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Abstract

Police patrols are used ubiquitously to deter crimes in
urban areas. A distinctive feature of urban crimes is
that criminals react opportunistically to patrol officers’
assignments. Different models of adversary behav-
ior have been proposed but their exact form remains
uncertain. Recent work [Zhang er al., 2015] has ex-
plored learning the model from real-world criminal
activity data. To that end, criminal behavior and the
interaction with the patrol officers is represented as pa-
rameters of a Dynamic Bayesian Network (DBN), en-
abling application of standard algorithms such as EM
to learn the parameters. More specifically, the EMC?
algorithm is a sequence of modifications to the DBN
representation, that allows for a compact representa-
tion resulting in better learning accuracy and increased
speed of learning. In this paper, we perform additional
experiments showing the efficacy of the EMC? algo-
rithm. Furthermore, we explore different variations of
Markov model. Unlike DBNs, the Markov models do
not have hidden states, which indicate distribution of
criminals, and are therefore easier to learn using stan-
dard MLE techniques. We compare all the approaches
by learning from a real data set of criminal activity
obtained from the police department of University of
Southern California (USC) situated in Los Angeles,
USA. We demonstrate a significant better accuracy of
predicting the crime using the EMC? algorithm com-
pared to other approaches. This work was done in col-
laboration with the police department of USC.

1 Introduction

Crime in urban areas plagues every city in all countries. A
notable characteristic of urban crime, distinct from organized
terrorist attacks, is that most urban crimes are opportunis-
tic in nature, i.e., criminals do not plan their attacks in de-
tail, rather they seek opportunities for committing crime and
are agile in their execution of the crime [Zhang er al., 2014;
Short et al., 2008]. In order to deter such crimes, police offi-
cers conduct patrols with the aim of preventing crime. However,
by observing on the spot the actual presence of patrol units, the
criminals can adapt their strategy by seeking crime opportunity
in less effectively patrolled location. The problem of where and
how much to patrol is therefore important.

There are two approaches to solve this problem. The first
approach is to determine patrol schedules manually by human
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planners, which is followed in various police departments in-
cluding police in USC. However, it has been demonstrated that
manual planning of patrols is not only time-consuming but it is
also highly ineffective in many related scenarios of protecting
airport terminals [Jain et al., 2010] and ships in ports [Shieh ez
al., 2012]. The second approach is to use automated planners to
plan patrols against urban crime. This approach has either fo-
cused on modeling the criminal explicitly [Zhang er al., 2014;
Short et al., 2008] (rational, bounded rational, limited surveil-
lance, etc.) in a game model or to learn the adversary behav-
ior using machine learning [Chen er al., 2004]. However, the
proposed mathematical models of criminal behavior have not
been validated with real data. Also, prior machine learning ap-
proaches have either only focused on the adversary actions ig-
norin]g their adaptation to the defenders’ actions [Chen er al.,
2004].

In recent work we proposed a novel approach to tackle the
problem of generating patrol strategies against opportunistic
criminals in [Zhang er al., 2015]: learn the criminal behavior
from real data. We did so by modeling the interaction between
the criminal and patrol officers as a Dynamic Bayesian Network
(DBN). As far as we know, we are the first to use a DBN model
that considers the temporal interaction between defender and ad-
versary in the learning phase.

Given a DBN model, we use the well-known Expectation
Maximization (EM) algorithm to learn unknown parameters in
the DBN from given learning data. However, using EM with
the basic DBN model has two drawbacks: (1) the number of un-
known parameters scales exponentially with the number of pa-
trol areas and in our case is much larger than the available data
itself; this results in over-fitting (2) EM cannot scale up due to
the exponential growth of runtime in the number of patrol areas.
We demonstrate these two drawbacks both theoretically and em-
pirically.

The second algorithm in [Zhang et al., 2015] utilizes is a
sequence of modifications of the initial DBN model resulting
in a compact representation of the model, that leads to better
learning accuracy and increased speed of learning of the EM al-
gorithm when used for the compact model. This sequence of
modifications involve marginalizing states in the DBN using ap-
proximation technique from the Boyen-Koller algorithm [Boyen
and Koller, 1998] and exploiting structure of this problem. In
the compact model, the parameters scale polynomially with the
number of patrol areas, and EM applied to this compact model
runs in polynomial time.

Finally, we propose different variations of Markov model for
prediction of the crime based on available data for crime and/or
defender. The main purpose for this modeling is to evaluate
other possible bayesian network structures. The Markov mod-
els do not have hidden states, which is distribution of criminals.



With regard to that, we explored three broad structures: (1) cur-
rent step crimes depends on previous step crimes (2) current step
crimes depends on previous step police patrol and (3) current
step crimes depends on previous step crimes and police patrol.
Our finding was that the compact DBN model outperformed all
the Markov models.

Based on the the algorithms we proposed in [Zhang et al.,
2015], we do an extensive experiments to analyze the perfor-
mance of those algorithms in this paper. We also compare that
with the performance of the various Markov models we ex-
plored. As part of our collaboration with the police department
of USC, we obtained criminal activity and patrol data for three
years. Given the results showing the good predictive output with
the DBN model, we expect our algorithm to be tested and even-
tually deployed in USC. The main focus of this paper is on the
estimation and prediction of the number of crimes. But as it is
addressed in our previous work, these techniques can be used as
a basis for planning purposes. More broadly, by introducing a
novel framework to reason about urban crimes along with effi-
cient learning and planning algorithms, we open the door to a
new set of research challenges.

2 Related Work

We categorize the related work into five main areas. First, re-
cent research has made inroads in applying machine learning
and data mining in criminology domain to analyze crime pat-
terns and support police in making decisions. A general frame-
work for crime data mining is introduced in [Chen et al., 2004].
In [Nath, 2006], data mining is used to model crime detection
problems and cluster crime patterns; in [De Bruin ef al., 2006],
data mining approaches are applied in criminal career analysis;
in [Oatley et al., 20061, the authors apply machine learning tech-
niques to soft forensic evidence and build decision support sys-
tems for police. However, this area of research considers only
crime data and does not model the interaction between patrol
officers and criminals.

The second line of work we compare is Pursuit-Evasion
Games(PEG). PEG models a pursuer(s) attempting to capture
an evader, often where their movement is based on a graph[Hes-
panha et al., 2000]. However, in common settings of Pursuit
Evasion Games, evader’s goal is to avoid capture and not to seek
opportunities to commit crimes and a pursuer’s goal is to capture
the evader and not to deter the crime; thus common PEG settings
are different from the setting in this work.

The third area of work we compare with is Stackelberg Se-
curity Games (SSG) [Tambe, 2011], which models the interac-
tion between defender and attacker as a game and recommends
patrol strategies for defenders against attackers. SSG has been
successfully applied in security domains to generate random-
ized patrol strategies, e.g., to protect flights [Tambe, 2011], for
counter-terrorism and fare evasion checks on trains [Jiang et al.,
2013]. While the early work on SSG assumed a perfectly ratio-
nal attacker, recent work has focused on attackers with bounded
rationality and learning the parameters of the bounded rational-
ity model using machine learning methods such as maximum-
likelihood estimation. An example of this approach is the PAWS
model [Yang et al., 2014]. PAWS addresses the problem of
learning criminals’ behavior in the domain of wildlife crime
such as illegal poaching, within a game-theoretic interaction be-
tween defenders and criminals. Recent research has also made
progress in designing leader-follower patrol strategies against
adversaries in graph settings [Basilico et al., 2009al. In [Basil-
ico et al., 2009b], patrol strategies against various types of ad-
versaries are designed.

However, including various extensions, security games in-
clude an explicit model of the adversary such as bounded ra-

tionality models and limited observation models. Distinct from
these approaches, we do not model the adversary explicitly,
rather we aim to learn the adversary interaction with defender
using real world data. In our case these are how the adversary
moves from one patrol area to another, and the probability of his
committing a crime given some patrol officers presence.

In addition, in SSG randomized strategies are generated as-
suming attackers learn the strategy through long-term observa-
tion. However, in our work, we plan in a more dynamic environ-
ment where we keep pace with criminals in a real time fashion.
We update their behavior model and change our strategy accord-
ingly from time to time. In this dynamic environment, criminals
have little time to observe and exploit current strategy before we
switch to another one, which means pure strategy suffices for
our purpose. Therefore, we show (Section 6) that the optimal
strategy in each small period is a pure one.

A fourth thread of recent research combines machine learning
with game theory. In [Blum et al., 2014], the defender’s optimal
strategy is generated in a SSG by learning the payoffs of po-
tential attackers from their best responses to defender’s deploy-
ments. An inherent problem with such an approach is that the
defender strategy is geared towards learning the adversary pay-
off, and not exploiting the improved knowledge of the adversary
payoff as the game progresses. Adversarial machine learning or
adversarial classification [Vorobeychik and Li, 2014] is another
technique that uses concepts from game theory to learn a sepa-
rator in a classification problem in which the adversary that can
modify labels arbitrarily. We restrict our attention to adversaries
that do not aim to attack the machine learning algorithm itself.

The last area of work we compare against works modeling
opportunistic criminals. In [Short et al., 2008] burglars’ move-
ment is modeled as a random walk, and in [Zhang et al., 2014], a
more general model of opportunistic criminals was propose with
algorithms for optimal strategy against such criminals. Again,
these works include explicit models of the criminals and lack
real world data to learn the interactions.

3 Motivating Example

D
Figure 1: Campus map ~ Figure 2: DBN for
games
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Domain Description: The motivating example for this study
is the problem of controlling crime on a university campus. Our
case study is about USC in USA. USC has a Department of Pub-
lic Safety (DPS) that conducts regular patrols, similar to police
patrols in urban settings. As part of our collaboration with USC
DPS, we have access to the crime report as well as patrol sched-
ule on campus for the last three years (2011-2013). USC is a
large enough university that allows us to claim that our methods
are applicable to large urban neighborhoods.



In USC, the campus map is divided into five patrol areas,
which is shown in Fig 1. DPS patrols in three shifts per day.
In the crime data all crimes are local, i.e., no crime happens
across two patrol areas or patrol shifts. At the beginning of each
patrol shift, DPS assigns each available patrol officer to a patrol
area and the officer patrols this area in this shift. At the same
time, the criminal is seeking for crime opportunities by deciding
which target they want to visit. Discussions with DPS reveals
that criminals act opportunistically, i.e., crime is not planned in
detail, but occurs when opportunity arise and there is insufficient
presence of DPS officers.

There are two separate

reports that DPS shared Shit |lA B C D E
with us. The first is about T T 1 2 2 2
crime activity that includes 5 T 1 1T 2 1
details of each reported 3 1 1 3 1

crime during the last three
years, including the type of
crime and the location and
time information about the
crime. In this paper, we do not distinguish between different
types of crime and hence we consider only the number of crimes
in each patrol area during each shift. Therefore, we summarize
the three year crime report into 365 x 3 x 3 = 3285 crime data
points, one for each of the 8-hour patrol shift. Each crime data
point contains five crime numbers, one for each patrol area.

The second data-set contains the DPS patrol allocation sched-
ule. Every officer is allocated to patrolling within one patrol
area. We assume that all patrol officers are homogeneous, i.e.,
each officer has the same effect on criminals’ behavior. As a
result, when generating a summary of officer patrol allocation
data, we record only the number of officers allocated to each
patrol area in each shift.

Table 1 shows a sample of the summarized crime data, where
the row corresponds to a shift, the columns correspond to a pa-
trol area and the numbers in each cell is the number of crimes.
Table 2 shows a sample of the summarized officer patrol alloca-
tion data, where the numbers in each cell is the number of patrol
officers. For example, from Table 1 we know that in Shift 2,
there were 2 crimes in area D and 1 crime in the other areas,
while from Table 2, we know that in Shift 2, the number of offi-
cers in area A and B is 1 while the number of officers in area C,
D and FE is 2. However, we do not know the number of crimi-
nals in any patrol area in any patrol shift. We call the patrol area
as targets, and each patrol shift a time-step.

Table 1: Crime data for 3 shifts.

Problem Statement:
Given data such as the Shift |lA B C D E
real-world data from USC, T > 1 1 1 T
our goal is to build a gen- 5 T 1 2 2 2
eral learning and planning 3 > 1 1 3 1

framework that can be used
to design optimal defender
patrol allocations in any
comparable urban crime
setting.

Due to the lack of the data for criminals, we model the learn-
ing problem as a DBN which contains hidden states for crimi-
nals. Hidden states are unobserved data that would be estimated.
Next section deals with the basic model, the EM algorithm and a
compact form of our model that leads to improved learning per-
formance. After that, we present Markov model that considers
observed data of crime and defender as the input for modeling
and also accuracy of the prediction in different variations of the
models are evaluated. The main focus of this study is on pre-
diction and estimation of the number of crime; however, this
prediction can be used for planning techniques.

Table 2: Patrol data for 3 shifts.

4 Learning with Hidden States

We propose to learn the criminals’ behavior, i.e, how the crim-
inals pick targets and how likely are they to commit crime at
that target. This behavior is in part affected by the defenders’
patrol allocation. Due to the fact that we do not have detailed
information about the criminals, we assume that criminals are
homogeneous in this paper, i.e., all criminals behave in the same
manner. Further, as stated earlier, the patrol officers are also ho-
mogeneous. It means that they are given similar tasks and they
do their job with the same quality. Thus, crime is affected only
by the number of criminals and patrol officers, and not by which
criminal or patrol officer is involved.

We propose a DBN model for learning the criminals’ behav-
ior. In every time-step of the DBN we capture the following
actions: the defender assigns patrol officers to protect IV patrol
areas and criminals react to the defenders’ allocation strategy
by committing crimes opportunistically. Across time-steps the
criminal can move from any target to any target, since a time-
step is long enough to allow such a move. The criminals’ payoff
is influenced by the attractiveness of targets and the number of
officers that are present. These payoffs drive the behavior of the
criminals. However, rather than model the payoffs and poten-
tial bounded rationality of the criminals, we directly learn the
criminal behavior as modeled in the DBN.

The DBN is shown in Fig 2: squares are observed states,
where N white squares represent input states (number of de-
fenders at each target) and N black squares represent output
states (number of crime at each target) while NV circles (number
of criminals at each target) are hidden states. For ease of exposi-
tion, we use C' to denote the largest value that any state can take.
Next, we introduce the various parameters of this DBN.

4.1 DBN Representation
First, we introduce parameters that measure the size of the prob-
lem

e N: Total number of targets in the graph.

e T': Total time steps of the training data.

Next, we introduce random variables for the observed state
(input defender distribution and output crime distribution in our
case) and the hidden state. We use three random variables to
represent the global state for defenders, criminals and crimes at
all targets.

e d,: Defender’s allocation strategy at step ¢: number of de-

fenders at each target in step t. d; can take C'V possible
values.

e z;: Criminals’ distribution at step ¢ with C'V possible val-
ues
e y,: Crime distribution at step ¢ with CN possible values.
Next, we introduce the unknown parameters that we wish to
learn.
e 7: Initial criminal distribution: probability distribution of
xI1.
e A: The transition matrix that decides how the criminals

distribution evolves from one time step to other. We
call this the movement matrix of the DBN. Formally,

A(dg, ¢, w411) = P(x41|ds, ). Given the CN values
for each argument of A, representing A requires CV x
CN x CN parameters.

e B: The transition matrix that decides how the criminals
commits crime at any target. We call this the crime matrix
of the DBN. Formally, B(d;, z¢, y:) = P(y¢|ds, x¢). Given
the OV values for each argument of B, representing B re-
quires OV x CN x OV parameters.



We can apply the EM algorithm to learn the unknown initial
criminal distribution 7, movement matrix A and output matrix
B. However, EM applied to the basic DBN model above results
in practical problems that we discuss in the next section.

4.2 Expectation Maximization

We start with a brief overview of EM. EM is a class of algo-
rithms for finding maximum likelihood estimation for unknown
parameters in DBN [Dempster et al., 1977]. The EM algorithm
has an initialization step, expectation (E) step and maximization
(M) step. The initialization step chooses initial estimates for un-
known parameters (7, A, B). The E step computes some inter-
mediate parameters using these estimates. The M step updates
the estimates of m, A, B using values from E step. By iteratively
performing E and M step, the EM algorithm converges to a local
maxima of the likelihood function for parameters in the DBN.
The particular mathematical equations used in E and M depends
on the underlying model. For our basic model these equations
are not hard to derive and are delegated to the online appendix'.

In EM algorithm, the size of movement matrix A is CV x
CN x CN and the size of crime matrix B is also OV x CN x OV,
The number of unknown variables is O(C3Y). The exponen-
tially many parameters make the model complex, and hence
results in over-fitting given limited data. In addition, the time
complexity as well as the space complexity of EM depends on
the number of parameters, hence the problem scales exponen-
tially with V. In practice, we can reduce C' by categorizing
the number of defenders, criminals and crimes. For example,
we can partition the number of defenders, criminals and crimes
into two categories each: the number of officers at each station
is 1 (meaning < 1) or 2 (meaning > 2); the number of crimi-
nals/crimes is 0 (no criminal/ crime) or 1 (> 1 criminal/crime).
However, the number of unknown parameters is still exponential
in N. As a concrete example, in USC, N = 5 and the num-
ber of unknown parameters are more than 32768, even when we
set C' = 2. As we have daily data for three years, which is
365 x 3 x 3 = 3285 data points, the number of parameters is
much more than the number of data points. Therefore, we aim
to reduce the number of parameters to avoid over-fitting and ac-
celerate the computing process.

4.3 Compact model and EMC? procedure

In this section, we introduce our second contribution, which is
to modify the basic DBN model to reduce the number of pa-
rameters. In the resultant compact model, the EM learning pro-
cess runs faster and avoids over-fitting to the given data. The
improvement may be attributed to the well-established machine
learning principle of Occam’s Razor [Blumer et al., 1987], and
our experimental results support our claims. We use three mod-
ifications to make our model compact. (1) We infer from the
available crime data that crimes are local, i.e., crime at a partic-
ular target depends only on the criminals present at that target.
Using this inference, we constructed a factored crime matrix B
that eliminates parameters that capture non-local crimes. (2)
Next, we rely on intuition from the Boyen-Koller [Boyen and
Koller, 1998] (BK) algorithm to decompose the joint distribu-
tion of criminals over all targets into a product of independent
distributions for each target. (3) Finally, our consultations with
the DPS in USC and prior literature on criminology [Short et
al., 2008] led us to conclude that opportunistic criminals by and
large work independently. Using this independence of behavior
of each criminal, we reduce the size of the movement matrix.
After these steps, the number of parameters is only O(N - C3).

'http://keep-pace-with-criminals.weebly.com/

EM on CompaCt model (EMC?) procedure applies the EM al-
gorithm to the compact DBN model to find maximum likelihood
estimation for unknown parameters.

4.4 Additional Experiments

We conduct experiments in addition to the ones conducted
in [Zhang et al., 2015]. The purpose of such experiments is to
better analyze the results obtained in that paper.

Experimental setup. We following the settings in [Zhang
et al., 2015]. All our experiments were performed on a ma-
chine with 2.4GHz and 16GB RAM. MATLAB was our choice
of programming language. To avoid leaking confidential infor-
mation of USC Department of Public Safety, all the crime num-
bers shown in the results are normalized.

Learning(Settings): In this paper, we do extensive study on
evaluating performance of EMC? algorithm in learning crimi-
nals’ behavior. We use the case study of USC in our experi-
ments. We obtained three years of crime report and correspond-
ing patrol schedule followed in USC. We divide the three year
data into four equal parts of nine months each. For each part we
train on the first eight months data and test on the ninth month
data. Since EMC? algorithm and EM algorithm only reach lo-
cally optimal solution, we run the algorithms for 30 different
randomly chosen start points and choose the best solution from
among these runs. These start points, i.e., values of A, B and 7,
are generated by sampling values from a uniform random distri-
bution over [0, 1] for all the elements and then normalizing the
probabilities so that they satisfy the initial conditions. C' is set
to 2 following [Zhang et al., 2015].
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Figure 3: Accuracy (4 datasets)  Figure 4: Accuracy (27 datasets)

Result: To begin with, we extend the result of Figure 3 in
[Zhang er al., 2015] into Figure 4, which expands the number of
datasets. We measure learning performance for each individual
target using a metric that we call accuracy. To define this met-
ric, let n;; be the actual number of crimes at target ¢ for time
step t, let n}, be the predicted number of crimes at target ¢ at
time step . Then, accuracy at step ¢ is the probability of the

event Zf\;l |ni — nl| < 1. In other words, it is the proba-
bility that we make less than one mistake in predicting crimes
for all N targets. The reported accuracy is the average accu-
racy over all t. In Figure 4, the y-axis represents the accuracy.
The higher accuracy is, the more accurate our prediction is. We
compare four different algorithm: MC, EM, EMC? algorithm
and the uniform random algorithm, which sets equal probability
for all possible numbers of crimes at each target. As expected,
EMC? outperforms all other algorithms in all training groups.
In addition, even though the accuracy of the algorithms varies
in different training groups, which we attribute to the noisy na-
ture of the data in the field, the largest difference is within 15%
in all 27 datasets. This indicates accuracy of the algorithms are
data-independent.

As introduced in motivating example, DPS conducts three
shifts per day and each shift is eight hours by default. How-
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ever, the criminals may react in a shorter period. Therefore, we
evaluate EMC? algorithm by varying the length of the shift in
Figure 5. The new length of the shift should be the divisor of the
original length. This is because we ’generate’ the new strategy
by duplicate the original strategy within one shift. In Figure 5,
the y-axis shows the accuracy . The accuracy increases as the
length of the shift decreases. This is because when the length of
the shift decreases, we capture the criminals’ adaptive behavior
better. Thus, the accuracy increases. This indicates we can im-
prove the performance of the algorithm by decreasing the length
of the shift.
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In Figure 5 in [Zhang et al., 2015], we compare the expected
number of crime that is calculated by EMC? with the real num-
ber of crime. However, in that experiment, we only consider the
total number of crimes over all 5 targets. Even the expectation
of the sum is close to the real number of crimes, the expectation
for each target may be quite different from the real number of
crimes at that target. Therefore, in Figure 6, we compare the
expected number of crimes at each target that is calculated by
EMC? algorithm with the real number of crimes. The y-axis
shows the accumulated (expected) number of crimes. As we can
see in Figure 6, the expected number of crimes that is calculated
by EMC? algorithm at each target is closed to the real number of
crimes at that target. This indicates that the prediction of EMC?
algorithm is closed to the reality not by coincidence.

S Learning from Observed States

There are different techniques to model the relation between the
number of crime and patrol allocation and predict number of
the crime based on the history. As we discussed earlier, in our
Markov model based approach there are no hidden states and
we explore three variations of the Bayesian network structure.
The main purpose of this section is to study the performance of
simpler models that need less computation in comparison with
model including hidden states in the previous section. The three
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Figure 7: Model Structure: Crime predicts crime

cases are when only crime predicts crime, only defender predicts
crime and both crime and defender predicts crime. We discuss
these in details in the sub-sections below.

5.1 Crime predicts crime

Before describing these modifications in details, we introduce
some notations that aid in describing the different quantities at
each target: Y, = [¥; 1,Y} 2, ..., Y y]is a N by 1 random vector
indicating the number of crimes Y; ; at each target i at step ¢. D
is a N by 1 random vector indicating the number of defenders
D, ; at each target ¢ at step {. X; is a N by 1 random vector
indicating the number of criminals X, ; at each target ¢ at step ¢.

In the first model shown in Fig 7(a) the effect of the crime in
the previous steps at the same target is investigated. This corre-
lation can be defined with the following mathematical function:

)/t—}—l,n = f(Y;,n)

For this mathematical modeling, probability for a sequence of
events can be calculated as below:
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Log likelihood for this model can be written as following:

I(A) =logP(Yn; A) =log [[ P(VenlYi-1n:A)
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=log [[ Avivioi.
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In the above equation |Sy | indicates the total possible number
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Figure 8: Model Structure: Defender allocation predicts crime

of values that Y can take.

Also the expression shown as 1{Y;, =S; AY;_1, = S5;}
would be equal to one when the internal expression is satisfied.
To find the parameters of the transition matrix we need to maxi-
mize the log likelihood defined in the previous step.

|Sy|
max((A) s.t. 2_:1 Aij=1, j=1.|5y]
Aij 20, i,j=1..|Sy|

This optimization problem can be solved in the closed form
using Lagrangian multipliers. So the the parameters of the
system can be found from the following equation:

A= S Y =S AY, =S;}
ij —
ZtT:I {Y;—1 = S;}

So for each target we can find the transition matrix like the above
formulation. The same procedure for deriving the transition ma-
trix can be done for all other models in this section and also
the other more complicated variation for modeling of this prob-
lem which consist crime information from other targets. Model
shown in 7(b) includes number of the crime at all other targets.

Y;H-l,n = f(}/t,lzn)

To compare the accuracy of these two models with each other,
we learned from two month of data and then found the average
probability of predicting the number of the crime over all the tar-
gets correctly for one week. Fig 7(c) shows that the first model
is performing better and the number of the crime in an area is
much more related to the number of the crime at that specific
area.
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5.2 Defender allocation predicts crime

To study the effect of the defender allocation on the number of
the crime, the first model in Fig 8(a) is presented which can be
defined by the following mathematical function.

Yitin = f(Dig1,n)

In Fig 8(b), we present the relation between the defender strat-
egy at each target in previous time step and crime at that specific
area to evaluate the effect of the defender strategy on the predic-
tion.

}/t-‘rl,n - f(Dt,n)

Additionally, the effect of the defender allocation in the current
time step can also be included, this model is shown in Fig 8(c).

Y;H—Ln = f(Dt,nyDt-i-l,n)

Another variation is shown in Fig 8(d) which includes number
of the defenders at all other targets from previous time and the
number of the defender from the current time.

Yivin = f(De1:ny Digin)

The same procedure as the previous subsection can be used to
find the transition matrix for the above models. Fig8(e) shows
the average probability of correct prediction over all targets
for all of the models described in this subsection. This figure
demonstrates that number of the defender at the current step has
more effect on the prediction. Also, adding information from
previous step helps to increase the accuracy for exact prediction.
However, in comparison of the model 6 and 5, it is observed that
model 5 outperforms model 6. Similar to the previous subsec-
tion we can see that crime prediction at each target is mostly
affected by the information from that target rather that all other
targets.

5.3 Crime and Defender allocation predicts crime

One more variation to the above model is including the observed
state of the crime at that specific target in addition to the num-
ber of defender at the previous and current step. This model is
shown in Fig 9(a).

Yitin = f(Dtn, Digins Yen)

In order to compare the accuracy of the exact prediction in model
7, Fig9(c) (upper plot) illustrates the probability for all the mod-
els. From this figure, it can be concluded that model 7 outper-



forms all other models described in this section and has the best
prediction potential. It is worth noting that based on the plot
of probabilities for exact prediction, the most complicated and
comprehensive model is one that considers all of the observed
states for defender and crime from the previous time at all targets
in addition to the number of defender in the current time and the
specific target. However due to the large number of parameters
for this model and overfitting issues, we ignore this item in our
study. This model is illustrated in Fig9(b). Fig9(c) (lower plot)
presents the accuracy based on the probability of one mistake
in the prediction, according to the metric used in the previous
section. From this plot and results of previous sections, it can
be concluded that in all of the cases, DBN with hidden states
outperforms Markov models.

6 Conclusion

This paper evaluates a novel framework to design patrol alloca-
tion against adaptive opportunistic criminals. Such framework
models the interaction between officers and adaptive opportunis-
tic criminals as a DBN. Next, a sequence of modifications to
the basic DBN resulting in a compact model that enables better
learning accuracy is proposed. Finally, by investigating different
Markov models, we can conclude that not only the number of the
crime but also, number of the defender in each area can affect the
prediction of the crime. Including both information increase the
accuracy of the prediction. Further, considering hidden states as
done in the DBN improves prediction accuracy. By extensive
experimental validation with real data, we show that our choice
of model and assumptions is supported. Further, our modeling
assumptions were informed by inputs from our collaborators in
the DPS at USC. These promising results has opened up the pos-
sibility of deploying our method for policing in USC.
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