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Abstract. Interdicting the flow of illegal goods (such as drugs and ivory) is a
major security concern for many countries. The massive scale of these networks,
however, forces defenders to make judicious use of their limited resources. While
existing solutions model this problem as a Network Security Game (NSG), they
do not consider humans’ bounded rationality. Previous human behavior modeling
works in Security Games, however, make use of large training datasets that are
unrealistic in real-world situations; the ability to effectively test many models is
constrained by the time-consuming and complex nature of field deployments. In
addition, there is an implicit assumption in these works that a model’s prediction
accuracy strongly correlates with the performance of its corresponding defender
strategy (referred to as predictive reliability). If the assumption of predictive reli-
ability does not hold, then this could lead to substantial losses for the defender. In
the following paper, we (1) first demonstrate that predictive reliability is indeed
strong for previous Stackelberg Security Game experiments. We also run our own
set of human subject experiments in such a way that models are restricted to
learning on dataset sizes representative of real-world constraints. In the analysis
on that data, we demonstrate that (2) predictive reliability is extremely weak for
NSGs. Following that discovery, however, we identify (3) key factors that influ-
ence predictive reliability results: the training set’s exposed attack surface and
graph structure.

1 Introduction

By mathematically optimizing and randomizing the allocation of defender resources,
Security Games provide a useful tool that has been successfully applied to protect
various infrastructures such as ports, airports, and metro lines [17]. Network Security
Games (NSGs), a type of Security Game, can be applied to interdict the flow of goods
in smuggling networks (e.g., illegal drugs, ivory) or defend road networks from terror-
ist attacks (e.g., truck bombs). In comparison to previous work in Security Games [16],
however, the number of possible actions for both attacker and defender grow exponen-
tially for NSGs; novel scaling techniques have been developed to address this challenge
by Jain et al. [11] for perfectly rational attackers.

While early work in Security Games relied on the assumption of perfect adversary
rationality, more recent work has shifted away towards modeling adversary bounded
rationality [15, 6, 12, 1]. In the effort to model human decision making, many human
behavior models are being developed. As more Security Game applications are being
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deployed and used by security agencies [16, 8], it becomes increasingly important to
validate these models against real-world data to better ensure that these and future ap-
plications don’t cause substantial losses (e.g., loss of property, life) for the defender.
In efforts to generate real-world data, previous work [16, 8] has demonstrated that field
experiments are time-consuming and complex to organize for all parties involved; the
amount of field experiments that can be feasibly conducted is grossly limited. Thus, in
real-world situations, we will have limited field data.

By analyzing the prediction accuracy of many models on an existing large dataset
of human subject experiments, previous works [6, 1] empirically analyze which models
most closely resemble human decision making for Stackelberg (SSG) and Opportunis-
tic Security Games. While these works demonstrate the superiority of some models in
terms of prediction accuracy and fitting performance, they do not address the larger, im-
plicit question of how the models’ corresponding strategies would perform when played
against human subjects (i.e., average defender expected utility). We do not know how
well the prediction accuracy of a model will correlate with its actual performance if we
were to generate a defender strategy that was based on such a model; informally defined,
predictive reliability refers to the percentage of strong correlations between a model’s
prediction accuracy and the model’s actual performance. It is also unknown whether
the prediction accuracy analysis approach will be suitable, especially for NSGs, in situ-
ations where we have limited field data from which to learn the models. As previously
discussed, the amount of field experiments that can be conducted (and thus the amount
of training data available for learning) is limited; it is important to know whether the
model with superior prediction accuracy will actually result in higher defender gains
than a model with worse prediction accuracy (especially when training data is limited).
This raises the following question for NSG research: “Without the ability to collect
very large amounts of data for training different bounded rationality models and with-
out the ability to conduct very large amounts of tests to compare the performance of
these models in action, how do we ensure high predictive reliability and choose the
most promising models?”

We first lay the groundwork for determining whether our proposed construct of pre-
dictive reliability is valid in SSGs. As such, we first (i) conduct an empirical evaluation
of predictive reliability in SSGs in situations where there is a large amount of training
data. We then (ii) evaluate predictive reliability for NSGs. In this study, we use NSG
human subject data from the lab and train our models on enough data such that pre-
diction accuracies converge 1. Following this primary analysis, we then examine the
various factors that may influence predictive reliability. We propose a metric called Ex-
posed Attack Surface (EAS) which is related to the degree of choice available to the
attacker for a given training set. We then (iii) examine the effects of EAS on predictive
reliability, and (iv) investigate which graph features influence predictive reliability.

Our primary analysis shows that (i) predictive reliability is strong for an SSG dataset
where there is sufficient training data, (ii) even though there is sufficient training data (at
least to see our models’ prediction accuracies converge), predictive reliability is poor for

1 In other words, to simulate real-world scenarios, we do not assume the presence of very large
amounts of data, but nonetheless, there is a sufficient amount of NSG data included in our
study to at least see a stable prediction made by our different behavior models.
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Table 1. Notations used in this paper

g(V,E) General directed graph.
J Set of paths in graph g.
k Number of defender resources.
X Set of defender allocations, X = {X1,X2, ..., Xn}.
Xi ith defender allocation Xi = {Xie} ∀e, Xie ∈ {0, 1}.
A Set of attacker paths, A = {A1,A2, ..., Am}.
Aj jth attacker path Aj = {Aje} ∀e, Aje ∈ {0, 1}.
tj Target t in the graph g such that the attacker takes path

j to attack t.
T (tj) The reward obtained for a successful attack on target

t by taking path j s.t. Aj ∩ Xi = ∅ where Aj is the
attacker’s selected path to attack target t and Xi is the
selected defender allocation.

x Defender’s mixed strategy over X .
xi Probability of choosing defender pure strategy Xi.

EUd(x) Defender’s expected utility from playing x.
zij Function that refers to whether a defender allocation

Xi intersects with an attacker path Aj . If there is an
intersection, returns 1. Else, 0.

NSGs. In our analysis to discover which factors have the most influence on predictive
reliability, we find that (iii) a training set with a higher EAS score results in better
predictive reliability than a training set with a lower EAS score. Note that this finding
is independent of the training set’s size (both training sets are of the same size). While
it won’t always be possible to obtain training data with a large exposed attack surface,
if we do have it, we can be more confident in the predictive reliability of our models. In
addition, we find that (iv) there is a strong correlation between poor predictive reliability
and whether a graph has both a low to moderate number of intermediate nodes and a
low to moderate number of outgoing edges from source nodes.

2 Background: Network Security Games

This paper will address zero-sum Network Security Games (NSGs). For a table of no-
tations used in this paper, see table 1. In NSGs, there is a network (shown in Figure 1)
which is a graph g containing a set of nodes/vertices V (the dots/circles in the figure)
and a set of edges E (the arrows in the figure, labelled 1-6). In the network, there is
a set of target nodes, denoted by T ⊂ V . While the defender attempts to allocate her
limited resources to protect these target nodes, the attacker can observe the defender’s
patrolling strategy and then attack one of the target nodes based on that observation.
Attacker strategies. The attacker can start at a source node s ∈ S (where S ⊂ V is
the set of all source nodes in the network) and chooses a sequence of nodes and edges
leading to a single target node t ∈ T . The attacker’s decision corresponds to a single
path j ∈ J and is referred to as the attacker’s path choice Aj ∈ A where A is the set of
all possible paths that the attacker can choose.
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Fig. 1. Example graph

Defender strategies. The defender can
allocate her k resources to any subset of
edges in the graph; each allocation is re-
ferred to as a pure strategy for the de-
fender, denoted by Xi. There are

(|E|
k

)
defender pure strategies in total, and we
denote this set of pure strategies by X .
Then, a defender’s mixed strategy is de-
fined as a probability distribution over all
pure strategies of the defender, denoted
by x = {xi}Ni=1, where xi is the prob-
ability that the defender will follow the
pure strategy Xi and

∑
i xi = 1.

Defender and attacker utilities. An attack is successful if the attacker’s path choice
does not contain any edges in common with the defender’s allocation (Xi∩Aj = ∅), and
the attacker will receive a reward T (tj) while the defender receives a penalty of -T (tj).
Here, tj is the target node on the path Aj . Conversely, if the attack is unsuccessful
(i.e., the attacker’s path intersected with the defender’s allocation), both attacker and
defender receive a payoff of 0.

Finally, the defender’s expected utility of executing a mixed strategy x given an
attacker pathAj can be computed as shown in Equation 1 where the term pj(x) (defined
in Equation 2) refers to the probability that the adversary will be caught when choosing
path Aj to attack target node tj . In zero-sum games, the attacker’s expected utility
for choosing path Aj is equal to the opposite of the defender’s expected utility, i.e.,
EUa(x,Aj) = −EUd(x,Aj).

EUd(x,Aj) = −T (tj) · (1− pj(x)) (1)

In Equation 2, zij is an integer which indicates if the defender’s pure strategy Xi

intersects with the attacker path Aj (zij = 1) or not (zij = 0).

pj(x) =
∑
Xi∈X

zijxi (2)

3 Related Work

Human bounded rationality has received considerable attention in Security Game re-
search [15, 6, 12, 1]. The goal of these works was to accurately model human deci-
sion making such that it could be harnessed to generate defender strategies that lead to
higher expected utilities for the defender. For the developed models and corresponding
defender mixed strategies, some of these works conducted human subject experiments
to validate the quality of their models [15, 12, 1]. Often in this research, different mod-
els’ prediction accuracies are tested against human subjects, and the one that is most
accurate is then used to generate defender strategies against human subjects [15, 12].
However, these works do not evaluate whether or not the other models’ prediction ac-
curacies correlated with their actual performance (i.e., predictive reliability). In other
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words, prediction accuracy is used as a proxy for the defender’s actual performance,
but it has not been well established that this is a reasonable proxy to use. In order
to evaluate predictive reliability for SSGs, we obtained the human subject experiment
data from Nguyen et al. [15] and evaluated predictive reliability on this data between
the Quantal Response (QR) and Subjective Utility Quantal Response (SUQR) models.

As yet another type of Security Game, NSG research covers a wide variety of ap-
plications and domains. NSGs have been applied to curbing the illegal smuggling of
nuclear material [14], protecting maritime assets such as ports and ferries [16], study-
ing ways to minimize road network disruptions [2], deterring fare evasion in public
transit systems [5], and the assignment of checkpoints to urban road networks [18, 10].
Although our NSG models most closely resemble the model used by Jain et al. [11, 10],
the primary difference is that we are not limited to modeling perfectly rational attackers.

In most NSG research, there is a basic assumption that the attacker is perfectly
rational, but as demonstrated in work in Behavioral Game Theory by Camerer et al.,
humans do not behave with perfect rationality [3]. Gutfraind et al. [9] address one type
of boundedly rational adversary, an unreactive Markovian evader, in their work. Even
though the evader (i.e., attacker) is unreactive to the defender’s actions, the relaxation
of the rational adversary assumption still results in an NP-hard problem. Positing that
humans will rely on heuristics due to the complex nature of solving an NSG, Yang
et al. [19] address bounded rationality in a non-zero sum NSG setting by modeling the
adversary’s stochastic decision making with the Quantal Response (QR) model and var-
ious heuristic based variants of the QR model. While they demonstrated that attacker
behavior is better captured with human behavior models, their work is limited to us-
ing one defender resource in generating defender strategies and only focused on much
smaller networks. In order to adequately defend larger networks, like those modeled in
previous work by Jain et al. [11] and the ones presented in this work, multiple defender
resources are required. For the behavior models we present, multiple defender resources
are supported in a zero-sum setting.

4 Adversary Behavioral Models

We now present an overview of all the adversary behavioral models which are studied
in this paper.

4.1 The Perfectly Rational Model

In NSG literature, the adversary is often assumed to be perfectly rational and will always
maximize his expected utility. In other words, the adversary will choose the optimal at-
tack path that gives him the highest expected utility, i.e.,Aopt = argmaxAj

EUa(x,Aj).

4.2 The Quantal Response Model

The Quantal Response (QR) model for NSGs was first introduced by Yang et al. [19].
However, their formulation only works under the assumption that there is one defender
resource available, and as a result, we present a revised version of the QR model for a
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zero-sum NSG with multiple defender resources. In short, QR predicts the probability
that the adversary will choose a path Aj , which is presented as the following:

qj(λ|x) =
eλEU

a
j (x)∑

Ak∈A e
λEUa

k (x)
(3)

where λ is the parameter that governs the adversary’s rationality. For example, λ = 0.0
indicates that the adversary chooses each path uniformly randomly. On the other hand,
λ = ∞ means that the adversary is perfectly rational. Intuitively, there is a higher
probability that the adversary will follow a path with higher expected utility.

4.3 The Subjective Utility Quantal Response Model

Unlike QR, the Subjective Utility Quantal Response (SUQR) model [15] models the
attacker’s expected utility calculation as a weighted sum of decision factors such as
reward and path coverage. As demonstrated by Nguyen et al. [15] for SSGs and Abbasi
et al. [1] for Opportunistic Security Games (OSGs), SUQR performs better than QR for
attack prediction accuracy. As such, we present an NSG adaptation of SUQR as shown
in Equation 4. Specifically, SUQR predicts the probability that the adversary chooses a
path Aj as the following:

qj(ω|x) =
eω1pj(x)+ω2T (tj)∑

Ak∈A e
ω1pk(x)+ω2T (tk)

(4)

where (ω1, ω2) are parameters corresponding to an attacker’s preferences (i.e., weights)
on the game features: the probability of capture pj(x) and the reward for a successful
attack T (tj).

4.4 The SUQR Graph-Aware Model

The previous models, designed for traditional Stackelberg Games, do not account for
the unique features of Network Security Games. As such, we present some NSG-
specific features that can be incorporated into the existing SUQR model in the form
of additional parameters. Each of these features is computed for each path Aj ∈ A.

Path length simply refers to the number of edges in a pathAj , and the corresponding
weight is referred to as ω3 in Equation 5. This model will henceforth be referred to as
GSUQR1 (i.e., Graph-SUQR w/ 1 parameter). Yang et al. [19] also made use of path
length as one of the tested QR heuristics.

qj(ω|x) =
eω1pj(x)+ω2T (tj)+ω3|Aj |∑

Ak∈A e
ω1pk(x)+ω2T (tk)+ω3|Ak|

(5)

We also compute the maximum total degree (weight ω4) of a path. This is an aggre-
gate measure (maximum) of the path’s nodes’ indegrees (i.e., number of edges coming
into the node) + outdegrees (i.e., number of edges leaving the node). We refer to this
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measure as MTO. A low value for this corresponds to simple paths with little connec-
tions to other areas of the graph; a high value corresponds to a path with one or more
nodes that are highly connected to other paths. The resultant qj function is shown in
Equation 6, and this model is henceforth referred to as GSUQR2.

qj(ω|x) =
eω1pj(x)+ω2T (tj)+ω3|Aj |+ω4MTOj∑

Ak∈A e
ω1pk(x)+ω2T (tk)+ω3|Ak|+ω4MTOk

(6)

5 Defender Strategy Generation

In this section, we present the approach used to generate defender strategies for the
boundedly rational adversary models. 2 Because the strategy space for NSGs can grow
exponentially large, we address this by adapting a piecewise linear approximation ap-
proach, PASAQ, first introduced by Yang et al. [20]. Note that while we only show
the PASAQ formulation as generating defender strategies for the QR model, we also
adapted it for the SUQR, GSUQR1, and GSUQR2 models as well. Whereas the original
PASAQ algorithm worked for SSGs involving independent targets and coverages, this
paper has adopted PASAQ for NSGs, where non-independent path coverage probabili-
ties (pj(x)) must be taken into account. PASAQ works by performing a binary search to
solve a non-linear fractional objective function. Determining whether the current solu-
tion is feasible, however, is a non-convex problem, and this feasibility checking problem
is expressed as an inequality in equation 7, where r is the current binary search solution,
x∗ is the optimal defender mixed strategy, and EUd(x), the defender’s expected utility
given an adversary following the QR model, is defined in equation 8. 3

r ≤ EUd(x∗) (7)

EUd(x) =

∑
Aj∈A e

λEUa(x,Aj)EUd(x,Aj)∑
Aj∈A e

λEUa(x,Aj)
(8)

After rewriting equation 7 as a minimization function and further expansion, we
obtain two non-linear functions
f(j)

(1)(pj(x))=eλ(1−pj(x))T (tj) and
f(j)

(2)(pj(x))=(1−pj(x))eλ(1−pj(x))T (tj) which are to be approximated. To do so, we
divide the range pj(x) ∈ [0, 1] into S segments (with endpoints [ s−1S , sS , s = 1 . . . S])
and will henceforth refer to each segment that contains a portion of pj(x) as {pjs, s =
1 . . . S}. For example, pj2 refers to the second segment of pj(x) which is located in
the interval [ 1

S and 2
S ]. Our piecewise approximation follows the same set of condi-

tions from [20]: each pjs ∈ [0, 1
S ]∀s = 1 . . . S and pj =

∑S
s=1 pjs. In addition, any

pjs > 0 only if pjs′ = 1
S ,∀s

′ < s; in other words, pjs can be non-zero only when

2 The algorithm to generate a Maximin strategy can be found in [11].
3 Details on the binary search algorithm can be found in Yang et al.’s original PASAQ formula-

tion [20].
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all previous partitions are completely filled (i.e., = 1
S ). Enforcing these conditions en-

sures that each pjs is a valid partition of pj(x). Following the definition from [20], the
piecewise linear functions are represented using {pjs}. The S+1 segment end points
of f (1)j (pj(x)) can be represented as {( sS , f (1)j ( sS )), s=0. . . S} and the slopes of each

segment as {γjs,s=1. . . S}. Starting from f
(1)
j (0), we denote the piecewise linear ap-

proximation of f (1)j (pj(x)) as L(1)
j (pj(x)):

L1
j (pj(x)) = f

(1)
j (0) +

S∑
s=1

γjspjs

= eλT (tj) +

S∑
s=1

γjspjs

(9)

The approximation of function f (2)j (pj(x)) is performed similarly (slopes denoted

as {µjs,s=1. . . S}) and yields L(2)
j (pj(x)).

L2
j (pj(x)) = eλT (tj) +

S∑
s=1

µjspjs (10)

Given the definition of these two piecewise linear approximations, the following
system of equations details the solution feasibility checking function (invoked during
the binary search):

min
x,b

∑
Aj∈A

(eλT (tj) +

S∑
s=1

γjspjs)r (11)

+
∑
Aj∈A

T (tj)(eλT (tj) +

S∑
s=1

µjspjs) (12)

s.t
∑
Xi∈X

xi ≤ 1 (13)

pj(x) =

S∑
s=1

pjs (14)

pj(x) =
∑
Xi∈X

zijxi (15)

bjs
1

S
≤ pjs,∀j, s = 1 . . . S − 1 (16)

pj(s+1) ≤ bjs,∀j, s = 1 . . . S − 1 (17)

0 ≤ pjs ≤
1

S
,∀j, s = 1 . . . S (18)

bjs ∈ {0, 1},∀j, s = 1 . . . S − 1 (19)
zij ∈ {0, 1},∀i, j (20)
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where bjs is an auxiliary integer variable that is equal to 0 only if pjs< 1
S (equation 16).

Equation 17 enforces that pj(s+1) is positive only if bjs = 1. In other words, bjs indicates
whether or not pjs = 1

S and thus enforces our previously described conditions on the
piecewise linear approximation (ensuring each pjs is a valid partition). As demonstrated
in [20], given a small enough binary search threshold ε and sufficiently large number of
segments S, PASAQ is arbitrarily close to the optimal solution.

6 Human Subject Experiments

6.1 Experimental Overview

In order to test the effectiveness of these algorithms against human adversaries, we ran
a series of experiments on Amazon Mechanical Turk (AMT). Even though we run these
(effectively speaking) laboratory experiments, our goal is to collect this data in such a
way as to simulate field conditions where there is limited data. 4

Each participant was presented with a set of fifteen graphs in which they navigated
a path from a source node to a destination node through using a series of intermediate
nodes. Participants that successfully attacked a destination (without getting caught on
an edge) received the corresponding reward; participants that got caught on an edge
received zero points for that round. At the end of the experiment, participants received
$1.50 plus the number of points they received (in cents) during the experiment. To avoid
learning effects and other sources of bias, we took the following steps: randomized the
order in which graphs were presented to participants, withheld success feedback until
the end of the experiment, only allowed participants to participate in the experiment
once, and finally, we divided participants into separate subject pools such that each par-
ticipant only played against a single defender strategy and played on each of the fifteen
graphs exactly once. Due to the inevitability of some participants playing randomly
(thus confounding any behavioral analysis we may conduct), we included a set of val-
idation rounds such that if participants chose a path that was covered by the defender
100% of the time, we would drop their data from the analysis.

6.2 Experiment Data Composition

Participants and Dataset Sizes In our experiments, all eligible AMT participants sat-
isfied a set of requirements. They must have participated in more than 1000 prior AMT
experiments with an approval rate of ≥ 95%, and we required that all participants were
first-time players in this set of experiments. Out of 551 participants, 157 failed to com-
plete all graphs or did not pass both validation rounds. The remainder, 394, successfully
completed all rounds and passed both validation rounds, and we used only their data in
the following data analyses.

4 For a more detailed discussion of human subject experiment design considerations, such as
steps taken to reduce sources of bias, please see the appendix.
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Graph Design and Generation To ensure our findings were not limited to a single set
of homogeneous graphs, we generated three sets of random geometric graphs. Eppstein
et al. demonstrated that geometric graphs were a suitable analogue to real-world road
networks due to road networks’ non-planar connectivity properties [7]. Each set was
assigned a predefined neighborhood radius (r), corresponding to the maximum distance
between two nodes for an edge to exist, and a predefined number of intermediate nodes
(vi). Set 1, a set of sparse random geometric graphs, had r = 0.2, vi = 10, and was
required to have at least 15 edges. Set 2, a set of densely connected graphs, had r =
0.6 and vi = 4. Set 3, a set of intermediately connected graphs, had r = 0.4 and vi = 7.
In addition, all sets were generated with a set of common constraints; each graph was
constrained to have no more than 30 edges, exactly two source nodes, and exactly three
destination nodes (with reward values 3, 5, and 8).

For each set, we generated 100 unique random geometric graphs. For each graph, we
first randomly placed the nodes in a 2-D region (a unit square), and edges were drawn
between nodes that were, at most, a 2-norm distance r away from each other. During
post-processing, invalid connections, such as edges connecting source nodes to other
source nodes, were removed. After the set was generated, we computed a Maximin, QR,
and SUQR strategy for each graph and computed a distance score. This distance score
measured the 1-norm distance between the probability distributions (i.e., the mixed
strategies) for two sets of strategies: QR and SUQR, and Maximin and SUQR; graphs
with distinctly different defender strategies (in terms of the coverage probabilities on
paths) would receive a high distance score. The five graphs with the highest distance
scores were kept for the final set.

Model Parameter Learning The full experiment set consists of eight subject pools.
For the purposes of learning the model parameters for the human behavior models, how-
ever, we divided the experiment set into three separate experiment sets. The first experi-
ment set consists solely of the Maximin subject pool (no model learning required). The
latter two experiment sets are defined by the training dataset used to train the models
(e.g., the experiment data from the Maximin subject pool). As was done in previous
work on applying human behavior models to Security Games [15, 12, 1, 19], we use
Maximum Likelihood Estimation (MLE) to learn the parameter values (i.e., weights)
for each behavior model. Because training data may be limited in the real-world, we
limit the scope of each training dataset to contain data from only one subject pool. Un-
like previous work in NSGs by Yang et al. [19], where one set of weights was learned
across all graphs (i.e., an aggregate weight), we found that the log-likelihood was high-
est when weights were learned individually for each graph.

Experiment Set Composition As mentioned previously, the experiments are divided
into three separate experiment sets. Each combination of coverage strategy × graph set
was assigned to their own subject pool. Prior to running these experiments, however,
we had no training data on which to learn weights for the behavior models. Thus, the
first experiment set, experiment set 1, only contains a coverage strategy generated by
the Maximin algorithm.
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Experiment set 2 contains coverage strategies generated by the corresponding PASAQ
algorithms for the QR (Equation 3), SUQR (Equation 4), GSUQR1 (Equation 5), and
GSUQR2 (Equation 6) models. For the models used to generate these strategies, we
used the Maximin dataset as the training dataset to learn each model’s weights. To help
differentiate from the datasets in experiment set 3, we will refer to the datasets collected
in experiment set 2 as QR-M, SUQR-M, GSUQR1-M, and GSUQR2-M.

Experiment set 3 also contains coverage strategies generated for the QR (Equation
3), SUQR (Equation 4), and GSUQR1 (Equation 5) models. Instead of learning on
Maximin data, however, we instead learn on GSUQR1-M data (from experiment set 2).
As we will demonstrate later, learning from a non-Maximin dataset has a substantial
positive impact on predictive reliability. As was done for experiment set 2, we will refer
to the datasets collected in experiment set 3 as QR-S, SUQR-S, and GSUQR1-S.

6.3 Data Analysis Metrics

The following section discusses the various metrics used throughout our data analysis.
First, we will introduce three metrics for computing model prediction accuracy (the de-
gree to which a model correctly predicted attacker behavior). Next, we will introduce
our proposed predictive reliability metric, which measures the degree to which mod-
els’ predictions correspond to their actual performances. Finally, we introduce our last
proposed metric, Exposed Attack Surface, which measures the number of unique path
choices available to the attacker.

Model Prediction Accuracy In previous empirical analyses [6, 1] and in our own anal-
ysis, prediction accuracy measures are key to understanding the relative performance of
behavior models; accuracy measures seek to answer the question “How well does this
model predict human behavior?” Computed over all paths for each model × graph ×
coverage strategy combination, prediction accuracy quantifies the degree to which a
model’s predictions of attacker behavior were correct.

Regardless of a graph’s size or coverage strategy, however, only a few paths have an
actual probability of attack (qj) > 6%; most paths in most graphs are attacked with very
low frequency. When looking at all paths in a graph, the average absolute prediction er-
ror (AAE) is 3%, regardless of the behavior model making the prediction. It appears that
the error “outliers” are actually the primary values of interest. In other words, because
there is no discriminatory power with the average, we instead analyze the maximum ab-
solute prediction error (MAE) (Equation 21) for each model, where g ∈ G is a graph in
the experiment set, φ is the behavior model (along with its weights) being evaluated, qj
is the behavior model φ’s predicted attack proportion on path Aj given defender mixed
strategy x, and q̂j is the actual attack proportion on path Aj .

MAE(g, x, φ) = max
Aj∈A

|qj − q̂j | (21)

As mentioned previously, only a few paths in a graph have some substantial proba-
bility of being attacked. Over all eight datasets, on average (across all graphs), 70% of
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all attacks occurred on only three paths (per graph). Thus, it is prudent to also analyze
a model’s prediction accuracy on these so-called “favored" paths.

Definition 1. A path Aj is defined as a favored path Afj if its actual probability of
attack (qj) is ≥ 10%.

Similar to MAE but instead only over the favored paths Afj ⊂ Aj in a graph, we
compute the maximum absolute error over favored paths (referred to as FMAE). Since
this subset of paths does not suffer from excessive skewing, it is appropriate to also
analyze the average absolute error (FAAE) over the set of favored paths Afj .

Predictive Reliability Now that we’ve introduced our prediction accuracy metrics, we
turn our attention to the primary focus of our paper: predictive reliability - the degree
to which models’ prediction accuracies correspond with their corresponding strategies’
performances in experiments. If predictive reliability is poor, then models chosen on
the basis of having the best prediction accuracy may not perform the best when tested
against actual humans; when field-deployment resources are limited, those resources
should not be wasted on models that end up performing very poorly in the field!

After all human subject experiments have been conducted (we refer to the whole
set of attack data as Ad), we can compute predictive reliability. Put simply, predictive
reliability is the percentage of strong Pearson correlations. These correlations are com-
puted separately for each combination of graph (g ∈ G), prediction accuracy metric
(PAM ), and testing dataset (Te ∈ Ad). For a given g, PAM , and Te, we compute the
Pearson correlation over all models’ (1) prediction accuracy on Te (using PAM ), and
(2) actual defender utility on the model’s corresponding attack data (e.g., for model QR
trained on Maximin, compute on the QR-M dataset). Note that if a model was trained
on Te or if the model’s corresponding attack data is Te, it is omitted from the Pearson
correlation for that combination of g, PAM , and Te.

Definition 2. Predictive reliability is defined as the percentage of correlations between
actual utility values and prediction accuracies that are both (1) strong (magnitude >
0.70), and (2) in the desired direction (negative: as error decreases, actual utility in-
creases). In other words, predictive reliability corresponds to the percentage of strong
correlations (correlation < -0.70).

Exposed Attack Surface We now introduce our second proposed metric, Exposed
Attack Surface (EAS). While early discussion of attack surface exposure was done by
Manadhata et al. [13], more recently, Kar et al. [12] applied this concept to Repeated
Stackelberg Security Games to improve the defender’s utility against human subjects.
EAS measures the number of unique attacker choices (i.e., paths) for a graph× strategy
combination. To phrase this metric as a question, “Given a coverage strategy and graph,
how many paths in the graph have a unique combination of path coverage and reward?"
Referring to Figure 2 as an example, there are three separate paths to target 5. While
two of these paths have the same path coverage of {0.2, 0.2} (one attack surface), the
other path has 0 path coverage (the second attack surface). Finally, the path to target 8
constitutes the last attack surface; the example figure’s EAS score is 3. Although there
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are four paths in Figure 2, two of these paths are equivalent to each other (i.e., same
reward and coverage) and thus there are only three unique path choices (i.e., the EAS
score) for the attacker.

5

8

0

0.2

0.2

0.20.2

0

0.2

Fig. 2. Example graph 2

Definition 3. Exposed Attack Surface is defined as the number of unique combinations
of reward T (tj) and path coverage probability pj(x) over all paths A in a graph g.

When computing this metric for a dataset dφ,G ∈ DΦ,G, we take the sum of EAS
scores for each graph × coverage strategy (corresponding to a model φ) combination.
To illustrate the simple (but important) intuition behind EAS, we present two extreme
cases: (1) consider a training dataset that consists of a single graph × coverage strat-
egy such that the graph’s EAS score is one; all paths to the single target have identical
coverage (i.e., one unique path choice). When attempting to learn model parameters,
it would be impossible to differentiate between attacker choices; obviously, this train-
ing set with a low EAS score is ill-suited for use in model learning. (2) In contrast,
a training dataset with a high EAS score implies that there are many distinguishable
attacker choices. Attacker choices over these many unique paths provide information
about their preferences such that we can more effectively train a model; we hypothesize
that a training dataset that contains more information about attacker preferences (i.e.,
one with high EAS) is superior to one that provides less information (i.e., low EAS).

7 Predictive Reliability Analysis

After defining predictive reliability in the previous section (Section 6.3), we now eval-
uate predictive reliability in previous work by Nguyen et al. [15] for SSGs, and then
follow up with an evaluation of predictive reliability in our work for NSGs.

7.1 SSG Experiment

In this prior work on Stackelberg Security Games (SSGs), participants in human sub-
ject experiments were asked to play a game called “The Guards and Treasures". For
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one experiment, participants in each round (for 11 rounds total) picked one of 24 tar-
gets based on its defender coverage probability, reward and penalty to the attacker, and
reward and penalty to the defender. For each of these rounds, five coverage strategies
were generated: three corresponding to other defender strategy algorithms and two cor-
responding to the QR and SUQR human behavior models whose weights were learned
from a prior dataset consisting of 330 data points. While the previous work demon-
strated that SUQR’s prediction accuracy was better than QR, and SUQR had the best
corresponding strategy performance compared to other algorithms, it was an implicit
assumption that the behavior model with the best prediction accuracy would also per-
form the best in human subject experiments. If predictive reliability was actually poor,
then it could have been the case that QR and its strategy would have performed the best
in experiments.

7.2 SSG Predictive Reliability

For the following analysis, we confirmed that predictive reliability was strong for this
SSG experiment; prediction accuracy was reliably correlated with actual performance.
In the dataset we obtained from Ngyuen et al. [15] (which contained human subject
attack data), we computed the predictive reliability over the QR and SUQR models.
Because there were only two models in this correlation, the correlation output was ei-
ther -1 (i.e., supports good predictive reliability) or +1 (i.e., supports poor predictive
reliability). This analysis was done across 11 different rounds and for each of the three
non-QR/SUQR test datasets. In table 2, we show the predictive reliability of the QR and
SUQR models in this SSG dataset. When MAE was used as the error metric for each
model, predictive reliability was 91%. In other words, 91% of correlations corresponded
to prediction error being strongly inversely related to actual performance.

Table 2. Guards and Treasures Predictive Reliability

MAE AAE

Predictive Reliability 91% 85%

7.3 NSG Predictive Reliability

In the following predictive reliability evaluation analysis for NSGs, we demonstrate that
while predictive reliability is strong for SSGs, it is weak for NSGs; in an NSG setting,
model prediction accuracy does not consistently correspond to actual performance.

We computed the predictive reliability on the NSG dataset using the three differ-
ent error metrics: Maximum Absolute Error (MAE), Favored Path Maximum Absolute
Error (FMAE), and Favored Path Average Absolute Error (FAAE). Table 3 displays
the predictive reliability analysis results. While the predictive reliability results for the
SSG dataset were strong, it is surprising that predictive reliability is extremely poor for
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this NSG dataset. This result certainly serves as a cautionary note against relying solely
on prediction accuracy (as in previous work [6, 1]) to identify the best human behav-
ior models; with weak predictive reliability, even the best model in terms of prediction
accuracy may actually perform very poorly when its corresponding strategy is tested
against human subjects (either in the lab or in field experiments).

Table 3. NSG Predictive Reliability

MAE FMAE FAAE

Predictive Reliability 23% 24% 22%

7.4 Training Set Size

While the predictive reliability for NSGs is poor, an obvious question to ask is “Was
there enough training data?” For any learning task, it is important to have sufficient
training data. While we do not have nearly as much training data (33 data points) as
the prior SSG experiments (330 data points), it is important to ensure that our training
set size is sufficiently large for reliable training. In this analysis, we examine the effects
of training set size on the Maximum Absolute Error (MAE) rates of each NSG model.
While we expect MAE to be unstable when there is very little data in the training set, as
we add more data to the training set, we expect the error rates to eventually stabilize. It
is at this stabilization point (marked by a training set size) that we can conclude whether
we have trained our models on enough data or not. For example, if the stabilization point
is at 48 data points, it would indicate that our current training set size (33) is not large
enough, and any poor predictive reliability (as was previously demonstrated to be the
case) could easily be explained by this deficiency in training set size.

As such, the following analysis illustrates the MAE rates of all six NSG models as
a function of changes in the size of the training set. In Figures 3, 4, and 5, we show
the results of this analysis on Graphs 7, 9, and 11 (respectively), where MAE is com-
puted on the GSUQR2 testing set. Each line corresponds to a different model (e.g.,
QR-M refers to QR trained with Maximin data, SUQR-S refers to SUQR trained with
GSUQR1 data), the Y-Axis displays the different MAE rates (higher is worse), and the
X-Axis displays the change in training set size. While all the models appear to have
different error rates and rates of convergence, most of the models appear to converge by
the time 33 data points are introduced into the training set. Thus, we conclude that we
have trained our models with a sufficient number of data points, and the poor predictive
reliability results cannot be attributed to the size of the training set.

8 Predictive Reliability Factors

8.1 Training Set Feature: EAS

In the following analysis for our NSG dataset, we quantify the key difference in our
experiment’s two training sets: Exposed Attack Surface (EAS), and we demonstrate that
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Fig. 3. MAE as a Function of Training Set Size (GSUQR2 Testing Set, Graph 7)

Fig. 4. MAE as a Function of Training Set Size (GSUQR2 Testing Set, Graph 9)

having a higher EAS score can lead to substantial improvements in predictive reliability.
Note that both training sets in this analysis are of the same size.

Training Set Comparison As discussed in section 6.2, the full experiment set is com-
prised of three separate experiment sets. Experiment set 2 consists of models trained
on Maximin data (from experiment set 1), and experiment set 3 consists of models
trained on GSUQR1-M data (from experiment set 2). We computed predictive reliabil-
ity scores as a function of training set (either Maximin or GSUQR1-M) and prediction
accuracy metric (Maximum Absolute Error (MAE), Favored Path Maximum Absolute
Error (FMAE), and Favored Path Average Absolute Error (FAAE)), and we show those
results in Figure 6. As is clear, there must be a significant difference in the two training
sets; split solely on their training set, the predictive reliability doubles when models are
trained on the GSUQR1-M dataset! While their sizes are roughly the same (about 47
participants), we examine one key difference in these datasets: exposed attack surface.
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Fig. 5. MAE as a Function of Training Set Size (GSUQR2 Testing Set, Graph 11)

Fig. 6. Predictive Reliability as a Function of Training Set and Error Metric

Exposed Attack Surface Analysis Exposed Attack Surface (EAS), as defined in sec-
tion 6.3, refers to the number of unique combinations of reward T (tj) and path coverage
probability pj(x) over all pathsA in a graph g. Since we are interested in computing this
score for an entire dataset (consisting of 15 graphs g ∈ G), we compute the sum of EAS
scores across all graphs. Table 4 shows the sum of each training dataset’s EAS score.
While the Maximin dataset had 50 unique Exposed Attack Surfaces, the GSUQR1-M
dataset had 86 unique Exposed Attack Surfaces. This is not surprising, as a Maximin
strategy’s only goal is to conservatively minimize the attacker expected utility across all
paths; for 11 out of 15 graphs in the Maximin dataset, the EAS score is equal to 3 (the
minimum given three targets of different reward value). In contrast, an SUQR-based
strategy seeks to actively predict which paths an attacker will choose (based on a linear
combination of path coverage, reward, and potentially other factors), and as a result, the
resultant defender coverage strategy is more varied (and thus only 3 out of 15 graphs
have the minimum EAS score of 3).
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Table 4. Training Dataset Comparison: Sum of Exposed Attack Surfaces

EAS-Sum Maximin GSUQR1-M

50 86

Based on this line of reasoning, we can view the EAS metric as a measure of dataset
diversity. Since a diverse dataset would necessarily give more unique choices for attack-
ers to make, we are able to obtain more information on which choices are favored or not
favored by attackers. A higher EAS score could indicate that a dataset is better for train-
ing than another dataset; indeed, our current results strongly suggest that when there is
a substantial difference in EAS-Sum scores, there will also be a substantial difference
in predictive reliability. However, these results do not mean that a high EAS score will
result in 100% predictive reliability; if able to train on two datasets of equal size, it will
likely improve predictive reliability to train on the dataset with the higher EAS score.

9 Graph Features and Their Impacts on Predictive Reliability

In addition to training set features, we also investigated the impacts that a graph’s fea-
tures may have on predictive reliability. For example, some graphs may be inherently
more difficult to make predictions on than others, and it would be useful to character-
ize the factors that add to this complexity. Because this analysis is evaluating how a
graph’s features impact predictive reliability, the predictive reliability will be computed
on a per graph basis. Figure 7 shows the predictive reliability scores for each graph,
where each bin of three bars corresponds to a single graph, each bar corresponds to a
prediction error metric, and the Y-axis corresponds to predictive reliability. As can be
seen, the predictive reliability varies greatly as a function of the graph g. As such, it is
logical to investigate what graph features could have led to such significant differences
in predictive reliability.

Fig. 7. Predictive Reliability as a Function of Graph



19

We analyzed the correlation between a graph’s features and the predictive reliability
score for that graph. Initially, we tested many different features such as graph size (i.e.,
the number of paths in the graph), number of edges, number of intermediate nodes, av-
erage path length, and the average in-degree (incoming edges) and out-degree (outgoing
edges) of source, destination, and intermediate nodes. What we found, however, is that
none of these had a strong, direct correlation with predictive reliability. For example,
the lack of a strong correlation between graph size and predictive reliability states: “A
graph’s size does not impact the ability to make reliable predictions”.

Upon further investigation, we found one interesting relationship: there is a strong
correlation (+0.72) between poor predictive reliability and graphs with both a low to
moderate average out-degree for source nodes (< 3) and a low to moderate number of in-
termediate nodes (≤ 6). While we could not find a correlation among the other features’
values and the average out-degree of source nodes, we did find a strong correlation be-
tween the number of intermediate nodes and the average in-degree of destination nodes
(-0.75). Informally stated, as the number of intermediate nodes increases, the number
of edges going into destination nodes decrease. This balance is perhaps due to the edge
limit imposed during graph creation. Regardless, when there are less edges going into
destination nodes (due to many intermediate nodes), it is likely easier for the defender
to allocate resources which, in turn, reduces the number of good attack options for the
attacker. If the attacker does not have many good attack options to choose from, they
may act in a way that it is easier to predict by human behavior models.

10 Conclusion

Interdicting the flow of illegal goods (such as drugs and ivory) is a major security con-
cern for many countries. However, the massive scale of these networks forces defenders
to make judicious use of their limited resources. While existing solutions model this
problem as a Network Security Game (NSG), they do not consider humans’ bounded
rationality. While existing techniques for modeling human behavior make use of large
training datasets, this is unrealistic in real-world situations; the ability to effectively test
many models is constrained by the time-consuming and complex nature of field deploy-
ments. In addition, there is an implicit assumption in these works that a model’s pre-
diction accuracy strongly correlates with the performance of its corresponding defender
strategy (referred to as predictive reliability). If the assumption of predictive reliability
does not hold, then this could lead to substantial losses for the defender. In this paper,
we (1) first demonstrated that predictive reliability was strong for previous Stackelberg
Security Game experiments. We also ran our own set of human subject experiments in
such a way that models were restricted to learning on dataset sizes representative of
real-world constraints. In the analysis on that data, we demonstrated that (2) predictive
reliability was extremely weak for NSGs. Following that discovery, however, we iden-
tified (3) key factors that influenced predictive reliability results: exposed attack surface
of the training data and graph structure.
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Appendix 1: Design Considerations

Due to the nature of human subject experiments, special considerations were made
to reduce the effects of bias and noise. Charness et al. [4] discussed important design
choices for between-subject and within-subject experiment designs in order to minimize
the harmful effects of bias; we made use of these recommendations in our experimental
design, as discussed below.

Validation Rounds We included two validation graphs in each experiment set (for a
total of seventeen graphs presented in random order). Validation graphs are special case
graphs where all but one path has a coverage probability of 1.0 (i.e., “wrong paths"),
and one remaining path (i.e., the only correct solution) has a coverage probability of 0.0.
We dropped participants that selected a covered path (i.e., the wrong path) in any of the
two validation graphs; we concluded that players who failed this validation test were
either playing randomly or didn’t understand the instructions and would only confound
our analysis.

Within-participant Biases For each defender algorithm, we computed an optimal de-
fender mixed strategy on every graph. If we presented every combination of defender
strategy and graph to each participant, however, we would encounter substantial within-
subject bias. For example, if a participant first played on graph “A" with strategy “a"
and then played on graph “A" with strategy “b", their first instinct may be to see if their
previous solution will work again; upon seeing the same graph again, their decision
making would be immediately biased towards the path they chose previously. To ad-
dress this bias, we split up the experiment into multiple subject pools and randomly as-
signed participants to each subject pool. Although we conducted experiments for eight
strategies on fifteen graphs (for a total of 120 combinations of strategy × graph), each
subject pool was assigned to play against only one strategy across the 15 graphs. Thus,
participants in each subject pool played each graph exactly once.

Learning Effects Learning effects were also of concern to our experiments. After play-
ing on one or two graphs, participants would become more familiar with the game itself
and therefore may have some reinforced notions or heuristics for finding a path through
the graph. Although this cannot be completely avoided, we attempted to minimize this
by randomizing the order in which graphs were presented to participants and by with-
holding the result of each round until the end of the game; participants were not able
to use success information from each round to influence their decision-making in fu-
ture rounds. We also only allowed participants to participate in these experiments once;
even if we run another experiment with a different set of graphs, repeat participants will
exhibit different behaviors that will confound comparisons with first-time participants.

Compensation Participant motivation is an important aspect of human subject exper-
iments. To ensure that participants were thinking about their decisions and not playing
randomly, we rewarded participants with additional money if they performed well in
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the experiments. Because we could not inform participants of their successes during
the experiment due to aforementioned learning effects, we informed participants of the
following bonus structure prior to the experiment. For each graph where a participant
successfully attacked a target (i.e., without getting caught by the defender on a cov-
ered edge), they received bonus points equal to that target’s reward value. At the end of
the experiment, they received a bonus payment equal to the sum of their bonus points
divided by 100 (e.g., an additional 80 cents if they received 80 points throughout the
experiment). Note that if they got caught on a graph, they received zero points for that
round. In addition to any bonus payment, all participants received a base payment of
$1.50.


