human subjects. 

 Human decision-making does not conform 

to assumption of perfect rationality. Table 3 shows 

perfect rationality is doing worst among all the models.  

 Adding additional weights for player 

success/failure results in further improvement of 

SUQR model. In (Kar et al, 2015), the authors investigate 

a human behavior model in the green security domain, and 

reveal that the attacker adapts his future action based on past 

Table 1- Summary of models used for human bounded rationality in OSG 

Category Model Abbrv. 
Generic Mathematical 

Formulation 

Quantal 

Response 

Logit Quantal Response Equilibrium QR 𝑞𝑡(𝑖) =
𝑒𝜆𝑈 (𝑖)

∑ 𝑒𝜆𝑈 (𝑗)
𝑗

 

Quantal Biased Random Movement QBRM 𝑞𝑡(𝑖) =
𝑈(𝑖)𝜆

∑ 𝑈(𝑗)𝜆
𝑗

 

 

 

SUQR 

 

SUQR with Projected Probability (PP) SUQR-PP 𝑞𝑡(𝑖) =
𝑒∑ 𝑤𝑘𝑓𝑘(𝑖)𝑘

∑ 𝑒∑ 𝑤𝑘𝑓𝑘(𝑗)𝑘𝑗
   See eqn.(6) 

SUQR with Stationary Probability (SP) as one factor SUQR-SP Same as above except using SP instead of PP 

SUQR with Projected Probability with conditional 

weights 
SUQR-PP-C 

Same as SUQR-SP, except two different set of 

weights 

SUQR with Stationary Probability with conditional 

weights for observed (o) and not observed (n) case 
SUQR-SP-C Same as above except using SP instead of PP 

SUQR with Stationary Probability with conditional 

weights and Successful and Failure Weights 
SUQR-SP- S&F 

Same as above with additional failure and 

Success weights 
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successes and failures. They show that adversaries who have 

succeeded in attacking a target in one round tend to attack a 

target with ‘similar’ features in the next round. 

Figure 2a, 2b, and 2c reveal similar results in our urban crime 

experiment. We used the data for three experiments that each 

include four graphs. As shown in Figure 2a, when the data 

for all the stations is aggregated, we get similar results as in 

(Kar et al, 2015); the players who have attacked a station 

successfully tend to stay at that station more than those who 

failed in their attack. The y-axis in the graph denotes the 

percentage of (i) attacks on the same station out of the total 

successful attacks in the previous step and (ii) attacks on the 

same station out of the total failed attacks in the previous 

step. Moreover, when the aggregated data is used, 

differences between the percent of successful people who 

stay and the percent of failed people who stay is statistically 

significant (using Student’ t-test with 95% CI). This 

motivates the addition of two further weights to SUQR-C 

(the winner of six previously used model) and results in 

SUQR-S&F: 𝑤𝑓𝑎𝑖𝑙  and 𝑤𝑠𝑢𝑐𝑐 . 𝑤𝑓𝑎𝑖𝑙  ( 𝑤𝑠𝑢𝑐𝑐 ) refers to the 

additional weight to staying at the same station when the 

player failed (succeeded). As expected, 𝑤𝑓𝑎𝑖𝑙  is negative (-

0.9666) and 𝑤𝑠𝑢𝑐𝑐  is positive (0.1452). Table 3 also shows 

that the SUQR-S&F results in better prediction accuracy in all four 

categories.  

Table 3- Model prediction accuracy 
Model AIC RMSE WAPE WE 

Perfectly Rational - 0.1964 0.8562 50.943 

QR 8801.0 0.1868 0.7944 47.268 

QBRM 8748.2 0.18 0.7494 44.588 

SUQR-SP 8461.0 0.1748 0.7211 42.907 

SUQR-PP 8572.3 0.17669 0.7385 43.943 

SUQR-SP-C 8442.6 0.17019 0.7138 42.471 

SUQR-PP-C 8554.7 0.17490 0.7324 43.578 

SUQR-S&F 8390.7 0.16372 0.6868 40.867 

Figure 2b and 2c shows our further investigation when we 

group stations into two categories: stations with high reward 

(Figure 2b) – those with reward more than median reward in 

the graph - and stations with low reward.  Figure 2b shows 

that, in all experiments and in all graphs, players who 

succeeded at a high reward station were more likely to 

remain than those who failed at a high reward station. But 

that is not the case for Figure 2c, indicating that the strength 

of this effect is related to how attractive the current station 

is.  

Figure 2a: Attacking the same station 

Figure 2b : Satiation with High Rewards  

Figure 2c: Stations with Low Rewards 

Table 2- Model parameters and their values 

Model Parameters 

1. Logit Quantal Response Equilibrium 𝜆 =0.3645 

2. Quantal Biased Random Movement 𝜆 =1.1955 

3. SUQR with SP as one factor < 𝑤𝑎𝑡𝑡, 𝑤𝑠𝑡𝑎, 𝑤𝑑𝑖𝑠, 𝑤𝑐𝑜𝑛 > = <0.3853,-4.6033,-0.7031,0.145> 

4. SUQR with PP as one factor < 𝑤𝑎𝑡𝑡, 𝑤𝑝𝑟𝑜𝑗 , 𝑤𝑑𝑖𝑠, 𝑤𝑐𝑜𝑛 > = <0.2136,-2.5495,-0.6937,0.0327> 

5. SUQR with Stationary Probability  with 

conditional weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑠𝑡𝑎

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜  , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑠𝑡𝑎

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4206,-4.2065,-0.4281,0.2451,0.4106,-4.9489,-0.7634,0.0427> 

6. SUQR with Projected Probability with 

conditional weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.1915,-1.8435,-0.7485,0.0834,0.2584,-3.3138,-0.6021,0.0418> 

7. SUQR with SP with conditional weights 

and Successful and Failure weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑓𝑎𝑖𝑙 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , , 𝑤𝑠𝑢𝑐𝑐 > = 

< 0.4281 , -3.9527 , -0.8320 , 0.1491 , -0.9666 , 0.4068 , -4.7005 , -0.6816, 0.0853, 0.1452 > 
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7. Conclusions 

With the growing number of automated decision aids based 

on game-theoretic algorithms in daily use by security 

agencies, investigations of bounded rationality models of 

human adversary decision making are now critical, in order 

to ensure effective security resource allocation and 

scheduling. In this paper we introduced a new model and use 

the data from extensive human subject experiments to 

compare it with bounded rationality models, and illustrate 

that: the SUQR-S&F model significantly outperformed 

quantal response in predicting player behavior, thus further 

indicating that human decision making is not based on 

maximizing expected utility. These and other findings 

outlined in this paper provide important advice for practical 

implementations of decision-aids. Indeed, as police 

departments begin to adopt these decision aids, modeling 

and testing these findings in practice in the real-world 

provides an important next step for future work. 
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