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Abstract. Design imposes a novel social choice problem: using a team
of voting agents, maximize the number of optimal solutions; allowing
a user to then take an aesthetical choice. In an open system of design
agents, team formation is fundamental. We present the first model of
agent teams for design. For maximum applicability, we envision agents
that are queried for a single opinion, and multiple solutions are obtained
by multiple iterations. We show that diverse teams composed of agents
with different preferences maximize the number of optimal solutions,
while uniform teams composed of multiple copies of the best agent are in
general suboptimal. Our experiments study the model in bounded time;
and we also study a real system, where agents vote to design buildings.
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1 Introduction

Teams of voting agents are a power tool for finding the optimal solution in many
applications [15, 1, 16, 18, 10], as there are theoretical guarantees in finding one
optimal choice [5]. For design problems, however, finding one optimal solution is
not enough, and we actually want to find as many optimal solutions as possible,
allowing a human to choose according to her aesthetical taste. Even if a user
does not want to consider too many solutions, they can be filtered and clustered
[7], allowing her to easily make an aesthetical choice. Hence, a system of voting
agents that produces a unique optimal solution is insufficient; and we propose
the novel social choice problem of maximizing the number of optimal alternatives
found by a voting system. As ranked voting may suffer from noisy rankings when
using existing agents [11], we study multiple voting iterations.

Traditionally, social choice studies the optimality of voting rules, assuming
certain noise models for the agents, and rankings composed of a linear order
over alternatives [5, 4, 14]. Hence, there is a single optimal choice, and a system
is successful if it can return that optimal choice with high probability. More
recently, several works have been considering cases where there is a partial or-
der over alternatives [22, 19], or when the agents output pairwise comparisons
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instead of rankings [6]. However, these works still focus on finding an optimal
alternative, or a fixed-sized set of optimal alternatives (where the size is known
beforehand). Therefore, they still provide no help in finding the maximum set of
optimal solutions. Moreover, they assume agents that are able to output com-
parisons among all actions with fairly good precision, and the use of multiple
voting iterations has never been studied. When considering agents with different
preferences, the field is focused on verifying if voting rules satisfy a set of axioms
that are considered to be important to achieve fairness [17].

In this work we offer a completely different perspective: we show that, unless
we have an idealized agent, we only maximize the number of optimal solutions
if we have agents with different preferences. Motivated by the need of selecting
agents from an open system, for greater applicability we only consider agents
that output a single action. We present a theoretical study of which teams are
desirable for design problems, and how their size may effect optimality. We show
that, contrary to traditional social choice models, increasing the team size may
significantly harm performance; and that a diverse team of agents with different
preferences is highly desirable for achieving optimality. In doing so, we draw a
novel connection between social choice and number theory ; allowing us to show,
for example, that the optimal diverse team size is constant with high probabil-
ity, and a prime number of optimal actions may impose problems. We present
synthetic experiments to further study our model, providing realistic insights
into what happens with bounded computational time. Finally, we present exper-
iments in a highly relevant domain: architecture design, where we show teams
of agents that vote to design energy-efficient buildings. Hence, this is the first
work exploring and showing the potential of voting systems in being creative, by
actually creating new alternatives from the opinions of existing agents.

2 Related Work

As mentioned, traditional works in social choice concern finding a correct ranking
in domains where there is a unique optimal decision [5, 4, 14, 20]. Recent works,
however, are considering more complex domains. Xia and Conitzer (2001) [22]
study the problem of finding k optimal solutions, where k is known beforehand,
by aggregating rankings from each agent. However, not only do they need strong
assumptions about the quality of the rankings of such agents, but they also show
that calculating the MLE from the rankings is an NP-hard problem.

Procaccia et al. [19] study a similar perspective, where the objective is to
find the top k options given rankings from each agent, where, again, k is known
in advance. However, in their case, they assume there still exists one unique
truly optimal choice, hidden among these top k alternatives. Elkind and Shah
(2014) [6] study the case where instead of rankings, the voters output pairwise
comparisons among all actions, which may not follow transitivity. However, their
final objective is still to pick a single winner.

Finally, outputting a full comparison among all actions can be a burden for
an agent [3]. Jiang et al. (2014) [11] show that actual agents can have very noisy
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rankings, and therefore do not follow the assumptions of previous works in social
choice. Hence, as any agent is able to output at least one action (i.e., a single
vote), we study here systems where agents vote across multiple iterations.

3 Design Domains

We consider in this work domains where the objective is to find the highest
number of optimal solutions. We show that design is one of such domains. One of
the most common computational design approaches is to use parametric designs
[21, 9, 7], where a human designer creates an initial design of a product using
computer-aided design tools. However, instead of manually deciding all aspects of
the product, she leaves free parameters, whose values can be modified to change
the design. This approach is used because the number of different possibilities
that a human can manually create while looking for optimality is limited, so a
computer system is used to refine the design and find optimal solutions.

Design problems are in general multi-objective [12], since a product normally
must be optimized across different factors. For example, a product should have a
low cost, but at the same time high quality, two highly-contradictory objectives.
Hence, there are a large number of optimal solutions, all tied in a pareto fron-
tier. For the computational system, these optimal solutions are all equivalent.
However, a human may dynamically decide to value some factor over another,
and/or pick the option that most pleases her own aesthetical taste or the one of
the target public/client.

Note that choosing a design according to aesthetics is an undefined problem,
since there are no formal definitions to compare among different options. Hence,
the best that a system can do is to provide a human with a large number of
optimal solutions (according to other measurable factors), allowing her to freely
decide among equally optimal solutions — but most probably with not equal
aesthetical qualities.

Therefore, it is natural that in design problems we are going to have many
possible solutions, and we want to find as many optimal ones as possible. In fact,
there are many benefits in discovering a large number of optimal solutions:

Knowledge Does not Hurt: Having more optimal solutions to choose
from is never worse than having less. For example, if a designer has enough
time to analyze only x solutions, she can do so with a system that provides
more than x optimal solutions by sampling the exact amount that she desires.
However, she will never be able to do so with a system that provides less than
x optimal solutions. Moreover, we can easily identify and eliminate solutions
that are similar by applying clustering and analysis techniques [7], so that every
solution that the human looks at is meaningful.

Knowledge Increases Confidence in Optimality: In general design
problems, the true pareto frontier is unknown. Genetic Algorithms are widely
used in order to estimate it. The only knowledge available for the system to
evaluate the optimality is in comparison with the other solutions that are also
being evaluated during the optimization process [13]. Many apparently “opti-
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mal” solutions are actually discovered to be sub-optimal as we find more solu-
tions. Hence, finding a higher number of optimal solutions decreases the risk of
a designer picking a wrong choice that was initially outputted as “optimal”.

Knowledge Increases Aesthetical Qualities: If a human has a larger set
of optimal solutions to choose from, there is a greater likelihood that at least
one of these solutions is going to be of high aesthetical quality according to her
preferences, or the ones of the target public.

Knowledge Increases Diversity of Options: In general, when a system
x has more optimal solutions available than a system y, it does not necessarily
imply that the solutions in the system x are more similar, while the optimal
solutions in y are more different/diverse. In fact, all things equal, the greater
the amount of optimal solutions, the higher the likelihood that we have more
diverse solutions available.

4 Agent Teams

We present our theory of agent teams for design problems. Consider a team
that vote together at each possible decision point of the design of a product (for
example, they may vote for the value of each parameter, in a parametric design).
Hence, let Φ be a set of agents φ, and Ω a set of world states ω. Each ω has an
associated set of possible actions Aω. At each world state, each agent φi outputs
an action aj , an optimal action according to the agent’s imperfect evaluation –
which may or may not be a true optimal action. Hence, there is a probability pj
that the agent outputs a certain action aj . The teams take the action decided
by plurality voting (ties are broken randomly). We assume that the world states
are independent, and by taking an optimal action at all world states we find an
optimal solution for the entire problem.

In this paper our objective goes beyond finding one optimal solution, we want
to maximize the number of optimal solutions that we can find. For greater appli-
cability, we consider here agents that output a single action. Hence, we generate
multiple solutions by re-applying the voting procedure across all world states
multiple times (which are called voting iterations – one iteration goes across all
world states, forming one solution). Formally, let S be the set of (unique) optimal
solutions that we find by re-applying the voting procedure through z iterations.
Our objective is to maximize |S|. We will show that, under some conditions, we
can achieve that when z →∞ (we study bounded time in Section 5).

We consider that at each world state ω there is a subset Goodω ⊂ Aω of
optimal actions in ω. An optimal solution is going to be composed by assign-
ing any aj ∈ Goodω in world state ω – for all world states. Conversely, we
consider the complementary subset Badω ⊂ Aω, such that Goodω ∪ Badω =
Aω,Goodω ∩Badω = ∅. We drop the subscripts ω when it is clear that we are
referring to a certain world state.

One fundamental problem is selecting which agents should form a team. By
the classical voting theories, one would expect the best teams to be uniform
teams composed of multiple copies of the best agent [5, 14]. Here we show, how-
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ever, that for design problems uniform teams need very strong assumptions to
be optimal, and in most cases they actually converge to always outputting a
single solution – an undesirable outcome. However, diverse teams are optimal as
long as the team’s size grows carefully, as we explain below in Theorem 1.

We call a team optimal when |S| →
∏
ω |Goodω| as z →∞, and all optimal

actions are chosen by the team with the same probability. Otherwise, even though
the team still produces all optimal solutions, it would tend to repeat already
generated solutions whose probability is higher. Since in practice there are time
bounds, such condition is fundamental to have as many solutions as possible in
limited time.

We first consider agents that are independent and identically distributed. Let
pGoodj be the probability of voting for aj ∈ Good, and pBadk be the probability of
voting for ak ∈ Bad. Let n = |Φ| be the size of the team, and Nl be the number
of agents that vote for al in a certain voting iteration. If ∀aj ∈ Good, ak ∈ Bad,
pGoodj > pBadk , the team is going to find one optimal solution with probability 1
as n→∞, as we show in the following observation:

Observation 1 The probability of a team outputting one optimal solution goes
to 1 as n→∞, if pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad.

Proof. Note that as the agents are independent and identically distributed, we
can model the process of pooling the opinions of n agents as a multinomial
distribution with n trials (and the probability of any class k of the multinomial
corresponds to the probability pk of voting for an action ak).

Hence, for each action al, the expected number of votes is given by E[Nl] =
n×pl. Therefore, by the law of large numbers, if pGoodj > pBadk ∀aj ∈ Good, ak ∈
Bad, we have that Nj > Nk. Hence, the team will pick an action aj ∈ Good,
in all world states, if n is large enough (i.e., n→∞). �

However, with a team made of copies of the same agent, the system is likely
to lose the ability to generate new solutions as n increases. If, for each ω, we
have an action aωm such that pGoodm > pGoodj ∀aωm 6= aωj , the team converges to
picking only action aωm (Proposition 1 below). Hence, |S| = 1, which is a very
negative result. Therefore, contrary to traditional social choice, here it is not the
case that increasing the team size always improves performance.

Let pGood =
∑
j p

Good
j be the probability of picking any action in Good.

We re-write the probability of an action aGoodj as: pGoodj = pGood

|Good| + λj , where∑
j λj = 0. Let λ+ be the set of λj > 0. Let λHigh be the maximum possible

value for λj ∈ λ+, such that the relation pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad

is preserved. We show that when z →∞, |S| is the highest as maxλ+ → 0, and
the lowest (i.e., one) as minλ+ → λHigh.

Proposition 1. The maximum value for |S| is
∏
ω |Goodω|. When z, n→∞,

as maxλ+ → 0, |S| →
∏
ω |Goodω|. Conversely, as minλ+ → λHigh, |S| → 1.
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Proof. As maxλ+ → 0, λj → 0, ∀aj . Hence, E[Nj ]→ n× pGood

|Good| , ∀aj ∈ Good.

Because ties are broken randomly, at each world state ω, each aj ∈ Goodω is
selected by the team with equal probability 1

|Goodω| . As E[Nj ] = E[Nk] ∀aj , ak ∈
Good, we have that at each ω it is possible to choose |Goodω| different actions.
Hence, there are

∏
ω |Goodω| possible combinations of solutions. At each voting

iteration, ties are broken at each ω randomly, and one possible combination
is generated. As z → ∞, eventually we cover all possible combinations, and
|S| →

∏
ω |Goodω|.

Conversely, as minλ+ → λHigh, E[Nj ] → n × pGoodj for one fixed aj such

that pGoodj > pGoodk ,∀aj 6= ak ∈ Good (and, consequently, E[Nj ] > E[Nk]), at
each ω. Hence, there is no tie in any world state, and the team picks a fixed aj
at each world state. Therefore, even if z →∞, |S| → 1. �

Therefore, uniform teams need a very strong assumption to be optimal: the
probability of voting for optimal actions must be uniformly distributed over all
optimal actions (maxλ+ → 0). We show that, alternatively, we can use agents
with different “preferences” (i.e., “diverse” agents), to maximize |S|. We consider
here agents that have about the same ability in problem-solving, but they prefer
different optimal actions. As the agents have similar ability, in order to simplify
the analysis we consider the probabilities to be the same across agents, except for
the actions in Good, as each agent φi has a subset Goodi ⊂ Good consisting
of its preferred actions (which are more likely to be chosen than other actions).
We denote by pij the probability of agent φi voting for action aj . ∀aj ∈ Goodi,

let pGoodi =
∑
j pij , pij =

pGoodi

|Goodi| , and pij > pik,∀ak /∈ Goodi. Goodi∩Goodl

(of agents φi and φl) is not necessarily ∅. Consider we can draw diverse agents
from a distribution F . Each agent φi has r < |Good| actions in its Goodi,
and we assume that all actions in Good are equally likely to be selected to
form Goodi (since they are all equally optimal). Note that each agent can even
prefer a single action (r = 1), so this is a realistic assumption. We show that by
drawing n agents from F , the team is optimal for large n with probability 1, as
long as n is a multiple of a divisor (> 1) of each |Goodω|. We also show that
the minimum necessary optimal team size is constant with high probability as
the number of world states grows. We start with the following proposition:

Proposition 2. If a team of size n is optimal at a world state, then gcd(n, |Good|) >
1 (n and |Good| are not co-prime).

Proof. Prove by contradiction. By the optimality requirements we must have
nr = k|Good|, where k is a constant ∈ N>0 representing the number of agents
that have a given action aj in its Goodi – note that it must be the same for all
optimal actions. If n and |Good| are co-prime, then it must be the case that r
is divisible by |Good|. However, this yields r ≥ |Good|, which contradicts our
assumption. Therefore, n and |Good| are not co-prime.�

This implies hard restrictions for world states where |Good| is prime, or for
teams with prime size n: if n is prime, |Good| must be a multiple of n; and if
|Good| is prime, n must be a multiple of |Good|.
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Now we consider all world states Ω. For a team of fixed size n, Proposition
2 applies across all world states. Hence, the team’s size must be a multiple of a
divisor (> 1) of each |Goodω|. Note that the pdfs of the agents (and also r) may
change according to ω. Let D be a set containing one divisor of each world state
(if two or more world states have a common divisor x, it will be representable
by only one x ∈ D). Hence, ∀ω, ∃d ∈ D, such that d

∣∣ |Goodω|; and ∀d ∈ D,

∃Goodω, such that d
∣∣ |Goodω|. There are multiple possible D sets, from the

superset of all possibilities D .
Therefore, we can now study the minimum size necessary for an optimal

team. Applying Proposition 2 at each world state ω, we have that the minimum
size necessary for an optimal team is n = minD∈D

∏
d∈D d. Hence, our worst

case is when each |Goodω| is a unique prime, as the team will have to be a
product of each (unique) optimal action space sizes. This means that:

Proposition 3. In the worst case, the minimum team size is exponential in the
size of the world states |Ω|. In the best case, the minimum necessary team size
is a constant with |Ω|.

Proof. In the worst case, each added world state ω has a unique prime optimal
action space size. Hence, the minimum team size is at least the product of the
first |Ω| primes, which, by the prime number theorem, has growth rate exp((1 +
o(1))|Ω| log |Ω|). In the best case, each added Goodω has a common divisor
with previous ones, and the minimum necessary team size does not change. �

However, we show that the worst case happens with low probability, and the
best case with high probability. Let N be the maximum possible |Good|, and
assume that each new world state ωj will have a uniformly randomly drawn
number of optimal actions, denoted as mj , for all j = 1, . . . ,M .

Proposition 4. The probability that the minimum necessary team size grows
exponentially tends to 0, and the probability that it is constant tends to 1, as
M,N →∞.

Proof. We need to show that the probability that m1, . . . ,mM−1 are all co-prime
with mM tends to 0 as M,N →∞. Assume N →∞, then given any prime p,
the probability that at least one of any independently randomly generated M−1
numbers m1, ...,mM−1 has factor p is 1− (1− 1

p)
M−1, while the probability that

one independently randomly generated number mM has factor p is 1
p . Therefore,

the probability mM shares common factor p with at least one of m1, . . . ,mM−1

is
1−(1−1

p)
M−1

p . The probability that mM is co-prime with all m1, . . . ,mM−1 is∏
all primes p[1−

1−(1−1
p)

M−1

p ]; which tends to
∏

all primes p(1−
1
p) = 1

ζ(1) = 0, where

ζ(s) is the Riemann zeta function, ζ(1) =
∏

all primes p
1

1−p−1 =
∑∞
i=1

1
i →∞ (as

shown by Euler). Hence, with high probability, when adding a new world state
ωj , |Goodωj

| will share a common factor with a world state already in Ω. �

Finally, we show that a diverse team of agents is always optimal as the team
grows, as long as it grows carefully :



8 Agent Teams for Design Problems

Theorem 1. Let D ∈ D be a set containing one factor from each Goodω.
For arbitrary n, the probability that we can generate an optimal team of size n
converges to 0 as |Ω| → ∞. However, if n = c

∏
d∈D d, then the probability that

the team is optimal tends to 1 as c→∞.

Proof. For arbitrary n, let P be the set of its prime factors. Given one p ∈ P, the
probability that p is not a factor of |Goodω| is 1− 1/p. The probability that all
p ∈ P are not factors is:

∏
p(1− 1/p). As 0 <

∏
p(1− 1/p) < 1, the probability

that at least one p ∈ P is a factor of |Goodω| is 1−
∏
p(1−1/p) < 1. For |Ω| tests,

the probability that at least one p is a factor in all of them is: (1−
∏
p(1−1/p))|Ω|,

which→ 0, as |Ω| → ∞. Hence, the probability that gcd(n, |Goodω|) = 1 for at
least one ω tends to 1, and the probability that the team can be optimal tends to
0. However, if n = c

∏
d∈D d, then gcd(n, |Goodω|) 6= 1 ∀ω ∈ Ω. Let Nj be the

number of agents φi that have aj in its Goodi. As each aj has equal probability
of being selected to be in a Goodi, for a large number of drawings (c→∞),
P (Ni = Nj)→ 1,∀ai, aj ∈ Goodω,∀ω (law of large numbers). �

If it is expensive to test values for n such that Theorem 1 is satisfied, we
can choose n = c

∏
ω |Goodω|, as it immediately follows the conditions of the

theorem. Moreover, if we know the size of all |Goodω|, we can check if n and
|Goodω| are co-prime in O(h) time (where h is the number of digits in the
smaller number), using the Euclidean algorithm. Hence, we can test all world
states in O(|Ω|h) time.

4.1 Generalizations

We first show that Theorem 1 still applies for agents φi with different probabili-
ties over optimal actions pGoodi . We consider a more general definition of optimal
team: the difference between the probabilities of picking each optimal action must
be as small as possible; i.e., let pΦ

j be the probability of team Φ picking optimal

action aj , the optimal team is such that∆ :=
∑
ak

∑
al
|pΦ
k − pΦ

l |,∀ak, al ∈ Good
is minimized (hence in the previous case ∆ = 0).

Proposition 5. Theorem 1 still applies when |pGoodi − pGoodj | ≤ ε, ∀φi, φj, for
small enough ε > 0.

Proof. Let Φ be an optimal team, where pGoodi is the same for all agents φi.
Hence, the probability of all actions in Good being selected by the team is the
same. I.e., pΦ

k = pΦ
l ,∀ak, al ∈ Good, and ∆ = 0.

We prove by mathematical induction. Assume we change the pGoodi of x
agents φi, and ∆ is as small as possible. Now we will change x+ 1 agents. Let’s
pick one agent φi and increase its pGoodi by δ ≤ ε. It follows that pΦ

k > pΦ
l ,∀ak ∈

Goodi, al /∈ Goodi, and the new ∆′ :=
∑
ak∈Good

∑
al∈Good |pΦ

k − pΦ
l | > ∆.

If we add one more agent φj , such that Goodj ∩Goodi = ∅, the probabil-
ity of voting for actions am ∈ Goodj increases. For small enough ε, pGoodj
will be too large to precisely equalize the probabilities, and it follows that
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pΦ
m > pΦ

k > pΦ
l ,∀am ∈ Goodj, ak ∈ Goodi, al /∈ Goodi ∪Goodj, and ∆′′ :=∑

ak∈Good

∑
al∈Good |pΦ

k − pΦ
l | > ∆′. The same applies for each newly added

agent, until we have a new team such that n = c
∏
d∈D d (again, satisfying the

conditions of the theorem).
The base case follows trivially. If we did not change the probability of any

agent (i.e., x = 0), and we now increase pGoodi of a single agent φi, p
Φ
k >

pΦ
l ,∀ak ∈ Goodi, al /∈ Goodi, and ∆′ > ∆. By the same argument as before,

adding more agents will only increase ∆′, until n = c
∏
d∈D d. �

We also generalize to the case where the number of preferred actions r changes
for each agent. Let the number of actions in the Goodi of agent φi (ri) be decided
according to a uniform distribution in the interval [1, r′].

Proposition 6. If n = r′ × c
∏
d∈D d, the probability that the team is optimal

→ 1 as c→∞.

Proof. For large n, the number of agents with ri = 1, . . . , r′ is the same. There-
fore, if for each subset Φi ⊂ Φ, such that rφ = i,∀φ ∈ Φi, we have that pΦi

k = pΦi

l ,
∀ak, al ∈ Good, we will have that pΦ

k = pΦ
l ,∀ak, al ∈ Good. Given an optimal

team of size n, we have r′ subsets Φi of size n/r′ each. It follows by Theorem 1
that n/r′ = c

∏
d∈D d, and n = r′ × n/r′ = r′ × c

∏
d∈D d. �

In the next section we perform experiments with agents whose pdfs differ,
and diverse teams still significantly outperform uniform teams.

5 Experiments
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Fig. 1: Percentage
as max λ+ grows.

We run experiments with diverse and uniform teams
(henceforth diverse and uniform). First, we run syn-
thetic experiments, where we randomly create pdfs for
the agents, and simulate voting iterations across a series
of world states. We repeat all our experiments 100 times,
and in the graphs we plot the average and the confidence
interval of our results (with p = 0.01). We run 1000 voting
iterations (z), and measure how many optimal solutions
the team is able to find. We study a scenario where the
number of actions (|A|) = 100, and the number of op-
timal actions per world state (|Goodω|) is, respectively:
< 2, 3, 5, 5, 5 >, in a total of 750 optimal solutions.

At each repetition of our experiment, we randomly create a pdf for the agents.
We start by studying the impact of maxλ+ in uniform. When creating the
uniform team, the total probability of playing any of the optimal actions (i.e.,
pGood) is randomly assigned (uniform distribution) between 0.6 and 0.8. We fix
the size of the team (25) and evaluate different maxλ+ (Figure 1). As expected
from Proposition 1, for maxλ+ = 0 the system finds the highest number of
optimal solutions; and as maxλ+ increases, it quickly drops.
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Fig. 2: Percentage of opti-
mal solutions as # agents
grows.

We then study the impact of increasing the
number of agents, for uniform and diverse. To gen-
erate a diverse team, we draw randomly a rω in
an interval U for each world state, that will be
the size of |Goodi|. We study three variants: di-
verse*, where U = (0, |Goodω|]; diverse, where
U = (0, |Goodω|), and diverse∆, where we al-
low agents to have different riω, also drawn from
(0, |Goodω|). We independently create pdfs ran-
domly for each agent φi. For each agent we draw
a number between 0.6 and 0.8 to distribute over
the set of optimal actions, and randomly decide rω
actions to compose its Goodi set. We distribute
equally 80% of the probability of voting over optimal actions on the actions of
that set.
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Fig. 3: Percentage for larger
teams.

As we can see (Figure 2), the number of so-
lutions decreases for uniform as the number of
agents grows. Normally, in social choice, we ex-
pect the performance to improve, so this is a novel
result. It is, however, expected from our Proposi-
tion 1. Diverse, on the other hand, improves in
performance for all 3 versions, as predicted by our
theory. However, the system seems to converge for
a fixed z, as the performance does not increase
much after around 20 agents. Hence, in Figure
3 we study larger diverse (continuous line) and
diverse∆ teams (dashed line), going all the way
up to 1800 agents. We also study four different
number of voting iterations (z, shown in the figure by different lines): 1000,
2000, 3000, 4000. As we can see, although adding more agents was not really
improving the performance in the experimental scenario under study, there is
clearly a statistically significant improvement by increasing the number of voting
iterations, with the system improving from around 53% of the optimal solutions,
all the way up to finding more than 80% of them. However, there is a dimin-
ishing returns effect, as the impact of adding more iterations decreases as the
actual number of iterations grows larger. We also note that diverse∆ is better
than diverse, and the difference increases as z grows.

5.1 Experiments in Architecture Design

We study a real system for architectural building design. This is a fundamen-
tal domain, since the design of a building impacts its energy usage during its
whole life-span [2, 13]. We use Beagle [8], a multi-objective design optimization
software that assists users in the early stage design of buildings. Hence, the ex-
periments presented here were run in an actual system, that performs expensive
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energy evaluations over complex architectural designs, and represent months of
experimental work.

(a) Base (b) Office Park (c) Contemporary

Fig. 4: Parametric designs with increasing complexity used in our experiments.

First, the designer creates a parametric design, containing (as discussed in
Section 3) a set of parameters that can be modified within a specified range,
allowing the creation of many variations. We use designs from Gerber and
Lin (2013) [8]: base, a simple building type with uniform program (i.e., ten-
ant type); office park, a multi-tenant grouping of towers; and contemporary, a
double “twisted” tower that includes multiple occupancy types, relevant to con-
temporary architectural practices. We show the designs in Figure 4.

Beagle uses a Genetic Algorithm (GA) to optimize the building design based
on three objectives: energy efficiency, financial performance and area require-
ments. In detail, the objective functions are: Sobj : maxSPCS; Eobj : minEUI;
Fobj : maxNPV . SPCS is the Spatial Programming Compliance Score, EUI is
the Energy Use Intensity and NPV is the Net Present Value, defined as follows.

SPCS defines how well a building conforms to the project requirements
(by measuring how close the area dedicated to different activities is to a given
specification). Let L be a list of activities (in our designs, L=<Office, Hotel,
Retail, Parking>), area(l) be the total area in a building dedicated to activity
l and requirement(l) be the area for activity l given in a project specification.

SPCS is defined as: SPCS = 100 ∗
(

1−
∑

l∈L |area(l)−requirement(l)|
|L|

)
EUI regulates the overall energy performance of the building. This is an

estimated overall building energy consumption in relation to the overall building
floor area. The process to obtain the energy analysis result is automated in Beagle
through Autodesk Green Building Studio (GBS) web service.

Finally, NPV is a commonly used financial evaluation. It measures the finan-

cial performance for the whole building life cycle, given by:NPV =
(∑T

t=1
ct

(1+r)t

)
−

c0, where T is the Cash Flow Time Span, r is the Annual Rate of Return, c0 is
the construction cost, and ct = Revenue−Operation Cost.

Many options affect the execution of the GA, including: initial population
size, size of the population, selection size, crossover ratio, mutation ratio, maxi-
mum iteration. Further details about Beagle are at Gerber and Lin (2013) [8].



12 Agent Teams for Design Problems

In the end of the optimization process, the GA outputs a set of solutions.
These are considered “optimal”, according to the internal evaluation of the GA,
but are not necessarily so. As in our theory, for each parameter the assigned
value is going to be one of the optimal ones with a certain probability. In fact,
most of the solutions outputted by the GAs are later identified as sub-optimal
and eliminated in comparison with better ones found by the teams.

We model each run of the GA as an agent φ. Each parameter of the para-
metric design is a world state ω, where the agents decide among different actions
A (i.e., possible values for the current parameter). Our model assumes indepen-
dent multiple voting iterations across all world states. However, as in general it
could be expensive to pool agents for votes in a large number of iterations, we
test a more realistic scenario by pooling only 3 solutions per agent, but running
multiple voting iterations by aggregating over all possible combinations of them,
in a total of 81 voting iterations.

Agent PZ SZ CR MR

Agent 1 12 10 0.8 0.1

Agent 2 18 8 0.6 0.2

Agent 3 24 16 0.55 0.15

Agent 4 30 20 0.4 0.25

Table 1: GA parameters for the diverse team. Initial Population and Maximum
Iteration were kept as constants: 10 and 5, respectively. PZ = Population Size,
SZ = Selection Size, CR = Crossover Ratio, MR = Mutation Ratio.

We create 4 different agents, using different options for the GA (as shown
in Table 1). Contrary to the previous synthetic experiments, we are dealing
here with real (and consequently complex) design problems. Hence, the true set
of optimal solutions is unknown. We approach the problem in a comparative
fashion: when evaluating different systems, we consider the union of the set of
solutions of all of them. That is, let Hx be the set of solutions of system x;
we consider the set H =

⋃
x Hx. We compare all solutions in H, and consider

as optimal the best solutions in H, forming the set of optimal solutions O. We
use the concept of pareto dominance: the best solutions in H are the ones that
dominate all other solutions (i.e., they are better in all 3 factors). As we know
which system generated each solution o ∈ O, we estimate the set of optimal
solutions Sx of each system.

Although our theory focuses on plurality voting as the aggregation method-
ology, we also present results using the mean and the median of the opinions
of the agents. That is, given one combination (a set of one solution from each
agent), we also generate a new solution by calculating the mean/median across
all parameters.

Concerning uniform, we evaluate a team composed of copies of the “best”
agent. By “best”, we mean the agent that finds the highest number of optimal
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solutions. According to Proposition 1, such an agent should be the one with
the lowest maxλ+, and we can predict that voting among copies of that agent
generates a large number of optimal actions. Hence, for each design, we first
compare all solutions of all agents (i.e., construct H as the union of the solutions
of all agents), to estimate which one has the largest set of optimal solutions
S. We, then, run that agent multiple times, creating uniform. For diverse, we
consider one copy of each agent.

We aggregate the solutions of diverse and uniform. We run 81 aggregation
iterations (across all parameters/world states), by selecting 3 solutions from each
agent φi, in its set of solutions Hi, and aggregating all possible combinations of
these solutions. We evaluate together the solutions of all agents and all teams
(i.e., we construct H with the solutions of all systems), in order to estimate the
size of Sx of each system.

In Figure 5 (a), we show the percentage of optimal solutions for all systems,
in relation to |O|. For clarity, we represent the result of the individual agents
by the one that had the highest percentage. As we can see, in all parametric
designs the teams find a significantly larger percentage of optimal solutions than
the individual agents. The agents find less than 1% of the solutions, while the
teams are in general always close to or above 15%. In total (considering all
aggregation methods and all agents), for all three parametric designs the agents
find only about 1% of the optimal solutions, while uniform finds around 51%
and diverse 47%. Looking at vote, in base diverse finds a larger percentage
of optimal solutions than uniform (around 9.4% for uniform, while 11.6% for
diverse). In office park and contemporary, however, uniform finds more solutions
than diverse. Based on Proposition 1, we expect that this is caused by the best
agent having a lower maxλ+ in office park and contemporary than in base.
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Fig. 5: Percentage of optimal solutions of each system.

Figure 5 (b) shows the percentage of optimal solutions found, in relation to
the size of the set of evaluated solutions of each system. That is, let Ox be the set

of optimal solutions of system x, in O. We show |Ox|
|Hx| . Concerning vote, the teams

are able to find a new optimal solution around 20% of the time for base, around
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73% of the time for office park and around 36% of the time for contemporary.
Meanwhile, for the individual agents it is close to 0%. We can see that teams
have a great potential in generating new optimal solutions, as expected from our
theory. However, as studied in our synthetic experiments, we can expect some
diminishing returns when increasing the number of voting iterations. We show
examples of solutions created by the teams in Figure 6.

(a) Base. Shaded area shows variance of
building’s footprint in relation to site.
Dashed line indicates height variance.

(b) Office Park. Dashed line shows vari-
ance in volume.

(c) Contemporary. Line shows variance
in orientation.

Fig. 6: Some building designs generated by the teams.

We also plot in Figure 7 (a) the percentage of solutions that were reported
to be optimal by each agent, but were later discovered to be suboptimal by
evaluatingH. A large amount of solutions are eliminated (close to 100%), helping
the designer to avoid making a poor decision, and increasing her confidence
that the set of optimal solutions found represent well the “true” pareto frontier.
Moreover, we test for duplicated solutions across different aggregation methods,
different teams and different agents. The number is small: only 4 in contemporary,
and none in base and office park. Hence, we are providing a high coverage of the
pareto frontier for the designer. We show the total number of optimal solutions
in Figure 7 (b). Finally, to better study the solutions proposed by the agents
and teams, we plot all the optimal solutions in the factors space in Figure 8,
where we show that the solutions give a good coverage of the pareto frontier.

6 Conclusion

Design imposes a novel problem to social choice: maximize the number of optimal
solutions. We present a novel model for agent teams, that shows the potential of
a system of voting agents to be creative, by generating a large number of opti-
mal solutions to the designer. Our analysis, which builds a new connection with
number theory, presents several novel results: (i) uniform teams are in general
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Fig. 7: Additional analysis.
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Fig. 8: All the optimal solutions in the factor space.

suboptimal, and converge to a unique solution; (ii) diverse teams are optimal as
long as the team’s size grows carefully ; (iii) the minimum optimal team size is
constant with high probability; (iv) the worst case for teams is a prime number
of optimal actions. Our experiments consider bounded time and relaxed assump-
tions, and diverse teams still perform well. We show results in architecture, where
teams find a large number of solutions for designing energy-efficient buildings.
Acknowledgments: This research is supported by MURI grant W911NF-11-
1-0332, and the National Science Foundation under grant 1231001.
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